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Geometric interpretation of simplicial formulas for the
Chern–Simons invariant

JULIEN MARCHÉ

We give a direct interpretation of Neumann’s combinatorial formula for the Chern–
Simons invariant of a 3–manifold with a representation in PSL.2;C/ whose restric-
tion to the boundary takes values in upper triangular matrices. Our construction does
not involve group homology or Bloch group but is based on the construction of an
explicit flat connection for each tetrahedron of a simplicial decomposition of the
manifold.

57M27, 58J28

1 Introduction

Chern–Simons theory was first introduced by S S Chern and J Simons in [2] as secondary
characteristic classes: given a Lie group G and a flat G –bundle P over a manifold M ,
all Chern–Weil characteristic classes of P have to vanish as P have a flat connection
whereas the bundle might be non trivial. The Chern–Simons functional is a non trivial
invariant of G –bundles with connections.

This theory had at least two unexpected developments: in his seminal article [13],
E Witten located Chern–Simons theory in the context of quantum field theory. He
developed a topological theory giving rise to a physico-geometric interpretation of the
Jones polynomial. On the other hand, in Riemannian geometry, the Chern–Simons
functional provides a geometric invariant of compact manifolds with values in R=2�2

which in the case of 3–dimensional hyperbolic geometry makes with the volume
the real and imaginary part of a same complex-valued invariant, see the articles by
J Dupont [4], P Kirk and E Klassen [9] and T Yoshida [14]. The work of J Dupont [4]
and W Neumann [11; 10; 12], with contributions of C Zickert [5], gave a combinatorial
formula for the Chern–Simons invariant of a cusped hyperbolic 3–manifold (and more
generally pairs .M; �/ where M is a closed 3–manifold and �W �1.M /! PSL.2;C/
satisfies some assumptions), these formula were extended in a quantum setting by
S Baseilhac and R Benedetti [1]. All these approaches are based on group homology
considerations and seminal computations of Dupont, which can be found in [4].
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The purpose of this article is to prove exactly the same formulas as W Neumann
obtained but in a more direct and geometric way. The main idea is to fill all tetrahedra
of a triangulated 3–manifold with a connection as explicit as possible and compute
the contribution of each tetrahedron to the Chern–Simons functional. I think that
this method simplifies the standard approach as the use of group homology or Bloch
group is no longer necessary and we do not need to prove any kind of 5–term re-
lation as it is satisfied for simple geometric reasons. On the other hand, the usual
complications as branchings and flattenings are still necessary but they are given a
geometric interpretation and their introduction looks more natural than in the standard
construction.

The article is organized as follows: in Section 2 we explain generalities on the Chern–
Simons invariant, adapting it to our context. In Section 3, we present the combinatorial
structure which we will place at each tetrahedron of a triangulation of M . The heart
of the article is Section 4 were we define the connection on a tetrahedron and almost
compute its invariant. Then Section 5 contains standard material for extending the
local computation to the global setting. In Section 6, we finish the computation of
Section 4 by analyzing the 5–term relation and give the example of the figure-eight
knot complement.

This work was completed two years ago when trying to generalize the known formulas
for hyperbolic geometry to complex hyperbolic geometry: this work remains to be
done. I would like to thank E Falbel for being at the origin of this work, providing me
with motivations and discussions, S Baseilhac for encouraging me to write this article
and W Neumann for his kind interest.

2 Generalities on the Chern–Simons functional

2.1 Generalities

For a general discussion on classical Chern–Simons theory, we refer to the article by
D S Freed [6]. Nevertheless, we recall here everything that will be needed for our
purposes. Let G be a complex Lie group and g be its Lie algebra. Let M be an
oriented 3–manifold with boundary † and P be a principal G –bundle over M with
right G –action and flat connection ˛ . Assuming this bundle is trivial, one can identify
it with M �G and the flat connection ˛ may be viewed as an element of �1.M; g/

satisfying the flatness equation

d˛C 1
2
Œ˛^˛�D 0:
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Denote by �1
flat.M; g/ the space of all flat connections. Considering different trivi-

alizations corresponds to the following action of the gauge group: an element g in
Map.M;G/ acts on ˛ by the formula ˛g D g�1˛gCg�1dg .

Recall that given a path  W Œ0; 1�!M , we define the holonomy of ˛ along  as the
solution at t D 1 of the order one equation . d

dt
Holt ˛/.Holt ˛/

�1 D �˛.d
dt
/ such

that Hol0 ˛ D 1. We denote it by Hol ˛ and it satisfies the two following properties:
� Hol ˛g D g. .1//�1.Hol ˛/g. .0//.
� Holı ˛ D Holı ˛Hol ˛ where  and ı are two composable paths, that is
ı.0/D  .1/.

It is well-known that the set of isomorphic classes of principal G–bundles with flat
connections is in bijective correspondence via the holonomy map to conjugacy classes
of morphisms from �1.M / to G .

In this article, G D PSL.2;C/. Its universal cover is SL.2;C/. Because the funda-
mental group �1.PSL.2;C// D Z2 , not all principal G–bundles on M are trivial.
The obstruction to trivializing such a principal bundle is a class in H 2.M;Z2/. One
can recover this class as the obstruction of extending the monodromy representation
�W �1.M / ! PSL.2;C/ to SL.2;C/ (see the articles by W M Goldman [7] and
M Culler [3] for instance). Here we will consider trivializable PSL.2;C/–bundles P ,
hence we will suppose that the monodromy lifts to SL.2;C/ but an important point is
that neither the trivialization of P nor the lift of the monodromy morphism are part of
the data.

2.2 The definition of the Chern–Simons functional

Let h�; �i be an invariant symmetric bilinear form on g. For a flat connection ˛ , we set

CS.˛/D
1

12

Z
M

h˛^ Œ˛^˛�i:

A direct computation shows that for g in Map.M;G/ one has:

CS.˛g/D CS.˛/C c.˛;g/ where(1)

c.˛;g/D
1

2

Z
†

hg�1˛g^g�1dgi �

Z
M

hg�1dg^ Œg�1dg^g�1dg�i:(2)

The second term of this equation may be interpreted in the following way: let � be
the left-invariant Maurer–Cartan form on G and � be the Cartan 3–form on G , that is
�D 1

12
h� ^ Œ� ^ ��i. Then we set

W .g/D

Z
M

hg�1dg^ Œg�1dg^g�1dg�i D

Z
M

g��:
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This is called the Wess–Zumino–Witten functional of g . Modulo 1, it only depends on
the restriction of g to † provided that � is the image of some element of H 3.G;Z/
inside H 3.G;C/.

One can check that c.˛;g/ is a 1–cocycle which allows to construct a C–bundle L†
over Hom.†;G/=G by taking the quotient of �1

flat.†; g/�C by the following gauge
group action: .˛; z/g D .˛g; e2i�c.˛;g/z/. The Chern–Simons invariant of ˛ may
be interpreted as an element of L† lying above the gauge equivalence class of the
restriction of ˛ to the boundary.

2.3 Boundary conditions

Suppose that G D PSL.2;C/ and let PB be the quotient of the Borel subgroup B of
upper triangular matrices by the center f˙1g. We will denote by b the Lie algebra of
B . Let us consider triples .P; s; l/ where:

� P is a trivializable flat G –bundle over M .

� s is a flat section of degree 0 of E where E D P j@M�PSL.2;C/CP1 is the
fibration over @M associated to P for the action of PSL.2;C/ on CP1 . Note
that this bundle is topologically trivial, hence it makes sense to talk about the
degree of its sections.

� l is an element of H 1.@M;C/ which lifts the holonomy of P over s in the
following sense. Given a loop  W S1 ! @M , we define �. / 2 C� as the
holonomy along  of the tautological line bundle lying over s . Then, it satisfies
exp.l. //D �. /.

A reformulation of the last assertion is that on the boundary, the C�–bundle defined
by s lifts to a C–bundle via the log map. Here, the lift is part of the data. There is an
obvious equivalence relation between two such triples and we define R.M / as the set
of equivalent classes. When a component of @M is a sphere, the element l vanishes.
The choice of s is unique up to equivalence and there is a bijection between R.M /

and R.M 0/ where M 0 is obtained by filling the sphere with a ball.

We give now a gauge-theoretical description of R.M /.

Proposition 2.1 The set R.M / of equivalence classes of triples .P; s; l/ is isomor-
phic to the quotient �1

@
.M; g/=Map@.M;G/ where

� �1
@
.M; g/ is the set of connections ˛2�1.M; g/ satisfying the flatness equation

and such that their restrictions to the boundary lie in b.
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� The group Map@.M;G/ consists of maps from M to G whose restriction to the
boundary takes values in PB and is homotopic to Id.

Proof One can construct maps between these two spaces inverse to each other. We start
by a map ˆW �1

@
.M; g/=Map@.M;G/!R.M /. Given a connection ˛ 2�1

@
.M; g/,

we will construct a triple .P; s; l/Dˆ.˛/. We set P to be the trivial bundle M �G

with flat connection given by ˛ . Given a connected component † of the boundary, we
can compute the holonomy of ˛j† : as this form takes its values in b, its holonomy
belongs to PB . Hence, the class of C ˚ f0g � C2 in CP1 is preserved by the
holonomy on the boundary and hence gives a flat section s of @M �CP1 .

Consider the map �W b ! C which associates to an element of b its upper left
entry. Then for any path  W S1 ! @M one has �. / D exp

�
�
R
 �.˛/

�
. Hence

we set l. /D�
R
 �.˛/. Replacing ˛ with ˛g for g 2Map@.M;G/, one obtains an

equivalent flat G –bundle with the same trivialization on the boundary. By assumption
on the restriction of g to the boundary, �.˛g/��.˛/ is an exact form and hence, the
map l is unchanged. This shows that the map ˆ is well-defined.

Reciprocally, given a triple .P; s; l/, we construct a 1–form ˛D‰.P; s; l/2�1
@
.M; g/.

One can identify the trivializable flat G –bundle P with M �G by choosing a trivializa-
tion. The section s gives a section of the trivial CP1 –bundle over the boundary. As it
has degree 0, one can suppose up to the action of the full gauge group that s is constant
equal to the class of C˚f0g. The flat connection on P gives a form ˛ in �1

@
.M; g/.

The functions l and �
R
�.˛/ on loops on the boundary may differ, but there is a unique

element g in Map.@M;PB/ up to homotopy such that l D �
R
�.˛g/. It is always

possible to extend g to an element of Map.M;G/: we finally set ‰.P; s;L/D ˛g .

Using the gauge-theoretical description above, we can represent a triple .P; s; l/ by an
element ˛ 2�1

@
.M; g/. We have the following proposition:

Proposition 2.2 The map CSW R.M /! C=Z sending .P; s; l/ to CS.˛/ is well-
defined.

Proof We have to check that the formula which defines CS.˛/ for ˛ 2�1
@
.M; g/ is

invariant under the action of Map@.M;G/ modulo 1. It is a consequence of the fact
that for ˛ 2�1

@
.M; g/ and g 2Map@.M;G/ the quantity c.˛;g/ is an integer.

Recall that by Formula (2),

c.˛;g/D
1

2

Z
@M

hg�1˛g^g�1dgi �W .g/:
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The group PB is homotopically equivalent to S1 . For any surface † and map
f W †!S1 , there is a 3–manifold N with boundary † and a map zf W N !S1 which
extends f . We apply this to the map gW @M ! PB . One can find a 3–manifold N

such that @N D @M and a map zgW N !PB extending g . We can compute the WZW
invariant of g with N and we deduce that W .g/D

R
N zg
�� .mod Z/ but � restricted

to b is zero as b is 2–dimensional and � is a 3–form. Hence we obtain W .g/ 2 Z.

The first term of c.˛;g/ is proportional to
R
† �.˛/^�.g

�1dg/ because the bilinear
form is proportional to the trace of the wedge product. The form �.˛/ is closed
and �.g�1dg/ is exact by hypothesis. Hence, their product is exact and the integral
vanishes by Stokes formula. This proves that c.˛;g/ belongs to Z and CS induces a
well-defined map from R.M / to C=Z.

One may give a third interpretation of R.M / which corresponds to the holonomy
description of the moduli space of flat connections. To give this correspondence, let us
choose a base point xi on each connected component †i of the boundary of M . We
will denote by …1.M / the fundamental groupoid of M with these base points. Let us
consider the set of groupoid maps �W …1.M /!G whose restrictions to the boundary
components of M take values in PB .

We call a logarithm of � a collection of homomorphisms li W �1.†i ;xi/! C such
that for all i and  2 �1.†i ;xi/ one has �. / D ˙

� z �

0 z�1

�
where z D exp.li. //.

Finally, two representations �; �0W …1.M /!G are said to be equivalent if there is a
collection of matrices gi 2 PB such that for any path  between xi and xj , one has
�0. /D g�1

j �. /gi . One can check easily that R.M / is in bijection with the set of
equivalence classes of pairs .�; l/ such that � lifts to SL.2;C/. The bijection consists
as usual in associating to a connection ˛ the morphism �. /DHol .˛/. Reciprocally,
given � and l , one can define a pair .P; s; l/ by the standard procedure: one defines
P D �M �G=…1.M / where �M is the disjoint union of the universal coverings of M

based at the xi and …1.M / acts on both factors by covering transformations and by
� respectively. One easily constructs the section s , and the map L is unchanged.

2.4 The derivative of the Chern–Simons functional

Let ˛ be a flat connection on a 3–manifold M with boundary †. Recall that ˛ satisfies
d˛C 1

2
Œ˛; ˛�D 0 and that we defined CS.˛/D 1

12

R
M h˛^ Œ˛^˛�i.

By differentiating the flatness equation, one sees that a 1–form b is tangent to �1
flat.M;g/

at ˛ if and only if one has dbC Œb; ˛�D 0. The derivative of CS at ˛ in the direction
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Geometric interpretation of simplicial formulas for the Chern–Simons invariant 811

b is then

D˛ CS.b/D
1

4

Z
M

hb ^ Œ˛^˛�i D �
1

2

Z
M

hb ^ d˛i

D
1

2

Z
M

.dhb ^˛i � hdb ^˛i/D
1

2

Z
†

hb ^˛iC
1

2

Z
M

hŒb ^˛�^˛i

D
1

2

Z
†

hb ^˛iC
1

2

Z
M

hb ^ Œ˛^˛�i

We deduce the equation below which will be useful in the sequel.

(3) D˛ CS.b/D
1

2

Z
†

h˛^ bi

This equation may be interpreted by saying that the Chern–Simons functional is a flat
section CSW R.M /!L† for some natural (non flat) connection on L† , see Freed [6].

3 Local combinatorial data

In this article, we will work in the framework of 3–dimensional real hyperbolic geometry
and hence suppose that G is SL.2;C/, g consists in trace free 2�2 matrices and we set
hA;BiD� 1

4�2 Tr.AB/. This implies that �D 1
12
h�^ Œ�^��i is the positive generator

of H 3.SL.2;C/;Z/ in H 3.SL.2;C/;C/ as we can compute that
R

SU.2/ �D 1.

3.1 Elementary Polyhedron

Let � be a set of 4 elements, that we will call tetrahedron. We will often use x;y; z; t

as variables describing the (distinct) elements of � and write them without comma to
have more compact expressions.

Definition 3.1 The polyhedron P .�/ associated to � is a polyhedral complex whose
vertices are parametrized by orderings of the elements of �.

There are three types of edges: E1 D fxyzt;yxztg, E2 D fxyzt;xzytg, E3 D

fxyzt;xytzg which consist in transposing 2 consecutive vertices.

There are three types of 2–cells:

� fxyzt;yxzt;xytz;yxtzg which appears 6 times (type edge).
� fxyzt;xzyt; zxyt; zyxt;yzxt;yxztg which appears 4 times (type face).
� fxyzt;xytz;xtyz;xtzy;xzty;xzytg which appears 4 times (type vertex).

There is one 3–cell whose boundary is the union of all the faces.

Algebraic & Geometric Topology, Volume 12 (2012)
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The polyhedral complex is best seen in Figure 1 as a tetrahedron whose edges and
vertices are truncated. The ordering associated to a vertex has the form xyzt where
x is the closest vertex, xy is the closest edge and xyz is the closest face. There are
different ways of realizing this polyhedron in R3 . Let us fix one of them once for all.

xy

z

t

�

�

txzy

yztx

Figure 1. The polyhedron P .�/

3.2 Configuration spaces and cocycles

Definition 3.2 Let � be a tetrahedron. We call cross-ratio a map X W V .P .�//!

C n f0; 1g which satisfies the following relations for all distinct x;y; z; t 2�:

� X.xyzt/DX.yxzt/�1 DX.ztxy/

� X.xzty/D .1�X.xyzt//�1

A cross-ratio is a complicated but invariant way of describing the configuration of � in
CP1 , that is an injective map � W �!CP1 . Composing by an element of PSL.2;C/,
one gets an action of PSL.2;C/ on the set of configurations. Given a configuration
� W �!CP1 , we define a cross-ratio X� by the formula

X� .xyzt/D
.�t � �y/.�z � �x/

.�z � �y/.�t � �x/
:

In this formula, we identified CP1 with C[f1g.

Given a vertex vDxyzt of P .�/ and a configuration � , there is a unique configuration
�v equivalent to � via the PSL.2;C/ action such that �vx D1; �

v
y D 0 and �vz D 1.

One can define a unique 1–cocycle c 2Z1.P .�/;PSL.2;C// which satisfies for all
edges Œv; v0� of P .�/ the following equality: �v

0

D c.v; v0/ � �v .

Algebraic & Geometric Topology, Volume 12 (2012)
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An easy computation gives the following formulas where we identified PSL.2;C/ with
GL.2;C/=C� Id.

c.xyzt;yxzt/D

�
0 1

1 0

�
;

c.xyzt;xzyt/D

�
1 �1

0 �1

�
;

c.xyzt;xytz/D

�
1 0

0 X� .xyzt/

�

3.3 Orientation, branching and flattening

Definition 3.3 An orientation of a tetrahedron � is a choice of ordering of its vertices
up to even permutation.

Notice that it is equivalent to the choice of an orientation of the realization of � or
P .�/.

Definition 3.4 A branching b of a simplicial tetrahedron � is a choice of ordering of
its vertices, or equivalently, a choice of vertex in P .�/.

Given a branching on �, one can define an orientation of the edges of P .�/ by
orienting an edge from the vertex with lower ordering to the vertex with higher one with
respect to the lexicographical ordering given by the branching. Of course a branching
induces an orientation of �, but both notions are introduced for independent purposes
so we will ignore this coincidence.

The following definition and proposition are a variant of the constructions of Neu-
mann [12, Section 2]. We give the details for completeness.

Definition 3.5 A flattening of a triple .�; b;X / where � is a tetrahedron, b a branch-
ing on � and X is a cross-ratio on � is a map LW V .P .�// ! C such that the
following relations are satisfied:

� L.xyzt/D�L.yxzt/D�L.xytz/

� L.xyzt/CL.xzty/CL.xtyz/D i� whenever one has y < z < t .

� exp.L.xyzt//DX.xyzt/.

The last equation shows that the data L allows us to recover the map X . Hence, when
dealing with flattenings, we will omit X .

Algebraic & Geometric Topology, Volume 12 (2012)
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Proposition 3.6 The set L.�; b/ of flattenings of a branched simplicial tetrahe-
dron .�; b/ is a Riemann surface. Given any vertex xyzt of P .�/ the map L 7!

exp.L.xyzt// identifies L.�; b/ with the universal abelian cover of C n f0; 1g.

Proof Suppose one has �D fx;y; z; tg with branching x < y < z < t . Then the first
relation shows that L reduces to the data

l1 DL.xyzt/; l2 DL.xzty/; l3 DL.xtyz/

and l 01 DL.ztxy/; l 02 DL.tyxz/; l 03 DL.yzxt/:

By the third relation, for any j 2 f1; 2; 3g one has exp.lj /D exp.l 0j / so there is kj 2Z
such that l 0j D lj C 2i�kj . The second relation gives the following equations:

l1C l2C l3 D i�; �l1� l 03� l 02 D i�;

l2C l 03C l 01 D i�; �l3� l 02� l 01 D i�:

Using the variables kj these equations reduce to k3Dk1D0 and k2D�1. Hence only
l1 and l2 are independent though not completely because of the following remaining
identity: exp.l2/D 1=.1� exp.l1//. This last expression shows that the map sending
L to exp.l1/ identifies L.�; b/ with the universal abelian cover of C n f0; 1g. The
same is true for the other variables.

Example 3.7 Let .�; b/ be a branched simplex and � W �!RP1 a real configuration.
For any 4–tuple xyzt we define �.xyzt/ as being 0 if the pairs �x�y and �z�t are
intertwined (that is neither �x�y nor �z�t are consecutive). In the other cases, we
define �.xyzt/ to be 1 or -1 depending on whether yzt is cyclically oriented in a
compatible way with b or not. Using this definition, the formula

L� .xyzt/D log jX� .xyzt/jC i��.xyzt/

defines a flattening that we will call the canonical real flattening associated to � .

4 The connection of a polyhedron

Let us fix once for all a function �W Œ0; 1�! Œ0; 1� which is smooth, satisfies �.0/D 0

and �.1/D 1 and whose derivative is non-negative and has compact support in .0; 1/.

In the realization of a polyhedral complex, any oriented edge e comes with a natural
parametrization with Œ0; 1�. By d�e we will denote the 1–form on e obtained by
derivating � through the natural parametrization of the edge. We will often drop the
subscript when the edge we are dealing with and its orientation are clear.
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4.1 The 1–skeleton

Given .�;L; b/ one can define a connection ˛ on the 1–skeleton of P .�/ by the
following formulas where the orientations of the edges are given by the branching. The
connection takes its values on the Lie algebra g of SL.2;C/.

� ˛.xyzt;yxzt/D
� 0 i�=2

i�=2 0

�
d� ,

� ˛.xyzt;xzyt/D
� i�=2 �i�=2

0 �i�=2

�
d� ,

� ˛.xyzt;xytz/D
�L.xyzt/=2 0

0 �L.xyzt/=2

�
d� .

Proposition 4.1 The holonomy of ˛ gives a lift of c to SL.2;C/.

Proof The holonomies along the three corresponding type of edges are

M1 D

�
0 �i

�i 0

�
; M2 D

�
�i i

0 i

�
and M3.L/D

�
exp.�L=2/ 0

0 exp.L=2/

�
for LDL.xyzt/. These matrices are proportional to the corresponding values of the
cocycle c .

Next, each face of P .�/ gives an equation which should be satisfied. The equation
of type edge is equivalent to M1M3.L.xyzt//DM3.L.yxzt//M1 . The equation of
type face is equivalent to M1M2M1 DM2M1M2 and the equation of type vertex is
equivalent to

M2M3.L.xzyt//M2 DM3.L.xtyz//M2M3.L.xyzt//:

This last equation is a consequence of the relations satisfied by X and L.

4.2 The 2– and 3–skeleton

One needs to explicit the restriction of the connection to the 2–cells of P .�/.

Type edge Let us identify the corresponding 2–cell with Œ0; 1�� Œ0; 1� such that the
edges Œ0; 1� � f0; 1g have type E1 and the edges f0; 1g � Œ0; 1� have type E3 . We
denote by s and t the corresponding coordinates and suppose that the sides of the
square are oriented in the direction of increasing s and t . We set

(4) ˛ D

�
0 i�=2

i�=2 0

�
d�sC

l

2

�
cos.�s�/ i sin.�s�/

�i sin.�s�/ � cos.�s�/

�
d�t :

where l is the value of L at the vertex .0; 0/.
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Type face We fix once for all a smooth connection ˛ on this 2–cell with the property
that for any edge e there is a standard neighborhood Ue of the edge with projection
�e on that edge such that ˛ restricted to Ue is equal to ��e ˛je . This condition will
ensure the smoothness of the total connection. The important point is that we will use
the same connection for all type face 2–cells.

Type vertex This is the most difficult part as it seems that no preferred choice can
be done without extra data. We remark at least that the connection on the boundary
lies in the Borel subalgebra b. We extend the connection in an arbitrary way with the
conditions that it takes its values in b and that the same condition as for the type face
cells holds in the neighborhood of the boundary.

It remains to fill the connection inside P .�/. One can certainly do it as we have
�2.SL.2;C//D 1 so we fill it in an arbitrary way such that the connection is constant
in some neighborhood of each face and we denote by ˛ the flat connection thus obtained.
Up to some controlled ambiguity, it depends only on L and b .

4.3 The CS-invariant and its derivative

Let .�;L; b; o/ be a simplicial tetrahedron with flattening, branching and orientation.
Let ˛ be the flat connection on P .�/ associated to L and b . One can compute its
Chern–Simons invariant with respect to the orientation of P .�/: we denote it by
CS.�;L; b; o/D CS.˛/.

Proposition 4.2 Let .�;L; b; o/ be a 4–tuple as described above. Then the function
CSW L.�; b/!C=Z is well-defined.

Proof We need to show that CS.˛/ does not depend on the choices we made for
constructing ˛ . The last choice we made was the filling of the interior of P .�/. As
P .�/ is simply connected, any other choice must be gauge equivalent with a gauge
element which equals Id at the boundary. The formula (1) shows that the difference
term is an integer. Then, if we change the connection on faces of type vertex, the
new connection is again gauge equivalent with a gauge element g with values in B .
We need to show that nevertheless, CS.˛g/D CS.˛/ .mod Z/. This comes from the
fact that c.˛;g/ D 0, the reason being the same as in the proof of Proposition 2.2.
Finally, change the connection on the type face 2–cells to construct a new connection
˛0 . Let H be a hexagon: there is a flat connection on H � Œ0; 1� which coincides
with ˛ on H � f0g, with ˛0 on H � f1g and is constant on @H � Œ0; 1�. We obtain ˛0

from ˛ by gluing 4 such prisms to the type face 2–cells of P .�/, two of them with
inverted orientation. The difference of the Chern–Simons invariants is the sum of the 4
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Chern–Simons invariants of H � Œ0; 1�. The total difference vanishes because of the
orientation change.

The aim in the rest of this section is to compute the derivative of CS.�;L; b; o/ with
respect to the geometric data L by applying Formula (3).

Let us consider a 4–tuple .�;L; b; o/. A tangent vector for the geometric parameter
L is a map ıLW V .P .�//!C satisfying the two sets of equations for all orderings
xyzt of �.

� ıL.xyzt/D ıL.ztxy/D�ıL.yxtz/.

� ıL.xyzt/C ıL.xzty/C ıL.xtyz/D 0 if y < z < t .

Proposition 4.3 One has ı CS.�;L; b; o/D 1
8�2 .l2ıl1� l1ıl2� i�ıl1/ where l1D

L.xyzt/, l2 DL.xzty/ and x < y < z < t .

Proof Given such a tangent vector, one can compute the corresponding tangent flat
connection ı˛ . It vanishes identically on type face 2–cells as the connection on these
cells does not depend on the geometric data. Let S be a type edge 2–cell, with parameter
s for the type E1 edge and parameter t for the type E3 edge and with l being the value
of the L map at the lower vertex .0; 0/. The formula (4) holds, and we deduce from it
the formula

ı˛ D
ıl

2

�
cos.�s�/ i sin.�s�/

�i sin.�s�/ � cos.�s�/

�
d�t :

One computes that ˛^ ı˛ is trace free, hence h˛^ ı˛i vanishes and these 2–cell do
not contribute either.

Finally, the remaining contributions come from the type vertex 2–cells. Suppose that
the branching and the orientation of � come from the ordering x < y < z < t and let
S be the cell corresponding to the vertex x .

Let a be the unique 1–form on S such that ˛D 1
2

�
a �
0 �a

�
: as ˛ is flat, a is closed. Let

ıa be the 1–form corresponding to ı˛ , we choose a primitive of ıa that we denote by
A. Then, one computes

1

2

Z
S

h˛^ ı˛i D
1

16�2

Z
S

ıa^ aD
1

16�2

Z
@S

A^ a:

A computation shows that the final contribution of the cell is

1
32�2 ıl3.l1C i�/� 1

32�2 ıl1.l3C i�/

where we have set l1 DL.xyzt/, l2 DL.xzty/ and l3 DL.xtyz/. Summing up all
vertices we obtain the formula of the proposition.
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To explain the relation with the standard dilogarithm, let us consider the case where
�D fx;y; z; tg with x < y < z < t , �x D1; �y D 0; �z D u; �t D 1 with u 2 .0; 1/.
Consider its canonical real flattening Lu as in Example 3.7.

More explicitly, we compute

Xu.xyzt/D 1=u; Xu.xzty/D�u=.1�u/;

Lu.xyzt/D� log.u/ and Lu.xzty/D log.u/� log.1�u/C i�:

By Proposition 4.3, the derivative of H.u/ D CS.�;Lu; b; o/ with respect to u is
equal to 1

8�2

� log.1�u/
u
C

log.u/
1�u

�
. Recall that the Rogers dilogarithm is defined by

R.z/D 1
2

log.z/ log.1� z/�

Z z

0

log.1� t/

t
dt:

We have dH D �1
4�2 dR, hence there exists C such that H.u/DC � R.u/

4�2 : this formula
extends by analytic continuation to all flattenings. The determination of the constant
will be a consequence of the 5–term equation of Section 6.

5 Global data

5.1 Triangulations and their subdivisions

5.1.1 Abstract triangulations Let .�i ; oi/i2I be a finite family of oriented tetrahe-
dra. Recall that an orientation o of a set X is a numbering of the elements of X up to
even permutation. Any face of � gets an orientation by the convention that a positive
numbering of the face followed by the remaining vertex is a positive orientation of �.

We will call abstract triangulation a pair T D ..�i ; oi/i2I ; ˆ/ where ˆ is a matching
of the faces of the �i ’s reversing the orientation. If we realize this gluing with actual
tetrahedra, then the resulting space S.T /D

S
i �i=ˆ may have cone singularities at

vertices. To solve this problem, we truncate the triangulation. We do it in two stages:
the first one will consist in truncating vertices, and the second one in truncating vertices
and edges.

5.1.2 Truncated triangulations For any tetrahedron �, we define Trunc.�/ as the
polyhedron whose vertices are pairs .x;y/ of distinct vertices of �. As usual, we will
use the more compact notation xy for .x;y/. There are two type of edges, one has the
form .xy;yx/ for distinct x and y and one has the form .xy;xz/ for distinct x;y; z .
Then we add triangular cells of the form .xy;xz;xt/ and hexagonal cells of the form
.xy;yx;yz; zy; zx;xz/. Finally we add one 3–cell: we may think of Trunc.�/ as
the tetrahedron � truncated around vertices.
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If T D ..�i ; oi/i2I ; ˆ/, we define Trunc.T /D
S

i2I Trunc.�i/ where we identified
the hexagonal faces following the indications of ˆ. All remaining faces are triangles
which give a triangulation of the boundary of Trunc.T /. We will call triangulation of
a compact oriented 3–manifold M with boundary an abstract triangulation T and an
oriented homeomorphism hW Trunc.T /!M .

5.1.3 Polyhedral triangulations Let E.T / be the set of edges of S.T /: for any
e 2 E.T /, denote by v.e/ the star of e . It is a graph whose vertices are the faces
adjacent to e and the edges are the tetrahedra adjacent to e . We denote by P .e/ the
polyhedra D � Œ0; 1� such that D is a regular polygon whose boundary is identified
with v.e/.

We define the polyhedral subdivision of an abstract triangulation as the union

P .T /D

�[
i2I

P .�i/[
[

e2E.T /

P .e/

�.
ˆ:

The 2–cells of type face of P .�i/ are identified together as prescribed by ˆ and the
2–cells of type edge are glued to the 2–cells of the corresponding polyhedron P .e/.
The 2–cells of type vertex are not glued. Hence, the realization of P .T / is a manifold
whose boundary has a cell decomposition with hexagons coming from type vertex
2–cells and polygons coming from P .e/.

5.2 Branchings and flattenings

Let T D ..�i ; oi/i2I ; ˆ/ be an abstract triangulation. We will denote by S.T /,
Trunc.T / and P .T / and call singular, truncated and polyhedral triangulations the
different topological realizations of the triangulation T . We remark that the set of
vertices of P .T / is in bijection with the set of ordered tetrahedra of T . We will denote
loosely by xyzt an ordered tetrahedron in T , and hence a vertex of P .T /.

Branching A branching b is an orientation of the edges of S.T / such that the
restriction to any simplex � in T of the orientation of the edges is induced by an
ordering of �. This means than one can find a unique ordering on the vertices of �
such that all the edges of � are oriented from the lower vertex to the higher one. This
does not imply that there is a global ordering of the vertices of S.T /.

Cross-ratio A cross-ratio structure X on T is a map from the set of vertices of P .T /

to C n f0; 1g such that the following relations hold:

� For all vertices of the form xyzt one has

X.xyzt/DX.ztxy/DX.yxzt/�1
DX.xytz/�1:
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� In the same settings, one has X.xzty/D 1=.1�X.xyzt//.
� For any oriented edge e of S.T / the product

Q
i X.xyziziC1/ is equal to 1

where the simplices xyziziC1 involved in the product describe the set v.e/
where the oriented edge xy projects to e and the cyclic ordering of the points
zi corresponds to the simplicial structure of v.e/.

Flattening A flattening associated to a cross-ratio structure X and branching b on T

is a map L from the set of vertices of P .T / to C satisfying the following relations:
� For all vertices of the form xyzt one has L.xyzt/D�L.yxzt/D�L.xytz/.
� Whenever one has y < z < t , the relation L.xyzt/CL.xzyt/CL.xytz/D i�

holds.
� In the same settings, one has exp.L.xyzt//DX.xyzt/.
� For any edge e of S.T / the sum

P
i L.xyziziC1/ is equal to 0 where the

simplices involved in the sum are the same as for the cross-ratios.

5.3 Geometric meaning of cross-ratios and flattenings

An abstract triangulation T with cross-ratio structure X induces a cocycle c on the
1–skeleton of P .T / with values in PSL.2;C/. This cocycle is given on P .�/ by
the formulas of Section 3.2 and no extra data needs to be defined as no edges have
been added when passing from

S
i P .�i/ to P .T /. The cocycle relations for all

subpolyhedra P .�i/ are verified, and the relations coming from P .e/ for all edges e

are a consequence of the edge condition of the cross-ratio structure.

Hence, if we set M DP .T / for simplicity and choose base points xi on each connected
component †i of the boundary of M , then a cross-ratio structure X on T produces a
groupoid homomorphism cW …1.M /!G such that c restricted to †i takes its values
in PB .

This interpretation extends to the flattening L. Suppose there is a branching b on T

and a flattening L associated to X . Then we see as a consequence of Proposition 4.1
and of the edge condition of flattenings that the preceding cocycle c and hence the
corresponding groupoid homomorphism lifts to SL.2;C/. Given a simplicial path  in
†i , one defines L. / as the sum of the flattenings of the edges along the path. Then the
pair .c;L/ is an element of R.M /. Hence, according to our geometric interpretation,
cross-ratios and flattenings on a triangulation T are precisely the combinatorial data
we need to define an element of R.M / where M is triangulated by T .

We would like to know which elements of R.M / are obtained in this way: to this
end we propose the following definition. Let M be a 3–manifold with boundary and
.P; s; l/ an element of R.M /.
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Definition 5.1 Let  be an arc in M whose ends lie in the boundary of M . We will
say that  is regular relatively to .P; s; l/ if the holonomy of the flat bundle P�G CP1

along  sends the section s over the source point to an element distinct from the value
of s over the target point.

Suppose that M is triangulated, meaning that there exists an abstract triangulation T

and a homeomorphism hW Trunc.T /!M . Fix a branching on T and let .X;L/ be
a cross-ratio and flattening on T . As P .T / and Trunc.T / are homeomorphic, the
cocycle c associated to X gives a representation of …1.M / into PSL.2;C/, and we
set �.X;L/D .c;L/ 2R.M /. We have the following proposition:

Proposition 5.2 For all elements .P; s; l/ 2R.M / such that all edges of Trunc.T /
which do not lie on the boundary are regular, there is a pair .X;L/ such that .P; s; l/D
�.X;L/.

Remark 5.3 This proposition is a variant of fairly well-known arguments, but we
include it for completeness. The reader can refer to the article by R M Kashaev [8] for
the notion of regularity and to Dupont and Zickert [5] for the construction of flattenings.

Proof Let .P; s; l/ 2R.M / be such that all edges of T are regular.

Let �Dfx;y; z; tg be a simplex in T . The intersection of Trunc.�/ with the boundary
of M is a union of 4 triangles Tx;Ty ;Tz;Tt . Pick any point u in the boundary of
M and a path  from u to the interior of Trunc.�/. Then, extend this path inside
Trunc.�/ to 4 paths x; y ; z; t ending respectively in Tx;Ty ;Tz;Tt . The parallel
transport of the section s at the end points gives a configuration of 4 points in the fiber
of P �G CP1 over u. These points are distinct by the assumption that all edges are
regular. Call X.xyzt/ the cross-ratio of these 4 points. This number is well-defined
and independent of u and  . One easily check that this construction defines on T a
cross-ratio structure. Only the edge condition is not obvious but one can deduce it by
choosing a fixed value of u for all tetrahedra adjacent to the same edge.

Suppose that .P; s; l/ is represented by a connection ˛ on the trivial bundle M �G .
The 1–cocycle c associated to X is defined on P .T / whereas the holonomy of ˛ is a
cocycle � on Trunc.T / with values in SL.2;C/. For each edge e of T , we recall that
we defined P .e/ D D � Œ0; 1� where D was a regular polygon with boundary v.e/.
Let us add to P .e/ the edge f0g � Œ0; 1� and edges joining the origin to the vertices in
D � f0g and D � f1g. Let us call PC.T / this 1–skeleton. We can see Trunc.T / and
P .T / inside PC.T / as polyhedral decompositions of the same space. To see that c

and � are equivalent, it is sufficient to define a cocycle on PC.T / whose restriction
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on P .T / and Trunc.T / is c and � respectively. Let us choose arbitrarily the value
of the cocycle of an edge in D � f0g joining the center to some vertex. Then, by
cocycle relations and assumption on the restrictions of our cocycle, all other edges are
determined, and these determinations actually define a cocycle on PC.T /.

It remains to construct the flattening L on P .T /. We do it in a geometric way,
supposing that the triple .P; s; l/ is represented by a flat connection ˛ on the bundle
M � G . The section s is then trivial, as the tautological line bundle lying over s

which is equal to the bundle C˚ f0g. For any oriented edge e of T , let  be the
corresponding path in M . Then, .Hol ˛/.1; 0/ and .1; 0/ are two independent vectors,
hence their determinant is a non zero complex number. We choose a logarithm of this
number that we call le . If we consider the edge with opposite orientation, then the
determinant gets a minus sign, hence the logarithm differs by i� .mod 2i�/. Thanks
to the branching, one can specify an orientation of e . By convention, assume that the
following relation holds: l�e D le � i� where �e means the edge e with negative
orientation.

Moreover, recall from Proposition 2.1 that the datum l in .P; s; l/ is given by the
integral of ��.˛/ on the boundary. Using this formula, we may see l as a 1–cocycle
on the boundary of P .T /. Given a simplicial path  in Trunc.T /, we define l as the
sum of the values of the function l on the boundary edges of  and on the interior edges,
keeping track of the orientation. Given a vertex xyzt of P .T /, we define L.xyzt/

in the following way: pick vertices zx; zy; zz; zt in the simplicial triangles Tx;Ty ;Tz;Tt

and choose simplicial paths uv in Trunc.fx;y; z; tg/ for all u; v in fzx; zy; zz; ztg. Then
we set L.xyzt/D lxz

C lyt
� lxt

� lyz
. One can check that this defines a flattening

recovering the logarithm l , see Dupont and Zickert [5].

6 Computation of the Chern–Simons invariant

Suppose that one has a 3–manifold M triangulated by T and an element .P; s; l/
of R.M / represented by a triple .b;X;L/ where b is a branching of T , X is a
cross-ratio structure and L is a flattening.

Theorem 6.1
CS.P; s; l/D

X
�2T

CS.�; b;L; o/

This formula is an easy consequence of the fact that M is a union of subpolyhedra. The
triple .P; s; l/ is represented by an explicit flat connection on M and the Chern–Simons
invariant is an integral which decomposes as a sum of integrals over all subpolyhedra.
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In the first part, we show that the polyhedra attached to the edges do not contribute to
the sum and hence the formula reduces to a sum over elementary polyhedra. In the
second part, we explain how the 5–term relation fits into this framework and give some
applications and examples.

6.1 Filling edges

Around edges, one may need to glue back a polyhedron which has the form P � Œ0; 1�

where P is a plane oriented polygon. By branching conditions, all edges of the form
fvg�Œ0; 1� where v is a vertex of P are oriented in the same direction and the restriction
of the connection to it is

� 0 i�=2
i�=2 0

�
d�s .

For any oriented edge e of P , the two corresponding edges e0De�f0g and e1De�f1g

are oriented in the same direction and the restriction of the connection to it has the
form

�
�Le=2 0

0 Le=2

�
d�s . Here Le is the value of L at the starting point of e which is

opposite to its value at the target point.

By flattening conditions, the sum
P

e Le vanishes where the edges e are oriented
in a compatible way with the boundary of P . One may fill the connection inside
P by taking any closed C–valued 1–form ! which restricts to the corresponding
form on each boundary segment. Precisely, we set ˛ D

�
�!=2 0

0 !=2

�
on P � f0g and

˛ D
� !=2 0

0 �!=2

�
on P � f1g.

One may fill the connection inside P � Œ0; 1� by the condition that its restriction to
segments of the form fvg� Œ0; 1� is again

� 0 i�=2
i�=2 0

�
d�s . A direct computation shows

that

˛ D !

�
cos.�.s/�/ i sin.�.s/�/
�i sin.�.s/�/ � cos.�.s/�/

�
C

�
0 i�=2

i�=2 0

�
d�s:

One computes directly from this expression that CS.˛/D 0.

6.2 The 5–term relation

As a consequence of such a gluing formula, one can deduce the well-known 5–term
relation. Let X D fx0; : : : ;x4g be a set with 5 elements. The union of the tetrahedra
fx0;x1;x2;x4g and fx0;x2;x3;x4g is homeomorphic to the union of the following
three ones: fx1;x2;x3;x4g, fx0;x1;x3;x4g and fx0;x1;x2;x3g. Given a global
order x0 < � � �< x4 and a map L from the set of ordered 4–tuples of elements of X

to C satisfying the flattening relations, one deduce the following formula where �i is
the set X n fxig

(5)
4X

iD0

.�1/i CS.�i ; b;L/D 0:
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The sign .�1/i takes into account the orientation of �i . One can deduce from it the
precise formula for CS in terms of the Li , finishing the computation of Section 4.3.

Writing �i D �xi
we suppose that �0 D1; �1 D 0; �2 D v; �3 D u and �4 D 1 with

0<v<u< 1. We set Xijkl DX.xi ;xj ;xk ;xl/ and define Lijkl as the corresponding
canonical flattening, that is Lijkl D log jXijkl jC i��ijkl (see Example 3.7). In that
case, we have the following interpretation of the sign �ijkl . Let ij be an oriented arc
in a disc bounding RP1 which joins xi to xj : then �ijkl D�ij � kl .

To check that the edge relations hold, we need to show that for any 5–tuple ij klm we
have

Lijkl CLijlmCLijmk D 0:

The real part of the equality comes from the equation XijklXijlmXijmk D�1. The
imaginary part of the equation is equivalent to the equation �ijkl C �ijlmC �ijmk D 0

which is a direct consequence of the geometric interpretation of �ijkl .

Recall that from the definition of the function H in Section 4.3, we have

H.u/D
1

4�2
.C �R.u//

for a constant C which has to be determined and

CS.�0; b;L/DH
�

u�v
.1�v/u

�
; CS.�1; b;L/DH

�
u�v
1�v

�
;

CS.�2; b;L/DH.u/; CS.�3; b;L/DH.v/;

CS.�4; b;L/DH
�
v
u

�
:

The equation (5) implies the following equality for any 0< v < u< 1:

H.u/�H.v/CH
�
v
u

�
�H

�
u�v
1�v

�
CH

�
u�v
.1�v/u

�
D 0:

Taking u close to v , one finds that limu!1 H.u/D 0. As R.1/D �2

6
, we get finally

the expression

H.u/D
1

24
C

1

8�2

Z u

0

�
log.1� t/

t
C

log.t/
1� t

�
dt D

1

4�2

�
�2

6
�R.u/

�
:

6.3 An example

Following Thurston, the figure eight knot complement is homeomorphic to the union of
two tetrahedra without vertices. We call A and B these two tetrahedra and we denote
by x;y; z; t their vertices (we use the same letters for the vertices of both tetrahedra).
We identify the faces of these tetrahedra in the only way which respects the colors of
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the arrows (black or white) and their directions. Denote by T the resulting abstract
triangulation. A cross-ratio structure is determined by the two complex numbers
u D XA.xyzt/ and v D XB.xyzt/ different from 0 and 1. The complex S.T / has
two edges which gives the following relations:

XA.tyxz/XB.tyxz/XA.xyzt/XB.xzty/XA.xzty/XB.tzyx/D 1

XA.yzxt/XB.yxtz/XA.txzy/XB.txzy/XA.tzyx/XB.yzxt/D 1

Translating into variables u and v both equations reduce to the equation

uv D .1�u/2.1� v/2

Let b be the branching induced on T by the arrows. One can check that the ordering

A

x

y

z

t

B

x

y

z

t

x
x y

y

z

z
t t

x

x
y y

z
zt

t x

x

y
y

z
z

t

t
x x

y

y

z

z

t
t

Figure 2. Decomposition of the figure eight knot complement and of its boundary

induced on the vertices of A is given by x < t < z < y whereas the ordering induced
on the vertices of B is x < z < t < y . Introduce the following variables:

a1 DLA.xtzy/ a01 DLA.zyxt/ b1 DLB.xzty/ b01 DLB.tyxz/

a2 DLA.xzyt/ a02 DLA.ytxz/ b2 DLB.xtyz/ b02 DLB.yzxt/

a3 DLA.xytz/ a03 DLA.tzxy/ b3 DLB.xyzt/ b03 DLB.ztxy/
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One has the following first set of relations:

a01 D a1; b01 D b1; a1C a2C a3 D i�

a02 D a2� 2i�; b02 D b2� 2i�; b1C b2C b3 D i�

a03 D a3; b03 D b3

and the edge equations

�2a2� a3C 2b1C b3C 2i� D 0; �2a1� a3C 2b2C b3� 2i� D 0:

One can reduce these equations to the unknowns a1; a2; b1; b2 and the relation

a1� a2C b1� b2C 2i� D 0:

Consider the curve ˛ (resp. ˇ ) on the boundary of P .T / represented by a vertical
segment going upwards on Figure 2 (resp. an horizontal one from left to right). Then
˛ and ˇ form a basis for the homology of the boundary.

Let us express the logarithmic holonomy along ˛ and ˇ in terms of the coordinates
a and b . One has l.˛/D a1Cb1

2
and l.ˇ/D a1� a2C b2C i� . The Chern–Simons

invariant of the configuration that we are describing is finally equal to CS.a1; a2; a3/�

CS.b1; b2; b3/. We thus obtain the formula of Neumann [12, Section 15].

Let us sum up this example in the following proposition:

Proposition 6.2 Let M be the complement of a tubular neighborhood of the figure
eight knot in S3 . Let T be its triangulation, as shown in Figure 2. Let u and v be two
elements of Cnf0; 1g satisfying uvD .1�u/2.1�v/2 . The cocycle construction gives
a representation �u;vW �1.M /! PSL.2;C/. Let a1; a2; b1; b2 be complex numbers
satisfying

exp.a1/D
u

u�1
; exp.a2/D 1�u;

exp.b1/D
1

1�v
; exp.b2/D 1� 1

v
;

and
a1� a2C b1� b2C 2i� D 0:

These numbers give a flattening with logarithmic holonomy given by l.˛/ D a1Cb1

2

and l.ˇ/D a1� a2C b2C i� and we have

CS.M; �u;v; l/D CS.a1; a2; i� � a1� a2/�CS.b1; b2; i� � b1� b2/

D
1

8�2

Z
C

�
log.1� t/

t
C

log.t/
1� t

�
dt;

where C is the image in C n f0; 1g of a contour joining .b1; b2/ to .a1; a2/ in the
universal abelian covering. It projects to a path joining 1� v to 1� 1=u.
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