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The twisted Alexander polynomial for finite abelian covers
over three manifolds with boundary

JEROME DUBOIS
YOSHIKAZU YAMAGUCHI

We provide the twisted Alexander polynomials of finite abelian covers over three-
dimensional manifolds whose boundary is a finite union of tori. This is a generaliza-
tion of a well-known formula for the usual Alexander polynomial of knots in finite
cyclic branched covers over the three-dimensional sphere.

57TM25; 5TM27

1 Introduction

The classical Alexander polynomial is defined for null-homologous knots in rational
homology spheres, where null-homologous means that the homology class of a knot is
trivial in the first homology group with Z—coefficients of the ambient space.

It the pair (M K) of a rational homology sphere M and a null- homologous knot K
in M is glven by a finite cyclic branched cover over S3 branched along a knot K,
where K is the lift of K, then we can compute the Alexander polynomial of K by
using the well-known formula

Ap(t) = 1_[ Ag(&t) up to afactor +t% (a € Z)
ge{xeC|xk=1}

where k is the order of the covering transformation group, & runs all over the kth
roots of unity and Ak (?) is the Alexander polynomial of K. Such formulas have been
investigated from the viewpoint of Reidemeister torsion for a long time. In particular,
V Turaev gave a formula for the Alexander polynomial of K in a finite cyclic branched
cover over S?3, and a generalization in the case of links in general three—dimensional
manifolds (we refer to Turaev [8, Theorems 1.9.2 and 1.9.3)]).

The purpose of this paper is to provide the generalization of the above formula giving the
Alexander polynomial of a knot in a finite cyclic branched cover over S* to a formula
for the twisted Alexander polynomial of finite abelian covers, which is a special kind of
Reidemeister torsion. Especially, we also consider the twisted Alexander polynomial
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for a link in a three—dimensional manifold from the viewpoint of Reidemeister torsion
in the same way as V Turaev. But to deal with finite abelian covers beyond finite cyclic
covers, we adopt the approach of J Porti in his work [5]. Porti gave a new proof of
Mayberry—Murasugi’s formula, which gives the order of the first homology group of
finite abelian branched covers over S3 branched along links, by using Reidemeister
torsion theory. We call the twisted Alexander polynomial the polynomial torsion
regarded as a kind of Reidemeister torsion.

In this paper, we are interested in the Reidemeister torsion for a finite sheeted abelian
covering. We are mainly intested in link exteriors in homology three—spheres and their
abelian covers. Our main theorem (see Theorem 4.1) is stated for an abelian cover
M — M between two three—dimensional manifolds whose boundary is a finite union
of tori as follows

Af;?ﬁ(t) —c. 1_[ A%@D)@é‘(t)
Ee@

where qum (t) and A®7®4(t) are the signed twisted Alexander polynomials, G is
the set of homomorphisms from the covering transformation group G to the non—zero
complex numbers and ¢ is a sign determined by the homology orientations of M and
M.

To be more precise, we need two homomorphisms of the fundamental group to define
the twisted Alexander polynomial of a manifold. The symbol ¢ denotes a surjective ho-
momorphism from 7y (M) to a multiplicative group Z" and p denotes a representation
of w1 (M), ie, a homomorphism from 71 (M) to a linear automorphism group Aut(V')
of some vector space V (see Section 3 for the definition of the polynomial torsion).
In the definition of the twisted Alexander polynomial of M, we use the pull-backs
¢ and p of ¢ and p to nl(]\? ). The homomorphisms ¢ and & determine variables
in the twisted Alexander polynomial of M . In our main theorem, we assume that the
composition of & with the quotient homomorphism 71(M) — 7w (M) /7, (]\2 )~ G
factors through homomorphism ¢ (see Section 4).

When we choose M — M as a finite cyclic cover of a knot exterior Ex of K in S3, ¢
as the abelianization homomorphism 71 (Eg) = 71 (Eg)/[71(Eg), 71 (Eg)]~7Z and
p as the one—dimensional trivial representation, Theorem 4.1 reduces to the classical
formula for the Alexander polynomial of K, where K is the lift of the knot in the
finite cyclic branched cover over S3

Ag =[] Ak,

te{xeC |xk=1}
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up to a factor ¢ (a € Z), where k is the order of w1 (M)/m; (Z\’/Z) Our formula
also provides the Alexander polynomial of a link in finite abelian branched covers over
S3 branched along the link.

Organization The outline of the paper is as follows. Section 2 deals with some
reviews on the sign—determined Reidemeister torsion for a manifold. In Section 3, we
give the definition of the polynomial torsion (the twisted Alexander polynomial) for
a manifold whose boundary is a finite union of tori. In Section 4, we consider the
polynomial torsion of finite abelian covering spaces (see Theorem 4.1).
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2 Preliminaries

2.1 The Reidemeister torsion

We review the basic notions and results about the sign—determined Reidemeister torsion
introduced by V Turaev which are needed in this paper. Details can be found in Milnor’s
survey [3] and in Turaev’s monograph [10].
. . dy dy_y d

Torsion of a chain complex Let C, =(0—-C, — Cyp—y ——---—> Cy — 0) be
a chain complex of finite dimensional vector spaces over a field F. Choose a basis
¢/ of C; and a basis h’ of the i th homology group H;(Cs). The torsion of Cy with
respect to these choices of bases is defined as follows.

For each i, let b’ be a set of vectors in C; such that d;(b?) is a basis of B;_; =
im(d;: C; = C;_;) and let b’ denote a lift of h’ in Z; = ker(d;: C; — C;_;). The
set of vectors d; 1 (b T1)h'b’ is a basis of C;. Let [d;;(b'T1)h'b’ /c/] € F* denote
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794 Jérome Dubois and Yoshikazu Yamaguchi

the determinant of the transition matrix between those bases (the entries of this matrix
are coordinates of vectors in d; 4 (bi+1)ﬁi b’ with respect to ¢/). The sign-determined
Reidemeister torsion of Cyx (with respect to the bases ¢* and h*) is the following
alternating product (see Turaev’s book [9, Definition 3.1]):

n .
Q-1 Tor(Cy, ¢* . h*) = (1) T (di41 T HRD /e 1D e B,
i=0

Here

Gl = o (C)Br(Ca),

k=0
where «; (Cx) = Z;c:O dim Cy and B;(Cx) = ZZ:O dim Hj (Cy).

The torsion Tor(Cx, ¢*, h*) does not depend on the choices of b’ nor on the lifts h'.
Note that if Cy is acyclic (ie if H; =0 for all i), then |Cx| = 0.

Torsion of a CW-complex Let W be a finite CW-complex and (V, p) be a pair of
a vector space with an inner product over F and a homomorphism of 7y (W) into
Aut(V'). The vector space V turns into a right Z[m(W)]-module denoted V), by
using the right action of (W) on V given by v-y = p(y)~!(v), for v € V and
y € w1 (W). The complex of the universal cover with integer coefficients C*(W; Z)
also inherits a left Z[m (W )]-module structure via the action of 1 (W) on W as the
covering group. We define the V,—twisted chain complex of W to be

C*(W; Vp) = Vp ®Z[n1(W)] C*(W; Z).

The complex C«(W;V,) computes the V,—twisted homology of W which is denoted
by He(W:; V).

Let {e},.... el } be the set of i —dimensional cells of W . We lift them to the universal
cover and we choose an arbitrary order and an arbitrary orientation for the cells
{e!..... 2. }. If we choose an orthonormal basis {V1. ..., vy} of V, then we consider
the corresponding basis

i ~i ~i ~i ~i
¢ ={vi®e.....vm®e], ,V1®eni,...,vm®eni}

of Ci(W:Vp) =V, ®z[x, (%)) C*(W; 7). We call the basis ¢* = ®;¢’ a geometric
basis of C«(W;V),). Now choosing for each i a basis h of the V,—twisted homology
H;(W;V,), we can compute the torsion

Tor(Cx(W; Vp),c¢* ,h*) e F*.
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We mainly consider the torsion of acyclic chain complexes Cx(W; V)), ie, the homol-
ogy group Hyx(W;V,) = 0. For acyclic chain complex Cx(W;V)), this definition
only depends on the combinatorial class of W, the conjugacy class of p, the choices
of ¢*. The basis ¢* for C«x(W; V,) depends on the following choices:

(1) an order of cells {e;} and an orientation of each {e]’:};
(2) alift EJ’: of e} and;

(3) an orthonormal basis of the vector space V.

We summarize the effect of changing these choices to Tor(C«(W; V), ¢*, @) in the
following three remarks.

Remark 2.1 We have the same Tor(Cyx(W; V)), ¢*, @) for all orthonormal bases of
V' since the effect of change of orthonormal bases in V' is given by multiplying the
determinant of the bases change matrix with power of x(W). If the Euler characteristic
x(W) is zero, then we have the same torsion for any basis of V.

Remark 2.2 The torsion Tor(C«(W;V,),c*, &) depends on the choice of the lifts
5} under the action of 1 (W) by p. The effect of different lift of a cell is expressed
as the determinant of p(y) for some y in w{(W). To avoid this problem, we often
use representations into SL(V).

Remark 2.3 To define the Reidemeister torsion, we order the cells {e]’:} and choose
an orientation of each e} , if we choose a different order and different orientations of
cells, we could change the torsion sign. To remove this sign ambiguity, that only occurs
when m is odd, we use the fact that the sign of the torsions Tor(Cx(W;R), cg, hy)

and Tor(C«(W;R), ¢*, h*) change in the same way.

Therefore we usually consider the torsion Tor(Cx(W; V), c*, @) up to the above
indeterminacy, namely up to a factor & det p(y) for some y in m;(W).

We can construct the additional sign term referred to in Remark 2.3 as follows. The cells
{Ej’: } 0<is<dmW, 1< < n,-} are in one—to—one correspondence with the cells of
W', their order and orientation are induced an order and an orientation for the cells
{e} } 0 < i<dmW,1<j < n,-}. Again, corresponding to these choices, we get a
basis ¢, over R of C;(W;R).

Choose a homology orientation of W, which is an orientation of the real vector space
Hy(W;R) = ;50 Hi(W;R). Let o denote this chosen orientation. Provide each

vector space H;(W;R) with a reference basis hi, such that the basis {hQ, ..., hdm"}
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of H«(W;R) is positively oriented with respect to 0. Compute the sign—determined
Reidemeister torsion Tor(Cyx (W ; R), ¢, hi) € R* of the resulting based and homology
based chain complex and consider its sign

70 = sgn(Tor(C«(W: R), e, hy)) € {£1}.
We define the sign—refined twisted Reidemeister torsion of W (with respect to o) to be
(2-2) 7" - Tor(Cx(W: Vy). ¢*, @) e F*

where m = dimp V. This sign refinement also works for the twisted chain complex
C« (W V,) with non—trivial homology group. When the dimension of V' is even, we
do not need the sign refinement, ie, the torsion Tor(C«(W; V)), ¢*, @) is determined
up to det p(y) for some y in w1 (W).

One can prove that the sign-refined Reidemeister torsion is invariant under cellular
subdivision, homeomorphism and simple homotopy equivalences. In fact, it is precisely
the sign (=!Gl in Equation (2-1) which ensures all these important invariance
properties to hold (see Turaev’s monograph [10]).

3 Definition of the polynomial torsion

In this section we define the polynomial torsion. This gives a point of view from the
Reidemeister torsion to polynomial invariants of topological spaces.

Hereafter M denotes a compact and connected three—dimensional manifold such that
its boundary dM is empty or a disjoint union of b two—dimensional tori:

IM=T}U...UTZ.
In the sequel, we denote by V a vector space over C and by p a representation of
1 (M) into Aut(V'), and such that det p(y) =1 for all y € 71(M).

Next we introduce a twisted chain complex with some variables. It will be done by
using a Z[mr;(M)]-module with variables to define a new twisted chain complex. We
regard Z" as the multiplicative group generated by n variables ¢q,..., 1, ie,

Z" =(t1.....tn | titj = tjt; (Vi, j))

and consider a surjective homomorphism ¢: w1 (M) — Z". We often abbreviate the n
variables (¢1,...,1;) to t and the rational function field C(zy, ..., ;) to C(t).
When we consider the right action of w1(M) on V(t) = C(t) ® V by the tensor
representation

e®p " m (M) > Aut(V(b), vy oe()®p ' (y),
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we have the associated twisted chain Cx (M ; V,,(t)) given by
Cu(M: Vp(1)) = V(1) @z, (ary) Ca (M1 Z)

where f ® v ® y -0 is identified with f¢(y) ® p(y)~" ! (v) ® o for any y € (M),
0€Cys(M;Z),veV and f € C(t). We call this complex the V,(t)—twisted chain
complex of M .

Definition 3.1 Fix a homology orientation on M . If Cx(M ; V),(t)) is acyclic, then
the sign—refined Reidemeister torsion of Cx (M ; V,(t))

A%EP (11, ... tn) = 7" - Tor(Cy (M5 Vp(t)),¢*, @) € C(ty, ..., 1x) \ {0}

is called the polynomial torsion of M .

Observe that the sign-refined Reidemeister torsion A%2?(¢;,...,t,) is determined up
to a factor l;nl ...ty like the classical Alexander polynomial is.

Example 3.2 (J Milnor [4], P Kirk & C Livingston [2]) Suppose that M is the
knot exterior Ex = S3\ N(K) of aknot K in S* where N(K) is an open tubular
neighbourhood of K.

If the representation p € Hom(w;(Eg); Q) is the trivial homomorphism and ¢ is the
abelianization of m1(Eg), ie, ¢: m1(Eg) = Hi(Eg;Z) >~ (t), then the twisted chain
complex Cx(Eg;Q(t),) is acyclic and the Reidemeister torsion A‘g?;” () is expressed
as a rational function which is the Alexander polynomial Ag (z) divided by (¢ — 1)
(see Turaev’s book [9] and monograph [10]).

Example 3.3 Suppose now that M is the link exterior E; = S3\ N(L) of a link
L in S3. We suppose that L has n components, where n > 2. We denote by
Wi the meridian of the ith component. Consider the abelianization ¢: 7;(Ep) —
Z" defined by ¢(ui) = t;. Let p: m(Er) — GL(1;C) = C \ {0} be the one—
dimensional representation such that p(u;) = &;. Then the twisted chain complex
C«(EL;C(t),) is acyclic and the Reidemeister torsion A‘fg%p (t1,...,ty) is given by
(up to £ 1)k (& )R ki € Z)

A1y, tn) = AL 1 6y )

where Ay (f1,...,1,) is the Alexander polynomial of L.
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4 Torsion for finite sheeted abelian coverings

4.1 Statement of the result

Let M be a finite sheeted abelian covering of M, where M denotes a compact and
connected three—dimensional manifold such that its boundary dM is empty or a disjoint
union of b two—dimensional tori:

IM=T}U...UTZ.

We denote by p the induced homomorphism from 74 (]\2 ) to 1 (M) by the covering
map M — M. The associated deck transformation group is a finite abelian group
G of order |G|. We endow the manifolds M and M with some arbitrary homology
orientations.

We have the following exact sequence:
. p
(4-1) l——n, (M)——m11(M)—"~G——>1.

When we consider the polynomial torsion for M, we use the pull-back of homo-
morphisms of 71 (M) as homomorphisms of (1\7 ). We denote by ¢ a surjective
homomorphism from (M) to Z" and by ¢ the pull-back by p. We also suppose
that s factors through ¢. Our situation is summarized as follows:

~ P
a1 (M) —>m (M) G
e _ 7
T
Zn

Similarly we use the symbol p for the pull-back of p: 71 (M) — Aut(V) by p, where
V is a vector space. For homomorphisms of the quotient group G >~ (M )/, (]\/4\ ),
we use the Pontrjagin dual of G which is the set of all representations &: G — C* =
C\ {0} from G to non—zero complex numbers. Let G denote this space.

We give the statement of the polynomial torsion for abelian coverings via that of the

based manifold.

Theorem 4.1 With the above notation, we suppose that the twisted chain complex
Cx(M; V(1)) is acyclic. Then the twisted chain complex C«(M ; V(1)) is also acyclic
and the polynomial torsion is expressed as
4-2) A% () =e- [ AP %5 (1)

Ee@
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where € is a sign equal to ro(]\’/Z)m oM™ and m = dim V.

Remark 4.2 As we already observed, the sign term in Equation (4-2) is not relevant
when m is even.

Remark 4.3 (Explanation of Formula (4-2) with variables) If we denote by E the
composition £ o 7 as in the following commutative diagram

M) G — ¢

of ~

Zn
then Formula (4-2) can be written concretely as follows:

A%y, t) =€ [ AL (E®), . 1E (1)
ée@

In the special case where n =1, G =Z/qZ and M is the g—fold cyclic covering M,
of M, then we have that £(¢) = ezﬂkﬁ/‘?, for k =0,...,¢g— 1. Hence we have the
following covering formula for the polynomial torsion.

Corollary 4.4 Suppose that ¢(m1(M)) = (t) and ¢(71(My)) = (s) C (t), where we
suppose that s = t9. We have

q—1
AT (s) = AR (19) = e [ | AE? 27KV 1ay),
k=0

The torsion A‘fg" (z?) in Corollary 4.4 can be regarded as a kind of the total twisted
Alexander polynomial introduced in Silver and Williams [7]. Hirasawa and Murasugi [1]
worked on the total twisted Alexander polynomial for abelian representations as in
Example 3.2 and they observed the similar formula as in Corollary 4.4 in terms of
the total Alexander polynomial and the Alexander polynomial of a knot in the cyclic
branched coverings over S3.

4.2 Proof of Theorem 4.1

We use the same notation as in Remark 4.3.
First observe the following key facts:

e the universal cover M of M is also the one of M ,
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: o®0 : :
e the torsion A" is computed using the twisted complex
e whereas the torsion A%2” is computed using
Lemma4.5 LetxeVy(ty,....10), c€Cu(M;Z). Fory em (M), xy™'®_ i 7¢

only depends on n(y) € G. For g € G, choose y € (M) such that n(y) = g and
set

_ -1 -
4-3) gx (¥ @, i) =Xv" ® iy vC

This defines a natural action of G on Vy(t1, ..., 1) ® ., (31 Cx (1\7; 7).

Further observe that, since for any lift ¥ of g, ¥ is not contained in p(7; (]\2 )), we
can not reduce the right hand side in Equation (4-3).

Proof Take another lift Y’ in 71(M) of g € G. Since Yy’ = yy for some y €
p(mi(M)), we can see that xy'~! ® 1, (41 ye=xy! O AR AL i

The proof of Theorem 4.1 is based on the following technical lemma.

Lemma 4.6 The map
(4-4) D: Vp(t) ® 21, (41)] C*(ﬁ; 7) — (Vp(t) ®c C[G]) ®z[x, (M) C*(Z\?; Z)

given by
D(x ® v (A1) )=x®1)®c

is an isomorphism of complexes of C[G]-modules where the action of G on the twisted
complex (V,(t) ®c C[G]) ®z[x, (m)] Cx(M : Z) is given by

g (x®g®c)=x®gg V.
and the right action of y € w1 (M') on V,(t) ®c C[G] is defined by

(fROV®Ly=fe()®p ' (VW) ®n(y)g.
where f € C(t),veV and geG.
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Proof of Lemma 4.6 We first observe that ® is a well-defined chain map of C —vector
spaces since 71 (M) is a normal subgroup of 71 (M). By the definition, we can see that
d(x ® ., (31 yc) = O(xy ® . (31 ¢) forany y in w{(M). Hence ® is well-defined.
From ®(d(x ® (1) c)) = d(x ® ., (31 ) =(xR1N)®Idc=d((x®1)®c) =
d(®(x ® ¢)) it follows that ® o d = d o . The G—equivariance of & follows from

(g (x ® . (4 ¢) = d(xy~! ® . (41 yc)
=(xy'®D)®yc
=(x®g)®c
=g -O(x ® (1) ).

We can prove that @ is an isomorphism by taking its inverse ¥ as Y((x ® g) ® ¢) =
gx(x®c). a

We mention bases of the chain complex V,(t) B2, (W] Cy (1\7 ; 7)) before the next
step. The following basis

(4-5) E*:U{xk®m(ﬁ)yg'é§-\1$j$n,~,geG,lsk$m}

i=0

is the geometric basis used to compute the polynomial torsion A‘?f’ﬁ . When we consider
the bases change from the basis in Equation (4-5) to the basis in the next equation

(4-6) {g* (xk ®m<z\2)5§) =Xy ® (i) ygzj‘. |1<j<nigeG 1<k<m},

we can see that the action of y,- ! arises the change in A‘?f’ﬁ by multiplying its
determinant powered the Euler characteristic of M . Since the Euler characteristic
of M is zero, the polynomial torsion A‘?f’ﬁ can also be computed using the basis
in Equation (4-6). Finally observe that ® maps the basis in Equation (4-6) to the
geometric basis

4-7) c*G=U{(xk®g)®’é’§‘lsjsni,geG,l$k$m},
i=0

thus

A%®? = 1o (M)™ - Tor((Vy(t) ®c CIG)) ®zpn, (m)) C(M 3 Z), ., 2).

M

Now, we want to compute the torsion of (V,(t) ®c C[G]) ®z[x, (M) Cx (1\7 ;Z) in
terms of polynomial torsions of M . To this end we use the decomposition along
orthogonal idempotents of the group ring C[G], see Serre [6] for details. Associated to
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e G, we define:

fi=— 3 E(g g € ClG)

61 5=
The properties of fg are the following

JE=Je fefe=0(ifE#£E), Y fi=1
teG
and
g - Je=6&(g) fe, forall g € G.
We have the following C[G]-modules decomposition of the group ring as a direct sum
according to its representations:

(4-8) ClGl= Pl

£eG
Here each factor is the 1-dimensional C—vector space which is isomorphic to the
C[G]-module associated to &: G — C*.

Following Porti [5, Section 3], corresponding to the decomposition in Equation (4-8)
we have a decomposition of complexes of C[G]-modules:

(Vo() ®¢ CIG) @7z, () Cx (M : Z) = D (Vo () ®¢ CLfe)) @z, () Co (M : Z).
ée@

Remark 4.7 This decomposition implies that (V) (t) ®c C[G]) ®z[x, ()] Cx (1\7 7))
is acyclic, since one can see that each chain complex (V,(t) ®c C[f¢]) ®z[x, (M)
Cx (Z\z ; Z) is acyclic from our assumptions and a change of variables.

The geometric basis in Equation (4-7) induces a basis compatible with the decomposition
in Equation (4-8) by replacing {g |g € G} by { f¢ | € @} The change of bases cancels
when we compute the torsion because Euler characteristic is zero, see [5, Lemma 5.2].
And thus decomposition in Equation (4-8) implies that (in the natural geometric bases):

A% = 0(M)™ - Tor((V,(t) @c C[G]) ®zpn, (ar)] Cx (M Z), ¢, 2)
4-9) = 1o(M)™ - [ | Tor((V(t) ®c CL i) @z, (a3 Cx (M : Z), ¢*, 2).
ée@

Each factor in the right hand side is related to the polynomial torsion of M and its
relation is given by the following claim.
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Lemma 4.8 We have:
AEBIBE — 75 (M)™ . Tor((V,(t) ®c CLfz]) ®zx, () Cx(M; Z), ¢*, D).

Proof of Lemma 4.8 One can observe that, as a Z[r{ (M )]-module, V,(t) ®c C[ f¢]
is isomorphic to V,(t) simply by replacing the action ¢ ® p by (¢ ® p) ® £. This
proves the equality of torsions. a

Proof of Theorem 4.1 Combining Equation (4-9) and Lemma 4.8, we obtain
A}ﬁq@ﬁ = fo(]\/j)m .TO(M)MIGI . 1_[ INGRLE
Sea

which achieves the proof of Formula (4-2). a
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