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Unstable Adams operations acting on
p–local compact groups and fixed points

ALEX GONZÁLEZ

We prove that every p–local compact group is approximated by transporter systems
over finite p–groups. To do so, we use unstable Adams operations acting on a given
p–local compact group and study the structure of resulting fixed points.

55R35; 20D20

The theory of p–local compact groups was introduced by C Broto, R Levi and
B Oliver [7] as the natural generalization of p–local finite groups, also introduced by
the same authors in [5], to include some infinite structures, such as compact Lie groups
or p–compact groups, in an attempt to give categorical models for a larger class of
p–completed classifying spaces.

Nevertheless, when passing from a finite setting to an infinite one, some of the techniques
used in the former case are not available any more. As a result, some of the more
important results in [5] were not extended to p–local compact groups, and, roughly
speaking, p–local compact groups are not yet as well understood as p–local finite
groups. It is then the aim of this paper to shed some light on the new theory introduced
in [7].

The underlying idea of this paper can be traced back to work of E M Friedlander and
G Mislin [9; 10; 11; 12], where the authors use unstable Adams operations (or Frobenius
maps in the algebraic setting) to approximate classifying spaces of compact Lie groups
by classifying spaces of finite groups. More recently, C Broto and J M Møller studied
a similar construction for connected p–compact groups in [8].

Here, by an approximation of a compact Lie group G by finite groups we mean the
existence of a locally finite group Gı , together with a mod p homotopy equivalence
BGı! BG (that is, this map induces a mod p homology isomorphism). Since Gı

is locally finite, it can be described as a colimit of finite groups, and this allows then
to extend known properties of finite groups to compact Lie groups. Of course, this
argument is unnecessary in the classical setting of compact Lie groups, since other
techniques are at hand.

As we have mentioned, the works of Friedlander and Mislin depended on Frobenius
maps and their analogues in topological K–theory, unstable Adams operations. For
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p–local compact groups, unstable Adams operations were constructed for all p–local
compact groups in the doctoral thesis of F Junod [14], although in this work we will
use the more refined version of unstable Adams operations by F Junod, R Levi and
A Libman [15].

One can then study the action of unstable Adams operations on p–local compact groups
from a categorical point of view, focusing on the definition of a p–local compact group
as a triple .S;F ;L/, which is in fact the approach that we have adopted in this paper,
and which will lead to a rather explicit description of the fixed points of a p–local
compact group under the action of an unstable Adams operation (of high enough
degree).

The following result, which is the main theorem in this paper, will be restated and
proved as Theorem 3.7 and Theorem 3.10.

Theorem A Let GD .S;F ;L/ be a p–local compact group, and let ‰ be an unstable
Adams operation on G . Then, ‰ defines a family of finite transporter systems fLigi2N ,
together with faithful functors ‚i W Li ! LiC1 for all i , such that there is a mod p

homotopy equivalence
BG 'p hocolim jLi j:

Each transporter system Li is associated to an underlying fusion system Fi , which is
Ob.Li/–generated and Ob.Li/–saturated (see Definition 1.14). The notation comes
from Broto et al [3], where the authors explore certain subsets of objects of a saturated
fusion system which control saturation. The first property (generation) means that
morphisms in Fi are compositions of restrictions of morphisms among the objects
in Ob.Li/, and the second property (saturation) means that the objects in Ob.Li/

satisfy the saturation axioms.

The saturation of the fusion systems Fi remains unsolved in the general case, but
we study some examples in this paper where, independently of the operation ‰ , the
triples Gi are always (eventually) p–local finite groups. To simplify the statements
below, we will say that ‰ induces an approximation of G by p–local finite groups if
the triples Gi in Theorem A are p–local finite groups. This definition will be made
precise in Section 3.

The following results correspond to Theorem 4.1 and Theorem 4.9 respectively.

Theorem B Let G be a p–local compact group of rank 1, and let ‰ be an unstable
Adams operation acting on G . Then, ‰ induces an approximation of G by p–local
finite groups.
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Theorem C Let G be the p–local compact group induced by the compact Lie
group U.n/, and let ‰ be an unstable Adams operation acting on G . Then, ‰ induces
an approximation of G by p–local finite groups.

As an immediate consequence of approximations of p–local compact groups by p–
local finite groups, we prove in Section 3 a Stable Elements Theorem for p–local
compact groups (whenever such an approximation is available). Stable Elements
Theorem has proved to be a rather powerful tool in the study of p–local finite groups,
and one would of course like to have a general proof in the compact case. In this
sense, our conjecture is that the constructions that we introduce in this paper yield
approximations by p–local finite groups for all p–local compact groups.

One could also choose a different approach to the study of fixed points in this p–local
setting. Indeed, given an unstable Adams operation ‰ acting on G , one could consider
the homotopy fixed points of BG under the natural map induced by an unstable Adams
operation acting on G , namely the homotopy pullback

X //

��

BG

�
��

BG
.id;j‰j/

// BG �BG

and apply the topological tools provided by Broto, Levi and Oliver in [5; 6] to study
the homotopy type of X . This point of view is in fact closer to the work of Broto and
Møller [8] mentioned above, and will constitute the main subject in a sequel of this
paper, where we will relate the constructions introduced in this paper and homotopy
fixed points.

The paper is organized as follows. Section 1 contains the main definitions of discrete
p–toral groups, (saturated) fusion systems, centric linking systems, transporter systems
and p–local compact groups. This section also contains the definition of unstable
Adams operations from [15]. In Section 2 we study the effect of a whole family of
unstable Adams operations acting on a fixed p–local compact group. This section is to
be considered as a set of tools that we use in the following section. Indeed, Section 3
contains the construction of the triples Gi and the proof for Theorem A above. It
also contains a little discussion about approximations of p–local compact groups by
p–local finite groups, where we prove a Stable Elements Theorem (in this particular
situation) for p–local compact groups. Section 4 is devoted to examples (Theorems B
and C above).
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1 Background on p–local compact groups

In this section, we review the definition of a p–local compact group and state some
results that we will use later on. Mostly, the contents in this section come from [7].
When this is the case, we will provide a reference where the reader can find a proof, in
order to simplify the exposition of this paper.

1.1 Discrete p–toral groups and fusion systems

Definition 1.1 A discrete p–torus is a group T isomorphic to a finite direct product
of copies of Z=p1 .

A discrete p–toral group P is an extension of a finite p–group � by a discrete
p–torus T . For such a group, we call T Š .Z=p1/r the maximal torus of P , and
define the rank of P as r .

Discrete p–toral groups were characterized in [7, Proposition 1.2] as those groups
satisfying the descending chain condition and such that every finitely generated subgroup
is a finite p–group.

In this paper we will deal with some infinite groups. For an infinite group G , we say
that G has Sylow p–subgroups if G contains a discrete p–toral group S such that
any finite p–subgroup of G is G –conjugate to a subgroup of S .

For a group G and subgroups P;P 0�G , define NG.P;P
0/Dfg2G jg �P �g�1�P 0g

and HomG.P;P
0/DNG.P;P

0/=CG.P /. Fusion systems over discrete p–toral groups
are defined just as they were defined in the finite case.
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Definition 1.2 A fusion system F over a discrete p–toral group S is a category whose
objects are the subgroups of S and whose morphism sets HomF .P;P

0/ satisfy the
following conditions:

(i) HomS .P;P
0/� HomF .P;P

0/� Inj.P;P 0/ for all P;P 0 � S .

(ii) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Given a fusion system F over a discrete p–toral group S , we will often refer to T

also as the maximal torus of F , and the rank of F will then be the rank of the discrete
p–toral group S . Two subgroups P;P 0 are called F –conjugate if IsoF .P;P 0/¤∅.
For a subgroup P � S , we denote

PF
D fP 0 � S j P 0 is F-conjugate to Pg:

For a discrete p–toral group P , the order of P was defined in [7] as the pair jP j D
.rk.P /; jP=TP j/, where TP is the maximal torus of P . Thus, given two discrete
p–toral groups P and Q we say that jP j � jQj if either rk.P / < rk.Q/, or rk.P /D
rk.Q/ and jP=TP j � jQ=TQj.

Definition 1.3 Let F be a fusion system over a discrete p–toral group S . A subgroup
P �S is called fully F –normalized, resp. fully F –centralized, if jNS .P

0/j� jNS .P /j,
resp. jCS .P

0/j � jCS .P /j, for all P 0 � S which is F –conjugate to P .

The fusion system F is called saturated if the following three conditions hold:

(I) For each P � S which is fully F –normalized, P is fully F –centralized,
OutF .P / is finite and OutS .P / 2 Sylp.OutF .P //.

(II) If P � S and f 2HomF .P;S/ is such that P 0D f .P / is fully F –centralized,
then there exists zf 2 HomF .Nf ;S/ such that f D zf jP , where

Nf D fg 2NS .P /jf ı cg ıf
�1
2 AutS .P 0/g:

(III) If P1 � P2 � P3 � � � � is an increasing sequence of subgroups of S , with
P D

S1
nD1 Pn , and if f 2Hom.P;S/ is any homomorphism such that f jPn

2

HomF .Pn;S/ for all n, then f 2 HomF .P;S/.

Let .S;F/ be a saturated fusion system over a discrete p–toral group. Note that, by
definition, all the automorphism groups in a saturated fusion system are artinian and
locally finite. The condition in axiom (I) of OutF .P / being finite is in fact redundant,
as was pointed out in [7, Lemmas 2.3 and 2.5], where the authors show that the set
RepF .P;Q/D Inn.Q/ nHomF .P;Q/ is finite for all P;Q 2 Ob.F/.
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Given a discrete p–toral group S and a subgroup P �S , we say that P is centric in S ,
or S –centric, if CS .P /DZ.P /. We next define F –centric and F –radical subgroups.

Definition 1.4 Let F be a saturated fusion system over a discrete p–toral group. A
subgroup P � S is called F –centric if all the elements of PF are centric in S :

CS .P
0/DZ.P 0/ for all P 0 2 PF :

A subgroup P � S is called F –radical if OutF .P / contains no nontrivial normal
p–subgroup:

Op.OutF .P //D f1g:

Clearly, F –centric subgroups are fully F –centralized, and conversely, if P is fully
F –centralized and centric in S , then it is F –centric.

There is, of course, a big difference between working with finite p–groups and with
discrete p–toral groups: the number of conjugacy classes of subgroups. Fortunately,
in [7] the authors came out with a way of getting rid of infinitely many conjugacy
classes while keeping the structure of a given fusion system.

This construction will be rather important in this paper, and we reproduce it here for the
sake of a better reading. Let then .S;F/ be a saturated fusion system over a discrete
p–toral group, and let T be the maximal torus of F and W D AutF .T /.

Definition 1.5 Let F be a saturated fusion system over a discrete p–toral group S ,
and let e denote the exponent of S=T ,

e D exp.S=T /Dminfpk
j xpk

2 T for all x 2 Sg:

(i) For each P � T , let

I.P /D ft 2 T j !.t/D t for all ! 2W such that !jP D idP g;

and let I.P /0 denote its maximal torus.

(ii) For each P � S , set P Œe� D fxpe

j x 2 Pg � T , and let

P� D P � I.P Œe�/0 D fxt j x 2 P; t 2 I.P Œe�/0g:

(iii) Set H� D fP� j P 2 Fg and let F� be the full subcategory of F with object
set Ob.F�/DH� .

The following is a summary of [7, Section 3].

Algebraic & Geometric Topology, Volume 12 (2012)



Unstable Adams operations acting on p–local compact groups and fixed points 873

Proposition 1.6 Let F be a saturated fusion system over a discrete p–toral group S .

(i) The set H� contains finitely many S –conjugacy classes of subgroups of S .

(ii) Every morphism .f W P ! Q/ 2 Mor.F/ extends uniquely to a morphism
f �W P�!Q� .

This makes . /�W F ! F� into a functor. This functor is an idempotent functor
(.P�/� D P� ), carries inclusions to inclusions (P� �Q� whenever P �Q), and is
left adjoint to the inclusion F� � F .

Finally, we state Alperin’s fusion theorem for saturated fusion systems over discrete
p–toral groups.

Theorem 1.7 [7, Theorem 3.6] Let F be a saturated fusion system over a discrete
p–toral group S . Then, for each f 2 IsoF .P;P 0/ there exist sequences of subgroups
of S

P D P0;P1; : : : ;Pk D P 0 and Q1; : : : ;Qk ;

and elements fj 2 AutF .Qj / such that

(i) for each j , Qj is fully normalized in F , F –centric and F –radical;

(ii) also for each j , Pj�1;Pj �Qj and fj .Pj�1/D Pj ;

(iii) f D fk ıfk�1 ı � � � ıf1 .

It is also worth mentioning the alternative set of saturation axioms provided by R Kessar
and R Stancu [16], since it will be useful in later sections. Let F be a fusion system
over a finite p–group S , and consider the following conditions:

(I’) OutS .S/ 2 Sylp.OutF .S//.

(II’) Let f W P!S be a morphism in F such that P 0Df .P / is fully F –normalized.
Then, f extends to a morphism zf W Nf ! S in F , where

Nf D fg 2NS .P /jf ı cg ıf
�1
2 AutS .P 0/g:

The following result is a compendium of [16, Appendix A].

Proposition 1.8 Let F be a fusion system over a finite p–group S . Then, F is
saturated (in the sense of Definition 1.3) if and only if it satisfies axioms (I’) and (II’)
above.

A more general version of this result for fusion systems over discrete p–toral groups
was proved in the doctoral thesis [13] of the author of this paper, but is of no use here.

Algebraic & Geometric Topology, Volume 12 (2012)



874 Alex González

1.2 Linking systems and transporter systems

Linking systems are the third and last ingredient needed to form a p–local compact
group.

Definition 1.9 Let F be a saturated fusion system over a discrete p–toral group S .
A centric linking system associated to F is a category L whose objects are the
F –centric subgroups of S , together with a functor

�W L �! Fc

and “distinguished” monomorphisms ıP W P !AutL.P / for each F –centric subgroup
P � S , which satisfy the following conditions.

(A) � is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P;P 0 2 L, Z.P / acts freely on MorL.P;P 0/ by composition
(upon identifying Z.P / with ıP .Z.P //�AutL.P /), and � induces a bijection

MorL.P;P 0/=Z.P /
Š
�! HomF .P;P

0/:

(B) For each F –centric subgroup P �S and each g2P , � sends ıP .g/2AutL.P /
to cg 2 AutF .P /.

(C) For each ' 2 MorL.P;P 0/ and each g 2 P , the following square commutes
in L:

P
' //

ıP .g/

��

P 0

ıP 0 .h/

��
P '

// P 0

where hD �.'/.g/.

A p–local compact group is a triple G D .S;F ;L/, where S is a discrete p–toral
group, F is a saturated fusion system over S , and L is a centric linking system
associated to F . The classifying space of G is the p–completed nerve

BG def
D jLj^p :

Given a p–local compact group G , the subgroup T � S will be called the maximal
torus of G , and the rank of G will then be the rank of the discrete p–toral group S .

We will in general denote a p–local compact group just by G , assuming that S is its
Sylow p–subgroup, F is the corresponding fusion system, and L is the corresponding
linking system.
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As expected, the classifying space of a p–local compact group behaves “nicely”,
meaning that BG D jLj^p is a p–complete space (in the sense of A K Bousfield
and D M Kan [2]) whose fundamental group is a finite p–group, as proved in [7,
Proposition 4.4].

Next we state some properties of linking systems. We start with an extended version of
[7, Lemma 4.3].

Lemma 1.10 Let G be a p–local compact group. Then, the following holds.

(i) Fix morphisms f 2HomF .P;Q/ and f 0 2HomF .Q;R/, where P;Q;R 2 L.
Then, for any pair of liftings '0 2 ��1

Q;R
.f 0/ and ! 2 ��1

P;R
.f 0 ı f /, there is a

unique lifting ' 2 ��1
P;Q

.f / such that '0 ı' D ! .

(ii) All morphisms in L are monomorphisms in the categorical sense. That is, for all
P;Q;R2L and all '1; '2 2MorL.P;Q/,  2MorL.Q;R/, if  ı'1D ı'2

then '1 D '2 .

(iii) For every morphism ' 2MorL.P;Q/ and every P0;Q0 2 L such that P0 � P ,
Q0 �Q and �.'/.P0/�Q0 , there is a unique morphism '0 2MorL.P0;Q0/

such that ' ı �P0;P D �Q0;Q ı '0 . In particular, every morphism in L is a
composite of an isomorphism followed by an inclusion.

(iv) All morphisms in L are epimorphisms in the categorical sense. In other words,
for all P;Q;R 2 L and all ' 2 MorL.P;Q/ and  1;  2 2 MorL.Q;R/, if
 1 ı' D  2 ı' then  1 D  2 .

Proof Since the functor �W L! Fc is both source and target regular (in the sense of
[19, Definition A.5]) by axiom (A) of linking systems, the proof for [19, Lemma 3.2]
applies in this case as well.

Let G be a p–local compact group, and, for each P 2 L fix a lifting of inclSP W P ! S

in L, �P;S 2 MorL.P;S/. Then, by the above Lemma, we may complete this to
a family of inclusions f�P;P 0g in a unique way and such that �P;S D �P 0;S ı �P;P 0

whenever it makes sense.

Lemma 1.11 Fix such a family of inclusions f�P;P 0g in L. Then, for each P;P 0 2 L,
there are unique injections

ıP;P 0 W NS .P;P
0/ �!MorL.P;P 0/

such that

(i) �P 0;S ı ıP;P 0.g/D ıS .g/ ı �P;S , for all g 2NS .P;P
0/;

(ii) ıP is the restriction to P of ıP;P .
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Proof The proof for the corresponding result on p–local finite groups [5, Proposi-
tion 1.11] also applies here, using Lemma 1.10(i) instead of [5, Proposition 1.10(a)].

We now introduce transporter systems. The notion that we present here was first used
by B Oliver and J Ventura in [19] as a tool to study certain extensions of p–local finite
groups. In this sense, most of the results in [19] can be extended to the compact case
without restriction, as proved in the thesis [13], but we will not make use of such results
in this paper. More details can be found in [13].

Let G be an artinian locally finite group with Sylow p–subgroups, and fix S 2Sylp.G/.
We define TS .G/ as the category whose object set is Ob.TS .G// D fP � Sg, and
such that

MorTS .G/.P;P
0/DNG.P;P

0/D fg 2G j gPg�1
� P 0g:

For a subset H � Ob.TS .G//, TH.G/ denotes the full subcategory of TS .G/ with
object set H .

Definition 1.12 Let F be a fusion system over a discrete p–toral group S . A
transporter system associated to F is a category T such that

(i) Ob.T /� Ob.F/;

(ii) for all P 2 Ob.T /, AutT .P / is an artinian locally finite group;

together with a couple of functors

TOb.T /.S/
"
�! T

�
�! F ;

satisfying the following axioms:

(A1) Ob.T / is closed under F –conjugacy and overgroups. Also, " is the identity on
objects and � is inclusion on objects.

(A2) For each P 2 Ob.T /, let

E.P /D Ker.AutT .P /! AutF .P //:

Then, for each P;P 0 2 Ob.T /, E.P / acts freely on MorT .P;P 0/ by right
composition, and �P;P 0 is the orbit map for this action. Also, E.P 0/ acts freely
on MorT .P;P 0/ by left composition.

(B) For each P;P 0 2 Ob.T /, "P;P 0 W NS .P;P
0/!MorT .P;P 0/ is injective, and

the composite �P;P 0 ı "P;P 0 sends g 2NS .P;P
0/ to cg 2 HomF .P;P

0/.
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(C) For all ' 2MorT .P;P 0/ and all g 2P , the following diagram commutes in T :

P
' //

"P;P .g/

��

P 0

"P 0;P 0 .�.'/.g//

��
P '

// P 0

(I) AutT .S/ has Sylow p–subgroups, and "S;S .S/ 2 Sylp.AutT .S//.

(II) Let ' 2 IsoT .P;P 0/, and P C R� S , P 0 C R0 � S such that

' ı "P;P .R/ ı'
�1
� "P 0;P 0.R

0/:

Then, there is some z' 2MorT .R;R0/ such that z' ı "P;R.1/ D "P 0;R0.1/ ı ' ,
that is, the following diagram is commutative in T :

P
' //

"P;R.1/

��

P 0

"P 0;R0 .1/

��
R

z"

// R0

(III) Let P1 � P2 � � � � be an increasing sequence of subgroups in Ob.T /, and
P D

S1
nD1 Pn . Suppose in addition that there exists  n 2MorT .Pn;S/ such

that
 n D  nC1 ı "Pn;PnC1

.1/

for all n. Then, there exists  2MorT .P;S/ such that  n D  ı "Pn;P .1/ for
all n.

Given a transporter system T , the classifying space of T is the space BT def
D jT j^p .

Note that, in axiom (III), P is an object in Ob.T /, since Ob.T / is closed under
F –conjugacy and overgroups. As in [19], the axioms are labelled to show their relation
with the axioms for linking and fusion systems respectively. Note that, whenever S is
a finite p–group, the above definition agrees with that in [19].

Proposition 1.13 Let G D .S;F ;L/ be a p–local compact group. Then, L is a
transporter system associated to F .

Proof The usual projection functor �W L! F in the definition of a linking system
plays also the role of the projection functor in the definition of transporter system. Also,
in Lemma 1.11 we have defined a functor "W TOb.L/.S/! L. It remains to check that
L satisfies the axioms in Definition 1.12.
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(A1) This follows from axiom (A) on L.

(A2) By axiom (A) on L, we know that, for all P;P 0 2 L, E.P / D Z.P / acts
freely on MorL.P;P 0/ and that �P;P 0 is the orbit map of this action. Thus, we have to
check that E.P 0/DZ.P 0/ acts freely on MorL.P;P 0/. Suppose '2MorL.P;P 0/ and
x 2E.P 0/ are such that "P 0.x/ı'D' . Then, x centralizes �.'/.P /, so xD�.'/.y/

for some y 2 Z.P /, since P is F –centric. Hence, ' D ıP 0.x/ ı ' D ' ı ıP .y/ by
axiom (C) for linking systems, and thus by axiom (A) we deduce that y D 1, x D 1

and the action is free.

(B) By construction of the functor ", we know that "P;P 0 W NS .P;P
0/�!MorL.P;P 0/

is injective for all P;P 0 2 L. Thus, we have to check that the composite �P;P 0 ı "P;P 0

sends g 2 NS .P;P
0/ to cg 2 HomS .P;P

0/. Note that the following holds for any
P;P 0 2 L and any x 2NS .P;P

0/:

�P 0 ı "P;P 0.x/D "P 0;S .1/ ı "P;P 0.x/D "S .x/ ı "P;S .1/D ıS .x/ ı �P

and hence so does the following on F :

inclSP 0 ı�P;P 0."P;P 0.x//D �P;S .�P 0 ı "P;P 0.x//D �P;S .ıS .x/ ı �P /D cx :

(C) This follows from axiom (C) for linking systems.

(I) The group AutL.S/ has Sylow subgroups by [7, Lemma 8.1], since ı.S/ is normal
in it and has finite index prime to p . This also proves that ı.S/ is a Sylow p–subgroup.

(II) Let '2 IsoL.P;P 0/, P CR, P 0CR0 be such that 'ı"P;P .R/ı'�1�"P 0;P 0.R
0/.

We want to see that there exists z' 2MorL.R;R0/ such that z'ı"P;R.1/D "P 0;R0.1/ı' .
Since P 0 is F –centric, it is fully F –centralized. Then, we may apply axiom (II)
for fusion systems to the morphism f D �.'/, that is, f extends to some zf 2
HomF .Nf ;S/, where

Nf D fg 2NS .P /jfcgf
�1
2 AutS .P 0/g;

and clearly R�Nf . Hence, zf restricts to a morphism in HomF .R;S/. Furthermore,
zf .R/�R0 since f conjugates AutR.P / into AutR0.P 0/.

Now, .�P 0;R0 ı'/ 2MorL.P;R0/ is a lifting in L for inclR
0

P 0 ıf 2 HomF .P;R
0/, and

we can fix a lifting  2 MorL.R;R0/ for zf . Thus, by Lemma 1.10(i) there exists
a unique z� 2 MorL.P;R/, a lifting of inclRP , such that �P 0;R0 ı ' D  ı z�. Since
�.z�/D inclRP D �.�P;R/, by axiom (A) it follows that there exists some z 2Z.P / such
that z� D �P;R ı ıP .z/ D ıR.�.�P;R/.z// ı �P;R , where the second equality holds by
axiom (C). Hence �P 0;R0 ı' D . ı ıR.�.�P;R/.z/// ı �P;R .
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(III) Let P1 � P2 � � � � be an increasing sequence of objects in L, P D[Pn , and
'n 2 MorL.Pn;S/ satisfying 'n D 'nC1 ı �Pn;PnC1

for all n. We want to see that
there exists some ' 2MorL.P;S/ such that 'n D ' ı �Pn;P for all n.

Set fnD �.'n/ for all n. Then, by hypothesis, fnD fnC1ı inclPnC1

Pn
for all n. Now, it

is clear that ffng forms a nonempty inverse system, and there exists f 2HomF .P;S/

such that fn D f jPn
for all n (the existence follows from [21, Proposition 1.1.4], and

the fact that f is a morphism in F follows from axiom (III) for fusion systems).

Consider now the following commutative diagram (in F ):

P

f

��
P1

incl
>>

f1

// S

The same arguments used to prove that axiom (II) for transporter systems holds
on L above apply now to show that there exists a unique ' 2MorL.P;S/ such that
'1D'ı�P1;P . Combining this equality with '1D'2ı�P1;P2

and Lemma 1.10(iv) (mor-
phisms in L are epimorphisms in the categorical sense), it follows that '2 D ' ı �P2;P .
Proceeding by induction it now follows that ' satisfies the desired condition.

Finally we state [19, Proposition 3.6], deeply related to [3, Theorem A]. These two
results are only suspected to hold in the compact case, but yet no proof has been
published. Before stating the result, we introduce some notation. For a finite group G ,
the subgroup Op.G/�G is the maximal normal p–subgroup of G .

Definition 1.14 Let F be a fusion system over a finite p–group S , and let H�Ob.F/
be a subset of objects. Then, we say that F is H–generated if every morphism in F
is a composite of restrictions of morphisms in F between subgroups in H , and we say
that F is H–saturated if the saturation axioms hold for all subgroups in the set H .

Proposition 1.15 [19, Proposition 3.6] Let F be a fusion system over a finite p–
group S (not necessarily saturated), and let T be a transporter system associated to F .
Then, F is Ob.T /–saturated. If F is also Ob.T /–generated, and if Ob.T /�Ob.Fc/,
then F is saturated. More generally, F is saturated if it is Ob.T /–generated, and every
F –centric subgroup P � S not in Ob.T / is F –conjugate to some P 0 such that

OutS .P 0/\Op.OutF .P 0//¤ f1g:
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1.3 Unstable Adams operations on p–local compact groups

To conclude this section, we introduce unstable Adams operations for p–local compact
groups and their main properties. Basically, we summarize the work of F Junod, R Levi
and A Libman [15] in order to give the proper definition of such operations and the
main properties that we will use in later sections.

Let .S;F/ be a saturated fusion system over a discrete p–toral group, and let � W S!S

be a fusion preserving automorphism (that is, for each f 2Mor.F/, the composition
� ıf ı��1 2Mor.F/). The automorphism � naturally induces a functor on F , which
we denote by �� , by setting ��.P /D �.P / on objects and ��.f /D � ı f ı ��1 on
morphisms.

Definition 1.16 Let GD .S;F ;L/ be a p–local compact group and let � be a p–adic
unit. An unstable Adams operation on G of degree � is a pair . ;‰/, where  is a
fusion preserving automorphism of S , ‰ is an automorphism of L, and such that

(i)  restricts to the � power map on T and induces the identity on S=T ;

(ii) for any P 2 Ob.L/, ‰.P /D  .P /;

(iii) � ı‰ D  � ı � , where �W L! F is the projection functor;

(iv) for each P;Q 2 Ob.L/ and all g 2NS .P;Q/,

‰.ıP;Q.g//D ı .P/; .Q/. .g//:

In particular, ‰ is an isotypical automorphism of L in the sense of [7].

For a p–local compact group G , let Ad.G/ be the group of unstable Adams operations
on G , with group operation the composition and the identity functor as its unit. Also,
for a positive integer m, let �m.p/� .Z^p/

� denote the subgroup of all p–adic units �
of the form 1CpmZ^p .

Next, we state the existence of unstable Adams operations for all p–local compact
groups. The following result corresponds to the second part of [15, Theorem 4.1].

Theorem 1.17 Let G be a p–local compact group. Then, for any sufficiently large
positive integer m there exists a group homomorphism

(1) ˛W �m.p/ �! Ad.G/

such that for each � 2 �m.p/, ˛.�/D . ;‰/ has degree � .
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The following result, stated as [15, Corollary 4.2], will be repeatedly used in the
forthcoming section.

Proposition 1.18 Let G be a p–local compact group, and let P � Ob.L/ and M�
Mor.L/ be finite subsets. Then, for any sufficiently large positive integer m, and for
each � 2 �m.p/, the group homomorphism ˛ from (1) satisfies ˛.�/.P / D P and
˛.�/.'/D ' for all P 2 P and all ' 2M.

Remark 1.19 Let . ;‰/ be an unstable Adams operation on a p–local compact
group G . By point (iv) in Definition 1.16, ‰ ı ıS D ı ı W S ! AutL.S/, and hence
the automorphism  is completely determined by ‰ . Thus, for the rest of this paper
we will make no mention of  (unless necessary) and refer to the unstable Adams
operation . ;‰/ just by ‰ .

2 Families of operations and invariance

Let G be a p–local compact group, and let ‰ be an unstable Adams operation on G .
The degree of ‰ will not be relevant in any of the constructions introduced in this
section, and thus we will make no reference to it.

Let S‰ � S be the subgroup of fixed elements of S under the fusion preserving
automorphism  W S ! S , that is,

S‰ D fx 2 S j  .x/D xg;

and more generally, for a subgroup P � S , let P‰ D P \S‰ .

Remark 2.1 The action of ‰ on the fusion system F is somehow too crude to allow
us to see any structure on the fixed points, since for each H � S‰ ,

AutF .H /‰
def
D ff 2 AutF .H / j  �.f /D f g D AutF .H /:

We look then for fixed points in L.

Lemma 2.2 Let 'W P !Q be a ‰–invariant morphism in L. Then, �.'/ restricts to
a morphism f W P‰!Q‰ in the fusion system F .

Proof This follows by axiom (C) for linking systems, applied to each ı.x/2 ı.P‰/�

AutL.P /, since then both ı.x/ and ' are ‰–invariant morphisms in L.
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The above Lemma justifies then defining the fixed points subcategory of L as the
subcategory L‰ with object set Ob.L‰/ D fP 2 Ob.L/ j ‰.P / D Pg and with
morphism sets

MorL‰ .P;Q/D f' 2MorL.P;Q/ j‰.'/D 'g:

We can also define the fixed points subcategory of F as the subcategory F‰ with
object set the set of subgroups of S‰ , and such that

Mor.F‰/D hf�.'/ j ' 2Mor.L‰/gi:

The category F‰ is, by definition, a fusion system over the finite p–group S‰ , but
the category L‰ is far from being a transporter system associated to it.

Remark 2.3 This way of considering fixed points has many disadvantages. For in-
stance, there is no control on the morphism sets HomF‰ .P;Q/, since given a subgroup
H � S‰ there might be several subgroups P 2 Ob.L‰/ such that P \S‰ DH . It
becomes then rather difficult to check any of the saturation axioms on F‰ . Another
issue is the absence of an obvious candidate of a transporter system associated to F‰ .

To avoid the problems listed in Remark 2.3, we can try different strategies. For instance,
instead of considering a single operation ‰ acting on G , we can consider a (suitable)
family of operations f‰igi2N on G . This will be specially useful when proving that
certain properties hold after suitably increasing the power of ‰ . The situation is
improved when we restrict our attention to the full subcategory L� � L, since, by [15],
unstable Adams operations are completely determined by its action on L� . We can also
restrict the morphism sets that we consider as fixed by imposing stronger invariance
conditions.

2.1 A family of operations

Starting from the unstable Adams operation ‰ , we consider an specific family of
operations which will satisfy our purposes. Set first ‰0 D‰ , and let ‰iC1 D .‰i/

p ,
that is, the operation ‰i iterated p times. Consider the resulting family f‰igi2N fixed
for the rest of this section, and note that, if an object or a morphism in L is fixed by ‰i

for some i , then it is fixed by ‰j for all j � i .

Remark 2.4 By [15, Corollary 4.2], we may assume there exist a subset H�Ob.L�/
of representatives of the S –conjugacy classes in L� and a set �MDSP;R2H

�MP;R ,
where �MP;R � IsoL.P;R/ is a set of representatives of the elements in RepF .P;R/,
and such that
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(i) ‰.P /D P for all P 2 P ;

(ii) ‰.'/D ' for all ' 2 �M.

Let us also fix some notation. For each i , set

Si
def
D fx 2 S j‰i.x/D xg;

and more generally, for each subgroup R � S , set Ri D R\ Si . In particular, the
notation Ti means the subgroup of T (the maximal torus) of fixed elements under ‰i

rather than the subgroup of T of exponent pi . There will not be place for confusion
about such notation in this paper.

Lemma 2.5 For each i , Ti ˆ TiC1 , and hence T D
S

i2N Ti .

As a consequence, we deduce the following.

Proposition 2.6 The following holds in L.

(i) Let P 2 Ob.L/. Then, there exists some MP such that, for all i �MP , P is
‰i –invariant.

(ii) Let ' 2Mor.L/. Then, there exists some M' such that, for all i �M' , ' is
‰i –invariant.

Next we provide a tool to detect ‰i –invariant morphisms in L� . Note that, for any
morphism ' 2Mor.L/, the following holds by [7, Proposition 3.3].

‰i.'/D ' H) ‰i.'
�/D '�:

Our statement is proved by comparing morphisms in L� to the representatives fixed
in �M, which we know to be ‰i –invariant (for all i ) a priori.

Lemma 2.7 Let P;R be representatives fixed in Remark 2.4, and let Q 2 PS and
Q0 2 RS . Then, a morphism '0 2 IsoL.Q;Q0/ is ‰i –invariant if and only if for all
a 2NS .P;Q/ there exist b 2NS .R;Q

0/ and a morphism ' 2 �MP;R such that

(i) '0 D ı.b/ ı' ı ı.a�1/;

(ii) ı.b�1 �‰i.b// ı' D ' ı ı.a
�1 �‰i.a//.

Proof Note that condition (ii) above is equivalent to

(ii’) ı.‰i.b/ � b
�1/ ı'0 D '0 ı ı.‰i.a/ � a

�1/.
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Suppose first that '0 is ‰i –invariant. Choose x 2NS .P;Q/ and y 2NS .R;Q
0/, and

set � D ı.y�1/ ı '0 ı ı.x/. Then, there exist ' 2 �MP;R such that Œ�.'/�D Œ�.�/� 2
RepF .P;R/ and z 2R such that ' D ı.z/ ı� .

Let then aD x 2NS .P;Q/ and b D y � z�1 2NS .R;Q
0/. This way, condition (i) is

satisfied, and we have to check that condition (ii) is also satisfied. Since both ' and '0

are ‰i –invariant, we may apply ‰i to (i) to get the equality

ı.b/ ı' ı ı.a�1/D '0 D‰i.'
0/D ı.‰i.b// ı' ı ı.‰i.a/

�1/;

which is clearly equivalent to condition (ii) since morphisms in L are epimorphisms in
the categorical sense.

Suppose now that condition (i) and (ii) are satisfied for certain a, b and ' . Write
' D ı.b�1/ ı'0 ı ı.a/ and apply ‰i to this equality. Since ' is ‰i –invariant, we get

ı.‰i.b/
�1/ ı‰i.'

0/ ı ı.‰i.a//D ı.b
�1/ ı'0 ı ı.a/:

Thus, after reordering the terms in this equation and using condition (ii’) above, we
obtain

‰i.'
0/ ı ı.‰i.a/ � a

�1/D '0 ı ı.‰i.a/ � a
�1/;

which implies that ‰i.'
0/D '0 since morphisms in L are epimorphisms in the cate-

gorical sense.

2.2 A stronger invariance condition

Given an arbitrary ‰i –invariant object P in L� , there is no way a priori of relating Pi

to P , not to say of comparing CS .Pi/ or NS .Pi/ to CS .P / or NS .P / respectively.
This turns out to be crucial if we want to study fixed points on G under the operation ‰i .
This is the reason why we now introduce a stronger invariance condition for an object
in L� to be ‰i –invariant. This is a condition on all objects in F� .

Definition 2.8 Let K � S be a subgroup. We say that a subgroup P 2 Ob.F�/ is
K–determined if

.P \K/� D P:

For a K–determined subgroup P � S we call the subgroup P \K the K–root of P .

Our interest lies on the case K D Si , in which case ‰i –invariance is a consequence.

Lemma 2.9 Let P 2 Ob.F�/ be an Si –determined subgroup for some i . Then, P is
‰i –invariant.
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Proof Note that, if .Pi/
� D P , then P D Pi � TP , where TP is the maximal torus

of P , since Pi is a finite subgroup of P . Thus, by applying ‰i to P , we get

‰i.P /D‰i.Pi �TP /D Pi �TP D P;

since ‰i.x/D x for all x 2 Pi and ‰i.TP /D TP by definition of ‰i .

We prove now that actually Si –determined subgroups exist (for i big enough).

Lemma 2.10 Let P 2 Ob.F�/. Then, there exists some MP � 0 such that, for all
i �MP , P is Si –determined.

Proof Let TP be the maximal torus of P , and note that P D[Pi . Thus, there exists
some M such that, for all i �M , Ri contains representatives of all the elements of
the finite group R=TR .

Since P� D P and AutF .T / is a finite group, it follows then that there must exist
some MP �M such that, for all i �MP , .Pi/

� D P .

We can then assume that all the objects fixed in Remark 2.4 are Si –determined for
all i , since there are only finitely many of them in the set H .

One must be careful at this point. Given P;R Si –determined subgroups, if Pi and Ri

are F –conjugate, then the properties of . /� imply that so are P and R, but the
converse is not so straightforward.

Lemma 2.11 There exists some M1 � 0 such that, for all P 2H and all i �M1 , if
Q 2 PS is Si –determined then Qi is S –conjugate to Pi .

Proof Since H contains finitely many S –conjugacy classes of subgroups and each
S –conjugacy class contains finitely many T –conjugacy classes of subgroups, it is
enough to prove the statement for a single T –conjugacy class, say PT .

Given such subgroup P , let � DP=.P\T /�S=T , and let zP �S be the pullback of
S!S=T  � . Then, for any Q2PT , the following clearly holds: Q\T DP \T ,
Q=.Q\T /D P=.P \T / and Q� zP .

For any section � W �! zP of the projection zP ! � , let Q� D .P \T / � h�.�/i � zP .
Given a random section � , the subgroup Q� will not in general be in the T –conjugacy
class of P , but it is clear that for every Q2PT there exists some � such that QDQ� .

Now, up to T –conjugacy, the set of sections � W �! zP is in one to one correspondence
with the cohomology group H 1.� IT /, which is easily proved to be finite by an standard
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transfer argument. Thus, we can fix representatives �1; : : : ; �l of T –conjugacy classes
of sections such that Q�j

2PT for all j . For each such section, let Hj Dh�j .�/i� zP .
It is clear then that there exists some MP such that, for all i �MP , H1; : : : ;Hl � Si

and Q�1
; : : : ;Q�l

are all Si –determined.

Let now Q2PT be Si –determined. In particular, this means that there exists a section
� W � ! zP \ Si such that Q D Q� . Such a section is T –conjugate to some �j in
the list of representatives previously fixed, namely there exists some t 2 T such that
� D ct ı �j . Note that this implies that H�

def
D h�.�/i 2H T

j , and hence Q 2QT
�j

. To
finish the proof, note that Qi D .P \Ti/ �H� and .Q�j

/i D .P \Ti/ �Hj , and clearly
t 2 T conjugates .Q�j

/i to Qi .

We now prove some properties of Si –determined subgroups.

Proposition 2.12 There exists some M2 � 0 such that, for all i � M2 , if P is
Si –determined, then

CS .Pi/D CS .P /:

Proof Let X be a set of representatives of the S –conjugacy classes in Ob.F�/, and
note that this is a finite set by [7, Lemma 3.2(a)].

For any P 2 X, consider the set fTR j R 2 PSg of maximal tori of subgroups
in PS . This is a finite set, since, for any two R;Q 2 PS and any f 2 IsoF .R;Q/
the isomorphism f jTR

W TR ! TQ has to be the restriction of an automorphism of
AutF .T /, by [7, Lemma 2.4(b)], and AutF .T / is a finite group. It is clear then that
there exists some MP such that, for all i �MP and all R 2 PS ,

CS ..TR/i/D CS .TR/:

Let now i �MP and let R 2 PS be Si –determined. We can then write RDRi �TR

and Ri DRi � .TR/i , and it follows that

CS .R/D CS .Ri/\CS .TR/D CS .Ri/\CS ..TR/i/D CS .Ri/:

The proof is finished by taking M2 DmaxfMP j P 2 Xg.

The following result is an easy calculation which is left to the reader.

Lemma 2.13 Let P;Q� S be Si –determined subgroups such that Qi 2 PS
i . Then,

for all x 2NS .Pi ;Qi/,
x�1
�‰i.x/ 2 CT .P /:
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Since, for any H �K�S we have CK .H /DK\CS .H /, the following are immediate
consequences of Proposition 2.12.

Corollary 2.14 Let i �M2 and let P be Si –determined. If CS .P /D Z.P /, then
CSi

.Pi/DZ.Pi/.

Corollary 2.15 There exists some M3 � 0 such that, for all i �M3 , if Q is Si –
determined and CS .Q/‰ Z.Q/, then CSi

.Qi/‰ Z.Qi/.

Proof As usual, since Ob.F�/ contains finitely many T –conjugacy classes of sub-
groups P such that CS .P /‰ Z.P /, it is enough to prove the statement for a single
T –conjugacy class of such subgroups.

Fix such a subgroup P . We can assume that the statement holds for P , and let
z 2 CS .P / n Z.P / be such that z 2 CSi

.Pi/ n Z.Pi/ (such an element exists by
Proposition 2.12). Let now Q 2 PT be Si –determined, and let x 2 NS .Pi ;Qi/

(such an element exists by Lemma 2.11). Let also z0 D xzx�1 2 CS .Q/ nZ.Q/. If
CT .P /� .Z.P /\T /, then, by Lemma 2.11,

z � .x�1‰i.x//D .x
�1‰i.x// � z;

which implies that ‰i.z
0/ D z0 2 CSi

.Qi/ nZ.Qi/ by Lemma 2.7. In this case, let
MP DM2 as in Proposition 2.12.

On the other hand, if Z.P /\T ˆ CT .P /, then we can take the element z above to be
in CT .P / n .Z.P /\T /. It is clear then that there exists some MP such that, for all
i �MP , z 2 CTi

.P / n .Z.P /\Ti/, in which case z0 D z 2 CTi
.Q/ n .Z.Q/\Ti/.

The proof is finished then by taking M3 to be the maximum of the MP among a finite
set of representatives.

We can also relate the normalizer of Pi to the normalizer of P .

Proposition 2.16 There exists some M4 � 0 such that, for all i � M4 , if P is
Si –determined, then

NS .Pi/�NS .P /:

This is not obvious at all, since the properties of . /� only tell us that, for x 2NS .Pi/,
there exists a unique f 2 AutF .P / extending the isomorphism cx 2 AutF .Pi/.

Proof Again, it is enough to check the statement for a single S –conjugacy class of
objects in F� . Let then P be a representative of such an S –conjugacy class, and
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consider the set fTR jR 2 PSg (which is a finite set, as we have shown in the proof
for Proposition 2.12).

It follows then that there exists some M4 such that, for all i �M4 and all R 2 PS , if
g 2NS ..TR/i/ then g 2NS .TR/. The proof is finished since, for R 2 PS which is
Si –determined (i �M4 ), there is an equality RDRi �TR .

3 Strongly fixed points

Using the notion of Si –determined subgroups we introduce the strongly fixed points
of G under the action of ‰i , and prove their main properties. In particular this section
contains the proof of Theorem A.

For each i , consider the sets

(2)
H�i

def
D fR 2 Ob.L�/ jR is Si-determinedg;

Hi
def
D fRi DR\Si jR 2H�i g;

and note that the functor . /� gives a one-to-one correspondence between these two
sets. Let also �Hi be the closure of Hi by overgroups in Si . Finally, for each pair
P;R 2H�i , consider the sets

MorL;i.P;R/D f' 2MorL.P;R/ j‰i.'/D 'g;

HomF ;i.P;R/D f�.'/ j ' 2MorL;i.P;R/g:

Recall from Lemma 2.2 that, given a ‰i –invariant morphism 'W P ! R in L, the
homomorphism f D �.'/ restricts to a homomorphism fi W Pi !Ri . Thus, we can
consider, for each pair Pi ;Ri 2Hi , the set

A.Pi ;Ri/D ffi D resP
Pi
.f / j f 2 HomF ;i.P;R/g � HomF .Pi ;Ri/:

Again, the functor . /� provides a bijection from the above set to HomF ;i.P;R/.

Definition 3.1 For each i , the i –th strongly fixed points fusion system is the fusion
system Fi over Si whose morphisms are compositions of restrictions of morphisms in
fA.Pi ;Ri/ j Pi ;Ri 2Hig.

The category Fi is indeed a fusion system over Si , as well as a fusion subsystem of F .

Let Lıi be the category with object set Hi and whose morphism sets are spanned by the
sets MorL;i.P;R/, after identifying the sets Hi and H�i via . /� . The category Lıi
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is well-defined since, in fact, it can be thought as a subcategory of L, although its
actual definition will make more sense for the purposes of this paper.

We want now to close Lıi by overgroups, and one has to be careful at this step. Let
H;K 2 �Hi be arbitrary subgroups, and let P;R 2H�i be such that H � P , K �R.
We say then that a morphism ' 2MorL;i.P;R/ restricts to a morphism 'W H !K

if f D �.'/W P !R restricts to a homomorphism f jH W H !K in F . We need a
technical lemma before we define the closure of Lıi by overgroups.

Lemma 3.2 For any subgroup H � Si , the subgroup H � � S is Si –determined. If,
in addition, H 2 �Hi , then H � is F –centric.

Proof To show that H � is Si –determined, we have to prove that .H �\Si/
� DH � .

Since H �H �\Si �H � , the equality follows by applying . /� to these inequalities.
The centricity of H � when H 2 �Hi follows by definition of the set �Hi and by [7,
Proposition 2.7].

As a consequence of this result, for any H 2 �Hi , the subgroup .H �\Si/ 2Hi .

Definition 3.3 For each i , the i –th strongly fixed points transporter system is the
category Li with object set �Hi and with morphism sets

MorLi
.H;K/D f' 2MorL;i.H �;K�/ j ' restricts to a morphism 'W H !Kg:

Finally, the i –th strongly fixed points system is the triple Gi D .Si ;Fi ;Li/.

The composition rule in Li is induced by the composition rule in L, and hence is
well-defined. Li is called a transporter system since we will prove in this section that
it actually has such structure.

3.1 Properties of the strongly fixed points subsystems

We now study the properties of each of the triples Gi defined above. At some point this
will require increasing the degree of the initial operation ‰ again, and also fix some
more objects and morphisms in L, apart from those already fixed in Remark 2.4. First,
we describe some basic properties of the triples Gi , most of which are inherited from
the properties of L.

Lemma 3.4 For all i and for all Pi ;Ri 2Hi , there are equalities

(i) A.Pi ;Ri/D HomFi
.Pi ;Ri/;

(ii) MorL;i.P;R/DMorLi
.Pi ;Ri/.
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Proof By definition of Fi and Li , it is enough to show only point (ii). The proof is
done then by induction on the order of the subgroups Pi ;Ri 2Hi .

First, we consider the case Pi D Ri D Si . This case is obvious since in Hi the
subgroup Si has no overgroups. Consider now a pair Pi ;Ri ˆ Si . There is an obvious
inclusion MorL;i.P;R/�MorLi

.Pi ;Ri/ by definition of Li . On the other hand, any
morphism in MorLi

.Pi ;Ri/ is a composition of restrictions of ‰i –invariant morphisms
in L, by the induction hypothesis, and hence we have the equality.

The category Li also has associated a functor . /�i , induced by the original . /�

in L. Next we describe this functor in Li and its main properties, most of which are
identical to those of . /� . Define first . /�i on an object Hi 2 Ob.Li/ as

.Hi/
�
i

def
D .Hi/

�
\Si :

Recall that MorLi
.Hi ;Ki/D f! 2MorL;i.H �i ;K

�
i / j ! restricts to !W Hi!Kig, by

definition. Thus, on a morphism ' 2MorLi
.Hi ;Ki/, . /�i is defined as the unique

' 2MorLi
.H �i \Si ;K

�
i \Si/ which restricts to 'W Hi !Ki . Note that in particular

. /�i is the identity on Hi by construction.

Proposition 3.5 The following holds for . /�i .

(i) For all Hi � Si , ..Hi/
�
i /
�
i D .Hi/

�
i .

(ii) If Hi �Ki � Si , then .Hi/
�
i � .Ki/

�
i .

(iii) Every morphism ' 2 MorLi
.Hi ;Ki/ extends to a unique morphism .'/�i 2

MorLi
..Hi/

�
i ; .Ki/

�
i /

In particular, . /�i is a functor from Li to Lıi which is left adjoint to the inclusion
Lıi � Li .

Proof (i) Let Hi�Si be any subgroup. By Lemma 3.2, H
def
D.Hi/

� is Si –determined,
and hence

.Hi/
�
i

def
D H \Si

. /� // .H \Si/
� DH

\Si// H \Si
def
D ..Hi/

�
i /
�
i :

(ii) This property follows from [7, Lemma 3.2 (c)].

(iii) Both the existence and uniqueness of .'/�i hold by definition of Li .

It follows now that . /�i is a functor, and by Lemma 3.2, it sends objects and morphisms
in Li to objects and morphisms in Lıi . The adjointness property holds since the
restriction map

MorLi
..Hi/

�
i ;Pi/

res
�!MorLi

.Hi ;Pi/

is a bijection for all Hi 2
�Hi and all Pi 2Hi .
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Corollary 3.6 The inclusion Lıi � Li induces a homotopy equivalence

jLıi j ' jLi j:

Proof It is a consequence of [20, Corollary 1], since the inclusion Lıi �Li has a right
adjoint by Proposition 3.5.

Theorem 3.7 There exists some M‰ � 0 such that, for all i �M‰ , Li is a transporter
system associated to Fi .

Proof Clearly, each Li is a nonempty finite category with Ob.Li/ � Ob.Fi/. The
first step to prove the statement is to define the pair of functors "i W TOb.Li /.Si/! Li

and �i W Li ! Fi , but actually these two functors are naturally induced by L. Indeed,
the functor "W TOb.L/.S/! L restricts to a functor "i as above. With respect to the
functor �i , the projection functor �W L! F naturally induces a functor

�i W Li! Fi

by the rule �i.'W H ! H 0/ D resP
H
.�.'// for each morphism ' 2 MorLi

.H;H 0/

(Lemma 2.2).

We next proceed to prove that all the axioms for transporter systems in Definition 1.12
are satisfied (after considering a suitable power of ‰ ). Note first that using the
functor . /�i , it is enough to prove the axioms on the subset Hi � Ob.Li/. Recall by
Proposition 1.13 that L satisfies the axioms of a transporter system.

Axioms (A1), (A2), (B) and (C) hold by definition of Gi and by the same axioms
on L. Next we show that axiom (I) holds. By Lemma 3.4, there is an equality
AutLi

.Si/DMorL;i.S;S/�AutL.S/. Furthermore, by definition of all these groups,
and because we have fixed representatives of the elements of OutF .S/ in �M, there is
a group extension

1! ."i/Si ;Si
.Si/! AutLi

.Si/! OutF .S/! 1:

Thus, since f1g 2 Sylp.OutF .S//, the axiom follows. There is no need of checking
that axiom (III) of transporter systems holds in this case, since Li is a finite category.

Axiom (II) will be proved by steps, since we need to discard finitely many of the first
operations in f‰ig. We recall here its statement.

(II) Let ' 2 IsoLi
.Pi ;Qi/, Pi C zPi � Si and Qi C zQi � Si be such that

' ı "i. zPi/ ı '
�1 � "i. zQi/. Then, there is some z' 2MorLi

. zPi ; zQi/ such that
z' ı "i.1/D "i.1/ ı' .
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The proof of axiom (II) is then organized as follows. First, we fix a finite list of
representatives of all possible such extensions in L (up to conjugacy by an element
in S ). In the second step we prove the axiom for the representatives fixed in the set H
of Remark 2.4, and finally in the third step we prove the general case.

Step 1 We find representatives of the extensions.

Let Pi ;Qi 2 Hi , Pi C zPi , Qi C zQi and ' 2 MorLi
.Pi;Qi/ as in the statement

of axiom (II). By definition of Li and Hi , it is equivalent to consider in L the
corresponding situation: 'W P!Q such that 'ı". zP /ı'�1� ". zQ/, where P D .Pi/

� ,
Q D .Qi/

� , zP D . zPi/
� and zQ D . zQi/

� . Note that, by Lemma 3.2, the subgroups
P;Q; zP and zQ are Si –determined. We have then translated a situation in Li to a
situation in L. We will keep this notation for the rest of the proof.

Note first that if P 2 Ob.L/, then the quotient NS .P /=P is finite. Indeed, CS .P /D

Z.P /, so it follows that NS .P /=P Š .NS .P /=Z.P //=.P=Z.P // D OutS .P / �
OutF .P /, and this group is finite by axiom (I) for saturated fusion systems (or by [7,
Proposition 2.3]).

As a consequence, if we fix P;Q 2 Ob.L/ and a morphism ' 2MorL.P;Q/, then,
up to conjugacy by elements in S , there are only finitely many morphisms z'W zP ! zQ
such that P C zP , Q C zQ and z' extends ' .

Consider then the sets H and �M fixed in Remark 2.4. For each morphism 'W P !Q

fixed in �M, we can fix representatives (up to S –conjugacy) of all possible extensions
z'W zP ! zQ. Let �M be s set of all such representatives:

�M def
D fz'W zP ! zQ j ' 2 �Mg:

It is clear then that there exists some M‰ such that, for all i �M‰ , the following
holds:

(i) each extension z' in the above set is ‰i –invariant;

(ii) for each such z' , the source subgroup, zP , is Si –determined;

(iii) each zP is Si –conjugate to the corresponding representative of zPS fixed in H .

Step 2 Both P and Q are in the set H fixed in Remark 2.4.

In this case, there are '0 2 �M and x 2Q such that ' D ı.x/ ı'0 . Furthermore, since
both ' and '0 are ‰i –invariant, so is ı.x/, and hence x 2Qi . Let then z'0 2 �M be
the extension of '0 which sends zP to x � zQ �x�1 , and let

z' D ı.x/ ı z'0:
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It follows then that z'W zP ! zQ is an extension of ' , which in addition is ‰i –invariant
since both ı.x/ and z'0 are. We just have to consider the corresponding morphism
in Li to prove that axiom (II) holds in this case, since zP and zQ are Si –determined.

Step 3 One (or possibly both) of the subgroups P;Q is not in H .

Since ' is ‰i –invariant, it follows from Lemma 2.7 that there exist subgroups
R;R0 2H , a morphism '0 2 �MR;R0 , and elements a2NS .R;P / and b 2NS .R

0;Q/

such that

(i) ' D ı.b/ ı'0 ı ı.a�1/;

(ii) ı.b�1 �‰i.b// ı'
0 D '0 ı ı.a�1 �‰i.a//.

Let then zRD a�1 � zP � a and zR0 D b�1 � zQ � b , and let z'0W zR! zR0 be the extension
of '0 fixed in �M. Let also

z'
def
D ı.b/ ı z'0 ı ı.a�1/W zP ! zQ:

Since ' is ‰i –invariant, and by [7, Lemma 4.3], it follows then that z' is also
‰i –invariant. Since zP ; zQ are Si –determined, the proof is finished by considering
then the morphism induced in Li by z' .

By Corollary 3.6, the following statement is still true after replacing Ob.Li/ by the
subset Hi .

Corollary 3.8 For each i �M‰ , Fi is Ob.Li/–generated and Ob.Li/–saturated.

Proof The Ob.Li/–generation of Fi follows by definition of Gi , and the Ob.Li/–
saturation of Fi follows directly by [19, Proposition 3.6].

Next we describe an interesting property of the family fGig. Recall that, by Corollary 3.6,
each inclusion Lıi � Li induces a homotopy equivalence jLıi j ' jLi j, and the striking
point is that for each i there is also a faithful functor ‚i W Lıi ! Lı

iC1
defined by

(3)

Lıi
‚i // Lı

iC1

Pi
� // .Pi/

�\SiC1 D PiC1

' � // ':

It is easy to check that this is a well-defined functor: since Pi 2 Hi is the (unique)
Si –root of the Si –determined subgroup P 2 Ob.L�/, it follows by construction
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that PiC1 is an element of the set HiC1 , and by definition of Li and LiC1 , there is a
natural inclusion of sets

MorLi
.Pi ;Ri/�MorLiC1

.PiC1;QiC1/

for all Pi ;Qi 2Hi , which is a group monomorphism whenever Pi DQi . It follows
then that ‚i is faithful for all i .

Note that in general the functor ‚i does not induce a commutative square

Li

�i
��

‚i // LiC1

�iC1
��

�

Fi incli
// FiC1:

For instance, whenever S has positive rank, we have �iC1.‚i.Si//D .Si/
�\SiC1D

SiC1 ‰ Si D incl.�.Si//. This is not a great inconvenience, as we prove below. Let
FHi

i � Fi be the full subcategory with object set Hi , and let �i W FHi

i ! FiC1 be the
functor induced by ‚i .

Proposition 3.9 For all i , there is a natural transformation �i between the functors
incli and �i .

Proof Set �i.Pi/D Œincli.Pi/DPi ,!PiC1D .Pi/
�\Si � for each Pi 2Hi , and set

Pi
incli //

fi

��

PiC1

fiC1

��
�i.fi/

Ri incli
// RiC1

for each .fi W Pi ! Ri/ 2 Mor.FHi

i /, where fiC1 D res.Pi /
�

PiC1
..fi/

�/. This is well-
defined since Si –roots are unique, and because of the properties of . /� . In particular,
it follows from [7, Proposition 3.3] that the above square is always commutative, and
hence �i is a natural transformation.

This way, we have a sequence of maps

� � � // jLı
i�1
j
j‚i�1j //

'
��

jLıi j
j‚i j //

'
��

jLı
iC1
j
j‚iC1j //

'
��

� � �

jLi�1j jLi j jLiC1j

and we can ask about the homotopy colimit of this sequence. Let I be the poset of
the natural numbers with inclusion, and let ‚W I ! Top be the functor defined by
‚.i/D jLıi j and ‚.i ! i C 1/D j‚i j.
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Theorem 3.10 There is a homotopy equivalence

.hocolim!I ‚/
^
p ' BG:

Proof The statement follows since, as categories, L� D
S

i2N Lıi .

We finally study the elements of a set Hi as objects in Fj for j � i .

Proposition 3.11 Let Pi 2Hi . Then, the following holds:

(i) Pi is Fi –centric.

(ii) Pi is Fj –quasicentric for all j � i .

(iii) Pi is F –quasicentric.

Proof Property (i) is a consequence of Proposition 2.12. Properties (ii) and (iii) are
consequence of the Proposition below.

Proposition 3.12 Let P � S be F –quasicentric and Si –determined for some i .

(i) Pi is F –quasicentric.

(ii) Pi is Fj –quasicentric for all j � i .

Proof The proof is done in steps.

Step 1 Let H 2 PF
i and QD .H /� . Then there are equalities

CS .H /D CS .Q/:

Indeed, for Pi the equality holds by Proposition 2.12, since P is Si –determined. Also,
since P is Si –determined, we can write

P D Pi �TP and Pi D Pi � .TP /i :

Let now H 2 PF
i , Q D .H /� , and let f 2 IsoF .Pi ;H /. Using the infinitely

p–divisibility property of TP , we can write then Q D f .Pi/ � TQ D H � TQ and
H D f .Pi/ �f ..TP /i/DH � .TQ/i . Thus,

CS .H /D CS .H /\CS ..TQ/i/D CS .H /\CS .TQ/D CS .Q/;

where the second equality holds by (the proof of) Proposition 2.12, since we had
previously fixed representatives of all the S –conjugacy classes in PF in Remark 2.4.

Step 2 For each H 2 PF
i , H is F –quasicentric.
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Let CF .H / be the centralizer fusion system of H , and note that, in particular, CF .H /

is a fusion system over CS .H / D CS .Q/. Let also f W R ! R0 be a morphism
in CF .H /. By definition of CF .H /, there is a morphism zf W R �H ! R0 �H in
CF .H / which extends f and such that it restricts to the identity on H .

By applying . /� to zf , we obtain a new morphism . zf /� which restricts to f �W .R/�!
.R0/� and to the identity on .H /�DQ. It follows then that f � is a morphism in CF .Q/.
On the other hand, there is an obvious inclusion of categories CF .Q/�CF .H /, which
is in fact an equality by the above. Since Q is F –quasicentric by hypothesis, the proof
of Step 2 is finished.

Step 3 For each j � i and each H 2 P
Fj

i , H is Fj –quasicentric.

This case follows by Step 1, together with the properties of the functor . /� , since we
can identify CFj

.H / with a subcategory of CF .H /.

3.2 Consequences of the existence of approximations by p–local finite
groups

We have skipped in the previous section the issue of the saturation of the fusion
systems Fi . This is a rather difficult question and we want to discuss it apart from the
main results. In this section we will also study some consequences of the case when
the triples Gi are p–local finite groups. Examples of this situation will be described in
the following section.

Recall that we have used [19, Proposition 3.6] to prove that for each i the fusion
system Fi is Ob.Li/–generated and Ob.Li/–saturated. Recall also that [19, Proposi-
tion 3.6] gives conditions for the fusion systems Fi to be saturated: each Fi –centric
subgroup H � Si not in Ob.Li/ has to be Fi –conjugate to some K � Si such that

(4) OutSi
.K/\Op.OutFi

.K//¤ f1g:

The disadvantage of proving the saturation of Fi by means of this result lies obviously
on the difficulty in checking the above condition, but the advantage of proving saturation
using it is also great, since in particular this would mean that all Fi –centric Fi –radical
subgroups are in Ob.Li/. Indeed, note that if there was some Fi –centric Fi –radical
not in Ob.Li/, then the category Lıi defined in the previous section could not be
extended to a whole centric linking system associated to Fi (at least in an obvious
way), and the functors ‚i would not be valid any more.

In order to check the condition above, we can consider the following two situations:

(a) H is not an Si –root, that is, H ˆ .H /�\Si ; or

(b) H is an Si –root, that is, H D .H /�\Si but .H /� is not F –centric.
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The difficult case to study is (b), but we can prove rather easily that condition (4) is
always satisfied in case (a).

Proposition 3.13 Let H � Si be an Fi –centric subgroup not in Ob.Li/ and such
that H ˆ .H /�\Si . Then, H satisfies condition (4).

Proof Let K
def
D .H /�\Si � Si . The functor . /�i provides a natural inclusion

AutFi
.H /�AutFi

.K/. Consider also the subgroup ADfcx 2AutFi
.H / jx2NK .H /g.

Via the above inclusion of automorphism groups in Fi , we can see A as

AD AutFi
.H /\ Inn.K/:

Since, by hypothesis, H ˆ K , it follows that H ˆ NK .H /, and hence Inn.H /ˆ A,
since H is Fi –centric by hypothesis.

The group AutFi
.H /, seen as a subgroup of AutFi

.K/, normalizes Inn.K/, and thus
A C AutFi

.H / and

f1g ¤A= Inn.H /�Op.OutFi
.H //:

Also, by definition of A, there is an inclusion A= Inn.H /�OutSi
.H / and this finishes

the proof.

It is still an open question whether condition (4) is satisfied in case (b) in general.

Definition 3.14 Let G be a p–local compact group, and let ‰ be an unstable Adams
operation acting on G . We say that ‰ approximates G by p–local finite groups if
there exists some M 0

‰
such that, for all i � M 0

‰
, condition (4) holds for all H 2

Ob.Fc
i /nOb.Li/. We also say then that ‰ induces an approximation of G by p–local

finite groups.

Corollary 3.15 Let G be a p–local compact group such that CS .P /‰ Z.P / for all
P 2 Ob.F�/ nOb.L�/. Then, any unstable Adams operation ‰ induces an approxima-
tion of G by p–local finite groups.

3.3 The Stable Elements Theorem

When the p–local compact group G is approximated by p–local finite groups, we can
prove a Stable Elements Theorem ([5, Theorem 5.8] for p–local finite groups) for G .
Such result holds, for instance, for the examples in the forthcoming section of this
paper.
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Proposition 3.16 Let G be a p–local compact group, and let ‰ be an unstable
Adams operation that approximates G by p–local finite groups. Then, there are natural
isomorphisms

H�.BS IFp/Š lim
 �

H�.BSi IFp/ and H�.BGIFp/Š lim
 �

H�.BGi IFp/:

Proof Let X be either BG or BS , and similarly let Xi be either BGi or BSi ,
depending on which case we want to prove. Consider also the homotopy colimit
spectral sequence for cohomology [2, XII.5.7]:

E
r;s
2
D lim
 �

r H s.Xi IFp/H)H rCs.X IFp/:

We will see that, for r � 1, E
r;s
2
D f0g, which, in particular, will imply the statement.

For each s , let H s
i DH s.Xi IFp/, and let Fi be the induced morphism in cohomology

(in degree s ) by the map j‚i j. The cohomology ring H�.Xi IFp/ is noetherian by
[5, Theorem 5.8], and in particular H s

i is a finite Fp –vector space for all s and all i .
Thus, the inverse system fH s

i IFig satisfies the Mittag-Leffler condition [22, 3.5.6],
and hence the higher limits lim

 �

r H s
i vanish for all r � 1. This in turn implies that the

differentials in the above spectral sequence are all trivial, and thus it collapses.

Theorem 3.17 (Stable Elements Theorem for p–local compact groups) Let G be a
p–local compact group, and suppose that there exists ‰ , an unstable Adams operation
on G , that approximates G by p–local finite groups. Then, the natural map

H�.BGIFp/
Š
�!H�.F/ def

D lim
 �

O.Fc/

H�. IFp/�H�.BS IFp/

is an isomorphism.

Proof Since each Gi is a p–local finite group (for i big enough), we can apply the
Stable Elements Theorem for p–local finite groups [5, Theorem 5.8]: there is a natural
isomorphism

H�.BGi IFp/
Š
�!H�.Fi/D lim

 �
O.Fc

i
/

H�. IFp/�H�.BSi IFp/

Thus, by Proposition 3.16, there are natural isomorphisms

H�.BGIFp/Š lim
 �

H�.BGi IFp/Š lim
 �

H�.Fi/� lim
 �

H�.BSi IFp/ŠH�.BS IFp/:

Furthermore, the functor . /� induces inclusions O.Fc
i / � O.Fc

iC1
/ in a similar

fashion as it induced the functors ‚i , and O.F�c/ D
S

i2N O.Fc
i /, from where it
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follows that

lim
 �

i

H�.Fi/
def
D lim
 �

i

lim
 �

O.Fc
i
/

H�. IFp/Š lim
 �

O.Fc/

H�. IFp/
def
D H�.F/:

Remark 3.18 A general proof (ie for all p–local compact groups) of the above result
would lead to a proof of [5, Theorem 6.3] in the compact case, just by doing some
minor modifications in the proof for the finite case. This in turn would allow us to
reproduce (most of) the work in [4] for p–local compact groups.

Remark 3.19 Suppose G is approximated by p–local finite groups. Then, using
Proposition 3.11, together with [3, Theorem B], we can define a zigzag

� � �

&&

jLi�1j

'�� ''

jLi j

'�� ''

jLiC1j

'��
&&

jLq
i�1
j jLq

i j
jLq

iC1
j � � �

where, for each i , Lq
i is the quasicentric linking system associated to Li defined in [3].

This yields another homotopy colimit, which is easily seen to be equivalent to that in
Theorem 3.10.

4 Examples of approximations by p–local finite groups

We discuss now some examples of p–local compact groups which are approximated
by p–local finite groups. The first example we consider is that of p–local compact
groups of rank 1, which will require rather descriptive arguments. The second example
is that of p–local compact groups induced by the compact Lie groups U.n/. In this
case, the particular action of S=T over T will be the key.

4.1 p–local compact groups of rank 1

The main goal of this section then is to prove the following.

Theorem 4.1 Let G be a p–local compact group of rank 1. Then, every unstable
Adams operation ‰ approximates G by p–local finite groups.

To prove this result we will first study some technical properties of rank 1 p–local
compact groups, and then apply these properties to show that condition (4) holds always.
This process will imply again fixing some finite list of objects and morphisms in L and
increasing the degree of ‰ so that some properties hold. The approach here is rather
exhaustive, and is not appropriate to study a more general situation. All the results
achieved in the previous section are assumed to hold already.
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Remark 4.2 Possibly the main difficulty in this section is the absence of any kind of
classification of rank 1 p–local compact groups which we could use to reduce to a
finite list of cases to study. In this sense, an attempt of a classification was made in [13,
Section 3], but only with partial results which are of no use here. Namely, the author
proved that every rank 1 p–local compact group uniquely determines a connected
rank 1 p–local compact group which is in fact derived from either S1 , SO.3/ or S3

(the last two only occurring for pD 2), but there is still no reasonable notion equivalent
to the group of components in classical Lie group theory.

Note that the above list of connected p–local compact groups does not contain the
Sullivan spheres. This is because of the notion of connectivity used, which was rather
strict but lead to stronger results, such as [13, Corollary 3.2.5], which cannot be extended
to weaker notions of connectivity.

Roughly speaking, the condition for a morphism (in L) to be ‰i –invariant is related
to the existence of morphisms (in F ) sending elements of T to elements outside T

(Lemma 2.7). Define then S0 � S as the minimal strongly F –closed subgroup of S

containing T . It is clear by definition of S0 that such subgroup (if exists) is unique.

Lemma 4.3 Let G be a p–local compact group. Then, S0 always exists. Furthermore,
each element x 2 S0 is F –subconjugate to T .

Proof To prove the existence of S0 , it is enough to consider the intersection of all
the strongly F –closed subgroups of S containing T , since the intersection of two
strongly F –closed subgroups is again strongly F –closed.

To prove the second part of the statement, let S 0
0
D[Pn , where P0 D T , and PnC1

is the subgroup of S generated by Pn together with all the elements of S which
are F –subconjugate to Pn . This is clearly an strongly F –closed subgroup, hence
S0 � S 0

0
. On the other hand, if S0 ˆ S 0

0
, then there exists x 2 S 0

0
nS0 and a morphism

f W hxi ! T in F contradicting the fact that S0 is strongly F –closed.

Next we describe the possible isomorphism types of S0 in the rank 1 case. The
following criterion will be useful.

Lemma 4.4 Let G be a p–local compact group, and let P � S be F –subconjugate
to T . Then,

CP .T /
def
D CS .T /\P D T \P:

This Lemma can be understood as follows. If x 2 S is F –conjugate to an element
in T , then either x is already an element in T or x acts nontrivially on T .
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Proof Let f W P! T be a morphism in F . We can assume without loss of generality
that P D hxi and that P 0 D f .P / is fully F –centralized, since it is a subgroup of T .
This way we can apply axiom (II) for saturated fusion systems to f to see that it
extends to a morphism zf 2 HomF .CS .P / �P;S/.

Suppose then that x acts trivially on T . In particular, T � CS .P /, and thus in
particular zf restricts to zf W T �P ! S . The infinitely p–divisibility of T and the
hypothesis on f imply then that zf .T /DT and zf .P /�T respectively, so P �T .

The above result implies that the quotient S0=T can be identified with a subgroup of
Aut.T /D GLr .Z^p/, where r is the rank of T . When r D 1,

Aut.T /Š
�

Z=2�Z^
2
; p D 2;

Z=.p� 1/�Z^p ; p > 2;

and we can prove the following.

Lemma 4.5 Let G be a rank 1 p–local compact group.

(i) If p > 2, then S0 D T .
(ii) If p D 2, then S0 has the isomorphism type of either T , D21 D

S
D2n or

Q21 D
S

Q2n .

Proof The case p > 2 is immediate, since Aut.T / does not contain any finite
p–subgroup, and hence S0=T has to be trivial. Suppose then the case p D 2. In
this case, Aut.T / contains a finite 2–subgroup isomorphic to Z=2, and hence either
S0=T D f1g or S0=T Š Z=2.

If S0=T D f1g, then S0 D T and there is nothing to prove. Suppose otherwise that
S0=T ŠZ=2. Then S0 fits in an extension T !S0!Z=2. By [17, IV.4.1; 1, II.3.8],
the group

H 2.Z=2IT � /Š Z=2

classifies all possible extensions T ! S0 ! S0=T up to isomorphism. Here, the
superindex on T means that the coefficients are twisted by the action of Z=2 on T .
Thus, up to isomorphism, there are only two possible discrete 2–toral groups of rank 1

with the desired action on T and such that S0=T Š Z=2, and the proof is finished
since both D21 and Q21 satisfy these conditions and are nonisomorphic.

The proof of Theorem 4.1 will be done by cases, depending on the isomorphism type
of S0 .

As when proving that Li is a transporter system associated to Fi (Theorem 3.7),
proving Theorem 4.1 will require fixing some finite list of objects and morphisms in F
and considering operations ‰i of degree high enough.
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Remark 4.6 More specifically, we fix

(i) a set P 0 of representatives of the S –conjugacy classes of non–F –centric objects
in F� ;

(ii) for each pair H;K 2 P 0 such that K is fully F –normalized, a set MH ;K �

HomF .H;K/ of the classes in RepF .H;K/;

(iii) for each f 2MH ;K above, an “Alperin-like” decomposition (Theorem 1.7)

(5)
L1

1 // L1 L2

2 // L2 Lk

k // Lk

R0
f1

//

??

R1

__ ??

f2

// R2

__

// � � � // Rk�1

<<

fk

// Rk

__

where R0DH , Rk DK , Lj is F –centric F –radical and fully F –normalized
for j D 1; : : : ; k , and

fR D fk ıfk�1 ı � � � ıf2 ıf1I

(iv) for each j above, a lifting 'j in L.

This is clearly a finite list, and hence by Proposition 1.18, there exists some M 0
‰
� 0

such that, for all i � M 0
‰

, all the subgroups in P 0 are Si –determined and all the
morphisms 'j are morphisms in Li .

Lemma 4.7 Let H 2P 0 be S –centric, and let K2P 0\HF be any non–S –centric ob-
ject. Then, the set HomF .H;K/ contains an element f , together with a decomposition
as (5), such that for all j D 1; : : : ; k ,

fj .CT .Rj�1//� T:

Proof Suppose first that S0 D T . Since in this case T is strongly F –closed, the
condition holds by axiom (C) for linking systems. Also if S0 ŠQ21 it is easy to see
that T1 � T (the order 2 subgroup of T ) is strongly F –closed (in fact it is F –centra),
and either CT .R/ D T or CT .R/ D T1 . In both cases then the statement follows
easily by axiom (C) of linking systems and the properties of T and T1 .

We are thus left to consider the case S0ŠD21 . Note that in this case every element in
the quotient S=S0 acts trivially on T . Also, Z.S/\T D T1 , but now this subgroup
is not strongly F –closed, and the subgroups Tn , n� 2, are all weakly F –closed (this
holds since the only elements of S0 of order 2n are all in T ).

Set for simplicity L D Lj , ' D 'j and f D fj . If CT .L/ � Tn for some n � 2,
then the condition above holds directly by axiom (C) for linking systems, since Tn is
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weakly F –closed. We can assume thus that CT .L/D T1 . Even more, if L\S0D T1 ,
then the condition above still holds since S0 is strongly F –closed.

By inspection of S0 , this leaves only one case to deal with

L0
def
D L\S0 D hx;T1i DRj�1\S0 DRj \S0 Š Z=2�Z=2

for some element x which has order 2. If we set t2 for a generator of T2 � T , then
it is also easy to check that t2 normalizes L0 , and in fact, since L=L0 acts trivially
on T , it also normalizes L;Rj�1 and Rj .

Set also t1 for the generator of T1 . The automorphism group of L0 is isomorphic to †3 ,
generated by ct2

together with an automorphism f0 of order 3 which sends t1 to x

and x to xt1 . Note that the assumption that S0 ŠD21 implies that AutF .L0/Š†3 .
For the purposes of the proof we can now assume that f restricts to f0 .

Let then ! D f �1 ı ct2
ıf �1 ı c�1

t2
. It is easy to see that ! induces the identity on

L=L0 , and by inspecting the automorphism group of L0 it follows that !jL0
D f0 .

Consider now f 0 D !�1 ı f . By definition, f 0 induces the same automorphism on
L=L0 as f , and the identity on L0 . To show that we can replace f by f 0 we have
to show that the image of Rj�1 by f and f 0 are the same:

Rj�1
f // Rj

f // R0j
c�1

t2 // R0j
f �1

// Rj

ct2 // Rj ;

where R0j D f .Rj / is normalized by t2 by the above arguments.

We can assume then that, for each pair H;K2P 0 (with CS .K/�Z.K/) the set MH ;K

fixed in Remark 4.6 contains at least a morphism f satisfying Lemma 4.7 above.

Proof (of Theorem 4.1). Recall that, after Theorem 3.7 and by [19, Proposition
3.6], we only have to prove that there exists some M 0

‰
such that, for all i �M 0

‰
,

condition (4) holds for all H 2Ob.Fc
i /nOb.Li/. Actually we will prove the following:

� there exists some M 0
‰

such that, for all i �M 0
‰

, Ob.Fc
i /D Ob.Li/.

Using the functor . /�i , it is enough to prove that there exists such M‰ such that,
for all Si –determined subgroups R, Ri is Fi –centric if and only if R is F –centric.
Recall that Corollary 2.14 proves the “if” implication in the above claim. Furthermore,
Corollary 2.15 says that if R is not S –centric, then Ri is not Si –centric.

The rest of the proof is then devoted to show that if Ri � Si is an Si –root such that
RD .Ri/

� is S –centric but not F –centric, then Ri is not Fi –centric. We can also
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assume that Ri is maximal in the sense that if Qi � Si is such that Ri ˆ Qi , then
either Qi is Fi –centric or it is not an Si –root.

Let H 2RS be the representative of this S –conjugacy class fixed in P 0 (Remark 4.6),
and let K 2 P 0 \RF be fully F –normalized. Note that both Hi and Ki are not
Fi –centric by assumption (Remark 4.6). Let f 2MH ;K be as in Lemma 4.7, and let

L1

1 // L1 L2

2 // L2 Lk

k // Lk

R0
f1

//

??

R1

__ ??

f2

// R2

__

// � � � // Rk�1

==

fk

// Rk

__

be the decomposition (5) fixed in Remark 4.6 for the morphism f , together with the
liftings 'j 2 AutL.Lj /. Let also x 2 NS .Hi ;Ri/. By Lemma 2.13, ‰i.x/x

�1 2

CT .R/, or, equivalently, �0 D x�1‰i.x/ 2 CT .Hi/D CT .H /.

We can now apply axiom (C) to '1 and the element �0 . By hypothesis (Lemma 4.7),
f1.CT .H // � T , so in particular f1.�0/D �1 for some �1 2 T . Let then t 2 T be
such that

�1 D t�1‰i.t/;

and let Q1 D tR1t�1 , L0
1
D t�1L1t and '0

1
D ı.t/ ı '1 ı ı.x

�1/ 2 AutL.L01/. It
follows from Lemma 2.7 that '0

1
is ‰i –invariant, and L0

1
(or a certain proper subgroup)

is F –centric and Si –determined.

Proceeding inductively through the whole sequence f1; : : : ; fk , we see that Fi contains
a morphism sending Ri to a subgroup Qi which is not Si –centric, and hence Ri is
not Fi –centric.

Remark 4.8 Since p–local compact groups of rank 1 are approximated by p–local
finite groups, we know (Theorem 3.17) that the Stable Elements Theorem hold for all
of them. This result was used in [5] to prove Theorem 6.3, which states that, given a
p–local finite group G , a finite group Q and a homomorphism �W Q! S such that
�.Q/ is fully centralized in F , there is a homotopy equivalence

jCL.�.Q//j
^
p

'
�!Map.BQ;BG/B�;

where CL.�.Q// is the centralizer linking system defined in [5, Appendix A].

The proof for this result in [5] used an induction step on the order of S and on the “size”
of L. However, since rank 0 p–local compact groups are just p–local finite groups,
we could use the same argument to prove the above statement for p–local compact
groups of rank 1, with some minor modifications. We have skipped it in this paper
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since it is not a general argument (it would only apply to p–local compact groups of
rank 1), and requires a rather long proof.

4.2 The unitary groups U.n/

We prove now that the p–local compact groups induced by the compact Lie groups U.n/,
n�1, are approximated by p–local finite groups. As proved in [7, Theorem 9.10], every
compact Lie group G gives rise to a p–local compact group G such that .BG/^p 'BG .

Theorem 4.9 Let G.n/ be the p–local compact group induced by the compact Lie
group U.n/. Then every unstable Adams operation ‰ approximates G.n/ by p–local
finite groups.

The key point in proving this result is the particular isomorphism type of the Sylow
subgroups of U.n/. Indeed, the Weyl group Wn of a maximal torus of U.n/ is
(isomorphic to) the symmetric group on n letters, †n . The action of Wn on the
maximal tori of U.n/ is easier to understand on the maximal torus of U.n/ formed
by the diagonal matrices, T , where it acts by permuting the n nontrivial entries of a
diagonal matrix (see Mimura and Toda [18, Section I.3] for further details). Furthermore,
the following group extension is split:

T �!NU.n/.T /
�
�!Wn:

We fix some notation. Let ftkgk�0 be a basis for Z=p1 , that is, each tk has order pk ,
and t

p

kC1
D tk for all k . Let alsoT D .Z=p1/n with basis f.t .1/

k1
; : : : ; t .n/

kn
/k1;:::;kn�0g.

This way, the symmetric group †n acts on T by permuting the superindices. In addition,
if † 2 Sylp.†n/, then S D T Ì† can be identified with the Sylow p–subgroup of
the p–local compact group G.n/.

Lemma 4.10 Let P � S . Then, CT .P / is a discrete p–subtorus of T .

Proof We proof that every element in CT .P / is infinitely p–divisible. Let � D
P=.P \T /�†�†n , and let t 2 CT .P /. Note that this means that xtx�1 D t for
all x 2 P .

In the basis that we have fixed above, tD .�1t .1/
k1
; : : : ; �nt .n/

kn
/, where the coefficients �j

are in .Z=p/� , and, for all � 2 � , if �.j /D l , then �j D �l and kj D kl .

For each orbit of the action of � in the set f1; : : : ; ng let j be a representative. Let also
tj D �j t .j/

kj
be the j –th coordinate of t , and let uj be a p–th root of tj in Z=p1 .
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We can consider the element t 0 2 T which, in the coordinate l , has the p–th root uj

which corresponds to the orbit of l in f1; : : : ; ng under the action of � . This element is
then easily seen to be a p–th root of t , as well as invariant under the action of � . Thus,
t 0 2 CT .P /, and this proves that every element in CT .P / is infinitely p–divisible.

Proof (of Theorem 4.9) We first prove the following statement:

� Let P � S . There exists some M 0
P
� 0 such that, for all i �M 0

P
, if R 2 PS

is Si –determined, then Ri is Si –conjugate to Pi .

By Lemma 2.13, for all y 2NS .Pi ;Ri/ we have y�1‰i.y/ 2 CT .Pi/. Also, since S

is Si –determined, the subgroup Si contains representatives of all the elements in †,
and hence we can assume that y 2 T .

Consider now the map

T
‰�

i // T

t
� // t�1‰i.t/:

Since T is abelian this is a group homomorphism for all i , and in fact it is epi by
the infinitely p–divisibility property of T . The kernel of ‰�i is the subgroup of fixed
elements of T under ‰i . Also, this morphism sends each cyclic subgroup of T to
itself.

It follows now by Lemma 4.10 that y 2 NS .Pi ;Ri/ has the form y D t1t2 , where
t1 2 Ti DKer.‰�i / and t2 2 CT .Pi/, and hence Ri is Si –conjugate to Pi .

In particular, since F� contains only finitely many S –conjugacy classes of non–F –
centric objects, and using the above claim, it is clear that there exists some M such
that, for all i �M and each Si –determined subgroup R, R is F –centric if and only
if Ri is Fi –centric. Hence, by [19, Proposition 3.6], it follows that for i �M the
fusion system Fi is saturated.

The arguments to prove Theorem 4.9 do not apply to any of the other families of compact
connected Lie groups. Note that SO.3/ and SU.2/ have already been considered in
Section 4.1 (although no explicit mention was made), and they are in fact examples of
the complexity of the other families.
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