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Characteristic classes of proalgebraic varieties
and motivic measures

SHOJI YOKURA

Gromov initiated what he calls “symbolic algebraic geometry”, in which he studied
proalgebraic varieties. In this paper we formulate a general theory of characteristic
classes of proalgebraic varieties as a natural transformation, which is a natural exten-
sion of the well-studied theories of characteristic classes of singular varieties. Fulton–
MacPherson bivariant theory is a key tool for our formulation and our approach
naturally leads us to the notion of motivic measure and also its generalization.

14C17, 18F99; 55N99, 14E18, 18A99, 55N35

Dedicated to Clint McCrory on the occasion of his 65th birthday

1 Introduction

This work was originally motivated by Gromov’s papers [38; 39] and partly by our
paper [78].

A pro-category was introduced by Grothendieck [41] and used to develop the Etale Ho-
motopy Theory by Artin and Mazur [3] and Shape Theory by Borsuk [8], Edwards [28],
Mardešić and Segal [53], etc. A pro-algebraic variety is a projective system of complex
algebraic varieties and a proalgebraic variety is the projective limit of a pro-algebraic
variety. In [38], Gromov investigated surjunctivity (see Gottschalk [37]), ie, being
either surjective or noninjective, in the category of proalgebraic varieties. The original
surjunctivity theorem is Ax’ Theorem [5], saying that every regular self-mapping of a
complex algebraic variety is surjunctive.

In this paper we do not deal with Ax-type theorems, but we consider characteristic
classes of proalgebraic varieties. In [38] Gromov uses proconstructible set or procon-
structible space at several places, but he does not seem to give precise definitions for
these terms. So a naïve question is how one should define “proconstructible set” or
equivalently “proconstructible function” on a proalgebraic variety, and therefore how
one should define the Chern–Schwartz–MacPherson class of a proalgebraic variety.
This is surely hinted by MacPherson’s Chern class transformation c�W F !H� from
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the covariant constructible function functor F to the homology theory [51] (also see
Brasselet and Schwarz [15], and Schwarz [67; 68]). A very simple example of a
proalgebraic variety is the Cartesian product X N of an infinite countable copies of a
complex algebraic variety X , which is one of the main objects treated in [38]. What
would be the Chern–Schwartz–MacPherson class of X N ? In particular, what would be
the Euler–Poincaré characteristic of X N ? Our answers are that they are respectively the
Chern–Schwartz–MacPherson class c�.X / and the Euler–Poincaré characteristic �.X /
in a sense which will be clarified later. It is this very simple observation that led us to
this work.

We will give a general theory of characteristic classes of proalgebraic varieties, which
is formulated as a natural transformation just like the now well-known theories of
characteristic classes of singular varieties. In Section 2 we quickly recall the theory
of characteristic classes of singular varieties, which is the base of the present work.
We discuss whether one should consider the inductive limit or the projective limit in
order to consider a reasonable notion of “proconstructible function” on the proalgebraic
variety. As reasonable models for characteristic classes of proalgebraic varieties we
consider some simple but instructive situations. In Section 3, suggested by the results
in Section 2, from a bifunctor F we introduce the notion of �F –stable objects and
obtain F –characteristics of proalgebraic varieties or more generally projective systems,
as a simple or natural pro-analogue of the classical characteristics such as Euler–
Poincaré characteristic, arithmetic genus, signature and Hirzebruch �y –genus. We
show that our approach naturally leads us to motivic measure (see, eg, Craw [23],
Denef and Loeser [24; 25], Kontsevich [45], Looijenga [50] and Veys [70]) and its
generalization. In Section 4 we give a class version of the above F –characteristics.
For that we need more requirements on the bifunctor F and also pro-morphisms
between pro-algebraic varieties; in particular, we need the base change formula for
the bifunctor (pre-Mackey functor). Furthermore in a general context we formulate a
general theory of characteristic classes of pro-objects as a natural transformation, using
Fulton–MacPherson bivariant theory [34]. In Section 5 we consider Green functors
and Grothendieck–Green functors, which are (pre-)Mackey functors with additional
structure, and show a uniqueness theorem concerning the constructible function functor
F.X / and the relative Grothendieck group K0.V=X /.

2 Preliminaries

2.1 Pro-category

Let C be a given category and I a directed set. A projective system is a sys-
tem fXi ; �ii0 W Xi0 ! Xi .i < i 0/g consisting of objects Xi 2 Obj.C/, morphisms
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�ii0 W Xi0 ! Xi 2 Mor.C/ for each i < i 0 and the index set I . The morphism
�ii0 W Xi0 !Xi is called a structure morphism or a bonding morphism; see Mardešić
and Segal [53]. The projective system fXi ; �ii0 W Xi0 ! Xi .i < i 0/g is sometimes
simply denoted by fXigi2I .

Given a category C , pro–C is the category whose objects are projective systems
X D fXigi2I in C and whose set of morphisms from X D fXigi2I to Y D fYj gj2J

is pro–C.X;Y / WD lim
 �J

.lim
�!I

C.Xi ;Yj //. An object in pro–C is called a pro-object
and a morphism in pro–C a pro-morphism.

The above definition of a pro-morphism is not crystal clear, but a more down-to-
earth definition is given by, eg, Fox [31] or Mardešić and Segal [53]. It follows
from [53] that for two pro-objects X D fXigi2I and Y D fYj gj2J , a pro-morphism
f D ffigi2I W X ! Y is described as follows: there is an order-preserving map
�W J ! I , ie, �.i/ < �.i 0/ for i < i 0 , and for each i 2 I there is a morphism
fi W X�.i/! Yi such that for i < i 0 the following diagram commutes:

X�.i0/
fi0

����! Yi0

��.i/�.i0/

??y ??y�i i0

X�.i/ ����!
fi

Yi :

From now on, to make the presentation simpler, we assume that a pro-morphism
(promorphism, resp.) is (the projective limit of, resp.) a projective system of morphisms
of objects with the same directed set I and that the order-preserving map �W I ! I is
the identity.

2.1.1 Remark Given a projective system X D fXigi2I the projective limit X1 WD

lim
 �

Xi may not belong to the source category C . For a certain sufficient condition for
the existence of the projective limit in the category C ; see Mardešić and Segal [53] for
example.

Let FW C ! D be a covariant functor between two categories C;D . Obviously the
covariant functor F extends to a covariant pro-functor pro–FW pro–C! pro–D defined
by pro–F.fXigi2I / WD fF.Xi/gi2I . Let F1;F2W C ! D be two covariant functors
and NW F1 ! F2 be a natural transformation between the two functors F1 and F2 .
Then the natural transformation NW F1! F2 extends to a natural pro-transformation
pro–NW pro–F1! pro–F2 , taking the projective limit of which gives rise to the pro-
transformation lim

 �
NW lim
 �

F1! lim
 �

F2 . Here we denote Fpro.X1/ WD lim
 �

F.Xi/ for
a covariant functor F and Npro D lim

 �
N.
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2.2 Characteristic classes of singular varieties

In this section we quickly recall well-studied theories of characteristic classes of singular
varieties, which are typical models for the natural transformation NW F1! F2 , where
F1 and F2 are covariant functors from the category of complex algebraic varieties to
the category of abelian groups.

The classical theory of characteristic class is a natural transformation from the con-
travariant functor of vector bundles to the contravariant cohomology theory. When it
comes to characteristic classes of singular spaces, they are considered in homology
theory, instead of cohomology theory and still formulated as natural transformations
from a covariant functor F to a (suitable) homology theory H� . Topologically or
geometrically the following are most important and interesting:

(1) MacPherson’s Chern class transformation [51]:

c�W F.X /!H�.X /;

(2) Baum, Fulton and MacPherson’s Todd class or Riemann–Roch [6]:

td�W G0.X /!H�.X /˝Q;

(3) Goresky and MacPherson’s homology L–class [36], which is extended as a
natural transformation by Cappell and Shaneson [21] (also see Yokura [73]):

L�W �.X /!H�.X /˝Q:

Here F.X / is the abelian group of constructible functions on X , G0.X / is the
Grothendieck group of coherent sheaves on X , �.X / is the Cappell–Shaneson–Youssin
cobordism group of self-dual constructible sheaves (see Cappell and Shaneson [21],
Woolf [71] and You [82]) and H�.X / is the Borel–Moore homology theory (eg, see
Fulton [33]).

Since MacPherson’s Chern class is the most fundamental one in the development of
characteristic classes of singular varieties and we also need some facts on constructible
functions in sections below, we quickly recall MacPherson’s Chern class.

A constructible function on a variety is an integer-valued function for which the variety
has a finite stratification into constructible sets such that the function is constant on
each constructible set. Another simpler description of F.X / is the following. For
a subvariety W � X , let 1W be the characteristic function supported on W , ie,
1W .x/ D 1 for x 2 W and 1W .x/ D 0 for x 62 W . Then F.X / consists of all
finite linear combinations of such characteristic functions supported on subvarieties
with integer coefficients. With the pullback f �W F.Y /! F.X / defined by f �˛ WD
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˛ ıf , the assignment X 7�! F.X / is a contravariant functor. With the pushforward
f�W F.X /!F.Y / defined by f�.1W /.p/D�.f

�1.p/\W /, the assignment X 7�!

F.X / is a covariant functor by MacPherson [51, Proposition 1]. The Euler–Poincaré
characteristic homomorphism �W F.X /!Z is defined by �.˛/ WD

P
n2Z n�.˛�1.n//.

Then for a morphism �X W X ! pt to a point pt, the pushforward .�X /�W F.X /!

F.pt/D Z is nothing but �W F.X /! Z. So, for a morphism f W X ! Y , from the
covariance of F we get the following commutative diagram:

F.X /

�
""

f� // F�.Y /

�
||

Z

In fact, the commutativity of this diagram follows from the definition of the pushforward
f�W F.X /! F.Y / and the stratification theory (see [51]).

Deligne and Grothendieck conjectured and MacPherson affirmatively solved the fol-
lowing:

2.2.1 Theorem [51, Theorem 1] There exists a unique natural transformation from
the covariant constructible function functor to the Borel–Moore homology covariant
functor c�W F.�/! H�.�/ such that for a nonsingular variety X the value of the
characteristic function 1X is the Poincaré dual of the total Chern cohomology class:
c�.1X /D c.TX /\ ŒX � where TX is the tangent bundle of X .

2.2.2 Remark The above theorem is an answer for the question of if there exists
(uniquely) a homomorphism �.X /W F.X /!H�.X / such that the following diagram
commutes:

F.X /

f�

��

�
""

�.X / // H�.X /

R
{{

f�

��

Z

F.Y /

�
<<

�.Y /

// H�.Y /

Rcc

Here
R
W H�.X /! Z is the integration or equal to .�X /�W H�.X /! H�.pt/ D Z.

It is obviously a Grothendieck–Riemann–Roch type question for Chern classes just
like Grothendieck extended Hirzebruch–Riemann–Roch theorem to the Grothendieck–
Riemann–Roch theorem (cf Grothendieck [40, Part II, note(871 ), pages 361 ff]).
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The constructible function functor F is a bifunctor, ie, a functor which is both covariant
and contravariant. Another bifunctor which we need in later sections is the relative
Grothendieck group K0.V=X /. This was introduced by Looijenga [50] and further
studied by Bittner [7].

2.2.3 Definition K0.V=X / is the quotient of the free abelian group of isomorphism
classes of morphisms to X (denoted by ŒY !X �, ŒY h

!X � or ŒhW Y �!X �), modulo
the relation

ŒY
h
�!X �D ŒZ ,! Y

h
�!X �C ŒY nZ ,! Y

h
�!X �

for a closed subvariety Z � Y . The isomorphism class ŒhW Y �!X � shall be called the
Grothendieck class of hW Y �!X .

� The ring structure is given for for Œf W Y �!X �; ŒgW W �!X � 2K0.V=X / by

ŒY
f
�!X � � ŒW

g
�!X � WD ŒY �X W

f�X g
����!X �:

� For a morphism f W X 0!X , the pushforward f�W K0.V=X 0/!K0.V=X / is
defined by f�ŒhW Y �!X 0� WD Œf ı hW Y �!X �.

� For a morphism f W X 0 ! X , the pullback f �W K0.V=X / ! K0.V=X 0/ is
defined by f �ŒgW Y �!X � WD Œg0W Y 0 �!X 0�, using the fiber square

Y 0
g0

����! X 0

f 0
??y ??yf
Y

g
����! X:

� The exterior product �W K0.V=X /�K0.V=Y /!K0.V=X �Y / is defined by

ŒV
h
�!X �� ŒW

k
�! Y � WD ŒV �W

h�k
���!X �Y �:

2.2.4 Remark When X D pt is a point, the relative Grothendieck ring K0.V=pt/
is the usual Grothendieck ring K0.V/. By considering �X W X ! pt, we get the
homomorphism �X �W K0.V=X /!K0.V/, which shall be denoted by �Gro . Then we
have the following commutative diagram:

K0.V=X /

�Gro %%

f� // K0.V=Y /

�Groyy
K0.V/
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In Brasselet, Schürmann and Yokura [14] (cf work of Brasselet, Schürmann and
Yokura [11; 64; 66; 81]) we showed the following theorem (originally, using Saito’s
theory of mixed Hodge modules [60]):

2.2.5 Theorem (Motivic Hirzebruch class of singular varieties) There exists a unique
natural transformation Ty�W K0.V=�/!H�.�/˝QŒy� satisfying the normalization
condition that for a smooth variety X , Ty�.ŒidX W X �!X �/D td.y/.TX /\ ŒX �.

Here the Hirzebruch class td.y/.E/ of the complex vector bundle E [42; 43] is

td.y/.E/ WD
rank EY
iD1

�
˛i.1Cy/

1� e�˛i .1Cy/
�˛iy

�
2H�.X /˝QŒy�;

where ˛i is the Chern root of E , ie, c.E/D
Qrank E

iD1 .1C˛i/. Note that

� td.�1/.E/D c.E/, the Chern class,

� td.0/.E/D td.E/, the Todd class,

� td.1/.E/DL.E/, the Thom–Hirzebruch L–class.

2.2.6 Definition Ty�.X / WDTy�.ŒidX W X �!X �/ is called the Hirzebruch class of X

and �y.X / WD
R

Ty�.X /D Ty�.ŒX �! pt�/ is called the Hirzebruch �y –characteristic
of X .

2.2.7 Remark [14] Here we should note that for a smooth variety X we have
T�1�.X /D c�.X /; T0�.X /D td�.X /; T1�.X /DL�.X /. If X is singular, in general
we have T0�.X / 6D td�.X /; T1�.X / 6D L�.X /; �0.X / 6D �a.X /; �1.X / 6D �.X /,
although T�1�.X / D c�.X / always holds whether X is singular or not. Here
�a.X / WD �.X;OX / is the arithmetic genus and �.X / is the signature defined via the
intersection homology of Goresky and MacPherson [36]. Thus T0�.X / and T1�.X /

are respectively called Hodge–Todd class and Hodge–L class, and �0.X / and �1.X /

are respectively called Hodge–arithmetic genus and Hodge signature.

This motivic Hirzebruch class Ty�W K0.V=�/!H�.�/˝QŒy� “unifies” the afore-
mentioned three characteristic classes of singular varieties (cf MacPherson [52] and
Yokura [74]). For more details, see Brasselet, Schürmann and Yokura [14]. For further
and related works on the motivic Hirzebruch class, eg, see the works by Cappell,
Libgober, Maxim, Saito, Schürmann, Shaneson and Yokura [20; 16; 18; 17; 19; 54; 55;
63; 65; 80].

Algebraic & Geometric Topology, Volume 12 (2012)



608 Shoji Yokura

2.3 Proconstructible functions, indconstructible functions and cylinder
functions

From MacPherson’s Chern class transformation c�W F !H� , we get

c
pro
� W F

pro.X1/!H
pro
� .X1/:

What would be the value of an element ˛1D .˛i/2F pro.X1/ at a point .xi/2X1? A
very naïve definition could be ˛1..xi//D˛i.xi/ for all i . The equality �ij�. j̨ /D˛i

implies that ˛i.xi/D�ij�. j̨ /.xi/D�.�
�1
ij .xi/I j̨ /. Here, �.AI˛/ WD�.˛jA/. Thus,

in general, �ij .xj /D xi and �ij�. j̨ /D ˛i do not imply that ˛i.xi/D j̨ .xj /. Thus
˛1..xi//D ˛i.xi/ is not well-defined. Hence, an element of the pro-group F pro.X1/

would not be a good candidate to be considered as a function on the proalgebraic
variety X1 . However, the equalities �ij .xj / D xi and ��ij .˛i/ D j̨ imply that
˛1..xi// D ˛i.xi/.8i/ is well-defined, since we have j̨ .xj / D .��ij .˛i//.xj / D

˛i.�ij .xj // D ˛i.xi/. Namely, to define a reasonable notion of proconstructible
function on a proalgebraic variety we need to take the inductive limit instead of the
projective limit, using the contravariant nature of the covariant functor F . So the
following definition is reasonable.

2.3.1 Definition For a proalgebraic variety X1 D lim
 �
fXi ; �ij W Xj !Xi .i < j /g,

the inductive limit lim
�!
fF.Xi/; �

�
ij W F.Xi/! F.Xj / .i < j /g is denoted by F ind.X1/

and the equivalence class of j̨ is denoted by Œ j̨ �. An element of the indgroup
F ind.X1/ is called an indconstructible function on the proalgebraic variety X1 .

2.3.2 Remark (1) In [2] (cf [1]), Aluffi considered the above projective limit F pro

for a certain special projective system of morphisms called modification system, which
is more precisely a projective system of birational morphisms.

(2) Since the above indconstructible function is a function defined on a proalgebraic
variety, we could still call it a “proconstructible” function as in Gromov [38], but we
want to emphasize the fact that it is defined via the inductive limit and call it so.

(3) The indconstructible function Œ1Xi
� shall be called the indcharacteristic function

on X1 and denoted by 1X1 .

For a later reference we take a closer look at the above fact that an element of F ind.X1/

can be considered as a function on the proalgebraic variety X1 . We denote the above
correspondence as ‰W F ind.X1/! Fun.X1;Z/ defined by ‰.Œ˛i �/..xj // WD ˛i.xi/.
One can describe this in a fancier way as follows. Let �i W X1 ! Xi denote the
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canonical projection. Consider the following commutative diagram (which follows
from �i D �ij ı�j .i < j /):

F.Xi/

��
i &&

��
ij // F.Xj /

��
jxx

Fun.X1;Z/

Then it follows from a standard fact on inductive limits that the homomorphism
‰W F ind.X1/! Fun.X1;Z/ is nothing but the unique homomorphism such that the
following diagram commutes:

F.Xi/

�i

yy

��
i

&&
F ind.X1/

‰
// Fun.X1;Z/:

To avoid possible confusion, the image ‰.Œ˛i �/D�
�
i ˛i shall be denoted by Œ˛i �1 . For

a constructible set Wi 2Xi , by the definition we have Œ1Wi
�1D1��1

i
.Wi / . �i

�1.Wi/ is
called a cylinder set (of level i ), mimicking Craw [23]. And the characteristic function
supported on a cylinder set (of level i ) is called a cylinder-characteristic function (of
level i ) and a finite linear combination of cylinder-characteristic functions is called a
cylinder function. Let F cyl.X1/ denote the abelian group of all cylinder functions on
the proalgebraic variety X1 . Thus we have the following:

2.3.3 Proposition For a proalgebraic variety X1 D lim
 �
fXi ; �ij W Xj !Xig,

F cyl.X1/D Image‰W F ind.X1/! Fun.X1;Z//D
[

i

��i .F.Xi//:

2.3.4 Proposition If the structure morphisms �ij W Xj !Xi .i < j / are all surjective,
then for the proalgebraic variety X1 D lim

 �
fXi ; �ij W Xj !Xig we have

F ind.X1/Š F cyl.X1/:

Proof That all the structure morphisms �ij W Xj !Xj (i < j ) are surjective implies
that all the projections �i W X1!Xi are surjective. Which implies in turn that all the
homomorphism ��i W F.Xi/! Fun.X1;Z/ are injective. Since the inductive limit is
an exact functor, it follows that the homomorphism ‰W lim

�!
F.X�/! Fun.X1;Z/ is

also injective. Thus we get the above isomorphism.

2.3.5 Question Is ‰W F ind.X1/! Fun.X1;Z/ always injective?
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2.3.6 Remark Suppose that ‰.Œ j̨ �/ D 0, ie, ‰.Œ j̨ �/..xi// D j̨ .xj / D 0 for any
.xi/2X1 . Hence we have j̨ .�j .X1//D 0. At the moment we do not know whether
we can conclude Œ j̨ �D 0 from this condition. A key point of the above proof is the
fact that all the projections �i W X1!Xi are surjective, thus one might guess that the
existence of a nonsurjective projection �i W X1!Xi might lead to a negative answer
to the above question. But that is not the case; here is a very simple example such that

j̨ .�j .X1//D 0; �j .X1/ 6DXj and j̨ 6D 0, but Œ j̨ �D 0: Let X1Dfa; bg be a space
of two different points, and let Xn D fag for any n > 1. Let �12W X2! X1 be the
injection map sending a to a and the other structure morphism �n.nC1/W XnC1!Xn

is the identity for n> 1. Then the projective limit X1 D f.a/g consists of one point
.a; a; a; : : :/. Let ˛1Dp �1b 2F.X1/. Then we have ˛1.�1.X1//D0; �1.X1/ 6DX1

and ˛1 6D 0, but Œ˛1� D 0. We suspect that in general ‰ might be not necessarily
injective, but we have been unable to find such an example.

2.4 Characteristic “indhomology” classes

First of all, let us consider a projective system fMi ; �ij W Mj!Mi .i < j /g of compact
complex manifolds Mi ’s. From this we get the inductive system of homology groups
fH�.Mi/; .�ij /

!W H�.Mi/!H�.Mj / .i < j /g. Here .�ij /
!W H�.Mi/!H�.Mj / is

the Gysin homomorphism, ie, for a morphism f W M !N , f ! WD PDM ıf
� ıPD�1

M ,
where PDW W H

�.W /! H�.W / is the Poincaré duality isomorphism via capping
with the fundamental class; PDW .x/D x\ ŒW �.

Let c`W K0.�/!H�.�/ be a multiplicative characteristic class of complex vector bun-
dles, ie, a multiplicative sequence of Chern classes and let c`�.M / WD c`.TM /\ ŒM �.
Then the family fc`�.Mi/gi2I is not compatible with the above inductive system
fH�.Mi/g, but it is compatible with the inductive system of the twisted pullback homo-
morphism fH�.Mi/; .�ij /

!!W H�.Mi/!H�.Mj / .i < j /g, where f !! WD c`.Tf /\f
!

with Tf WD TM � f �TN 2K0.M /. Namely, for each i < j we have c`�.Mj /D

.�ij /
!!.c`�.Mi//. Therefore any c`�.Mi/ determines the unique “indhomology” class

Œc`�.Mi/� in the inductive limit: Œc`�.Mi/�2H ind
�� .M1/. Here H ind

�� .M1/ denotes the
inductive limit of the above inductive system. So, this “indhomology” class Œc`�.Mi/�

can be considered as the characteristic “indhomology” class c`�.fMig/ of the pro-
manifold fMig or the characteristic “indhomology” class c`�.M1/ of the pro-manifold
M1 .

2.4.1 Remark (1) If we consider the cohomology group H�.M / instead of the
homology group H�.M /, then the twisted pullback f !!W H�.N /!H�.M / is f !!D

c`.Tf / [ f
� and we get the characteristic “indcohomology” class c`ind.fMig/ or

c`ind.M1/.
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(2) Here it should be warned that for any projective system of compact complex
manifolds Mi we get the same “indhomology” class Œc`�.Mi/�, independent of the
structure of the projective limit M1 .

(3) For any projective system of compact complex manifolds fMig the “indcharacter-
istic function” 1M1 and the Chern “indhomology” class Œc�.Mi/� are both available.
However, we do not necessarily have a homomorphism cind

� W F
ind.X1/!H ind

� .X1/

such that cind
� .1M1/ D Œc�.Mi/�. For example, consider the case when at least one

map �ij W Xj ! Xi is constant. If f W M !N is a constant map with f .M /D x0 ,
then the following diagram is not commutative:

F.N /
c�
����! H�.N /

f �
??y ??yc.Tf /\f

!

F.M / ����!
c�

H�.M /:

Indeed, let us suppose that the above diagram commutes. Take another point x

from N such that x 6D x0 and x is in the same component of x0 . Then c�.1x/ D

Œx� D Œx0� D c�.1x0
/ 2 H�.N /. Thus we have c�.M / D c�.1M / D c�.f

�1x0
/ D

c.Tf / \ f
!.c�.1x0

// D c.Tf / \ f
!.c�.1x// D c�.f

�1x/ D c�.0/ D 0. This is a
contradiction.

So, to construct cind
� W F

ind.X1/!H ind
�� .X1/ we need to consider the commutativ-

ity of the following diagram with some suitable contravariantly functorial pullback
homomorphism �

�
ij W H�.Xi/!H�.Xj /:

F.Xi/
c�
����! H�.Xi/

��
ij

??y ??y��
ij

F.Xj /
c�
����! H�.Xj /:

Hence, to get an inductive version NindW Find.�/ ! H ind
� .�/ ˝ R from a theory

NW F!H�.�/˝R of characteristic classes of singular varieties, which is any theory
recalled in Section 2.2, we need to consider such a commutative diagram as above.
One immediate answer for such a commutative diagram is the following Verdier-type
Riemann–Roch theorem (see Schürmann [62] and Yokura [75]):
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2.4.2 Theorem Let X;Y be complex algebraic varieties and f W X ! Y be a smooth
morphism between them. Then the following diagram commutes:

F.Y /
c�
����! H�.Y /

f �
??y ??yc.Tf /\f

!

F.X / ����!
c�

H�.X /:

Here Tf is the relative tangent bundle of f and f ! is the Gysin homomorphism.

The same formulas hold for Todd class td� (which is the original Verdier–Riemann–
Roch theorem [6]), for Hirzebruch class Ty� [14] and also for Whitney class w� [34,
Proposition 6B] (cf Fu and McCrory [32] and Sullivan [69]).

2.4.3 Remark For a more generalized Verdier-type Riemann–Roch theorem for
Chern class, see Schürmann [62]. For the above Verdier–Riemann–Roch formula
for Todd class, smooth morphism can be replaced by local complete intersection
morphism [6]. We would speculate that for a smooth morphism f W X ! Y the
following Verdier-type Riemann–Roch formula for the Cappell–Shaneson homology
L–class L�W �.�/! H�.�/˝Q also holds, but we have been unable to prove or
disprove it (cf [14]):

�.Y /
L�
����! H�.Y /˝Q

f �
??y ??yL.Tf /\f

!

�.X / ����!
L�

H�.X /˝Q:

2.4.4 Corollary For a projective system fXi ; �ij W Xj ! Xi .i < j /g of smooth
morphisms �ij we have

(1) the homomorphism cind
� W F

ind.X1/! H ind
�� .X1/ and the Chern– Schwartz–

MacPherson “indhomology” class cind
� .X1/D cind

� .1X1/D Œc�.Xi/�.
(2) the homomorphism tdind

� W G
ind
0
.X1/!H ind

�� .X1/˝Q and the Baum–Fulton–
MacPherson Todd “indhomology” class tdind

� .X1/D tdind
� .OX1/D Œtd�.Xi/�.

(3) the homomorphism Ty
ind
�
W Kind

0
.V=X1/!H ind

�� .X1/˝QŒy� and Hirzebruch
“indhomology” class Ty

ind
�
.X1/D Ty

ind
�
.ŒidW X1 �!X1�/D ŒTy�.Xi/�.

2.4.5 Remark (1) At the moment cind
� ; td

ind
� and Ty

ind
�

are just transformations. In
fact, to make cind

� ; td
ind
� and Ty

ind
�

natural transformations, we need more requirements
and we treat that in Section 4 in a more general context.

(2) The above homomorphism cind
� W F

ind.X1/!H ind
�� .X1/ is closely related to the

construction of equivariant Chern class due to Ohmoto [56] (cf [57]).
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2.4.6 Example Let us take a look at another example which deals with nonsmooth
maps. Consider an infinite sequence fN1;N2; : : : ;Nn; : : :g of compact complex alge-
braic varieties Ni ’s and let us set Xn WDN1�N2�� � ��Nn .n2N/. For each i < j we
let �ij W Xj !Xi be the canonical projection �ij .x1;x2; : : : ;xj /D .x1;x2; : : : ;xi/.
Then consider the projective system fXi ; �ij W Xj !Xi .i < j /g, the projective limit
of which is actually by definition to be the infinite product N1 �N2 � � � � �Nn � � � � .
Then we have the commutative diagram

F.Xn/
c�
����! H�.Xn/

��
n;nC1

??y ??y�c�.NnC1/

F.XnC1/ ����!
c�

H�.XnC1/:

This commutativity follows from the (exterior) product formula of MacPherson’s
Chern class [46] (cf [47]): c�.˛�ˇ/Dc�.˛/�c�.ˇ/ for ˛2F.X / and ˇ2F.Y /. Thus
fH�.Xi/;�c�.NiC1/�� � ��c�.Nj /W H�.Xi/!H�.Xj / .i<j /g is clearly an inductive
system, the inductive limit of which is again denoted by H ind

�� .X1/, and thus we get
the homomorphism cind

� W F
ind.X1/!H ind

�� .X1/ and we have cind
� .X1/D Œc�.N1/�.

In fact, the other three characteristic classes td�;L� and Ty� also commute with the
exterior products (see Baum, Fulton and MacPherson [6], Woolf [71] and Brasselet,
Schürmann and Yokura [14], respectively), thus we get the following:

2.4.7 Corollary Let the situation be as above. Let c` D c; td;L; td.y/ and let
H ind
�� .X1/˝R be the inductive limit of the inductive system of homology classes
fH�.Xi/˝R;�c`�.NiC1/� � � � � c`�.Nj /W H�.Xi/˝R! H�.Xj /˝R .i < j /g,
where R D Z when c` D c , R D Q when c` D td;L and R D QŒy� when
c`D td.y/ . Then we have the homomorphism c`ind

� W F
ind.X1/!H ind

�� .X1/˝R and
c`ind
� .X1/D Œc`�.N1/�.

2.4.8 Corollary Let c`D c; td;L; td.y/ and let X be a compact complex algebraic va-
riety. The c`“indhomology” class of the infinite product X N is c`ind

� .X
N/D Œc`�.X /�.

2.5 Characteristic “indnumbers”

Let c` be a multiplicative characteristic class as before and let us consider the corre-
sponding characteristic “number” of a compact complex manifold M :

]c`.M / WD

Z
M

c`�.M / 2H0.M /DR:
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2.5.1 Example (i) If c`D c is Chern class, ]c.M /D �.M / is the Euler–Poincaré
characteristic of M .

(ii) If c`D td is Todd class, ]td.M /D �a.M / is the arithmetic genus of M .

(iii) If c` D L is Thom–Hirzebruch’s L–class, ]L.M / D �.M / is the signature
of M .

For a morphism f W M!N of compact complex manifolds we do have f !!.c`�.N //D

c`�.M /, but clearly in general ]c`.M / 6D ]c`.N /. So, for a projective system fMig WD

fMi ; �ij W Mj !Mi .i < j /g of compact complex manifolds, if there is an inductive
system fRi DR; �ij W Ri!Rj .i < j /g such that �ij .]c`.Mi//D ]c`.Mj /, then we
have the “indcharacteristic” of the pro-manifold M1 : ]ind

c`
.M1/D Œ]c`.Mi/�.

2.5.2 Example As before, let us consider an infinite sequence fN1;N2; : : : ;Nn; : : :g

of compact complex manifolds Ni ’s, Mn WD N1 � N2 � � � � � Nn .n 2 N/ and
�ij W Mj ! Mi . Then we have ]c`.Mn/ D ]c`.N1/ � ]c`.N2/ � � � � � ]c`.Nn/ and
]c`.Mj /Dpij �]c`.Mi/. Here pij WD ]c`.MiC1/ � � � ]c`.Mj /2R and pii WD1. In this
case the above homomorphism �ij W R!R is the multiplication by pij , ie, �ij .a/D

pij � a. Hence the characteristic “indnumber” of the infinite product of complex mani-
folds N1�N2�� � ��Nn�� � � is equal to Œ]c`N1�2 lim

�!
fRi DRIpij� W R!Rg. Fur-

thermore, we let p1 WD 1, pn WD ]c`.N2/ � � � � �]c`.Nn/ and let P be the multiplicatively
closed subset of R generated by all pn ’s (ie, consisting of .pi1

/m1 �.pi2
/m2 � � � .pik

/mk

with mj = 0) such that 0 62 P (see Remark 2.5.3 below). Let us consider the localiza-
tion RP of R with respect to P and the renormalization �nW Rn DR!RP defined
by �n.a/ WD a=pn . Then it follows from the standard facts of the inductive limits
that there exists a unique homomorphism ˆW lim

�!
Rn!RP such that the following

diagram commutes:
Rn DR

�n

yy

�n

$$
lim
�!

Rn
ˆ

// RP :

This homomorphism ˆW lim
�!

Rn!RP is a kind of “realization homomorphism” of
the abstract ring lim

�!
Rn . Thus we get the inductive characteristic

]ind
c` .N1 �N2 � � � � �Nn � � � /D Œ]c`.N1/� 2RP :

For example, if we consider the Chern class c for the infinite product N1DN�N�� � �

of a compact complex manifold N , then we have the inductive Euler–Poincaré char-
acteristic �ind.N1/ D Œ�.N /� 2 Z.�.N // . As we see above, the manifold N can
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be replaced by a complex algebraic variety X and we have the same answer, ie,
�ind.X1/D Œ�.X /� 2 Z.�.X // .

2.5.3 Remark The requirement 0 62 P for the multiplicatively closed subset P of R

generated by all pn ’s is necessary when we consider the quotient ring RP , ie, when
we consider the realization homomorphism ˆW lim

�!
Rn!RP . 0 62P implies that each

pi is nonnilpotent. If R is an integral domain, then 0 62 P if and only if each pi is
nonnilpotent. However, if R is not an integral domain, that each pi is nonnilpotent is
not necessarily sufficient. Later we deal with the Grothendieck ring K0.V/, which is
not an integral domain; see Poonen [58].

2.5.4 Example Let f W M ! N be a submersion of compact complex manifolds
and assume that the fundamental group of the base manifold acts trivially on the
cohomology H�.F / of its fiber F , then we have that �.M / D �.F /�.N / [22].
Provisionally such a submersion shall be called a perfect submersion for short. (Note
that Atiyah [4] and Kodaira [44] showed that if a submersion is not perfect, then the
above multiplicative formula does not necessarily hold.) In general we have �y.M /D

�y.F /�y.N /. So, for a projective system fMig WD fMi ; �ij W Mj !Mi .i < j /g of
perfect submersions of compact complex manifolds with pij WD�y.Fij / for a fiber Fij

of �ij , we have �y.Mi/Dpij ��y.Mj /. Hence we can define the inductive Hirzebruch
�y –characteristic �ind

y .M1/D Œ�y.Mi/�.

3 Characteristics of proalgebraic varieties

3.1 Bifunctors

In the previous section we saw that a bifunctor plays a key role in the consideration
of proalgebraic analogues of characteristics and characteristic classes. So, from now
on we consider a bifunctor F W C ! AB from a category C to the category AB of
abelian groups, ie, F is a pair .F�;F�/ of a covariant functor F� and a contravariant
functor F� such that F�.X / D F�.X / for any object X . Unless some confusion
occurs, we just denote F.X / for F�.X /DF�.X /. Furthermore we assume that for a
final object pt2Obj.C/, F.pt/ is a commutative ring R with a unit. Then the covariance
of the bifunctor F induces the homomorphism F.�X /W F.X /! F.pt/DR, which
shall be denoted by �F W F.X /!R and called the F –characteristic, just mimicking
the Euler– Poincaré characteristic �W F.X /! Z in the case when F D F . Then
furthermore the covariance of F implies that for a morphism f W X ! Y we get the
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commutative diagram:

F.X /

�F ""

f� // F.Y /

�F||
R

3.1.1 Remark In the above definition we require the contravariance of F for all
morphisms in the category C . But, as seen before, when it comes to dealing with
pullbacks, the contravariance is not required on all morphisms but only on projective
systems which you consider. From now on our bifunctors are understood to be such
ones. Sloppily we say that F is a bifunctor on projective systems.

3.2 �F –Stable objects and inductive characteristics

3.2.1 Definition Let fXi ; �ij W Xj !Xig be a projective system and let P D fpij g

be a projective system of elements of R by the directed set I , ie, a set such that pii D 1

and pij �pjk D pik .i < j < k/. Let F be a bifunctor on the projective system fXig.

(1) For each i 2 I we define the following subobject of F.Xi/:

F st
P .Xi/ WD

˚
˛i 2 F.Xi/ j �F .�ij

�˛i/D pij ��F .˛i/ for all j > i
	
:

(2) For each i 2 I , an element of F st
P
.Xi/ is called a �F –stable object (of level i )

with respect to the projective system P .

3.2.2 Lemma For each structure morphism �ij W Xj ! Xi the pullback homomor-
phism ��ij W F.Xi/!F.Xj / preserves �F –stable objects with respect to the projective
system P D fpij g, namely it induces the homomorphism (using the same symbol)

��ij W F
st
P .Xi/! F st

P .Xj /:

3.2.3 Definition The inductive limit of the inductive system˚
F st

P .Xi/; �
�
ij W F

st
P .Xi/! F st

P .Xj / .i < j /
	

is denoted by F st:ind
P

.X1/ and an element of this inductive limit shall be called a �F –
stable indobject of AB on the proalgebraic variety X1 with respect to the projective
system P .

3.2.4 Remark We see that this can be also directly defined as˚
Œ˛i � 2 F ind.X1/ j �F .�

�
ij˛�/D pij ��F .˛i/ .i < j /

	
:
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The following is an application of standard facts on inductive systems and inductive
limits, but nevertheless it is a key and important observation for the rest of the paper,
in particular in connection to motivic measures, so it is stated as a theorem.

3.2.5 Theorem (1) For a projective system fXi ; �ij W Xj !Xig and a projective
system P D fpij g of nonzero elements of R, we have the homomorphism

�ind
F W F

st:ind
P .X1/! lim

�!
f�pij W R!Rg;

which is called the inductive F –characteristic (or “F –indcharacteristic”) homo-
morphism.

(2) In the case when ƒDN , for a projective system X1D lim
 �
fXn; �nmW Xm!Xng

and a projective system P D fpnmg of nonzero elements of R such that the
multiplicatively closed set S generated by P does not contain the zero, the
inductive F –characteristic homomorphism

�ind
F W F

st:ind
P .X1/! lim

�!
f�pnmW R!Rg

is realized as the homomorphism e�ind
F W F

st:ind
P

.X1/!RP defined by

e�ind
F .Œ˛n�/ WD

�F .˛n/

p01 �p12 �p23 � � �p.n�1/n

:

Here p01 WD 1 and RP is the ring RS of fractions of R with respect to S .

(3) In particular, if each pnm D pm�n for a nonnilpotent element p , we get the
homomorphism

e�ind
F W F

st:ind
P .X1/!RP defined by e�ind

F .Œ˛n�/ WD
�F .˛n/

pn�1
:

Proof (1) follows from taking the inductive limit of the commutative diagram

F st
P
.Xi/

�F
����! R

�ij
�

??y ??y�pij

F st
P
.Xj / ����!

�F
R:

For a general directed set I , we do not know how to describe the homomorphism �ind
F

in a bit more down-to-earth way. However, when it comes to the case when I DN ,
we can get the above claim as follows:
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Let RnDR for each n and for n<m let �nmW Rn!Rm denote the homomorphism
defined by �nm.rn/D rn �pn.nC1/ �p.nC1/.nC2/ � � �p.m�1/m . And let �nW Rn!RP

be the homomorphism defined by

�n.rn/ WD
rn

p01 �p12 �p23 � � � � �p.n�1/n

:

Then for n<m we have �m ı�nm D �
n . Therefore it follows from the standard facts

of the inductive limits that there exists a unique homomorphism ˆW lim
�!

Rn ! RP

such that the following diagram commutes:

Rn

�n

||

�n

!!
lim
�!

Rn
ˆ

// RP :

By composing �ind
F W F

st:ind
P

.X1/! lim
�!
f�pnmW R!Rg with this “realization homo-

morphism” ˆ, we get the above homomorphism

e�ind
F W F

st:ind
P .X1/!RP :

3.2.6 Remark (1) Let Xi D pt be a point for any i 2 I and let �ij D idW Xi!Xj

be the identity. Then lim
 �
fXi ; �ij W Xj ! Xig is a point and is called a pro-point

and is denoted by pt1 . Then for the pro-point pt1 we define F st:ind
P

.pt1/ to be
lim
�!
f�pij W F.pt/!F.pt/gD lim

�!
f�pij W R!Rg. In this sense, the above inductive F –

characteristic homomorphism �ind
F W F

st:ind
P

.X1/! lim
�!
f�pij W R!Rg is expressed

as �ind
F W F

st:ind
P

.X1/ ! F st:ind
P

.pt1/ and it is an inductive limit version of the F –
characteristic �F W F.X /! F.pt/DR.

(2) The above realization is a canonical one in the sense that there are many other
realizations by considering

�0n.rn/D
rn

! �p01 �p12 �p23 � � �p.n�1/n

with any nonzero element ! such that the multiplicatively closed set generated by
P [f!g does not contain the zero.

3.2.7 Definition Let F be a bifunctor on a category C such that R D F.pt/ is a
commutative ring with a unit and let �F W F.X /!R be the F –characteristic.

(1) If a morphism f W X ! Y satisfies the condition that for an element ˛ 2 F.Y /,
�F .f�f

�˛/ D cf � �F .˛/ with some element called “multiplier” cf 2 R, then we
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say that f is �F –constant with respect to ˛ with the multiplier cf . (cf could be
considered as the “�F –characteristic of the fiber of f ”.)

(2) If f is a �F –constant with respect to any element ˛2F.Y / with the multiplier cf ,
then the morphism f W X ! Y is called �F –constant with the multiplier cf .

(3) (a bit stronger) Let F be a bifunctor from a category C to the category of R–
modules such that F.pt/DR. If a morphism f W X ! Y satisfies the condition that
f�f

�D cf �IdF.Y /W F.Y /!F.Y / with some element cf 2R, where IdF.Y / denotes
the identity homomorphism, then f is also called �F –constant with the multiplier cf .
(Note that in this case f�f � D cf � IdF.Y / implies that �F .f�f �˛/D cf ��F .˛/ for
any ˛ 2 F.Y /.)

3.2.8 Remark ˛i 2 F st
P
.Xi/ means that �ij is �F –constant with respect to ˛i with

the multiplier pij for any j such that i < j . A Zariski locally trivial fiber bundle is a
�Gro –constant morphism with the multiplier being the Grothendieck class ŒF � of its
fiber variety F .

3.2.9 Proposition Let fXn; �nmW Xm! Xng be a projective system such that each
structure morphism �n.nC1/W XnC1 ! Xn is �F –constant with the multiplier
cn.nC1/ 2 R. We assume that the multiplicatively closed set S generated by fcnmg

does not contain the zero. Then we get the inductive F –characteristic homomorphism
�ind
F W F ind.X1/!RP defined by

�ind
F .Œ˛n�/ WD

�F .˛n/

c01 � c12 � c23 � � � c.n�1/n

:

Here c01 WD 1 and RP is the ring RS of fractions of R with respect to S .

3.2.10 Corollary Let fXn; �nmW Xm!Xng be a pro-algebraic variety such that for
each n the structure morphism �n.nC1/W XnC1! Xn satisfies the condition that the
Euler–Poincaré characteristics en of the fibers of �n.nC1/ are nonzero. We set e0 WD 1.
Then we get the inductive Euler–Poincaré characteristic homomorphism

�ind
W F ind.X1/!Q described by �ind.Œ˛n�/D

�.˛n/

e0 � e1 � e2 � � � en�1

:

Proof Let f W X ! Y be a morphism such that its fibers all have the same nonzero
Euler–Poincaré characteristic, denoted by ef . Then we can see that for any character-
istic function 1W we have f�f �1W D ef � 1W . Hence f is �F –constant with the
multiplier ef .
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3.3 A generalization of motivic measure

In this section we show that our approach automatically leads us to the notion of motivic
measure (eg, see Craw [23], Denef and Loeser [24; 25], Kontsevich [45], Looijenga [50]
and Veys [70]) and also its generalization.

The canonical homomorphism eW K0.V=X /! F.X / (see [14]) defined by

e.ŒY
f
�!X �/ WD f�1Y

gives us a natural transformation eW K0.V=�/!F.�/. It will be explained in Section 5
that this natural transformation is unique in a sense.

There exists a canonical homomorphism �W F.X /!K0.V=X / defined by �.1W / WD

ŒiW W W �! X �, where iW W W ! X is the inclusion map. The composite homo-
morphism � WD �Gro ı �W F.X / ! K0.V/ is more directly and simply defined by
�.1W / WD ŒW � or more meaningfully �.˛/ D

P
n2Z nŒ˛�1.n/�. And we have the

following commutative diagram:

F.X /

�
""

� // K0.V/

e
||

Z

3.3.1 Definition Let R be a commutative ring. A map eW Obj.V/! R is called a
generalized Euler characteristic with value in R if the following three conditions hold:

(1) e.X /D e.Y / if X Š Y .

(2) e.X /D e.Y /C e.X nY / for Y �X .

(3) e.X �Y /D e.X / � e.Y /.

A typical example of e is of course the topological Euler–Poincaré characteristic �
with R D Z and e induces the homomorphism eF W F.X /! R defined simply by
eF .

P
S aS1S / WD

P
S aSe.S/. And eF factors through the above “tautological” ho-

momorphism �W F.X /!K0.V/:

F.X /

eF ""

� // K0.V/

ze||
R

where zeW K0.V/!R is defined by ze.ŒX �/ WD e.X /.
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So �W F.X /!K0.V/ is a “motivic” version of the topological Euler–Poincaré charac-
teristic �W F.X /! Z and provisionally called the Grothendieck class homomorphism.

3.3.2 Observation Here we emphasize that unlike the Euler–Poincaré characteristic
�, �W F.X /!K0.V/ does not commute with the pushforward f�W F.X /! F.Y /

for a morphism f W X ! Y , ie, the following diagram is not commutative:

F.X /

� $$

f� // F.Y /

�zz
K0.V/

Let GDfij g be a projective system of nonnilpotent Grothendieck classes ij 2K0.V/
indexed by the directed set I . Then in the same way as done before, we can define

F st
G.Xi/ WD

˚
˛i 2 F.Xi/ j �.�ij

�˛i/D ij ��.˛i/ for any j > i
	
:

For each i 2 I , an element of F st
G
.Xi/ is called a � –stable constructible function

with respect to the projective system G of nonzero Grothendieck classes. And for a
proalgebraic variety X1 D lim

 �
fXi ; �ij W Xj !Xig we define

F st:ind
G .X1/ WD lim

�!

˚
F st

G.Xi/; �ij
�
W F st

G.Xi/! F st
G.Xj / .i < j /

	
and an element of this group shall be called a � –stable indconstructible function
on the proalgebraic variety X1 with respect to the projective system G of nonzeros
Grothendieck classes. Then as in Theorem 3.2.5 we get the following:

3.3.3 Corollary (1) For a proalgebraic variety X1D lim
 �
fXi ; �ij W Xj !Xig and

a projective system G D fij g of nonzero Grothendieck classes, we get the
proalgebraic Grothendieck class homomorphism

� ind
W F st:ind

G .X1/! lim
�!
f�ij W K0.V/!K0.V/g:

(2) In the case when ƒDN , for a pro-algebraic variety fXn; �nmW Xm!Xng and
a projective system G D fn;mg of nonzero Grothendieck classes such that the
multiplicatively closed set S generated by G does not contain the zero, we have
the following canonical proalgebraic Grothendieck class homomorphism

e� ind W F st:ind
G .X1/!K0.V/G defined by e� ind .Œ˛n�/ WD

�.˛n/

01 � 12 � 23 � � � .n�1/n

:

Here we set 01 WD 1 and K0.V/G is the ring of fractions of K0.V/ with respect
to S .
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(3) Let X1 D lim
 �
fXn; �nmW Xm! Xng be a proalgebraic variety such that each

structure morphism �n.nC1/W XnC1!Xn satisfies the condition that for each n

there exists a nonnilpotent element n 2 K0.V/ such that �n.nC1/
�1.Sn/ D

n � ŒSn� for any constructible set Sn �Xn ; for example, �n.nC1/W XnC1!Xn

is a Zariski locally trivial fiber bundle with fiber variety being Fn (in which case
nD ŒFn� 2K0.V/). We assume that the multiplicatively closed set S generated
by fmg does not contain the zero. Then we have the canonical proalgebraic
Grothendieck class homomorphism

� ind
W F ind.X1/!K0.V/G described by � ind.Œ˛n�/D

�.˛n/

0 � 1 � 2 � � � n�1

:

Here 0 WD 1 and K0.V/G is the ring of fractions of K0.V/ with respect to S .

(4) In particular, if n are all the same and nonnilpotent, say n D  for any n, then
we have the canonical proalgebraic Grothendieck class homomorphism

� ind
W F ind.X1/!K0.V/G described by � ind.Œ˛n�/D

�.˛n/

 n�1
:

In this special case the quotient ring K0.V/G shall be denoted by K0.V/ .

3.3.4 Example (1) The arc space L.X / of an algebraic variety X is defined to be the
projective limit of the projective system consisting of truncated arc varieties Ln.X / and
projections �n.nC1/W LnC1.X /! Ln.X /. Thus the arc space is a nontrivial example
of a proalgebraic variety. If X is nonsingular and of complex dimension d , then the
projection �n.nC1/W LnC1.X /! Ln.X / is a Zariski locally trivial fiber bundle with
fiber being Cd . Thus in this case, in Corollary 3.3.3(4) the Grothendieck class 
is Ld .

(2) In the case of the arc space L.X / of a nonsingular variety X , each structure
morphism �n.nC1/W LnC1.X /! Ln.X / is always surjective, hence it follows from
Proposition 2.3.4 we get that for the arc space L.X / of a nonsingular variety X we
have the canonical isomorphism: F ind.L.X //Š F cyl.L.X //.

3.3.5 Corollary When X is a nonsingular variety of dimension d , we have the fol-
lowing canonical Grothendieck class homomorphism � indW F ind.L.X //!K0.V/ŒLd �

described by � ind.Œ˛n�/D�.˛n/=ŒL�nd . In particular, � ind.1L.X //D�
ind.Œ1X �/D ŒX �.

3.3.6 Remark Note that in the case of arc space L.X /, since L0.X / D X , the
indexed set is not N but f0g [N . Hence the canonical one is not � ind.Œ˛n�1/ D

�.˛n/=ŒL�
.n�1/d .
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3.3.7 Remark If X is singular, the arc space L.X / is not the projective limit of a
projective system of Zariski locally trivial fiber bundles with fiber being Cdim X any
longer and each projection morphism �n.nC1/W LnC1.X /!Ln.X / is complicated and
thus as a proalgebraic variety L.X / is complicated. A crucial ingredient in studying
motivic measure or motivic integration is the so-called stable set of the arc space L.X /.
A subset A of the arc space L.X / is called a stable set if it is a cylinder set, ie,
A D ��1

n .Cn/ for a constructible set Cn in the n–th arc space Ln.X /, such that
the restriction of each projection �m.mC1/j�mC1.A/W �mC1.A/ ! �m.A/ for each
m � n is a Zariski locally trivial fiber bundle with the fiber being Cdim X . So, our
�–stable indconstructible function is a generalization of the characteristic function
supported on this stable set. Therefore we can see that our proalgebraic Grothendieck
class homomorphism e� indW F st:ind

G
.X1/!K0.V/G given in Corollary 3.3.3 (2) is a

generalization of motivic measure.

4 Characteristic classes of proalgebraic varieties

4.1 Pre-Mackey functor

Let ffi W Xi ! Yig be a pro-morphism of pro-objects fXi ; �ij W Xj ! Xig and fYi ;

�ij W Yj ! Yig. Then it follows from the contravariance of the bifunctor F that the
following diagram commutes

F.Yi/
f �

i
����! F.Xi/

�ij
�

??y ??y�ij
�

F.Yj /
f �
j

����! F.Xj /;

which in turn implies that the pullback homomorphism f �1 WD lim
�!
ff �i gW F

ind.Y1/!

F ind.X1/ is contravariantly functorial. However, to claim the covariance of F ind , we
need the following requirements; one for the bifunctor F and one for the pro-morphism
ffi W Yi!Xigi2I :

4.1.1 Definition If a bifunctor F W V!A satisfies the following two properties (M-1)
and (M-2), then it is called a Mackey functor:

(M-1) For a fiber square

X 0
g0

����! X

f 0
??y ??yf
Y 0

g
����! Y
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the diagram

F.X /
g0
�

����! F.X 0/

f�

??y ??yf 0�
F.Y /

g�

����! F.Y 0/;
commutes, ie, “pullback and pushforward commute”.

(M-2) F.X
`

Y /D F.X /˚F.Y /.

4.1.2 Example The constructible function functor F.X / and the relative Grothendieck
group functor K0.V=X / are both Mackey functors.

4.1.3 Remark The notion of Mackey functor was introduced by Dress [26; 27] (cf
Bouc [9]) in the representation theory of finite groups. In what follows, the property
we need is just the property (M-1), which is sometimes called the base change formula.
A bifunctor satisfying only (M-1) is called a pre-Mackey functor.

Let F ;GW V ! A be two pre-Mackey functors, and let N W F ! G be a natural
transformation, ie, for a morphism f W X ! Y the following diagrams commute:

F.X /
NX
����! G.X /

F�.f /
??y ??yG�.f /

F.Y / ����!
NY

G.Y /

F.Y /
NY
����! G.Y /

F�.f /
??y ??yG�.f /

F.X / ����!
NX

G.X /:

From now on, unless some confusion is possible, we just denote f� for both F�.f /
and G�.f /, f � for both F�.f / and G�.f /, and N for NX ;NY without subscripts.

4.1.4 Definition Let ffi W Xi! Yigi2I be a pro-morphism of pro-objects

fXi ; �ij W Xj !Xig and fYi ; �ij W Yj ! Yig:

If the commutative diagram for i < j

Xj

fj
����! Yj

�ij

??y ??y�ij

Xi ����!
fi

Yi

is a fiber square, then we call the pro-morphism ffi W Xi ! Yigi2I a fiber-square
pro-morphism, abusing words.
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4.1.5 Theorem (1) Let F W V ! A be a pre-Mackey functor and let F.pt/ DR
be an R–module with a commutative ring R with a unit. Then for a projective
system P D fpij g of nonzero elements pij and for a fiber-square pro-morphism
ffi W Xi ! Yigi2I of pro-objects fXi ; �ij W Xj ! Xig and fYi ; �ij W Yj ! Yig,
the pushforward homomorphisms

f1� WD lim
�!
ffi�gW F ind.X1/! F ind.Y1/

f1� WD lim
�!
ffi�gW F st:ind

P .X1/! F st:ind
P .Y1/and

are covariantly functorial.
(2) Let F ;GW V!A be two pre-Mackey functors and N W F!G be a natural trans-

formation. For a projective system P Dfpij g of nonzero elements pij of R and
a fiber-square pro-morphism ffi W Xi! Yig of pro-objects fXi ; �ij W Xj !Xig

and fYi ; �ij W Yj ! Yig, then

N ind
W F ind.X1/! Gind.X1/ and N ind

W F st:ind
P .X1/! Gst:ind

P .X1/

are natural transformations.
(3) Furthermore we suppose that � D N .pt/W R D F.pt/ ! R0 D G.pt/ is an

R–module homomorphism. Then we have the following commutative diagram:

F ind.Y1/
N ind

����! Gind.Y1/

�ind
F

??y ??y�ind
G

lim
�!
f�pij W R!Rg ����!

�ind
lim
�!
f�pij W R0!R0g:

Proof It suffices to see that for a fiber-square pro-morphism ffi W Xi ! Yig of pro-
objects fXi ; �ij W Xj ! Xig and fYi ; �ij W Yj ! Yig, we get the commutative cubic
diagram

F.Xi/

��
ij

��

N

yy

fi� // F.Yi/

�ij
�

��

Nzz
G.Xi/

��
ij

��

fi� // G.Xi/

��
ij

��

F.Xj /

N

yy

fj �

// F.Yj /

Nzz
G.Xj /

fj � // G.Yj /;

which completes the proof.
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4.1.6 Remark As seen in the above proof, we do not need to require that F and G
are pre-Mackey on the whole category V , but we just need to require that F and G
satisfy the base change formula (M-1) for a fiber-square of each structure morphism of
projective systems. To say this property, we simply say that F and G are pre-Mackey
functors on projective systems (cf [79]).

4.2 Fulton–MacPherson bivariant theory

Since we are interested in characteristic homology classes of singular varieties, the
target functor is mainly the homology theory H� . Unfortunately the homology theory
is not a pre-Mackey functor on an arbitrary fiber square, but still a pre-Mackey functor
on some restricted fiber squares. In order to deal with such pre-Mackey functors in a
general setup we use Fulton–MacPherson Bivariant Theory [34] (cf [33]). So, first we
quickly recall only necessary ingredients of the Bivariant Theory. For full details, see
[34, Section 2].

Let C be a category with a final object pt, a class of “independent squares” and a class
of “confined maps”, which is closed under composition and base change in independent
squares and contains all identity maps. For example, in the category of topological
spaces, a fiber square is an independent square and a proper map is a confined map.

A bivariant theory B on such a category C with values in the category of abelian groups
is an assignment to each morphism f W X �! Y in the category C an abelian group
B.f W X �! Y / which is equipped with the following three basic operations:

Products: For morphisms f W X ! Y and gW Y !Z , the product operation

�W B.X
f
�! Y /˝B.Y

g
�!Z/! B.X

gf
��!Z/;

Pushforwards: For morphisms f W X ! Y and gW Y ! Z with f confined, the
pushforward operation f?W B.gf W X �!Z/! B.gW Y �!Z/;

Pullbacks: For an independent square

X 0
g0

����! X

f 0
??y ??yf
Y 0 ����!

g
Y;

the pullback operation g?W B.f W X �! Y /! B.f 0W X 0 �! Y 0/.

And these three operations are required to satisfy the seven compatibility axioms [34,
Part I, Section 2.2].
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A bivariant theory B is said to have units [34, Section 2.2] if there exists an element
1X 2 B.idX W X �!X / such that

� ˛ � 1X D ˛ for all maps W !X and all ˛ 2 B.W !X /,
� 1X �ˇ D ˇ for all maps X ! Y and all ˇ 2 B.X ! Y /,
� g?1X D 1X 0 for all gW X 0!X .

Let B;B0 be two bivariant theories on a category C . Then a Grothendieck transformation
 W B!B0 from B to B0 is a collection of homomorphisms B.X!Y /!B0.X!Y /

for a morphism X ! Y in the category C , which preserve the above three basic
operations:

(1)  .˛ �B ˇ/D  .˛/ �B0  .ˇ/,

(2)  .f?˛/D f? .˛/,

(3)  .g?˛/D g? .˛/.

A bivariant theory unifies both a covariant theory and a contravariant theory in the fol-
lowing sense: B�.X / WDB.X! pt/ and B�.X / WDB.idW X �!X / become a covariant
functor and a contravariant functor, respectively. And a Grothendieck transformation
 W B! B0 induces natural transformations �W B�! B0� and  �W B�! B0� .

4.2.1 Lemma Let  W B! B0 be a Grothendieck transformation  W B! B0 . Then
any bivariant class b 2 B.f W X �! Y / gives rise to the following commutative diagram

B�.Y /
�
����! B0�.Y /

b�

??y ??y.b/�
B�.X / ����!

�
B0�.X /:

It is called a Verdier-type Riemann–Roch formula associated to the bivariant class b .

4.2.2 Example The Fulton–MacPherson bivariant group F.f W X �! Y / of con-
structible functions consists of all the constructible functions on X which satisfy the
local Euler condition with respect to f . Here a constructible function ˛ 2F.X / is said
to satisfy the local Euler condition with respect to f if for any point x 2 X and for
any local embedding .X;x/! .CN ; 0/ the equality ˛.x/D �.B�\f �1.z/I˛/ holds,
where B� is a sufficiently small open ball of the origin 0 with radius � and z is any point
close to f .x/ (cf Brasselet [10] and Sabbah [59]). In particular, if 1f WD 1X belongs to
the bivariant group F.f W X �! Y /, then the morphism f W X ! Y is called an Euler
morphism. And any constructible function in the bivariant group F.f W X �! Y / is
called a bivariant constructible function.
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The three operations on F are defined as follows:

(1) The product �W F.f W X �! Y /˝F.gW Y �!Z/! F.gf W X �!Z/ is defined
by ˛ �ˇ D ˛ �f �ˇ ,

(2) The pushforward f?W F.gf W X �!Z/!F.gW Y �!Z/ is defined by f?.˛/.y/DR
c�.˛jf �1/,

(3) For a fiber square

X 0
g0

����! X

f 0
??y ??yf
Y 0 ����!

g
Y;

the pullback g?W F.f W X �! Y / ! F.f 0W X 0 �! Y 0/ is the functional pull-
back g0

� , ie, g?.˛/.x0/ WD ˛.g0.x0//.

4.2.3 Remark The group F.idX W X �!X / consists of all locally constant functions
and F.X ! pt/D F.X /.

4.2.4 Proposition For any bivariant constructible function ˛ 2 F.f W X �! Y /, the
Euler–Poincaré characteristic �.f �1.y/I˛/ D

R
c�.˛jf �1.y// is locally constant, ie,

constant along connected components of the base variety Y . In particular, if f W X!Y

is an Euler proper morphism, then the Euler–Poincaré characteristic of the fibers are
locally constant.

4.2.5 Corollary Let fXi ; �ij W Xj ! Xig be a pro-algebraic variety such that for
each i < j the structure morphism �ij W Xj !Xi is an Euler proper morphism (hence
surjective) of topologically connected algebraic varieties. Let eij be the constant Euler–
Poincaré characteristic eij of the fiber of the morphism �ij . Then we get the inductive
Euler–Poincaré characteristic homomorphism �indW F ind.X1/! lim

�!
f�eij W Z! Zg.

4.3 Canonically oriented projective systems

4.3.1 Definition (A canonically oriented projective system (cf [34])) Let B be a
bivariant theory having units and let fXi ; �ij W Xj ! Xig be a projective system. If
there exists an assignment ‚.�ij / 2 B.�ij W Xj �!Xi/ such that

‚.�ii/D 1Xi
and ‚.�jk/ �‚.�ij /D‚.�ik/ .i < j < k/;

then we say that ‚ is a canonical orientation on the projective system fXig and that
fXi ; �ij W Xj ! Xi ; ‚g is a canonically oriented projective system. We set ‚ij WD

‚.�ij / and the map ‚ij�W B�.Xi/! B�.Xj / is denoted by � !
ij , called the Gysin

map induced by the canonical orientation ‚ij .
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4.3.2 Remark For the sake of convenience of presentation below, we sometimes
write fXi ; �ij W Xj !Xi ; f‚ij gg instead of fXi ; �ij W Xj !Xi ; ‚g.

4.3.3 Definition If fXi ; �ij W Xj ! Xi ; ‚g is a canonically oriented projective sys-
tem, then the inductive limit lim

�!
fB�.Xi/; �

!
ij W B�.Xi/ ! B�.Xj /g is denoted by

Bind
� .X1I‚/.

4.3.4 Example In Corollary 4.2.5 we have that F ind.X1/D F ind
� .X1I f1�ij

g/:y

4.3.5 Proposition Let fXn; �n.nC1/W XnC1 ! Xn; ‚g be a canonically oriented
projective system of topologically connected algebraic varieties with ‚n.nC1/ 2

F.XnC1!Xn/. Assume that the (constant) Euler–Poincaré characteristic of ‚n.nC1/

restricted to each fiber �n.nC1/
�1.y/, ie, �.�n.nC1/

�1.y/I‚n.nC1// is nonzero and
it shall be denoted by ef .‚n.nC1//. And we set ef .‚01/ WD 1. Then the canonical
inductive Euler–Poincaré characteristic homomorphism �indW F ind

� .X1I‚g/!Q is
described by

�ind.Œ˛n�/D
�.˛n/

ef .‚01/ � ef .‚12/ � � � ef .‚.n�1/n/
:

Proof This can be seen as follows. Let .f; ˛/W X ! Y be a morphism of topo-
logically connected algebraic varieties with ˛ 2 F.f W X �! Y /. It follows from
Proposition 4.2.4 that the Euler–Poincaré characteristic �.f �1.y/I˛/ of ˛ restricted
to each fiber f �1.y/ is constant (and nonzero by assumption). So f�˛ D ef .˛/ � 1Y .
Then to prove the above statement, it suffices to see that we have the commutative
diagram

F.Y /
�

����! Z

˛�

??y ??y�ef .˛/

F.X / ����!
�

Z:

To see this, we need the projection formula f�.˛ �f �ˇ/D .f�˛/ �ˇ for a morphism
f W X ! Y and constructible functions ˛ 2 F.X / and ˇ 2 F.Y /. Then, using this
projection formula we have �.˛�ˇ/D�.˛ �f �ˇ/D�.f�˛ �ˇ/D�

�
.ef .˛/ �1Y / �ˇ

�
D

ef .˛/ ��.ˇ/: Thus we get the above commutative diagram.

Mimicking the above proof, we can show the following:

4.3.6 Corollary Let fXi ; �ij W Xj !Xi ; f‚ij gg be a canonically oriented projective
system. Assume that B�.pt/ is a commutative ring with a unit, denoted by RB , and let
P D fpij g be a projective system of nonzero elements pij 2RB . Then, if we set

Bst:ind
�;P .X1I f‚ij g/D

˚
Œ˛�� 2 Bind

� .X1I f‚ij g/j�B�.‚ij �˛i/D pij ��B�.˛i/ .i < j /
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we get the inductive �B� –characteristic homomorphism

�ind
B�
W Bst:ind
�;P .X1I f‚ij g/! lim

�!
f�pij W RB

!RB
g:

4.4 Characteristic classes of projective systems

Fulton and MacPherson conjectured the existence of a bivariant Chern class [34] and
Brasselet [10] found it (cf Sabbah [59], Yokura [76; 77] and Zhou [83; 84]):

4.4.1 Theorem On the category of embeddable complex analytic varieties and cellular
morphisms, there exists a Grothendieck transformation BrW F ! H satisfying the
normalization condition that Br.1�/D c.TX /\ ŒX � for X smooth, where � W X ! pt
and 1� D 1X .

4.4.2 Corollary For a bivariant constructible function ˛ 2 F.f W X �! Y / we have
the commutative diagram

F.Y /
c�
����! H�.Y /

˛�FD˛�f
�

??y ??yBr.˛/�H

F.X / ����!
c�

H�.X /:

In particular, for an Euler morphism we have the commutative diagram

F.Y /
c�
����! H�.Y /

1f �FDf �
??y ??yBr.1f /�H

F.X / ����!
c�

H�.X /:

The homomorphism Br.1f /�H shall be denoted by f �� . Using Corollary 4.4.2, we
get the following:

4.4.3 Theorem Let V be the category of embeddable complex analytic varieties and
cellular morphisms.

(1) Let ffi W Xi! Yig be a fiber-square pro-morphism between two pro-algebraic
varieties fXi ; �ij W Xj !Xig and fYi ; �ij W Yj ! Yig with structure morphisms
being Euler morphisms. Then we have the commutative diagram

F ind.X1/
cind
�

����! H ind
� .X1I f

Br.1�ij
/g/

f1�

??y ??yf1�
F ind.Y1/

cind
�

����! H ind
� .Y1I f

Br.1�ij
/g/:
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(2) Let X1 D lim
 �
fXi ; �ij W Xj !Xig be a proalgebraic variety such that for each

i < j the structure morphism �ij W Xj!Xi is an Euler proper morphism (hence
surjective) of topologically connected algebraic varieties with the constant Euler–
Poincaré characteristic pij of the fiber of the morphism �ij being nonzero. Then
we get the commutative diagram:

F ind.X1/

�ind ((

cind
� // H ind

� .X1I f
Br.1�ij

/g/

R induu
lim
�!
f�pij W Z! Zg

Proof It suffices to show the commutativity of the square in the front of the diagram

F.Xi/

��
ij

��

c�

xx

fi� // F.Yi/

�ij
�

��

c�yy
H�.Xi/

���
ij

��

fi� // H�.Yi/

���
ij

��

F.Xj /

c�

yy

fj �

// F.Yj /

c�yy
H�.Xj /

fj �

// H�.Yj /;

ie, for any x 2H�.Xi/, ���ij .fi�.x//D fj�.�
��
ij .x//, which is more precisely

Br.1�ij
/ �H fi?.x/D fj?.

Br.1�ij
/ �H x/D fj?.f

?
i 

Br.1�ij
/ �H x/;

since 1�ij
D f ?i 1�ij

. This is nothing but the projection formula of the Bivariant Theory
[34, Section 2.2, (A123 )]. Thus we get the theorem.

Following the above construction, similarly we can get an inductive limit version of
Baum, Fulton and MacPherson’s Riemann–Roch ��W G0.�/!H�.�/˝Q, using the
bivariant Riemann–Roch theorem [33; 34]. And much more general is the following
theorem. Below, if each fiber square in a fiber-square pro-morphism is replaced by an
independent square, then we call it an independent-square pro-morphism.

4.4.4 Theorem Let  W B ! B0 be a Grothendieck transformation between two
bivariant theories B;B0W C ! A and let �W R D B�.pt/! R0 D B0�.pt/ be an R–
module homomorphism with a commutative ring R with a unit. Let P D fpij g be a
projective system of nonzero elements pij 2R.

Algebraic & Geometric Topology, Volume 12 (2012)



632 Shoji Yokura

(1) Let fXi ; �ij W Xj ! Xi ; f‚ij gg be a canonically oriented projective system.
Then we get the following inductive limit version of the natural transformation
�W B�! B0� :

 ind
� W B

ind
� .X1I f‚ij g/! B0�

ind
.X1I f .‚ij /g/;

 ind
� W B

st:ind
�;P .X1I f‚ij g/! B

0 st:ind
�;P .X1I f .‚ij /g/:

(2) Let ffi W Xi!Yig be an independent-square pro-morphism between two oriented
projective systems fXi ; �ij W Xj ! Xi ; f‚ij gg and fYi ; �ij W Yj ! Yi ; f‚

0
ij gg

such that ‚ij D f
?

i ‚
0
ij . Then we have the following commutative diagrams:

Bind
� .X1I f‚ij g/

 ind
�

����! B0ind
� .X1I f .‚ij /g/

f1�

??y ??yf1�
Bind
� .Y1I f‚

0
ij g/ ����!

 ind
�

B0ind
� .Y1I f .‚

0
ij /g/;

Bst:ind
�;P

.X1I f‚ij g/
 ind
�

����! B
0 st:ind
�;P

.X1I f .‚ij /g/

f1�

??y ??yf1�
Bst:ind
�;P

.Y1I f‚
0
ij g/ ����!

 ind
�

B
0 st:ind
�;P

.Y1I f .‚
0
ij /g/:

(3) Let B�.pt/D B0�.pt/ be a commutative ring R with a unit and we assume that
the homomorphism  W B�.pt/! B0�.pt/ is the identity. Let P D fp��g be a
projective system of nonzero elements p�� 2R. Then we get the commutative
diagram

Bst:ind
�;P

.X1I f‚ij g/
 ind
�

����! B
0 st:ind
�;P

.X1I f .‚ij /g/

�ind
B�

??y ??y�ind
B0�

lim
�!
f�pij W R!Rg ����!

 ind
lim
�!
f�pij W R0!R0g:

As shown by Brasselet, Schürmann and Yokura [12] (cf Brasselet, Schürmann and
Yokura [13], Ernström and Yokura [29; 30], Schürmann [61] and Yokura [77]), a natural
transformation between two covariant functors commuting with exterior products is
always extended to a Grothendieck transformation between their associated bivariant
theories. Therefore we get the following:

4.4.5 Corollary If a canonical orientation is defined for pro-objects, then a natural
transformation between two covariant functors commuting with exterior products can
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be extended to a natural transformation between the inductive limit versions of the
covariant functors.

5 Green functors and Grothendieck–Green functors

In this section we discuss a uniqueness of the homomorphism eW K0.V=X /! F.X /

defined by e.Œf W Y �!X �/ WD f�1Y . A good reference for this section is Bouc [9].

5.1 Green functors

5.1.1 Definition (Green functor) A Green functor GD .G�;G�/ is a Mackey functor
endowed with a bilinear map (or an exterior product) G.X / �G.Y /! G.X � Y /

denoted by .x;y/ 7! x � y which are bifunctorial, associative and unitary, in the
following sense:

(G-I) (bifunctoriality) For morphisms f W X ! X 0 and gW Y ! Y 0 the following
diagrams commute:

G.X /�G.Y /
�

����! G.X �Y /

f��g�

??y ??y.f�g/�

G.X 0/�G.Y 0/ ����!
�

G.X 0 �Y 0/;

G.X 0/�G.Y 0/
�

����! G.X 0 �Y 0/

f ��g�
??y ??y.f�g/�

G.X /�G.Y / ����!
�

G.X �Y /:

(G-II) (associativity) .x�y/� z D x� .y� z/ for x 2G.X /;y 2G.Y /; z 2G.Z/.
To be more precise, the square

G.X /�G.Y /�G.Z/
IdG.X/ �.�/
��������! G.X /�G.Y �Z/

.�/�IdG.Z/

??y ??y�
G.X �Y /�G.Z/ ����!

�
G.X �Y �Z/

is commutative, up to identifications .X�Y /�ZŠX�Y �ZŠX�.Y �Z/.

(G-III) (unitarity) For a point pt there exists a unit 1G 2 G.pt/ such that for any
x 2 G.X /, p1�.x � 1G/ D x D p2�.1G � x/. Here p1W X � pt! X and
p2W pt�X !X are the projections (which are in fact isomorphisms).

The corresponding ones in the representations of finite groups is called the Burnside
ring or the Burnside functor [9].
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5.1.2 Remark For a Green functor G , by the identification pt� ptŠ pt, the abelian
group G.pt/ becomes a ring with the exterior product operation and the other abelian
group G.X / is a G.pt/–module.

5.1.3 Remark The theory of algebraic cobordism that was introduced by Levine and
Morel [48] is a much finer theory of Green functors in the sense that the pushforward
homomorphisms are considered only for projective morphisms and the pullback homo-
morphisms are considered only for smooth morphisms. In such a restricted situation,
it shall be called a restricted Green functor. Such a theory is sometimes called a
Borel–Moore functor with products; see Levine and Pandharipande [49].

The constructible function functor F.X / and the relative Grothendieck group K0.V=X /
are both Green functors by considering the usual exterior products.

If G;G0 are Green functors on a category C , a morphism or a natural transformation �
from G to G0 is a natural transformation of Mackey functors G and G0 which is
compatible with exterior products, ie, such that for a variety X the following diagram
commutes:

G.X /�G.Y /
�

����! G.X �Y /

�X��Y

??y ??y�X�Y

G0.X /�G0.Y / ����!
�

G0.X �Y /:

If moreover �ptW G.pt/!G0.pt/ sends the unit to the unit, then the natural transforma-
tion � is called unitary.

5.2 Grothendieck–Green functor

5.2.1 Definition If a Green functor GD .G�;G�/ satisfies that for a closed subvariety
Z � Y ,

p�Y .1G/D iY�Z�i
�
Y�Z p�Y .1G/C iZ�i

�
Z p�Y .1G/;

then it is called a Grothendieck–Green functor. Here we let pW W X ! pt be the map
to a point for a variety W .

The constructible function functor F.X / and the relative Grothendieck group functor
K0.V=X / are both Grothendieck–Green functors. Another highly nontrivial example
of a Grothendieck–Green functor is the Grothendieck ring K0.D

b.MHM.X // of the
derived category of mixed Hodge modules with the natural t-structure (see Getzler [35,
Proposition 3.9 and Definition 4.3]).

The following theorem is an algebro-geometric analogue of [9, Proposition 2.4.4]:
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5.2.2 Theorem For any unitary Grothendieck–Green functor GW V!A, there exists
a unique unitary natural transformation of Grothendieck–Green functors

� W K0.V=�/!G.�/:

Proof Let ŒhW W �! X � 2 K0.V=X / and let pW W W ! pt be the map to a point.
Then ŒhW W �!X � can be expressed as ŒhW W �!X �D h�p

�
W
.Œpt! pt�/:y Let G be

another Grothendieck–Green functor. If there exists a unitary natural transformation
� W K0.V=�/! G.�/, then it follows from the naturality and unitarity that we have
to have �X .ŒhW W �! X �/D �X

�
h�p

�
W
.Œpt! pt�/

�
D h�p

�
W
.1G/. So, all we have to

do is to show that �X .ŒhW W �!X �/ WD h�p
�
W
.1G/ gives us a natural transformation

between two Grothendieck–Green functors, and then we are done. Since the proof is
straightforward, it is left for the reader.

As a corollary of this theorem, a unitary natural transformation from eW K0.V=X /!
F.X / has to be defined by e.Œf W Y �!X �/ WD f�1Y .

5.2.3 Remark In the above theorem, one cannot replace the Grothendieck–Green
functor K0.V=�/ by the constructible function Grothendieck–Green functor F . For
the characteristic function 1W 2F.X / for a subvariety W �X we have that, as in the
above proof, 1W can be expressed as 1W D iW �p

�
W
.1pt/, where iW W W !X be the

inclusion. Hence, as in the above proof, we could define �X .1W / WD .iW /�p
�
W
.1G/.

Then, all the arguments of the above proof perfectly work even for the constructible
function Grothendieck–Green functor F , except for the naturality of the pushforward:

F.X /
�X
����! G.X /

f�

??y ??yG.f /�

F.Y / ����!
�Y

G.Y /:

In fact, one can see that this does not already hold for G DK0.V=�/. Indeed, if it
were the case, the uniqueness of such a unitary natural transformation would imply
that for any variety X we should have the isomorphism K0.V=X /ŠF.X / and hence,
in particular, we would have the isomorphism K0.V=pt/Š F.pt/Š Z, which is not
the case.

5.2.4 Remark Surely iF W F.X /!K0.V=X / defined by iF .1W / WD ŒiW W W �!X �

is injective. However, the above remark implies that this injective transformation cannot
be a unitary natural transformation between the two Grothendieck–Green functors.
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[53] S Mardešić, J Segal, Shape theory: The inverse system approach, North-Holland Math.
Library 26, North-Holland, Amsterdam (1982) MR676973

[54] L Maxim, M Saito, J Schürmann, Symmetric products of mixed Hodge modules, J.
Math. Pures Appl. 96 (2011) 462–483 MR2843222

[55] L Maxim, J Schürmann, Twisted genera of symmetric products, Selecta Math. 18
(2012) 283–317

[56] T Ohmoto, Equivariant Chern classes of singular algebraic varieties with group
actions, Math. Proc. Cambridge Philos. Soc. 140 (2006) 115–134 MR2197579

[57] T Ohmoto, Generating functions of orbifold Chern classes I: Symmetric products,
Math. Proc. Cambridge Philos. Soc. 144 (2008) 423–438 MR2405899

[58] B Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002)
493–497 MR1928868

Algebraic & Geometric Topology, Volume 12 (2012)



640 Shoji Yokura

[59] C Sabbah, Espaces conormaux bivariants, PhD thesis, Université Paris (1986)

[60] M Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990) 221–333
MR1047415

[61] J Schürmann, A general construction of partial Grothendieck transformations arXiv:
math.AG/0209299

[62] J Schürmann, A generalized Verdier-type Riemann–Roch theorem for Chern–Schwartz–
MacPherson classes arXiv:math.AG/0202175

[63] J Schürmann, Nearby cycles and characteristic classes of singular spaces arXiv:
1003.2343

[64] J Schürmann, Characteristic classes of mixed Hodge modules, from: “Topology of
stratified spaces”, (G Friedman, E Hunsicker, A Libgober, L Maxim, editors), Math.
Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 419–470 MR2796417

[65] J Schürmann, S Yokura, Motivic bivariant characteristic classes arXiv:
1110.2166v1

[66] J Schürmann, S Yokura, A survey of characteristic classes of singular spaces, from:
“Singularity theory”, (D Chéniot, N Dutertre, C Murolo, D Trotman, A Pichon, editors),
World Sci. Publ., Hackensack, NJ (2007) 865–952 MR2342943

[67] M-H Schwartz, Classes caractéristiques définies par une stratification d’une variété
analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965) 3262–3264 MR0212842

[68] M-H Schwartz, Classes et caractères de Chern–Mather des espaces linéaires, C. R.
Acad. Sci. Paris Sér. I Math. 295 (1982) 399–402 MR684735

[69] D Sullivan, Combinatorial invariants of analytic spaces, from: “Proceedings of Liver-
pool Singularities—Symposium, I (1969/70)”, (C T C Wall, editor), Springer, Berlin
(1971) 165–168 MR0278333

[70] W Veys, Arc spaces, motivic integration and stringy invariants, from: “Singularity
theory and its applications”, (S Izumiya, G Ishikawa, H Tokunaga, I Shimada, T Sano,
editors), Adv. Stud. Pure Math. 43, Math. Soc. Japan (2006) 529–572 MR2325153

[71] J Woolf, Witt groups of sheaves on topological spaces, Comment. Math. Helv. 83
(2008) 289–326 MR2390046

[72] S Yokura, Chern classes of proalgebraic varieties and motivic measures arXiv:
math.AG/0407237

[73] S Yokura, On Cappell–Shaneson’s homology L–classes of singular algebraic varieties,
Trans. Amer. Math. Soc. 347 (1995) 1005–1012 MR1283567

[74] S Yokura, A singular Riemann–Roch for Hirzebruch characteristics, from: “Singulari-
ties Symposium—Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996)”, (B Jakubczyk, W
Pawłucki, J Stasica, editors), Banach Center Publ. 44, Polish Acad. Sci., Warsaw (1998)
257–268 MR1677403

Algebraic & Geometric Topology, Volume 12 (2012)



Characteristic classes of proalgebraic varieties and motivic measures 641

[75] S Yokura, On a Verdier-type Riemann–Roch for Chern–Schwartz–MacPherson class,
Topology Appl. 94 (1999) 315–327 MR1695362 Special issue in memory of B J Ball

[76] S Yokura, On the uniqueness problem of bivariant Chern classes, Doc. Math. 7 (2002)
133–142 MR1911213

[77] S Yokura, On Ginzburg’s bivariant Chern classes, Trans. Amer. Math. Soc. 355 (2003)
2501–2521 MR1974000

[78] S Yokura, Quasi-bivariant Chern classes obtained by resolutions of singularities, Rep.
Fac. Sci. Kagoshima Univ. (2003) 17–28 MR2020372

[79] S Yokura, Mackey functors on provarieties, from: “Real and complex singularities”,
(J-P Brasselet, M A Soares Ruas, editors), Trends Math., Birkhäuser, Basel (2007)
343–359 MR2280150

[80] S Yokura, Motivic Milnor classes, J. Singul. 1 (2010) 39–59 MR2671765

[81] S Yokura, Motivic characteristic classes, from: “Topology of stratified spaces”, (G
Friedman, E Hunsicker, A Libgober, L Maxim, editors), Math. Sci. Res. Inst. Publ. 58,
Cambridge Univ. Press (2011) 375–418 MR2796416

[82] B Youssin, Witt groups of derived categories, K–Theory 11 (1997) 373–395
MR1451761

[83] J Zhou, Classes de Chern en théorie bivariante, PhD thesis, Université Aix-Marseille
(1995)

[84] J Zhou, Morphisme cellulaire et classes de Chern bivariantes, Ann. Fac. Sci. Toulouse
Math. 9 (2000) 161–192 MR1815946

Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University
1-21-35 Korimoto 1-chome, Kagoshima 890-0065, Japan

yokura@sci.kagoshima-u.ac.jp

Received: 21 April 2010 Revised: 21 November 2011

Algebraic & Geometric Topology, Volume 12 (2012)




