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An equivariant generalization of the Miller splitting theorem

HARRY E ULLMAN

Let G be a compact Lie group. We build a tower of G –spectra over the suspension
spectrum of the space of linear isometries from one G –representation to another.
The stable cofibres of the maps running down the tower are certain interesting Thom
spaces. We conjecture that this tower provides an equivariant extension of Miller’s
stable splitting of Stiefel manifolds. We provide a cohomological obstruction to the
tower producing a splitting in most cases; however, this obstruction does not rule out a
split tower in the case where the Miller splitting is possible. We claim that in this case
we have a split tower which would then produce an equivariant version of the Miller
splitting and prove this claim in certain special cases, though the general case remains
a conjecture. To achieve these results we construct a variation of the functional
calculus with useful homotopy-theoretic properties and explore the geometric links
between certain equivariant Gysin maps and residue theory.

55P42, 55P91, 55P92

1 Introduction

Let G be a compact Lie group and let V0 and V1 be finite dimensional complex G –
representations with G–invariant inner product such that d0 WD dim.V0/6 dim.V1/.
Let L.V0;V1/ be the space of all linear isometries from V0 to V1 equipped with the
usual conjugation G–action. The aim of this paper is to study the equivariant stable
homotopy theory of L.V0;V1/.

Let L.V0;V1/C be L.V0;V1/ equipped with a disjoint G–fixed basepoint. We con-
struct a stable diagram containing L.V0;V1/C with interesting topological properties.
For V any finite dimensional complex G –representation we define s.V / to be

s.V / WD f˛ 2 End.V / W ˛|
D ˛g

where ˛| denotes the adjoint of ˛ . We write T for the tautological bundle over the
equivariant Grassmannian Gk.V0/, use Hom.T;V1�V0/ as a shorthand for the virtual
bundle Hom.T;V1/�Hom.T;V0/ and we let s.T / be the bundle

f.V; ˛/ W V 2Gk.V0/; ˛ 2 s.V /g:
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Theorem 1 There is a natural tower of G –spectra

L.V0;V1/C!Xd0�1! � � � !X1! S0

such that the stable homotopy fibres of the maps Xk !Xk�1 are the Thom spaces

Gk.V0/
Hom.T;V1�V0/˚s.T /:

The above result is phrased differently when proved in Section 4; our statements
there concern homotopy cofibres rather than homotopy fibres but we state the theorem
using fibres here to avoid superfluous suspensions. We cover G–spectra in detail in
Section 2, however, we note here that we use G –spectra indexed on a chosen complete
G –universe, rather than naive G –spectra indexed over Z.

Studying the cofibres of this tower leads to interesting homotopical insight about
L.V0;V1/. In particular this result can be seen as generalization of Miller’s stable
splitting of Stiefel manifolds [10]; we also refer the reader to Crabb [4, Section 1],
Kitchloo [7, Section 1] and the author’s thesis [14, Appendix A]. Considering the
above setup without equivariance, then V0 Š Cd0 , V1 Š Cd0Ct for some t and we
can think of L.Cd0 ;Cd0Ct / as a Stiefel manifold. Miller showed that there is a stable
splitting

L.Cd0 ;Cd0Ct /C '

d0_
kD0

Gk.C
d0/Hom.T;Ct /˚s.T /:

We investigate whether our tower can produce a similar stable splitting. Returning to
our equivariant setup, consider the case where V0 is a subrepresentation of V1 . We
conjecture that our tower splits to retrieve an equivariant form of the Miller splitting.
We cannot show this; however we can show that the bottom and top of the tower split
and thus we prove the following theorem.

Theorem 2 Let V0 6 V1 ie V1 Š V0˚V2 for some complex G–representation V2 .
Furthermore let d0D 2, ie nonequivariantly V0ŠC2 and V1ŠC2Ct for t D dim.V2/.
Then we have a split tower and recover an equivariant Miller splitting

L.V0;V0˚V2/C '

2_
kD0

Gk.V0/
Hom.T;V2/˚s.T /:

Return to the general case, where V0 may not necessarily be a subrepresentation of V1 .
We investigate whether the tower splits in the more general setting by studying interest-
ing geometric properties satisfied by one of the maps in the tower. This investigation
includes a treatment of the links between certain equivariant Gysin maps and residue
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theory; in particular we cover an interesting general result equivariantly extending
previous study of Quillen [11].

Theorem 3 Let G be connected. There is a cohomological obstruction to the tower
splitting if V0 is not a subrepresentation of V1 . If G is not connected then there is a
cohomological obstruction to the tower splitting if the K–theory polynomial associated
to V0 does not divide the K–theory polynomial associated to V1 .

To achieve these results we first build a variation of the functional calculus with useful
homotopy-theoretic properties. The functional calculus is a tool from functional analysis
that is used to construct elements of a C �–algebra using continuous functions. Let V

be a Hermitian space, then set s.V / to be the space of self-adjoint endomorphisms
of V . We build a space D.d/ and subspaces Fi.D.d// which model eigenvalues of
elements of s.V /. We then build a continuous generalization of the functional calculus
which takes a self-adjoint endomorphism ˛ and a continuous self-map f of D.d/

such that f .Fi.D.d/// � Fi.D.d// and outputs a new self-adjoint endomorphism
denoted Af .˛/.

Further, we extend this construction from s.V / to Hom.V;W / for W another Her-
mitian space. Letting 
 2 Hom.V;W /, then we can use this functional calculus
to build a new homomorphism Bf .
 /W V ! W . Let S s.V / denote the one-point
compactification of s.V / and let SHom.V;W / denote the one-point compactification of
Hom.V;W /. Then our functional calculus gives us maps

Af W S
s.V /
! S s.V /;

Bf W S
Hom.V;W /

! SHom.V;W /:

The power of this construction comes from its homotopy properties. Many useful maps
can be rephrased in the form Af or Bf . Let f W D.d/!D.d/ and gW D.d/!D.d/

be homotopic via a homotopy that preserves each Fi.D.d//. Then Af ' Ag and
Bf 'Bg . Thus determining the homotopy type of D.d/ determines the homotopy
type of maps built using this functional calculus. The intersection of all subspaces
Fi.D.d// is naturally a copy of S1 sitting inside D.d/. We use the below result to
prove Theorem 1, amongst other statements.

Theorem 4 Let f and g be two self-maps of D.d/ such that f .Fi.D.d/// �

Fi.D.d// and g.Fi.D.d/// � Fi.D.d// for all i . Then there are induced maps
f 0 , g0W S1 ! S1 and f and g are homotopic via a homotopy that preserves each
Fi.D.d// if and only if f 0 and g0 have the same degree.
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The theory in this paper leads to many applications. The most immediate follow-up
would be a refinement of Theorem 2 to remove the dimension condition. An attempt at
this refinement is underway through a joint project between the author and Strickland.
Also, Theorem 1 can be used both directly and indirectly to make many interesting
equivariant and nonequivariant cohomology calculations. One further application
of the theory, suggested by the referee, concerns the links with orthogonal calculus
as developed by Weiss in [15]. Using orthogonal calculus a similar tower to the
construction in Theorem 1 can be built from the functor V 7! L.V0;V /C . Linking the
theory in this paper with the orthogonal calculus literature, in particular the work of
Arone in [2], would hopefully be an interesting exercise, though we are unable to offer
any real insight at this time.

This paper is laid out as follows. Section 2 covers various notational statements,
conventions and technical statements we will use throughout the document. Section 3
details an overview of our functional calculus variation, including a concrete example
and concluding with a proof of Theorem 4. The main result, Theorem 1, is stated in
more detail and proved in Section 4. This section also includes explicit statements
regarding the maps in the tower. Section 5 begins with a general study of Gysin maps
associated to equivariant embeddings of projective space. We provide geometric links
between these maps and residue maps before using the general theory and the geometric
properties of the bottom of the tower to prove Theorem 3 and provide a cohomological
obstruction to a stable splitting in the general case. Section 6 covers the conjecture in
the special case where V0 is a subrepresentation of V1 , the only case where a splitting
is possible. We then retrieve the dimension 2 special case Theorem 2 by considering
the compatibility of our work with Miller’s work [10].

Many of the results in this paper were first detailed in the author’s PhD thesis [14]—
proofs left to the reader in this document are generally recorded in [14]. The author
would like to thank his supervisor Neil Strickland for much support, advice and insight.
The author would also like to thank the referee for suggesting interesting additional
follow-ups to this work. The author was supported by an EPSRC/University of Sheffield
Doctoral Prize Fellowship. Part of this work was completed as a PhD student supported
by the EPSRC.

2 Conventions

Our spaces are compactly generated weak Hausdorff G –spaces, when we have base-
points they are G–fixed. We pass from unbased spaces to based spaces via the
Alexandroff one-point compactification; we denote the one-point compactification
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of X by X1 and take the basepoint to be the added point. This is equivalent when
X is compact to adjoining a disjoint basepoint, hence XC DX1 in this case and we
mostly dispense with XC notation from this point onwards. We recall a map f to be
proper if and only if the inverse image of any compact set is compact. A proper map
f W X!Y then has a continuous extension f1W X1!Y1 . One other convention we
use is that if X 0 is an unbased space then X tends to be used to denote the one-point
compactification.

We assume G acts on the left, let Map.X;Y / denote the space of continuous maps
from X to Y equipped with the compact-open topology. We equip this and other
mapping spaces with the conjugation group action .g:f /.x/D gf .g�1x/. For more
exotic spaces we mention the action where appropriate, but note here that most are
derivatives of a conjugation action. We skirt over most detailed statements regarding
G –actions; these points are easy enough to check, repetitive and unenlightening. More
detail can be found in [14].

We choose a complete G –universe and work in the homotopy category of G –spectra
indexed on this universe. Our work then holds independently of the choice of model
of the homotopy category. For example the results on spectra hold equally well for
the spectra of Lewis, May and Steinberger [8], equivariant S –modules or orthogonal
spectra of Mandell and May [9], or similar. This follows from the method—all one needs
to construct the presented results is that the category of spectra we work in has cofibre
sequences and a suspension spectrum functor †1 that preserves cofibre sequences.
Further, the main result can actually be viewed as a result in the equivariant stable
category—this category is triangulated as shown by Hovey, Palmieri and Strickland in
[6, Section 9:4] with distinguished triangles built out of cofibre sequences.

We also have certain notational conventions that we use. Let X and Y be spaces and
let f W X ! Y . The cone on X is C.X / WD Œ0; 1�^X with the convention that Œ0; 1�
is based at 0. The cofibre of f is then Cf WD C.X /_Y=..1;x/� f .x//. We assume
the twist in a cofibre sequence occurs as

X
f
! Y

inc:
! Cf

coll
! †X

�†f
! †Y ! � � �

where �†f is the map .t;x/ 7! .1� t; f .x//, assuming for now that the suspension
coordinate runs over .0; 1/. Let V and W be vector spaces. We often work with
the subspace Inj.V;W / of Hom.V;W / consisting of injective homomorphisms. The
subspace of Hom.V;W / of noninjective homomorphisms is denoted by Inj.V;W /c .
For V and W representations we use the notation V 6W to mean both vector subspace
and, where appropriate, subrepresentation—which we mean at any given point will be
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clear from the context. We use the notation

X 
 // Y

to denote maps X !†Y . Throughout the document we use various forms of expo-
nential maps. We use the notation exp.x/ in most cases, however, if x is just a number
we tend to switch to ex . In both cases the inverse is normally denoted log. We also
note the distinction between RC and RCC , the former is the space of nonnegative
numbers while the latter is the space of strictly positive numbers.

We note here some conventions on R and homeomorphic spaces. We implicitly assume
throughout that whenever RŠRCC it is via x 7! ex and whenever .0; 1/ŠR it is
via x 7! log.x=.1� x//. Use of these homeomorphisms is generally not explicitly
stated but each incident of implicit use should be clear.

Throughout the document we state many homeomorphisms (for Lemmas 3.5, 4.5, 4.13,
4.17, 4.18 and elsewhere) which seem to include a superfluous minus sign. This is a
technical necessity that allows the work to blend well with the Miller splitting; compare
Lemma 3.5 to [4, Lemma 1:1] or [7, Lemma 1:3].

Finally, we remark on material omitted from this paper. Many proofs, as already noted,
have been left to the reader. Most of the omitted detail is of three different forms.
Firstly, as discussed above, much of the detail of equivariance is omitted. Secondly
many of the omissions deal with simple fact checking—checking that compositions
are identities, checking that maps land in the right codomains and checking some
simple continuity arguments. Finally, we omit many properness arguments because
they all have the same flavour. We tend to deal with maps between normed spaces or
bundles over compact bases with normed fibres. In these cases the compact subsets are
known to be the closed (fibrewise) bounded subspaces. Further the spaces we deal with
are mostly Hausdorff, hence checking the closed property is a triviality as compact
subspaces of Hausdorff spaces are closed as standard. Thus the arguments boil down
to checking bounds—we assume that kf .x/k is bounded and wish to find a bound
on kxk. This is generally a simple exercise in inequalities, made even easier by noting
that if a composition g ıf is proper then f is proper. Thus we omit much of the work
of this type. The omitted work can generally be found in [14].

2.1 Technical results

In this section we gather together a few technical lemmas that we will use in the rest of
the document. We mention sketches of many of the proofs but omit some of the detail,
which if needed can be found in [14]. We advise the reader to skip this section and
refer back to the results when needed.
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Lemma 2.1 Let X and Z be locally compact Hausdorff spaces and let f W X!Z be
a continuous proper map. Setting Y WDf .X /, we have an inclusion j W Y�Z and sur-
jection pW X � Y and setting Y1 WD f1.X1/ we have extensions j1W Y1�Z1
and pW X1� Y1 such that the diagram of sets

X
p // //

��
iX

��

Y // j //
��
iY

��

Z
��
iZ

��
X1 p1

// // Y1 //
j1

// Z1

commutes. Then there are unique topologies on Y and Y1 such that:

(1) Y is a locally compact Hausdorff space with one-point compactification Y1 .

(2) p is a proper quotient.

(3) j is a proper closed inclusion.

(4) p1 is a quotient.

(5) j1 is a closed inclusion.

(6) iY is an open inclusion.

This result can be proved by a standard point-set topology argument. We use it to
demonstrate that certain spaces we construct have both a subspace topology and an
equivalent quotient topology. This will then prove useful in simplifying some continuity
arguments.

We assume throughout many standard facts about cofibre sequences—that they can
be built from neighbourhood deformation retract pairs, that isomorphisms of cofibre
sequences are isomorphisms in the homotopy category and that smashing a cofibre
sequence with a space produces another cofibre sequence. We also assume the following
result regarding the interactions between cofibre sequences and bundles.

Lemma 2.2 Let A be a space and let fXaga2A , fYaga2A and fZaga2A be families
of based spaces equipped with the following structure:

� total spaces X WD
S

a2A Xa , Y WD
S

a2A Ya and Z WD
S

a2A Za

� projections �1W X ! A, �2W Y ! A and �3W Z! A given by x 2 Xa 7! a,
y 2 Ya 7! a and z 2Za 7! a

� sections �1W A! X , �2W A! Y and �3W A!Z sending a to the basepoint
in Xa , Ya or Za .
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Let †AX WD
S

a2A†Xa and assume that there is a sequence of continuous maps

X
f
! Y

g
!Z

h
!†AX

arising from fibrewise cofibre sequences

Xa

fa
! Ya

ga
!Za

ha
!†Xa:

Then we have a cofibre sequence

X=�1.A/! Y=�2.A/!Z=�3.A/!†X=�1.A/:

This result roughly states that if we have a sequence of bundles that is a fibrewise
cofibre sequence then it is a cofibre sequence. It can be proved from first principles.
Finally, we state a result regarding quotients of cofibre sequences.

Lemma 2.3 Let Z include into both X and Y and let f W X ! Y be such that there
is an induced map xf W X=Z! Y=Z . Further assume either

� the inclusions Z�X and Z� Y are cofibrations,

� OR X , Y and Z are simply connected CW–complexes and X and Y are
connected.

Then Cf is naturally homotopy equivalent to C xf .

Assume the first condition holds, then analysis of the diagram

Z
��

��

1 // Z
��

��

// C.Z/

��
X

��

f // Y

��

// Cf

��
X=Z

xf

// Y=Z // C xf

leads to the result. A stable version of the result has an alternate proof using the
octahedral axiom. The second version of the lemma relies on the theory of cubical
diagrams, as outlined by Goodwillie in [5, Section 1]. The cited paper states many
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results for total fibres, dual results can be proved for total cofibres. The proof is begun
by considering the diagram below:

Z //

��

��

pt

!!

��

X //

��

X=Z

��

Z //

��

pt

!!
Y // Y=Z

This diagram has zero total cofibre as the top and bottom faces are homotopy pushouts,
furthermore the rear face has zero cofibre and thus the cofibre of Cf !C xf is zero. The
connectedness assumptions are then needed to make the claimed conclusion. All of these
proofs can be found in more detail in [14, Section 2:3]. We use this result to take a quo-
tient at a certain point in Section 4.1, simplifying the work required to prove Theorem 1.

3 Extended functional calculus

In this section we extend the theory of functional calculus, a tool originally developed
in functional analysis. Our extension has interesting homotopy-theoretic properties
which we will use in Section 4 to prove Theorem 1. Let V and W be Hermitian
spaces, ie complex vector spaces equipped with Hermitian inner products, such that
dim.V / 6 dim.W /. We refer the reader to an overview given by Strickland in [12,
Appendix A] for a review of the original theory of functional calculus and we take
as given knowledge of all results and statements made in [12]. We also follow the
conventions taken in the referenced paper, though we make three notational changes—
we use | instead of � for adjoint, we use s.V / rather than w.V / for the space of
self-adjoint endomorphisms of V and if ˛ 2 s.V / we denote the eigenvalues of alpha
(which are real numbers as standard) by e0.˛/6 e1.˛/6 � � � ordered by the standard 6
ordering on R. Our norms on spaces of linear maps are assumed to be operator norms.

Let sC.V / be the space of self-adjoint endomorphisms of V with nonnegative eigenval-
ues and let sCC.V / be the space of all self-adjoint endomorphisms of V with strictly
positive eigenvalues. All of the following constructions can be built from the functional
calculus as standard, we leave details of the proofs up to the reader.
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Lemma 3.1 We have s.V /Š sCC.V / via

expW s.V /! sCC.V /


 7! exp.
 /;

s.V / sCC.V / W log

log.
 / [ 
:

Lemma 3.2 We have a well-defined continuous map

�W Hom.V;W /! sC.V /


 7! .
 |
 /1=2

with Im.�.
 //D .Ker.
 //? .

Lemma 3.3 For each 
 2 Hom.V;W / there is a well-defined continuous map

�.
 /W .Ker.
 //?!W; �.
 / WD 
 ı �.
 /�1:

Moreover, �.
 / is a linear isometry and 
 D �.
 / ı �.
 /.

Lemma 3.4 Let f W R ! RC be given by f .x/ WD max.x; 0/. Then we have a
well-defined continuous map

�k W s.V /! sC.V /

˛ 7! f .˛� ed0�k�1.˛//:

Lemma 3.5 s.V /�L.V;W /Š Inj.V;W / via

�0W s.V /�L.V;W /! Inj.V;W /

.˛; �/ 7! �� ı exp.˛/

.log.�.
 //;��.
 // [ 
:

We thus have a continuous extension

�W S s.V /
^L.V;W /1 Š Inj.V;W /1

and collapse map
�!
W SHom.V;W /

! S s.V /
^L.V;W /1:

The starting point for our functional calculus variation are the below spaces; these
model spaces of eigenvalues of self-adjoint endomorphisms.
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Definition 3.6 We define the following spaces for d > 1 and 06 i 6 d � 2:

� D0.d/ WD f.t0; : : : ; td�1/ 2Rd W t0 6 � � �6 td�1g

� D.d/ WD .D0.d//1

� Fi.D
0.d// WD f.t0; : : : ; td�1/ 2D0.d/ W ti D tiC1g

� Fi.D.d// WD .Fi.D
0.d///1

� D0C.d/ WD f.t0; : : : ; td�1/ 2D0.d/ W t0 > 0g

� DC.d/ WD .D
0
C.d//1

� Fi.D
0
C.d// WD f.t0; : : : ; td�1/ 2D0C.d/ W ti D tiC1g

� Fi.DC.d// WD .Fi.D
0
C.d///1

� D0
0
.d/ WD f.t0; : : : ; td�1/ 2D0.d/ W t0 D 0g

� D0.d/ WD .Fi.D
0.d///1 .

We refer to the Fi.D.d// as the faces of D.d/, the faces of DC.d/ are the spaces
Fi.DC.d// and the space D0.d/. We call D.d/ and DC.d/ facial spaces and say
that a self-map of D.d/ or DC.d/ is facial if it preserves faces. Let F.d/ be the space
of facial self-maps of D.d/ and let FC.d/ be the space of facial self-maps of DC.d/.

More generally, let X and Y be based spaces that have a notion of faces, so that we
can talk about facial maps X ! Y . For example if X DD.d/ and Y DD.d/^Z

for some Z then f W X ! Y is facial if f .Fi.D.d/// � Fi.D.d//^Z . Then we
denote the space of facial maps from X to Y by FMap.X;Y /. If X D Y then we
write FMap.X / for the space of facial self-maps of X .

The two technical lemmas we need to set up the machinery are easy to check. We
fix V to be a Hermitian space of dimension d .

Lemma 3.7 Let �0W s.V /!D0.d/ be the eigenvalue map ˛ 7! .e0.˛/; : : : ; ed�1.˛//.
Then �0 is a continuous proper surjection and hence the map � WD .�0/1W S s.V /!D.d/

is a quotient map.

Lemma 3.8 For t 2Rd set �.t/ to be the diagonal matrix with entries t . Define

�0W L.Cd ;V /�D0.d/! s.V /

.˛; t/ 7! ˛�.t/˛|:

Then �0 is a continuous proper surjection and hence � WD .�0/1 is a quotient map.
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Proposition 3.9 Let X be a based space and let f W D.d/! D.d/ ^X be facial.
Then there exists a unique map Af W s.V /1! s.V /1 ^X making

L.Cd ;V /1 ^D.d/

1^f
��

� // s.V /1

Af
��

� // D.d/

f
��

L.Cd ;V /1 ^D.d/^X
�^1

// s.V /1 ^X
�^1

// D.d/^X

commute; moreover, the associated map

AW FMap.D.d/;D.d/^X /!Map.s.V /1; s.V /1 ^X /

f 7! Af

is continuous. Furthermore, we have an explicit description of Af .˛/. Choose an
orthonormal basis of eigenvectors v0; : : : ; vd�1 of ˛ with eigenvalues e06 � � �6 ed�1 ;
then if f .e0; : : : ; ed�1/D .s0; : : : ; sd�1/^x we have Af .˛/D f .˛/^x where f .˛/
is the endomorphism with eigenvectors vi and eigenvalues si .

Proof We first need to check that if �.˛; t/D �.˛0; t 0/ then �.˛; f .t//D �.˛0; f .t 0//,
but this follows from the fact that if f .t/ D s ^ x then the centralizer of �.s/ is
contained within the centralizer of �.t/. The described map Af clearly fits into the
square and moreover it is unique because � is surjective. The map Af ı�D � ı .1^f /

is continuous and so it follows that Af is continuous as � is a quotient.

We have an adjunction

Map.FMap.D.d/;D.d/^X /;Map.s.V /1; s.V /1 ^X //

Š Map.FMap.D.d/;D.d/^X /^ s.V /1; s.V /1 ^X /:

Hence if we show that the adjoint A#W FMap.D.d/;D.d/^X /^s.V /1! s.V /1^X

is continuous then continuity of A follows. Let eval be given by

evalW FMap.D.d/;D.d/^X /^L.Cd ;V /1 ^D.d/! L.Cd ;V /1 ^D.d/^X

.f; ˛; t/ 7! .˛; f .t//:

We have a commutative diagram

FMap.D.d/;D.d/^X /^L.Cd ;V /1 ^D.d/
eval //

1^�
��

L.Cd ;V /1 ^D.d/^X

�^1
��

FMap.D.d/;D.d/^X /^ s.V /1
A#

// s.V /1 ^X

and hence A# ı .1^ �/D .� ^ 1/ ı eval is continuous. The map .1^ �/ is a quotient,
thus A# and A are continuous.
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It is easy to see that the above holds for spaces of nonnegative self-adjoint endomor-
phisms.

Corollary 3.10 The maps �0 and �0 restrict to

�0W sC.V /!D0C.d/;

�0W L.Cd ;V /�D0C.d/! sC.V /:

Let f W DC.d/!DC.d/^X be facial. Then there exists a unique map Af holding
the properties stated in Proposition 3.9 and making

L.Cd ;V /1 ^DC.d/

1^f

��

� // sC.V /1

Af

��

� // DC.d/

f

��
L.Cd ;V /1 ^DC.d/^X

�^1
// sC.V /1 ^X

�^1
// DC.d/^X

commute.

This result can be extended to build self-maps of SHom.V;W / for V and W Hermitian,
V of dimension d and W such that dim.W / > d . We again need two technical
lemmas to set up the machinery, the proofs are easy to check.

Lemma 3.11 The map �W Hom.V;W /! sC.V / is a proper surjection. Hence the
based extension �1 is a quotient map. Abusing notation we also denote this extension
by � .

Lemma 3.12 Define

�0W sC.V /�L.V;W /! Hom.V;W /

.˛; �/ 7! �� ı˛:

Then �0 is a continuous proper surjection and hence � WD .�0/1 is a quotient map.

Proposition 3.13 Let X be a based space and let f W DC.d/!DC.d/^X be facial.
Then there exists a unique map Bf W S

Hom.V;W /! SHom.V;W / ^X making

L.V;W /1 ^ sC.V /1

1�Af
��

� // SHom.V;W /

Bf
��

� // sC.V /1

Af
��

L.V;W /1 ^ sC.V /1 ^X
�^1

// SHom.V;W / ^X
�^1

// sC.V /1 ^X
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commute; moreover, the associated map

BW F.A/!Map.SHom.V;W /;SHom.V;W /
^X /

f 7!Bf

is continuous. Here F.A/ is the space of all maps sC.V /1! sC.V /1 ^X of the
form Af . Furthermore, we have an explicit description of Bf .
 /. Choose an orthonor-
mal basis of eigenvectors v0; : : : ; vd�1 of 
 |
 with eigenvalues e2

0
6 � � �6 e2

d�1
such

that 
 .vi/ D eimi for some mi orthonormal in W . Then if f .e0; : : : ; ed�1/ D

.s0; : : : ; sd�1/^ x we have Bf .
 /D f .
 /^ x , where f .
 / is the homomorphism
sending each vi to simi .

Proof Let �.�; ˛/D �.� 0; ˛0/, that �.�;Af .˛//D �.� 0;Af .˛0// follows from the
fact that Ker.˛/� Ker.Af .˛//. The described map Bf makes the diagram commute
and moreover this map is unique as � is surjective. As in the proof of Proposition 3.9,
Bf is continuous as � is a quotient map.

We again rely on an adjunction argument to show continuity of B; we show that
the adjoint B#W F.A/ ^ SHom.V;W / ! SHom.V;W / ^ X is continuous. Let eval be
defined by

evalW F.A/^L.V;W /1 ^ sC.V /1! L.V;W /1 ^ sC.V /1 ^X

.Af ; �; ˛/ 7! .�;Af .˛//:

We have a commutative diagram

F.A/^L.V;W /1 ^ sC.V /1
eval //

1^�
��

L.V;W /1 ^ sC.V /1 ^X

�^1

��
F.A/^SHom.V;W /

B#
// SHom.V;W / ^X

and hence B# ı .1^�/ is continuous. The map .1^�/ is a quotient, thus B# and B

are continuous.

3.1 Building a cofibre sequence using the functional calculus

We now give a concrete example of this functional calculus by building an NDR
(Neighbourhood Deformation Retract) pair, which we use throughout the rest of the
document. We take our definition of NDR as follows.

Definition 3.14 Let X be a space and A a closed subspace. We say that a pair of
continuous maps .uW X ! Œ0; 1�; hW Œ0; 1��X ! X / represents .X;A/ as an NDR
pair if:
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(1) h1.x/D x for all x 2X .

(2) ht .a/D a for all t 2 Œ0; 1� and a 2A.

(3) h0.x/ 2A for all x 2X such that u.x/ < 1.

(4) u�1.0/DA.

The next three lemmas have routine proofs.

Lemma 3.15 Let X be the upper half disc fz 2C W jzj6 1; Im.z/> 0g and let Y be
the upper semicircle fz 2X W jzj D 1g with basepoint z D�1:

the basepoint

Then

u00.rei� / WDmin.1; 2� 2r/;

h00t .rei� / WDmin.1; .2� t/r/ei� :

make .X;Y / into an NDR pair.

Lemma 3.16 There is a relative homeomorphism �W .DC.2/;D0.2//Š.X;Y / given by

�W DC.2/!X

.t0; t1/ 7!
i � .t1C i t0/

2

i C .t1C i t0/2
:

[f1g

Š �
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Lemma 3.17 .DC.2/;D0.2// is an NDR pair via

u0.t0; t1/ WD u00 ı�.t0; t1/;

h0t .t0; t1/ WD �
�1
ı h00t ı�.t0; t1/:

We want to build a new NDR pair out of the pair of Lemma 3.17. To do this we need
one more construction. Let f W DC.2/!DC.2/ be facial. Then f can be written in
the form f .t0; t1/D .g.t0; t1/;g.t0; t1/Ch.t0; t1// for functions g , hW DC.2/!RC

such that h.t; t/D 0.

Proposition 3.18 Define yf W D.d/!D.d/ by

yf .t0; : : : ; td�1/i D

8̂<̂
:

g.t0; td�1/C
ti � t0

td�1� t0
h.t0; td�1/ if t0 < td�1;

g.t0; td�1/ if t0 D td�1

yf .1/D1:

Then yf is a continuous facial map and the map

hatW FC.2/! FC.d/

f 7! yf

is continuous.

Proof Most of the claims are easy to show, though continuity of yf requires a limit
argument. The only real issue is checking that the map hat is continuous, which relies
on another adjunction argument similar to those used in Propositions 3.9 and 3.13.
Recall that FC.d/ is the space of facial self-maps of DC.d/. We have an adjunction

Map.FC.2/;Map.DC.d/;DC.d///ŠMap.FC.2/^DC.d/;DC.d//:

Observe that FC.d/�Map.DC.d/;DC.d//, thus continuity of hat follows from the
continuity of the adjoint hat# . Let �d�2 be the standard .d � 2/–simplex which we
take to be parameterized by d � 3 increasing coordinates in Œ0; 1�. Define

�0W D0C.2/��d�2!D0C.d/

.t0; t1; s0; : : : ; sd�3/ 7! .t0; t0C s0.t1� t0/; : : : ; t0C sd�3.t1� t0/; t1/:

The map �0 is a proper surjection, hence � WD .�0/1 is a quotient. Let eval be the map

evalW FC.2/^DC.2/^ .�d�2/1!DC.2/^ .�d�2/1

.f; t; s/ 7! .f .t/; s/:
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We have a commutative diagram

FC.2/^DC.2/^ .�d�2/1
eval //

.1^�/

��

DC.2/^ .�d�2/1

�
��

FC.2/^DC.d/
hat#

// DC.d/

and hence hat# ı .1^�/ is continuous; the continuity of hat follows.

This construction is used to build the below NDR pair, the proof is simple to check.

Proposition 3.19 .SHom.V;W /; Inj.V;W /c1/ is an NDR pair via

u.
 / WD u0.e0.�.
 //; ed�1.�.
 ///;

ht .
 / WDBbh0t .
 /:
It is standard that one can build a cofibre sequence from an NDR pair. In our case an
NDR pair .X;A/ produces a cofibre sequence

A
i
!X

p
!

X

A

e
!†A;

where i is the inclusion, p the collapse and e the composition

X

A

r
! Ci

d
!†A

with d the standard collapse and r the map

r W
X

A
! Ci

x 7! .u.x/; h0.x//:

The below result then follows.

Corollary 3.20 We have a cofibre sequence

Inj.V;W /c1
i
! SHom.V;W / p

! Inj.V;W /1
e
!† Inj.V;W /c1:

The proof of Theorem 1 relies on showing that many sequences are isomorphic to
modifications of this sequence.
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3.2 Homotopy classification in the functional calculus

The strength of the extended functional calculus is its homotopy properties. It is possible
to determine a homotopy classification of maps of the form Af or Bf , we achieve
this classification by proving Theorem 4. Let f , gW D.d/!D.d/ be facial and such
that f ' g through a facial homotopy ht . Then Af ' Ag via Aht

and Bf 'Bg

via Bht
. Hence we study the homotopy type of facial self-maps of D.d/.

Unfortunately, in order to do this we have to briefly make a change of notation. While
D.d/ and Fi.D.d// are the right tools to work with when building and calculating,
an inductive argument is needed to set up the homotopy theory. In an ideal world we
would induct on the dimension d in D.d/, however there are a number of choices of
inclusion D.d � 1/!D.d/ and the induction needs to keep track of all of them in a
universal fashion. Hence we switch to working with intersections of faces. This allows
us to transfer the concept of an n–skeleton to the construction D.d/, which gives us
something we can induct on.

Definition 3.21 Let � � f0; : : : ; d � 2g. Then define xB� to be the intersection of
faces

T
i…� Fi.D.d//. Moreover define xBŒk� be the union of all xB� with j� j 6 k ,

we can think of xBŒk� as in some sense the k –skeleton of D.d/. Note that xBŒ0�D xB∅
and xBŒd � 1� D D.d/. We say that a self-map of xBŒk� is facial if it preserves each
xB�—this is consistent with the earlier definition of a facial map.

We need two brief technical lemmas to proceed, recalling the notation Bn for a ball of
dimension n.

Lemma 3.22 Suppose X Š BnC1 and Y Š Bn , and let p be a map @X ! Y . Then
there exists an extension zpW X ! Y of p .

Proof Without loss of generality we can assume that X D BnC1 and Y D Bn .
Parameterize X by coordinates .x; t/ for x a point on the boundary and t a scalar.
The extension is zp.x; t/ WD tp.x/.

Lemma 3.23 Suppose Y ŠBn and f , gWY!Y are maps such that hW Œ0;1��@Y!Y

gives a homotopy from f j@Y to gj@Y . Then there exists an extension zhW Œ0; 1��Y !Y

that provides a homotopy between f and g .

Proof Setting X WD Œ0; 1� � Y , it trivially follows that X Š BnC1 . Note @X Š
.Œ0; 1�� @Y /[ .f0; 1g�Y /, define pW @X ! Y to be h on Œ0; 1�� @Y , f on f0g�Y

and g on f1g �Y . Use Lemma 3.22 to extend p to the required homotopy zh.
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We can now prove the key lemma.

Lemma 3.24 Let f , gW D.d/ ! D.d/ be facial and such that f j xBŒk� ' gj xBŒk�
through facial maps. Then this homotopy can be extended to a facial homotopy
f j xBŒkC1� ' gj xBŒkC1� .

Proof Let hk be the homotopy Œ0; 1�� xBŒk�! xBŒk� agreeing with f on 0 and g

on 1. Now let xB� be such that j� j D kC 1. Then we have xB� Š BkC2 � xBŒkC 1�

and @ xB� � xBŒk�. Restrict f and g to f j xB� and gj xB� and restrict hk to a homotopy
f j@ xB� ' gj@ xB� . This extends to give a homotopy hkC1;� W Œ0; 1� � xB� ! xB� via
Lemma 3.23 which agrees with hk on the boundary, f j xB� on 0 and gj xB� on 1. Hence
we have a family of maps fhkC1;�gj� jDkC1 . If � ¤ � observe that xB� \ xB� � xBŒk�.
Thus the two homotopies hkC1;� and hkC1;� agree on the intersection as they are
both hk on xBŒk�. Patch the family together to get a homotopy hkC1W Œ0; 1�� xBŒkC1�!
xBŒk C 1� extending hk and giving f ' g . That this homotopy is facial is trivial to
observe.

We now observe that xB∅ Š S1 . Hence the following theorem, a restatement of
Theorem 4, follows by induction using Lemma 3.24.

Theorem 3.25 Let f , gW D.d/! D.d/ be facial and such that f and g have the
same degree on xB∅ . Then f ' g through facial maps.

Hence we now have a criterion for saying whether two maps Af and Ag are homotopic:
we have induced maps f 0 , g0W S1! S1 given by f 0.t/ WD f .t; : : : ; t/ and g0.t/ WD

g.t; : : : ; t/ and if f 0 and g0 have the same degree then Af ' Ag .

4 An equivariant stable tower over isometries

Recall the setup of G , V0 and V1 discussed in the introduction. We spend this section
proving the following theorem, a more detailed technical statement of Theorem 1 which
serves as the main result of the paper.

Theorem 4.1 There is a natural tower of spectra

L.V0;V1/1
�d0
��!Xd0�1

�d0�1

����! � � �
�2
�!X1

�1
�! S0

such that:

(1) The map L.V0;V1/1! S0 is the compactified version of the projection map
L.V0;V1/! pt.
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(2) The stable cofibre of the map �k W Xk!Xk�1 is Gk.V0/
R˚Hom.T;V1�V0/˚s.T / ,

ie the triangle

Xk

�k

��

Gk.V0/
Hom.T;V1�V0/˚s.T /

�koo

Xk�1




ık

55

is a cofibre triangle.

We first define, topologize and equip with group actions all the spectra in the tower.
We do this mostly unstably. Recall that if ˛ is self-adjoint then there is an inherent
ordering on the eigenvalues ej .˛/ and hence the eigenspaces Ker.˛� ej .˛//.

Definition 4.2 Let Pk.˛/ be the following subspace of V0

Pk.˛/ WD

� M
jCk<d0

.Ker.˛� ej .˛///

�?
:

Definition 4.3 Define the set

zX 0k WD f.˛; �/ W ˛ 2 s.V0/; � 2 L.Pk.˛/;V1/g:

We now topologize this space.

Definition 4.4 There is a surjection

s.V0/�L.V0;V1/! zX 0k

.˛; �/ 7! .˛; � jPk.˛//:

Hence equip zX 0k with the topology of a quotient of s.V0/�L.V0;V1/.

This topology is useful, but later continuity arguments will be eased by an equivalent
topology. The following lemma is simple to check.

Lemma 4.5 Recall � and �k from Lemmas 3.2 and 3.4. We have a bijection

zXk
0
! f.˛; ˇ/ W ˛ 2 s.V0/; ˇW V0! V1; �.ˇ/D �k.˛/g

.˛; �/ 7! .˛;�� ı�k.˛//:

We can topologize zX 0k as a subspace of s.V0/�Hom.V0;V1/, whereupon this bijection
becomes a homeomorphism.
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A quick check using Lemma 2.1 shows that these two topologies are the same.

Definition 4.6 Define maps z� 0k W zX
0
k !

zX 0k�1 by

.˛; �/ 7! .˛; � jPk�1.˛//:

The strictly commutative diagram

s.V0/�L.V0;V1/

1

// // zX 0k

z� 0k
��

s.V0/�L.V0;V1/ // // zX 0k�1

proves that this map is well-defined, continuous and proper. Hence we define zXk WD

. zX 0k/1 and z�k WD .z�
0
k
/1 .

Definition 4.7 We define the spectra Xk WD S�s.V0/ ^ †1 zXk and maps �k WD

†�s.V0/†1z�k .

The unstable tower

zXd0
D S s.V0/ ^L.V0;V1/1! � � � ! zX0 D S s.V0/

induces a stable tower

Xd0
D L.V0;V1/1! � � � !X0 D S0:

It is clear that the map L.V0;V1/1 ! S0 comes from the projection. Regarding
equivariance, we recall that for any representations V and W the space s.V / has an
action by conjugation and that L.V;W / has an action by conjugation.

Definition 4.8 Equip zX 0k with the action g:.˛; �/ WD .g:˛;g:�/.

Again, it’s standard to check that this action is well-defined, is compatible with the
topologies, makes the zX 0k into G–spaces and makes the z� 0k into G–maps. The G–
spectra Xk inherit their action from zX 0k . Part (1) of Theorem 4.1 follows.

We also mention the topology on what we claim are the cofibres.

Definition 4.9 Define

zZk WD f.W; 
;  / WW 2Gk.V0/; 
 2 Hom.W;V1/;  2 s.W ?/g:
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We topologize this via the following lemma. We first topologize Gk.V0/ as homeo-
morphic to

G0k.V0/ WD f� 2 s.V0/ W �
2
D �; trace.�/D kg:

This is a compact subset of s.V0/.

Lemma 4.10 We have a bijection between zZk and the space

f.�; ˇ; �/ W � 2G0k.V0/; ˇ 2 Hom.V0;V1/; � 2 s.V0/; ˇ ı .1��/D 0; � ı� D 0g

given by

.W; 
;  / 7! .1W ˚ 0W ? ; 
 ı .1W ˚ 0W ?/;  ı .1W ? ˚ 0W //

.Im.�/; ˇjIm.�/; �jIm.1V0
��// [ .�; ˇ; �/:

Thus zZk is a subspace of G0k.V0/ � Hom.V0;V1/ � s.V0/. Moreover we have a
surjection

L.Ck
˚Cd0�k ;V0/�Hom.Ck ;V1/� s.Cd0�k/! zZk

..�; �/; 
0;  0/ 7! .Im.�/; 
0 ı �
|; � ı 0 ı �

|/:

Hence zZk can also be topologized as a quotient. These two topologies are the same.

This result follows from an application of Lemma 2.1. It is standard that zZk is a vector
bundle over Gk.V0/.

Definition 4.11 Equip Gk.V0/ with the standard action g:L WDg.L/. Then equip zZk

with the action g:.W; 
;  / WD .g:W;g:
;g: /.

There are things to check here, but it is an easy exercise to show that this action is
well-defined, compatible with the topologies above and such that zZk is a G–vector
bundle over Gk.V0/. Hence we can define the Thom space Gk.V0/

Hom.T;V1/˚s.T?/ ,
this is . zZk/1 as Gk.V0/ is compact.

We now stabilize this bundle to make the claimed cofibre. Consider the G –spectrum

S�s.V0/ ^†1Gk.V0/
Hom.T;V1/˚s.T?/:

We identify it with the spectrum we claim is the cofibre via the following lemma.

Lemma 4.12 We have

Hom.T;V1�V0/˚ s.T /˚ s.V0/Š Hom.T;V1/˚ s.T?/

as G –bundles over Gk.V0/.
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Proof We first note a standard bundle identity, s.V0/Š s.T /˚s.T?/˚Hom.T;T?/.
This follows from the decompositions of ˛ 2 s.V0/ into 2� 2 matrices

˛ D

�
ˇ ı|

ı 


�
for ˇ 2 s.W /, 
 2 s.W ?/ and ı 2 Hom.W;W ?/ for each W a fixed subspace
of V0 . This identity is also equivariant. We also have another equivariant identity
Hom.T;T /Š 2:s.T /, this follows from the classical decomposition of ˛ 2End.W / as
˛D ˛0C i˛1 with ˛0 , ˛1 2 s.W /. Combining these with the identity Hom.T;V0/Š

Hom.T;T /˚Hom.T;T?/ leads to the result.

It follows that

S�s.V0/ ^†1Gk.V0/
Hom.T;V1/˚s.T?/

ŠGk.V0/
Hom.T;V1�V0/˚s.T /:

4.1 The cofibre sequences

We now prove part (2) of Theorem 4.1. Recall the homeomorphism � from Lemma 3.5
between s.V0/^L.V0;V1/1 and Inj.V0;V1/1 . The below claim is easy to check.

Lemma 4.13 We have a homeomorphism

� W zX 0d0�1

Š
!R� Inj.V0;V1/

c

.˛; �/ 7! .e0.˛/;�� ı .˛� e0.˛///;

and hence zXd0�1 Š† Inj.V0;V1/
c
1 .

Thus there is a unique map � such that

zXd0

z�d0

��

� // Inj.V0;V1/1

�

��
zXd0�1 �

// † Inj.V0;V1/
c
1

commutes. This map is observed to be given as follows, recalling � and � from
Lemmas 3.2 and 3.3:

�W W Inj.V0;V1/1!† Inj.V0;V1/
c
1


 7!

�
e0.log.�.
 ///

�.
 / ı .log.�.
 //� e0.log.�.
 ////

�
:
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Recall the cofibre sequence

Inj.V0;V1/1
e
!† Inj.V0;V1/

c
1

�†i
! SHom.V0;V1/˚R �†p

! † Inj.V0;V1/1

from Corollary 3.20 and the construction B from Proposition 3.13. It’s standard that the
map Bf WS

Hom.V0;V1/!SR˚Hom.V0;V1/ factors through Inj.V0;V1/1!†Inj.V0;V1/
c
1

if and only if f factors through DC.d0/=D0.d0/!†D0.d0/. Hence for the specific
map f given by

f W
DC.d0/

D0.d0/
!†D0.d0/

.t0; : : : ; td0�1/ 7! .u0.t0; td0�1/;
yh0
0
.t0; : : : ; td0�1//;

we observe that e D Bf , recalling u0 and yh0
0

from the various constructions in
Section 3.1.

Proposition 4.14 Let g be the map

gW
DC.d0/

D0.d0/
!†D0.d0/

.t0; : : : ; td0�1/ 7! .log.t0/; 0; log.t1/� log.t0/; : : : ; log.td0�1/� log.t0//:

Then �DBg and the map g is homotopic through facial maps to the map f defined
above. Hence e ' �.

Proof The first claim is simple to verify. For the second, we note we have face-
preserving homeomorphisms

DC.d0/

D0.d0/

Š
!D.d0/

t 7! log.t/;

†D0.d0/
Š
!D.d0/

.s; t0 D 0; : : : ; td0�1/ 7! .sC t0; : : : ; sC td0�1/:

Hence we have maps f 0 , g0W D.d0/!D.d0/ induced by maps f and g . We show
that f 0 and g0 are homotopic using Theorem 3.25, this is enough to complete the
proof.

We have induced maps f 00 , g00W S1! S1 given by f 00.t/D f 0.t; : : : ; t/ and g00.t/D

g0.t; : : : ; t/. We claim these have the same degree. It is easy to see that g00 is the
identity and hence has degree 1. The map f 00 is explicitly given by

t 7!

�
log.8et=.1� 6et // t < � log.6/;
1 otherwise.
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This can be checked by following through with all the definitions. We have a map

f 000W R!R

t 7! log
�

et

8C 6et

�
:

This is a strictly increasing embedding and it is easy to see that f 00 is the collapse .f 000/! .
Let hsW R!R be the homotopy hs.t/D st C .1� s/f 000.t/. The map .hs/

! provides
a homotopy between f 00 and the identity, hence f 00 is degree 1 and the proposition
follows.

It follows that we have a cofibre sequence

Inj.V0;V1/1
�
!† Inj.V0;V1/

c
1

�†i
! SHom.V0;V1/˚R �†p

! † Inj.V0;V1/1

and hence we can build a cofibre sequence

zXd0

z�d0
! zXd0�1! SHom.V0;V1/˚R

!† zXd0
:

Applying †1 and smashing throughout by S�s.V0/ , it follows that we have a cofibre
sequence

Xd0

�d0
! Xd0�1!Gd0

.V0/
Hom.T;V1�V0/˚s.T /

!†Xd0

building the top of the tower. The final thing to check is that all the material above is
compatible with the stated G –actions but this is simple to observe.

Let k<d0 , we prove that the cofibre of z�k W
zXk!

zXk�1 is Gk.V0/
R˚Hom.T;V1/˚s.T?/ .

We first simplify by taking a quotient.

Definition 4.15 Set Y 0k WD f.˛; �/ 2
zX 0k W dim.Pk.˛// < kg and Yk WD .Y

0
k/1 . Then

abusing notation somewhat Y 0k can be thought of as both a subspace of zX 0k and zX 0k�1

and we have a map $k W
zXk=Yk !

zXk�1=Yk induced from the map z�k .

By Lemma 2.3 the cofibre of $k is naturally equivalent to the cofibre of the map z�k .
We need a single technical continuity argument before we can proceed.

Lemma 4.16 Define sk.V0/ WD f˛ 2 s.V0/ W dim.Pk.˛//D kg, then Pk W sk.V0/!

Gk.V0/ is continuous.

Proof Let s.V0/
� WD f˛ 2 s.V0/ W ei.˛/ 2 Rnf0g8ig and let G.V0/ WD

S
k Gk.V0/.

Define f W Rnf0g!f0; 1g to be the function sending negative numbers to 0 and positive
numbers to 1, then there is an associated continuous function f W s.V0/

�! G.V0/.
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The claim is trivial if k D 0 and if k D d0 so now assume 0 < k < d0 , hence
sk.V0/D f˛ 2 s.V0/ W ed0�k�1.˛/ < ed0�k.˛/g. Define a map sk.V0/!R given by

˛ 7! 1=2.ed0�k�1.˛/C ed0�k.˛//

and note that as 1=2.ed0�k�1.˛/C ed0�k.˛// is not an eigenvalue of ˛ we have
˛ � 1=2.ed0�k�1.˛/C ed0�k.˛// 2 s.V0/

� . The claim follows by observing that
Pk.˛/D f .˛� 1=2.ed0�k�1.˛/C ed0�k.˛///.

Proposition 4.17 Define

I 0k WD f.W; 
;  / WW 2Gk.V0/; 
 2 Inj.W;V1/;  2 s.W ?/g:

Topologize I 0k as an open subspace of zZk from Definition 4.9 and define Ik WD

.I 0k/1 ; note that this space has a G–action inherited from zZk . Recall � and � from
Lemmas 3.2 and 3.3, the maps qk W

zX 0knY
0

k ! I 0
k

and rk W I 0k ! zX 0knY
0

k given by

qk W .˛; �/ 7!
�
Pk.˛/;�� ı exp.˛jPk.˛//;� log..ed0�k.˛/�˛/jPk.˛/?

/
�
;

..log.e0.�.
 ///� exp.� //jW ? ˚ log.�.
 //jW ;��.
 // [ .W; 
;  / Wrk

are well-defined continuous G –maps that are inverses of each other, hence zX 0knY
0

k ŠI 0
k

and thus zXk=Yk Š Ik .

Proof To prove this it needs to be checked that qk and rk are well-defined, that
qk ı rk and rk ı qk are the identity and that qk and rk are continuous. These checks
are standard, barring the continuity arguments.

To check that qk is continuous, equip zX 0knYk with the quotient topology of Definition
4.4 and topologize I 0k as a subspace of zZ0k and hence as a subspace of Gk.V0/ �

Hom.V0;V1/ � s.V0/ via Lemma 4.10. The continuity of qk then follows from
continuity of the map

f.˛; �/ 2 s.V0/�L.V0;V1/W dim.Pk.˛//D kg

!Gk.V0/�Hom.V0;V1/� s.V0/;

.˛; �/ 7! .Pk.˛/;�� ı exp.˛/;� log.ed0�k.˛/�˛//:

Continuity of this map follows from Lemma 4.16. To demonstrate that rk is continuous
firstly equip zX 0knYk with the subspace topology of Lemma 4.5. Next note that similar
to Lemma 4.10 we can equip I 0k with a quotient topology via the map

L.Ck
˚Cd0�k ;V0/� Inj.Ck ;V1/� s.Cd0�k/! I 0k

..�; �/; 
0;  0/ 7! .Im.�/; 
0 ı �
|; � ı 0 ı �

|/;
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and note by Lemma 2.1 that this topology is equivalent to the subspace topology. Thus
continuity of rk follows from continuity of the map

L.Ck
˚Cd0�k ;V0/� Inj.Ck ;V1/� s.Cd0�k/! s.V0/�Hom.V0;V1/

..�; �/; 
0;  0/ 7!�
.log.e0.�.
0 ı �

|///� exp.�� ı 0 ı �
|// ı .1V0

� ��|/˚ log.�.
0 ı �
|// ı ��|


0 ı �
|

�
;

which is continuous as standard.

Proposition 4.18 Define

J 0k WD f.W; ı;  / WW 2Gk.V0/; ı 2 Inj.W;V1/
c ;  2 s.W ?/g:

Topologize J 0k as a subspace of zZk from Definition 4.9 and define Jk WD .J 0k/1 ; note
this space has a G –action inherited from zZk . Recall � , � and �k�1 from Lemmas 3.2,
3.3 and 3.4, the maps fk W zX

0
k�1nY

0
k !R�J 0k and gk W R�J 0k ! zX 0k�1nY

0
k given by

fk W .˛; �/ 7!
�
ed0�k.˛/;Pk.˛/;�� ı�k�1.˛/jPk.˛/;� log..ed0�k.˛/�˛/jPk.˛/?

/
�
;

..t�exp.� //jW ?˚.�.ı/C t/jW ;��.ı// [ .t;W; ı;  / Wgk

are well-defined continuous G –maps that are inverses of each other, hence zX 0k�1nY
0

k Š

R�J 0k and thus zXk�1=Yk Š†Jk .

Proof As above, the only issues with this proof are the continuity statements. To show
that fk is continuous, equip zX 0k�1nYk with the quotient topology of Definition 4.4
and topologize R � zJ 0k as a subspace of R � zZ0k and hence as a subspace of R �
Gk.V0/�Hom.V0;V1/� s.V0/ via Lemma 4.10. The continuity of fk then follows
from continuity of the map

f.˛; �/ 2 s.V0/�L.V0;V1/ W dim.Pk.˛//D kg

!R�Gk.V0/�Hom.V0;V1/� s.V0/

.˛; �/ 7! .ed0�k.˛/;Pk.˛/;�� ı .˛� ed0�k.˛//;� log.ed0�k.˛/�˛//:

Continuity of this map follows from Lemma 4.16. As in the proof of Proposition 4.17,
J 0k can also be an equipped with an equivalent quotient topology given by the map

L.Ck
˚Cd0�k ;V0/� Inj.Ck ;V1/

c
� s.Cd0�k/! J 0k

..�; �/; 
0;  0/ 7! .Im.�/; 
0 ı �
|; � ı 0 ı �

|/:
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Equip zX 0k�1nYk with the subspace topology of Lemma 4.5, then continuity of gk

follows from continuity of the map

R�L.Ck
˚Cd0�k ;V0/� Inj.Ck ;V1/

c
� s.Cd0�k/! s.V0/�Hom.V0;V1/

..�; �/; 
0;  0/ 7!

..t � exp.�� ı 0 ı �
|// ı .1V0

� ��|/˚ .�.
0 ı �
|/C t/ ı ��|; 
0 ı �

|/;

which is continuous as standard.

There is a unique map �0 making

zXk=Yk Š

qk //

$k

��

Ik

�0

��
zXk�1=Yk

Š

fk

// †Jk

strictly commute. We have a sequence

Ik

�k
!†Jk

�†ik
! Gk.V0/

R˚Hom.T;V1/˚s.T?/ �†pk
! †Ik

with pk induced from the fibrewise collapses SHom.W ;V1/ ! Inj.W;V1/1 . The
map ik is induced from the fibrewise inclusions Inj.W;V1/

c
1! SHom.W ;V1/ and �k

is induced from the fibrewise maps �W DBgW Inj.W;V1/1!† Inj.W;V1/
c
1 ; here

g is the map

gW
DC.k/

D0.k/
!†D0.k/

.t0; : : : ; tk�1/ 7! .log.t0/; 0; log.t1/� log.t0/; : : : ; log.tk�1/� log.t0//:

It follows from Lemma 2.2 that this is a cofibre sequence. It is a simple task to check
that �0 D �k and hence we have a cofibre sequence

zXk

Yk

$
!

zXk�1

Yk

!Gk.V0/
R˚Hom.T;V1/˚s.T?/

!†
zXk

Yk

:

Thus by applying Lemma 2.3, applying †1 and smashing by S�s.V0/ we observe
that a cofibre sequence

Xk

�k
!Xk�1!Gk.V0/

R˚Hom.T;V1�V0/˚s.T /
!†Xk

exists. The above work is easily checked to interact well with the stated group actions.
Theorem 4.1 then follows.
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4.2 Explicit maps in the sequences

While the above work proves Theorem 4.1 it is somewhat unsatisfactory as it only
theoretically shows there is a cofibre sequence. We now state maps forming a sequence

zXk

z�k
! zXk�1

zık
!Gk.V0/

R˚Hom.T;V1/˚s.T?/ �†
z�k
! † zXk :

This will be the unstable sequence building the sequence in Theorem 4.1. We only
need to do this when k < d0 —at the top of the tower we didn’t take a quotient so
already have explicit unstable maps.

Definition 4.19 Define

zık W zXk�1

coll
!

zXk�1

Yk

.fk/1
�!
Š

†Jk

�†ik
! Gk.V0/

R˚Hom.T;V1/˚s.T?/

and set ık WD †�s.V0/†1zık . Here coll is the standard collapse, fk was defined in
Proposition 4.18 and ik is the fibrewise inclusion.

Definition 4.20 Define

z�k W Gk.V0/
Hom.T;V1/˚s.T?/

! zXk

.W; 
;  / 7! . jW ? ˚ .�.
 /C etop. //jW ;��.
 //

and set �k WD †�s.V0/†1z�k . Here etop. / is the top eigenvalue of  under the
standard ordering and we recall � and � from Lemmas 3.2 and 3.3.

We have already covered why zık is well-defined and continuous; it is simple to check z�k

is also well-defined (ie the unbased map is proper) and continuous using similar tech-
niques to those in Propositions 4.17 and 4.18. Recall pk W Gk.V0/

Hom.T;V1/˚s.T?/!Ik

to be the fibrewise collapse, set ck W
zXk !

zXk=Yk to be the collapse and recall rk

from Proposition 4.17. We have a homotopy commutative diagram

Yk
// //

1

��

zXk

z�k

��

ck

// // zXk=Yk

��

Gk.V0/
Hom.T;V1/˚s.T?/

z�k?

uu .rk/1ıpkoo

Yk
// // zXk�1 


�ık

??

// // zXk�1=Yk




66

where the inner triangle is our cofibre sequence. If we can show adding z�k to the
diagram maintains its homotopy-commutativity then we conclude that

zXk

z�k
! zXk�1

zık
!Gk.V0/

R˚Hom.T;V1/˚s.T?/ �†
z�k
! † zXk
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is a cofibre sequence. To proceed we extend our functional calculus theory from
Section 3. We have a homeomorphism

f W D.d0� k/^DC.k/!D.d0/

.s; t/ 7! .s; stopC t/:

Definition 4.21 We say a map gW D.d0 � k/ ^ DC.k/ ! D.d0/ is facial if the
composite g ıf �1W D.d0/!D.d0/ is. In particular f is facial.

The next two results are easy to check.

Lemma 4.22 Let i W Ck ! Cd0 be a choice of inclusion sending Ck to the last k

copies of C in Cd0 . Recall zZk from Definition 4.9 and � from Lemma 3.8 and define

p0W L.Cd0 ;V0/�L.Ck ;V1/�D0.d0� k/�D0C.k/!
zZk

.�; �; s; t/ 7! .�.i.Ck//;�� ı�.t/��1
j�.i.Ck//; ��.s/�

�1
j�.i.Ck//?/:

Then p0 is a continuous proper surjection and hence p WD .p0/1 is a quotient map.

Lemma 4.23 Define

q0W L.Cd0 ;V0/�L.Ck ;V1/�D0.d0/! zX 0k

.�; �; t 0/ 7! .��.t 0/��1;�� ı��1
jPk.��.t 0/��1//:

Then q0 is a continuous proper surjection and hence q WD .q0/1 is a quotient map.

Proposition 4.24 Let gW D.d0�k/^DC.k/!D.d0/ be facial. Then there exists a
unique map

CgW Gk.V0/
Hom.T;V1/˚s.T?/

! zXk

making

L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^D.d0� k/^DC.k/

1^1^g

��

p // Gk.V0/
Hom.T;V1/˚s.T?/

Cg

��

L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^D.d0/ q
// zXk

commute; moreover, the associated map

CW FMap.D.d0� k/^DC.k/;D.d0//!Map.Gk.V0/
Hom.T;V1/˚s.T?/; zXk/

g 7! Cg
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is continuous. Furthermore we have an explicit description of Cg.W; 
;  /. Choose
an orthonormal basis for W ? of eigenvectors v0; : : : ; vd0�k�1 of  with eigenval-
ues e0 6 � � �6 ed0�k�1 and choose and orthonormal basis for W of eigenvectors
vd0�k ; : : : ; vd0�1 of 
 |
 with eigenvalues e2

d0�k
6 � � �6 e2

d0�1
. If g.e/ D s , then

Cg.W; 
;  / maps to .˛; �/ where ˛ is the self-adjoint transformation of V0 with
eigenvectors vi and eigenvalues si and � D��.
 /, recalling � from Lemma 3.3.

Proof Let p.�; �; s; t/D p.�0; �0; s0; t 0/D .W; 
;  /. We claim q.�; �;g.s; t//D

q.�0; �0;g.s0; t 0//. Set � WD ��1�0W Cd0 !Cd0 . Then as �.i.Ck//D �0.i.Ck// we
have �.i.Ck//D i.Ck/ and thus � splits into �0W Ck!Ck and �1W Cd0�k!Cd0�k .
Suppressing the notation of i we have �.
 /D ��.t/��1jW D �

0�.t 0/�0�1jW . This
implies ��1

0
�.t/�0D�.t

0/, hence t D t 0 and �0 is in the centralizer of �.t/. Similarly
s D s0 and �1 is in the centralizer of �.s/. Now, let �.s˚ t/ denote the diagonal
matrix with the entries s and then t . It is clear that � is in the centralizer of �.s˚ t/

and hence in the centralizer of �.g.s; t//.

We want to show that �� ı��1jPk.��.g.s;t//�
�1/ D��

0 ı�0�1jPk.�
0�.g.s0;t 0//�0�1/ so

consider ��1�0 restricted to the top n copies of C in Ck ; n is the maximal value such
that �.t/jCn is invertible. On this restriction it is clear that ��1�0 agrees with �0 . This
fact, combined with the above paragraph, is enough to show that q.�; �;g.s; t// D

q.�0; �0;g.s0; t 0//. Further our described map clearly makes the diagram commute. As
p is surjective Cg is unique. Similar to the proofs of Propositions 3.9 and 3.13 the
map Cg is continuous as p is a quotient.

To show C is continuous we show that the adjoint C# is continuous. Use the shorthand
L WD L.Cd0 ;V0/1 ^L.Ck ;V1/1 . Let eval be the map

evalW FMap.D.d0�k/^DC.k/;D.d0//^L^D.d0�k/^DC.k/! L^D.d0/

.g; �; �; s; t/ 7! .�; �;g.s; t//:

We have a commutative diagram

FMap.D.d0� k/^DC.k/;D.d0//^L^D.d0� k/^DC.k/
eval //

1^p
��

L^D.d0/

q

��

FMap.D.d0� k/^DC.k/;D.d0//^Gk.V0/
Hom.T;V1/˚s.T?/

C#
// zXk

and hence C# ı .1^p/D q ı eval is continuous. The map .1^p/ is a quotient, thus
C# and C are continuous.

We can immediately note the following fact.
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Lemma 4.25 z�k D Cf for the particular homeomorphism f defined immediately
before Definition 4.21.

We can extend the functional calculus to the following result.

Corollary 4.26 Recalling I 0k from Proposition 4.17, the maps p0 and q0 restrict to

p0W L.Cd0 ;V0/�L.Ck ;V1/�D0.d0� k/�D0C.k/nD
0
0.k/! I 0k ;

q0W L.Cd0 ;V0/�L.Ck ;V1/� .D
0.d0/nFd0�k�1.D

0.d0///! zX 0knY
0
k :

Let g0W D.d0�k/^DC.k/=D0.k/!D.d0/=Fd0�k�1.D.d0// be facial. There exists
a unique map Dg0 holding the properties stated in Proposition 4.24 and making

L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^D.d0� k/^ .DC.k/=D0.k//

1^1^g0

��

p // Ik

Dg0

��
L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^ .D.d0/=Fd0�k�1.D.d0/// q

// zXk=Yk

commute.

The next three results are simple to prove.

Lemma 4.27 Let hW D.d0/!D.d0/=Fd0�k�1.D.d0// be the collapse. Then

L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^D.d0/
q //

1^h
��

zXk

ck

��
L.Cd0 ;V0/1 ^L.Ck ;V1/1 ^ .D.d0/=Fd0�k�1.D.d0/// q

// zXk=Yk

commutes.

Lemma 4.28 Let h0W D.d0 � k/^DC.k/! D.d0 � k/^ .DC.k/=D0.k// be the
collapse. Then

L.Cd0 ;V0/1^L.Ck ;V1/1^D.d0�k/^DC.k/

1^1^h0

��

p // Gk.V0/
Hom.T;V1/˚s.T?/

pk

��
L.Cd0 ;V0/1^L.Ck ;V1/1^D.d0�k/^.DC.k/=D0.k// p

// Ik

commutes.
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Lemma 4.29 Let g and g0 be such that h ıg D g0 ı h0 . Then Dg0 ıpk D ck ıCg .

We can now work in the functional calculus. We recall Lemma 4.25 and state the below
lemma, again the proof is standard.

Lemma 4.30 Define

g0W D.d0� k/^DC.k/=D0.k/!D.d0/=Fd0�k�1.D.d0//

.s; t/ 7! .log.t0/� exp.�s/; log.t//:

Then Dg0 D .rk/1 .

We have a diagram

D.d0/

h
��

D.d0� k/^DC.k/
g0ıh0

//

f

44

D.d0/=Fd0�k�1.D.d0//

which we claim commutes up to facial homotopy. There is a map

xf W D.d0� k/^DC.k/=D0.k/!D.d0/=Fd0�k�1.D.d0//

making

D.d0� k/^DC.k/

h0

��

f // D.d0/

h
��

D.d0� k/^ .DC.k/=D0.k//
xf

// D.d0/=Fd0�k�1.D.d0//

strictly commute. If xf is homotopic to g0 through a facial homotopy then it follows
that the diagram is homotopy commutative.

Proposition 4.31 xf ' g0 via a facial homotopy.

Proof First note xf is a facial homeomorphism. Also note expW D.k/!DC.k/=D0.k/

is a facial homeomorphism with inverse log. Let

m 2 FMap.D.d0� k/^DC.k/=D0.k/;D.d0/=Fd0�k�1.D.d0///:

We have an associated composition

m0 D .1^ log/ ı xf �1
ım ı .1^ exp/W D.d0� k/^D.k/!D.d0� k/^D.k/
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which is facial as all components in the composition are facial. Hence we have induced
maps xf 0 , g00W D.d0�k/^D.k/!D.d0�k/^D.k/ which we claim are homotopic
via a facial homotopy. The homotopy type of FMap.D.d0� k/^D.k// is known; a
facial map m0W D.d0� k/^D.k/!D.d0� k/^D.k/ must by necessity be of the
form m0^m1 for m0W D.d0�k/!D.d0�k/ and m1W D.k/!D.k/ facial. Hence
we have a copy of S2 embedded in D.d0� k/^D.k/ arising from the copies of S1

embedded in D.d0 � k/ and D.k/ and thus an induced map m00W S2! S2 which
via degree governs the facial homotopy type of m0—this is an immediate corollary of
Theorem 3.25. The maps xf 00 , g000W S2! S2 built from xf 0 and g00 are

xf 00W .s; t/ 7! .s; t/;

g000W .s; t/ 7! .t � e�s;�s/:

Demonstrating that g000 is degree 1 will complete the proof. Consider the unbased map
R�R!R�R given by .s; t/ 7! .t � e�s;�s/. This map has derivative matrix�

e�s 1

�1 0

�
which has determinant 1. It follows that g000 is degree 1 and hence xf ' g0 .

Thus the diagram

D.d0/

h
��

D.d0� k/^DC.k/
g0ıh0

//

f

44

D.d0/=Fd0�k�1.D.d0//

commutes up to homotopy. This result can be pulled up through the functional calculus
via Lemma 4.29, and further it is easy to check that equivariance is satisfied throughout.
This proves the following proposition.

Proposition 4.32 .rk/1 ıpk ' ck ı
z�k and hence we have a cofibre sequence

zXk

z�k

��

Gk.V0/
Hom.T;V1/˚s.T?/

z�koo

zXk�1


�ık

55

for the stated maps z�k , zık and z�k .
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It follows that

Xk

�k

��

Gk.V0/
Hom.T;V1�V0/˚s.T /

�koo

Xk�1




ık

55

is a cofibre sequence.

5 Gysin maps and residues

We take a brief detour from studying the tower in order to establish a result linking
certain Gysin maps with residue theory. This will then be used to produce an obstruction,
previously stated as Theorem 3, to a splitting of Theorem 4.1 in many cases.

Our framework is as follows, let G be a compact Lie group, let V be a complex
G –representation of dimension d and let j W PV �W be an equivariant embedding
of PV into a representation W . There is an associated Pontryagin–Thom collapse
map j !W SW ! PV W	�PV where �PV is the tangent bundle over PV . Hence there
is a stable collapse

†�W j !
W S0
! PV

��PV

0
:

Let
j! D .†

�W j !/�W zK�G.PV �� /!K�G.S
0/

be the associated Gysin map in equivariant K–theory, we claim that we can describe j!

as an algebraic geometry style residue map. The nonequivariant version of this result
was first proved by Quillen in [11] using formal methods while for G a finite abelian
group the result was proved by Strickland in [13, Theorem 21:35], again using formal
methods. We provide a purely geometric proof for G any compact Lie group. We note
here that the formal proof of [13, Theorem 21:35] does actually pass to the general G

case in K–theory but our presented method bypasses many technicalities. Much of the
detail and hard work of this proof lies in the work of Strickland [13, Section 21].

First note that all K1
G

–groups that may occur are zero, hence we restrict discussion
to K0

G
. We recall the workings of a residue map. Consider an expression f .x/ dx

where f .x/ D p.x/=q.x/ for p a polynomial and q a monic polynomial. Then
f .x/ can be expanded to a Laurent series with coefficients bi and the residue map is
res.f .x/ dx/D b�1 ; see [13, Definition 21:26] for more detail. We note that zK0

G
.S0/

is the complex representation ring R.G/ of G and define

fV .z/ WD

dX
kD0

zd�k.�1/k : �k.V / 2R.G/Œz�;
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a polynomial with coefficients constructed from the exterior powers �k.V / of V . We
also take the convention that fV .z/D

Pd
iD0 aiz

i with ad D 1 and a0 invertible. It is
standard that the equivariant K–theory of PV is

K0
G.PV /Š

R.G/Œz�

fV .z/
ŠR.G/fzi

W 06 i < dg;

and further that if u��PV
is the Thom class of ��PV then zK0

G
.PV ��PV /ŠK0

G
.PV /:

u��PV
by the Thom Isomorphism Theorem.

Proposition 5.1 We can identify the Thom class u��PV
with dz=fV .z/ and the map

j!W
R.G/Œz�

fV .z/
:u��PV

!R.G/

g.z/ :u��PV
7! j!.g.z/ :u��PV

/

with the residue map
g.z/

fV .z/
dz 7! res

�
g.z/

fV .z/
dz

�
:

Proof We actually prove an equivalent problem. Let � W PV ! pt be the projection.
We show that the related stable Gysin map

�!W
zK0

G.PV ��PV /ŠR.G/fzi
W 06 i < dg :u��PV

! zK0
G.S

0/ŠR.G/

zi :u��PV
7! ri

is a residue map by determining each ri . Consider the diagonal ıW PV ! PV �PV .
We note that .1��/ ı ı is the identity. There is an associated Gysin map

ı!W zK
0
G.PV �PV /Š zK0

G.PV / :u�PV
!K0

G.PV �PV /ŠR.G/fziwj
W 06 i; j < dg

which sends u�PV
to some element e say. The geometry of the stable collapse map

ı!W .PV �PV /1! PV �PV is known, it is a quotient as detailed in [13, Corollary
21:37]. Thus e is annihilated by z �w , ie ı!.ziu�PV

/ D zie D wie . We observe
(cf [13, Example 21:6]) that

e D
fV .z/�fV .w/

z�w
D

X
06iCj<d

aiCjC1ziwj :

Now tensor throughout the map ı! with zK0
G
.PV1^PV ��PV / over K0

G
.PV �PV /

to get a map
�W K0

G.PV /! zK0
G.PV1 ^PV ��PV /
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and observe from the geometric relationship of � and ı that .1˝�!/ı�W K
0
G
.PV /!

K0
G
.PV / is the identity. By the description of ı! it follows that �.1/D e:.1˝u��PV

/

and hence as .1˝�!/ ı�D 1 that

1D
X

06iCj<d

aiCjC1zirj :

This equality is satisfied by rd�1 D 1 and rj D 0 for j < d � 1 and thus

�!.z
iu��PV

/D

�
1 i D d � 1;

0 i < d � 1:

By [13, Lemma 21:28] we can make the stated identifications and recognize this map
as the residue map.

5.1 An obstruction to the splitting

We return to the framework of the tower constructed in Theorem 4.1. As mentioned
in the introduction Theorem 4.1 can be thought of as a generalization of the Miller
splitting [10]. Thus there is interest in determining whether the tower could possibly
split stably, to answer this question we prove Theorem 3.

Recall the triangles

Xk

�k

��

Gk.V0/
Hom.T;V1�V0/˚s.T /

�koo

Xk�1




ık

55

and observe that a splitting is only possible if all maps ık are null homotopic. We
provide an interesting geometric description of ı1W S0!†PV

Hom.T;V1�V0/˚s.T /
0

and
use this to produce a cohomological obstruction to a splitting in most cases.

Note that over PV0 the bundle s.T / is a copy of the trivial bundle R. We study the map
ı1W S

0!PV R˚Hom.T;V1�V0/˚s.T /
0

Š†2PV Hom.T;V1�V0/
0

. Let j W PV0� s.V0/ be
the equivariant embedding L 7! 0jL˚�1jL? . As covered in the previous section we
have a stable Pontryagin–Thom collapse map

†�s.V0/j !
W S0
! PV

��PV0

0
:

It is well known that the tangent bundle of PV0 is the bundle Hom.T;T?/. Recall
the equivariant identity Hom.T;T?/ŠHom.T;V0/	2 :s.T / mentioned in the proof
of Lemma 4.12. This allows us to rewrite the collapse as

†�s.V0/j !
W S0
! PV

2 : s.T /�Hom.T;V0/
0

Š†2PV
�Hom.T;V0/

0
:
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Let izeroW PV
�Hom.T;V0/

0
! PV

Hom.T;V1�V0/
0

be the stable zero section and define ıj

to be the composition

ıj
W S0 †

�W j !

! †2PV
�Hom.T;V0/

0

�†.†izero/
! †2PV

Hom.T;V1�V0/
0

:

Proposition 5.2 ı1 ' ı
j .

Proof We prove this unstably. Let z{zeroW PV
s.T?/

0
! PV

Hom.T;V1/˚s.T?/
0

be the
zero section. We have a composition

�ıj W S s.V0/
j !

! PV
s.V0/�Hom.T;T?/

0
Š†PV

s.T?/
0

�†z{zero
! †PV

Hom.T;V1/˚s.T?/
0

:

It is clear that †�s.V0/�ıj D ıj . Now let p0 be the collapse p0W S
s.V0/! S s.V0/=�

where ˛�˛0 if and only if ed0�1.˛/D ed0�2.˛/ and ed0�1.˛
0/D ed0�2.˛

0/. Further,
define

mWS s.V0/=�!†PV
s.T?/

0

˛ 7! .ed0�1.˛/;Ker.˛�ed0�1.˛//;�log.ed0�1.˛/�˛/jKer.˛�ed0�1.˛//?
/:

By following through with the definition of �ı1 from Definition 4.19 it is easy to see
that �ı1 D�†z{zero ım ıp0 . Hence the claim follows if j ! 'm ıp0 . This, however,
follows from our specific choice of embedding j ; it is a simple definition chase to
check that the two maps match up.

Using Proposition 5.1 the below result then follows.

Corollary 5.3 The map ı1 is zero in equivariant K–theory if and only if fV0
.z/

divides fV1
.z/.

Theorem 5.4 Let G be connected, then the tower of Theorem 4.1 does not split if V0

is not a subrepresentation of V1 .

Proof From above we know that ı�
1

is going to be zero if and only if the meromor-
phic function fV1

.z/=fV0
.z/ has no singularities and thus if and only if fV1

.z/ D

fV0
.z/ : g.z/ for some polynomial g . Let T be a maximal torus of G , then it is a

classical fact (see [3, Section 4:3 and 4:4]) that R.T / is a ring of Laurent polynomials
over Z and R.G/ is the subring of R.T / of invariants under the action of the Weyl
group. It follows as standard that R.T / and R.G/ and hence R.T /Œz� and R.G/Œz�

are unique factorization domains. This is enough to complete the proof, this is easiest
to see when G is abelian—in this case V0 and V1 decompose into sums of lines
V0 D

L
Li and V1 D

L
L0i . It is a classical fact that the polynomials fV0

.z/ and
fV1

.z/ factorize as
Q
.z� ŒLi �/ and

Q
.z� ŒL0i �/ and the claim then follows.
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Unfortunately this theorem does not as proven pass to the nonconnected case; for G

some certain finite groups one can choose representations V0 and V1 such that V0 is
not a subrepresentation of V1 but fV0

.z/ divides fV1
.z/. We now consider one case

where a splitting may be possible—when V0 6 V1 .

6 The subrepresentation case—conjecture

We return to the general case of G a general compact Lie group. As indicated in the
previous section the tower does not in general split if V0 is not a subrepresentation of V1 .
Consider instead the case where V0 6 V1 , ie V1D V0˚V2 for some representation V2

and we have an inclusion I W V0! V1 . Miller built a stable splitting of L.V0;V1/1
in [10] by first building a filtration

Fk.L.V0;V1// WD f� 2 L.V0;V1/ W rank.� � I/6 kg:

The inclusion Fk�1.L.V0;V1//� Fk.L.V0;V1// is a cofibration and hence we have
a cofibre sequence

Fk�1.L.V0;V1//1� Fk.L.V0;V1//1�
Fk.L.V0;V1//1

Fk�1.L.V0;V1//1
! � � � :

Miller completes the proof by building a homeomorphism and splitting map

�k W
Fk.L.V0;V1//1

Fk�1.L.V0;V1//1

Š
!Gk.V0/

Hom.T;V2/˚s.T /;

�k W Gk.V0/
Hom.T;V2/˚s.T /

! Fk.L.V0;V1//1:

It follows that there are stable splittings

Fk.L.V0;V1//1 ' Fk�1.L.V0;V1//1 _Gk.V0/
Hom.T;V2/˚s.T /:

We conjecture that we can recover a similar stable splitting from our tower; thus the
tower can be thought of as the “other direction” of the Miller splitting. We have a
composition Fk.L.V0;V1//1� L.V0;V1/1�Xk , call this map rk .

Conjecture 6.1 Fk.L.V0;V1//1 'Xk via rk .

In [14, Section 7:3] this conjecture is shown to be equivalent to proving that there is a
homotopy

�k ı rk ' �k W Gk.V0/
Hom.T;V1�V0/˚s.T /

DGk.V0/
Hom.T;V2/˚s.T /

!Xk ;

however, both conjectures have proved to be surprisingly hard to solve. A new, different,
formulation of some of the ideas in preparation by the author and Strickland may lead
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to a way forward, as might the techniques of Arone in [1] should a description of the
tower via orthogonal calculus be possible, but under the current formulation we can
only provide partial splitting results. Were the conjecture to hold then we can retrieve
a splitting as below.

Proposition 6.2 Assume Conjecture 6.1 holds, then we have an equivariant splitting

Xk 'Xk�1 _Gk.V0/
Hom.T;V2/˚s.T /:

Proof We have a commutative diagram

Fk.L.V0;V1//1
rk // Xk

�k

��
Fk�1.L.V0;V1//1

ik

OO

rk�1

// Xk�1

where ik is the standard inclusion. Let r�1
k�1

denote our homotopy inverse, then we have
a composition rk ı ik ı r�1

k�1
W Xk�1!Xk . Consider the self-map �k ı rk ı ik ı r�1

k�1
W

Xk�1 ! Xk�1 , as the above diagram commutes we have �k ı rk ı ik ı r�1
k�1
'

rk�1 ı r�1
k�1
' idXk�1

and hence rk ı ik ı r�1
k�1

is a splitting map.

6.1 The subrepresentation case—results

Although we can’t demonstrate the splitting in general we can prove that the top and
bottom portions of the tower split in the subrepresentation case, thus proving Theorem 2.

Proposition 6.3 We have an equivariant splitting

X1 ' S0
_PV

Hom.T;V2/˚s.T /
0

:

Proof Note that r0W S
0! S0 is the identity, hence it has an inverse. The techniques

of Proposition 6.2 then produce the result.

We would hope to extend this result to producing a complete Miller splitting via an
inductive argument. While using Proposition 6.2 we can build a splitting from the
assumption that rk�1 is an equivalence we cannot from this assumption show that rk

is an equivalence, a needed fact to complete the induction. Hence we seem to be unable
to generalize this result to producing a complete splitting.

Proposition 6.4 The map rd0�1W Fd0�1.L.V0;V1//1!Xd0�1 is a stable homotopy
equivalence and hence there is an equivariant splitting

L.V0;V1/1 'Xd0�1 _Gd0
.V0/

Hom.T;V2/˚s.T /:
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Proof For shorthand write Gd0
for Gd0

.V0/
Hom.T;V2/˚s.T / . We observe that the

description of our map �d0
W Gd0

!L.V0;V1/1 matches exactly the description of the
Miller splitting map �d0

(compare Lemma 3.5 to [4, Lemma 1:1] or [7, Lemma 1:3]).
It follows that we have a diagram

pt




%%
Gd0

99




ww

Gd0

idoo

�d0yy
Fd0�1.L.V0;V1//1

rd0�1

11// L.V0;V1/1

ee

// Xd0�1




cc

of cofibre sequences. By the octahedral axiom we retrieve that rd0�1 has contractible
cofibre. As we are working stably, rd0�1 gives an isomorphism of homotopy groups
and as our spectra are G –C W –spectra it follows that rd0�1 is an equivalence by the
Whitehead Theorem.

Again, the techniques in this proof fail to generalize to a proof that the tower splits. We
can, however, combine the results to produce an equivariant splitting in a special case.

Theorem 6.5 Let V1D V0˚V2 and let d0D 2. Then the tower of Theorem 4.1 splits
to produce an equivariant Miller splitting

L.V0;V1/1 '

2_
kD0

Gd0
.V0/

Hom.T;V2/˚s.T /:
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