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Representation stability for the cohomology of the pure
string motion groups

JENNIFER C H WILSON

The cohomology of the pure string motion group P†n admits a natural action by
the hyperoctahedral group Wn . In [6], Church and Farb conjectured that for each
k � 1 , the cohomology groups H k.P†nIQ/ are uniformly representation stable;
that is, the description of the decomposition of H k.P†nIQ/ into irreducible Wn –
representations stabilizes for n >> k . We use a characterization of H�.P†nIQ/
given by Jensen, McCammond and Meier to prove this conjecture. Using a transfer
argument, we further deduce that the rational cohomology groups of the string motion
group H k.†nIQ/ vanish for k � 1 . We also prove that the subgroup of †Cn �†n

of orientation-preserving string motions, also known as the braid-permutation group,
is rationally cohomologically stable in the classical sense.

20J06, 20C15; 20F28, 57M25

1 Introduction

Let Cn D 1[ 2[ : : :[ n be the disjoint union of n smoothly embedded, oriented,
unlinked, unknotted circles i in R3 . We define †n to be the group of motions of Cn ,
as follows: A motion of Cn is a path of diffeomorphisms ft 2 Diff.R3/ such that f0

is the identity and f1 stabilizes Cn setwise. Two motions ft;0 and ft;1 are considered
equivalent if they are smoothly isotopic through an isotopy ft;s such that f0;s and
f1;s stabilize Cn . The product of two motions ft and gt is given by

.g �f /t D

(
f2t 0� t � 1

2
;

g2t�1 ıf1
1
2
� t � 1:

With this product, the set of these homotopy classes of motions forms the string motion
group, also called the circle-braid group, with identity the stationary motion.

The string motion group †n is a generalization of the classical braid group Bn , the
motions of n points in the plane, though the circles defining †n may additionally pass
over and through each other. The analogue of the pure braid group Pn is the pure
string motion group P†n �†n , the subgroup of motions in which all circles return to
their original positions and orientations.
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The groups †n and P†n may alternatively be defined in terms of spaces of smooth
embeddings of circles into R3 , or of configurations of ‘rings’, as described in Section 2.
The structure of the group †n is described in more detail in Section 3, where it is
identified with a subgroup of automorphisms of the free group on n letters.

The quotient †n=P†n is the hyperoctahedral group Wn , the wreath product

Wn D Z=2Z oSn WD .Z=2Z/n ÌSn;

where Sn conjugates .Z=2Z/n by permuting the coordinates. The hyperoctahedral
group is also called the signed permutation group, since it may be described as the
symmetries of the set

S D ff�1; 1g; f�2; 2g; : : : ; f�n; ngg;

where the k th factor of .Z=2Z/n transposes the elements in the block f�k; kg, and Sn

permutes the n blocks. The hyperoctahedral group WnD†n=P†n acts by conjugation
on the pure string motion group P†n by relabelling and reversing the orientations of
the n circles.

The cohomology of P†n is described in Section 4. It has been studied by Collins [7],
Brownstein and Lee [5], Brady, McCammond, Meier and Miller [2], Pettet [20], Jensen,
McCammond and Meier [17] and others. As with the pure braid group, the pure string
motion group is not cohomologically stable in the classical sense: Jensen, McCammond
and Meier determined the formula

dimQ H k.P†nIQ/D
�
n�1

k

�
nk :

For each fixed k � 1, the dimension grows unboundedly with n.

In [6], Church and Farb define an alternate notion of stability, which they call representa-
tion stability. We may consider the group H k.P†nIQ/ as a rational representation of
the hyperoctahedral group Wn under the action of Wn induced by its action on P†n .
The irreducible representations of Wn over Q are classified by pairs of partitions
� D .�C; ��/ with j�Cj C j��j D n, a classification described in more detail in
Section 5. Church and Farb conjectured (see [6, Conjecture 4.8]) that, in analogy with
the pure braid group, the cohomology groups H k.P†nIQ/ stabilize in terms of their
decompositions into irreducible representations of Wn . We prove this conjecture in
Section 6.

To make sense of this statement, we need a system of classifying the irreducible
representations of Wn that is independent of n. As in [6], we write

V ..�C
1
; �C

2
; : : : ; �Cp /; .�

�
0 ; �
�
1 ; : : : ; �

�
q //n

Algebraic & Geometric Topology, Volume 12 (2012)



Representation stability for the cohomology of the pure string motion groups 911

to denote the irreducible representation of Wn associated to the double partition
.�C; ��/ of n with

�C D .n� k; �C
1
; �C

2
; : : : ; �Cp /; �� D .��0 ; �

�
1 ; : : : ; �

�
q /;

where k D .
Pp

iD1
�Ci /C .

Pq
iD0

��i /. In this notation, for example, the decomposition
of H 1.P†nIQ/ into irreducible Wn –representations is:

H 1.P†2IQ/D V
�
.0/; .1/

�
2
;

H 1.P†nIQ/D V
�
.0/; .1/

�
n
˚V

�
.1/; .1/

�
n

for all n� 3:

This decomposition stabilizes once nD 3.

A complete definition of representation stability is given in Section 5. Using this
framework, we adapt Church and Farb’s proof of the uniform representation stability of
the cohomology of Pn to a description of H k.P†nIQ/ given by Jensen, McCammond
and Meier in [17] to prove our main result:

Theorem 6.1 For each fixed k � 0, the sequence of Wn –representations

fH k.P†nIQ/gn2N

is uniformly representation stable with respect to the maps

�nW H
k.P†nIQ/!H k.P†nC1IQ/

induced by the ‘forgetful’ map P†nC1! P†n . The sequence stabilizes once n� 4k .

It is generally true that the restriction of a uniformly stable sequence of Wn –represent-
ations to the action of Sn �Wn yields a uniformly representation stable sequence of
Sn –representations, a result that we prove in a forthcoming paper. However, by using
the same method of proof as for Theorem 6.1, we prove uniform representation stability
of the sequences H k.P†nIQ/ with respect to the action of Sn with an improved
stable range.

Theorem 6.4 For each fixed k � 0, the sequence of groups

fH k.P†nIQ/gn2N ;

considered as Sn –representations, is uniformly representation stable with respect to the
maps

�nW H
k.P†nIQ/!H k.P†nC1IQ/

induced by the ‘forgetful’ map P†nC1! P†n . The sequence stabilizes once n� 4k .
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If we define
V .�1; : : : �d /n

to be the irreducible Sn –representation associated to the partition

�D .n� k; �1; : : : ; �d /;

with k D
Pd

iD1 �i , then the decomposition of H 1.P†nIQ/ into irreducible Sn –
representations is

H 1.P†2IQ/D V .0/2˚V .1/2;

H 1.P†3IQ/D V .0/3˚V .1/˚2
3
˚V .1; 1/3;

H 1.P†nIQ/D V .0/n˚V .1/˚2
n ˚V .1; 1/n˚V .2/n for all n� 4:

The decomposition of H 2.P†nIQ/ is:

H 2.P†2/D 0

H 2.P†3/D V .1; 1/˚2
3
˚V .1/˚3

3
˚V .0/3

H 2.P†4/D V .1; 1; 1/˚2
4
˚V .1; 1/˚7

4
˚V .2/˚3

4
˚V .1/˚6

4
˚V .0/4

H 2.P†5/D V .1; 1; 1/˚4
5
˚V .2; 1/˚5

5
˚V .1; 1/˚9

5
˚V .2/˚6

5
˚V .1/˚6

5
˚V .0/5

H 2.P†6/D V .2; 1; 1/˚2
6
˚V .1; 1; 1/˚4

6
˚V .2; 1/˚7

6
˚V .3/˚3

6

˚V .1; 1/˚9
6
˚V .2/˚6

6
˚V .1/˚6

6
˚V .0/6

H 2.P†n/D V .2; 1; 1/˚2
n ˚V .3; 1/˚2

n ˚V .1; 1; 1/˚4
n ˚V .2; 1/˚7

n ˚V .3/˚3
n

˚V .1; 1/˚9
n ˚V .2/˚6

n ˚V .1/˚6
n ˚V .0/n for all n� 7:

These results provide a new perspective on the structure and growth of the cohomology
groups H k.P†nIQ/ for large values of n.

The structure of the H k.P†nIQ/ provides insight into the cohomology of the string
motion group †n . A transfer argument identifies the rational cohomology H k.†nIQ/
with the Wn –invariants H k.P†nIQ/Wn . In Section 7, using a combinatorial argument,
we show that the trivial Wn –representation does not occur in H k.P†nIQ/ for k > 0,
and so prove:

Theorem 7.1 For k � 1, the rational cohomology groups H k.†nIQ/ D 0. In
particular, the integral homology and cohomology groups of †n are finite.

The subgroup †Cn �†n of string motions that preserve the orientations of the circles
has been called the braid-permutation group. The quotient †Cn =P†n D Sn , and
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Representation stability for the cohomology of the pure string motion groups 913

so the structure of H k.P†nIQ/ as an Sn –representation encodes the structure of
H k.†Cn IQ/. In Section 8, we use a transfer argument to conclude the following
corollary.

Corollary 8.1 The braid-permutation group †Cn of orientation-preserving string mo-
tions is rationally cohomologically stable in the classical sense. For each k � 0,
H k.†Cn IQ/ŠH k.†C

nC1
IQ/ once n� 4k .

By analyzing the combinatorics of H k.P†nIQ/, we gain some insights into the
structure of H k.†Cn IQ/, and we compute the stable dimensions in small degrees.

Remark We have recently learned that the integral (co)homology of †n and †Cn
could be computed using the techniques of Griffin in [14], which gives a general
approach to computing the (co)homology of the symmetric automorphism groups of
certain free products of groups.
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Hatcher, for his numerous corrections and suggestions. I would like to thank Tom
Church for a detailed proofreading and recommendations for improvement to the paper.

This work was funded in part by the Natural Sciences and Engineering Research Council
of Canada. I am grateful for their support.

2 Some background on the theory of motion groups

The string motion group †n was first defined by Dahm in his 1962 thesis [8], and
the theory of motion groups was further developed by Goldsmith [13] and others.
These groups were originally studied in the topological category, as follows: Given a
manifold M and a compact subspace N in the interior of M , let H.M / be the space
of self-homeomorphisms of M with the compact-open topology. Let H.M;N / be the
subspace of homeomorphisms that stabilize N setwise. Let HC .M / �H.M / and
HC .M;N / �H.M;N / be those homeomorphisms with compact support. Let IM

be the identity map on M . The motion group M.M;N / is then defined as the relative
fundamental group �1.HC .M /;HC .M;N /; IM /. Although relative fundamental
groups are not groups in general, a group structure on M.M;N / derives from the fact
that HC .M;N /�HC .M / is a subgroup.
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These motion groups were reconceived in the differential category by Wattenberg [23].
Let M be a smooth, connected manifold without boundary and i W N ,! M the
smooth embedding of a compact submanifold N . Let E.N;M / be the space of
smooth embeddings f W N !M with the C1 topology, and P .N;M / the subspace
of maps f 2 E.N;M / such that f .N / D i.N /. Let D.M / be the space of self-
diffeomorphisms of M with the C1 topology, D.M;N / the subspace stabilizing
i.N /, and DC .M / and DC .M;N / the diffeomorphisms with compact support. Wat-
tenberg proved that

�1.D.M /;D.M;N /; IM /Š �1.E.N;M /;P .N;M /; i/:

When M DR3 and N D Cn , this is the string motion group †n . Wattenberg proved,
in this case, that the group is isomorphic to �1.DC .R

3/;DC .R
3;Cn/; IR3/, and

moreover coincides with Dahm’s motion group M.R3;Cn/.

In the introduction, we defined †n as the group �1.D.R
3/;D.R3;Cn/; IR3/, though

by Wattenberg’s results we may equivalently define †n as the fundamental group of
the space of smooth unlinks of n components, that is, smooth embeddings E.Cn;R3/

relative embeddings stabilizing Cn . In this framework, the pure string motion group
P†n is then the fundamental group of the space of smooth, labelled, oriented unlinks
of n components, relative those embeddings preserving the order and orientation of
each circle. We note that the hypothesis of smoothness is necessary: the analogous
construction with continuous embeddings encounters problems due to the existence of
‘pathological’ isotopies, for example, continuous paths that pull a knot through to an
unknot. Such isotopies do not extend to motions of the ambient space.

Recently, Brendle and Hatcher have shown in [3] that it suffices to consider configuration
spaces of ‘rings’, that is, embeddings of Euclidean circles in R3 . They define PUR.n/
to be the configuration space of n labelled, oriented, disjoint, unlinked rings. Each ring
can be specified by vector determining its centre, and a ‘normal’ vector that indicates its
radius and orientation. Thus PUR.n/ can be realized as an open subset of R6n . The
configuration space R.n/ of disjoint, unlinked rings is also a 6n–manifold, the quotient
of PUR.n/ by the action of the hyperoctahedral group Wn . Brendle and Hatcher
prove that †n D �1.R.n// and that P†n D �1.PUR.n//. This characterization of
these groups facilitates the study of their algebraic structure.

3 The (pure) string motion group

A valuable technique in the study of the string motion group is to embed the group in
the automorphism group of a free group.

Algebraic & Geometric Topology, Volume 12 (2012)
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If we take the one-point compactification S3DR3[f1g of R3 , then the fundamental
group �1.S

3 n Cn;1/ is the free group Fn on n generators. Let xi denote the
generator linked once (in the positive sense) with i , and unlinked with the other
circles. By extending a string motion ft to S3 and taking the induced map .f1/� on
the fundamental group �1.S

3 nCn;1/, we get a map

DW †n! Aut.Fn/

where Aut.Fn/ denotes the automorphism group of Fn . The map D is a particular
instance of the Dahm homomorphism on motion groups, developed by Dahm in [8]
and described in [13] by Goldsmith. In the case of the string motion group †n , D is
injective, and its image is the group of symmetric automorphisms, the automorphisms
that map each generator xi to a conjugate of a generator or of the inverse of a generator.
This group is generated by elements ˛i;j , �i , and �i , defined as follows:

˛i;j D

(
xi 7! xj xix

�1
j

xk 7! xk .k ¤ i/
�i D

8̂<̂
:

xi 7! xiC1

xiC1 7! xi

xk 7! xk .k ¤ i; i C 1/

�i D

(
xi 7! x�1

i

xk 7! xk .k ¤ i/

The automorphism ˛i;j , i ¤ j , corresponds to a string motion where the i th circle i

passes through the j th circle j , and returns to its original position and orientation.
The automorphism �i is induced by a string motion that transposes the circles i with
iC1 while preserving their orientations, and �i is induced by a string motion that
reverses the orientation of the circle i . The algebraic structure of this group was
described by authors including McCool [19] and Rubinzstein [21].

We note that the classical braid group Bn embeds in †n as the (infinite-index) subgroup
generated by elements of the form ˛i;iC1�i , for i D 1; : : : ; .n�1/. This is equivalently
the group of symmetric automorphisms that fix the product xnxn�1 � � �x2x1 .

The pure string motion group P†n is the group of all automorphisms that map each
generator xi to a conjugate of itself, also called the basis-conjugating automorphisms
or the pure symmetric automorphisms. This group is torsion-free, and is generated by
the elements ˛i;j , i ¤ j . It is the intersection of †n with the subgroup IAn�Aut.Fn/

of automorphisms that induce the trivial map on the homology group H 1.FnIZ/ŠZn .

The quotient †n=P†n D h�i ; �ii is the hyperoctahedral group Wn described in the
introduction. As explained in by Brownstein and Lee in [5], these groups fit in to a
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commutative diagram of short exact sequences:

1 // P†n� _

��

// †n� _

��

// Wn� _

��

// 1

1 // IAn
// Aut.Fn/ // GLn.Z/ // 1

The top exact sequence splits, giving a decomposition of †n as a semidirect product
†n Š P†n ÌWn . The group Wn acts on P†n as follows:

�i. j̨ ;k/�
�1
i D

(
˛�1

j ;k
.k D i/

j̨ ;k .k ¤ i/

�i. j̨ ;k/�
�1
i D ˛�.j/;�.k/ where � D .i iC1/ 2 Sn:

4 The cohomology of the pure string motion group

Define Œn� WD f1; 2; : : : ; ng. In [19], McCool gave a presentation for P†n in which all
relations are commutators, and so the abelianization H1.P†nIZ/ of P†n is the free
abelian group ZŒ˛i;j �, with i; j 2 Œn�, i ¤ j . The cohomology ring H�.P†nIZ/ is
generated by the dual basis f˛�i;j g.

In [5, Conjecture 4.6], Brownstein and Lee conjectured a presentation for the cohomol-
ogy ring H�.P†nIZ/, which was established by Jensen, McCammond and Meier in
[17]. Their result is:

Theorem 4.1 (Jensen, McCammond and Meier [17, Theorem 6.7]) The cohomology
ring H�.P†nIZ/ is the exterior algebra generated by the degree-one classes ˛�i;j ,
with i; j 2 Œn�, i ¤ j , modulo the relations

˛�i;j ^˛
�
j ;i D 0(1)

˛�k;j ^˛
�
j ;i �˛

�
k;j ^˛

�
k;i C˛

�
i;j ^˛

�
k;i D 0(2)

These relations, computed in [5], all pull back from H�.P†3IZ/, under the map
induced by the map P†n! P†3 determined by ‘forgetting’ all but the i th , j th , and
k th circle.

The cohomology groups are computed in [17] by Jensen, McCammond and Meier
using the Lyndon–Hochschild–Serre spectral sequence associated with the short exact
sequence,

1 // Inn.Fn/ // P†n
// P†n=Inn.Fn/ // 1
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In the proof of [17, Lemma 6.6], Jensen, McCammond and Meier determine that any
cyclic product

˛�i;j ^˛
�
j ;l ^˛

�
l;m ^ : : :^˛

�
r;s ^˛

�
s;i

is trivial. They argue that the group H k.P†nIZ/ is generated by elements of the
form

˚
˛�i1;j1

^˛�i2;j2
^ : : :^˛�ik ;jk

	
that have distinct indices im and that contain no

cyclic products. Using the anticommutativity of the generators, we may insist that
i1 < i2 < : : : < ik . Using a rank argument, Jensen, McCammond and Meier infer that
this generating set is minimal. We conclude the following lemma.

Lemma 4.2 (Jensen, McCammond and Meier [17]) The group H k.P†nIZ/ has
basis ˚

˛�i1;j1
^˛�i2;j2

^ : : :^˛�ik ;jk

	
where i1 < i2 < � � �< ik , and where no permutations of the factors of

˛�i1;j1
^˛�i2;j2

^ : : :^˛�ik ;jk

contains a cyclic product.

Jensen, McCammond and Meier count these basis elements by observing that they are
indexed by directed graphs on Œn�, where the graph contains an edge i  j whenever
the basis element includes the factor ˛�i;j . Two examples for n D 6 and k D 4 are
given in Figure 1.

1 3 5

2 4 6

1 3 5

2 4 6

˛�
1;2
^˛�

2;3
^˛�

4;3
^˛�

5;6
˛�

1;3
^˛�

2;4
^˛�

4;3
^˛�

6;3

Figure 1. Two directed graphs and their corresponding basis elements in H 4.P†6IQ/

Jensen, McCammond and Meier observe that, because each im is distinct, each vertex
is the target of at most one edge. This implies that graph cannot contain any cycles,
as these would correspond to cyclic products. Thus, the connected components of the
graph are trees, that is, the graph is a forest. Moreover, since each vertex is the target
of at most one edge, each tree’s digraph structure is determined by a choice of root.
Since there are k edges, the forest has .n� k/ connected components. In summary:
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Lemma 4.3 (Jensen, McCammond and Meier [17]) The group H k.P†nIZ/ is the
free abelian group on the set of forests on Œn� of .n� k/ rooted trees.

This description will be a key ingredient in our proofs of Theorem 6.1 and Theorem 6.4.

5 Representation stability

The concept of representation stability was introduced by Church and Farb in [6]. Given
a sequence of groups fGngn2N with inclusions Gn ,!GnC1 , and a sequence fVngn2N

of Gn –representations, we can describe a form of stability for fVngn2N in terms of its
decomposition into irreducible representations. Before giving a precise definition of
representation stability, we introduce some notation used in [6].

We will specialize to the cases that the group Gn is either the symmetric group Sn ,
or the hyperoctahedral group Wn . The irreducible representations of Sn over Q are
classified by partitions � of n, where �D .�0; �1; : : : ; �d / with �0��1�� � ���d and
�0C�1C� � �C�d Dn. There is a natural identification of the irreducible representations
of Sn with certain irreducible representations of SnC1 , attained by associating the
partition �D .�0; �1; : : : ; �d / of n with the partition .�0C1; �1; : : : ; �d / of .nC1/.
To emphasize this identification, from here on, we will describe a partition of n by a
partition � ` k , �D .�1; : : : ; �d /, with the first part �0 D .n� k/ left implicit. This
notation is now independent of n and gives a well-defined partition of n whenever
n� .�1C k/. We call

�Œn� WD .n� k; �1; : : : ; �d /

the padded partition of �.

The rational irreducible representations of the hyperoctahedral group Wn are described
in (for example) Geck and Pfeiffer [12]. They are classified by double partitions of
n, that is, ordered pairs of partitions � D .�C; ��/ with j�Cj C j��j D n. These
representations are constructed as follows: Given � ` n and V .�/ the associated
representation of Sn , we define V .�; .0// to be the Wn –representation pulled back
from V .�/ under the surjection � W Wn� Sn . Let " be the one-dimensional “sign”
representation of Wn , where the canonical generators of .Z=2Z/n act by .�1/, and
elements of Sn act trivially. Define

V ..0/; �/ WD V .�; .0//˝ ":

Next, we recall the following definition:

Definition 5.1 Let G , H be groups. Let V be a rational representation of G , and
U a rational representation of H . Then the external tensor product V �U denotes

Algebraic & Geometric Topology, Volume 12 (2012)
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the .G �H /–representation given by the action of G �H on the vector space V ˝U

given by linearly extending the map

.g; h/ � .v˝u/D .g � v/˝ .h �u/

for all .g; h/ 2G �H and v˝u 2 V ˝U .

Recall additionally that, given a subgroup H of a finite group G and an H –repres-
entation V , the induced representation IndG

H .V / is the QG–module QG ˝QH V .
Equivalently, IndG

H .V / is the G –representation constructed as a direct sum IndG
H .V /DL

�2G=H �V of a translate of V for each coset �H .

Then, generally, for �C ` k and �� ` .n� k/, we define

V .�C; ��/ WD IndWn

Wk�Wn�k
V .�C; .0//�V ..0/; ��/:

Again, given a double partition � D .�C; ��/ of m with j��j D l , we define the
padded partition

�Œn� WD .�CŒn� l �; ��/:

For either Sn or Wn , denote the irreducible representation associated to �Œn� by V .�/n ,
and denote the multiplicity of V .�/n in a representation Vn by c�;n.Vn/. Using this
notation, Church and Farb make the following definitions:

Definition 5.2 A sequence fVngn2N of Gn –representations with maps �nW Vn !

VnC1 is called consistent if �n is equivariant with respect to the Gn –action on Vn and
the Gn –action on VnC1 induced by the natural inclusion Gn ,!GnC1 .

Definition 5.3 A consistent sequence fVngn2N of Gn –representations with maps
�nW Vn! VnC1 is called representation stable if it satisfies the following properties:

(1) Injectivity The maps �nW Vn! VnC1 are injective, for n sufficiently large.

(2) Surjectivity The space VnC1 is the GnC1 –span of �n.Vn/, for n sufficiently
large.

(3) Multiplicities In the decomposition

Vn D

M
�

c�;nV .�/n

of Vn into irreducible Gn –representations, for each �, the coefficient c�;n is
eventually independent of n.
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Definition 5.4 A representation stable sequence fVngn2N is uniformly representation
stable if the multiplicities c�;n.Vn/ become constant at some N 2N not depending
on �.

Our goal is now to prove that the cohomology groups H�.P†n;Q/ are uniformly
representation stable as Wn –representations.

6 The cohomology groups of the pure string motion group
are uniformly representation stable

The action of Wn on P†n by conjugation induces an action on the cohomology:

�i �˛
�
j ;k D

(
�˛�

j ;k
.k D i/;

˛�
j ;k

.k ¤ i/:

�i �˛
�
j ;k D ˛

�
�.j/;�.k/ where � D .i iC1/ 2 Sn:

With this action, we will consider the rational cohomology group H k.P†nIQ/ as a
Wn –representation.

The maps P†nC1 ! P†n obtained by ‘forgetting’ the circle nC1 induce Wn –
equivariant maps

�nW H
�.P†nIQ/ �!H�.P†nC1IQ/

˛�i;j 7�! ˛�i;j

Thus, f.H k.P†nIQ/; �n/gn2N is a consistent sequence.

We will use the strategy of Church and Farb for the proof of [6, Theorem 4.1], the
uniform representation stability of the cohomology groups of the pure braid group, to
prove the following:

Theorem 6.1 For each fixed k � 0, the sequence of Wn –representations

fH k.P†nIQ/gn2N

is uniformly representation stable with respect to the maps

�nW H
k.P†nIQ/!H k.P†nC1IQ/

induced by the ‘forgetful’ map P†nC1! P†n . The sequence stabilizes once n� 4k .
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Injectivity follows easily from the definition of the maps �n , since a basis element

˛�i1;j1
^ : : :^˛�ik ;jk

2H k.P†nIQ/

maps to the basis element

˛�i1;j1
^ : : :^˛�ik ;jk

2H k.P†nC1IQ/:

For the surjectivity criterion, observe that for n � 2k and any basis element v D
˛�i1;j1

^ : : :^ ˛�ik ;jk
of H k.P†nIQ/, there must exist some number in ŒnC 1� that

does not appear among the indices of v . Then, for some suitable choice of permutation
� 2 SnC1 �WnC1 , the basis element � � v does not have .nC 1/ as an index, and so
is contained in the image �n.H

k.P†nIQ//.

To prove the multiplicities criterion, we will use a combinatorial result concerning cer-
tain induced representations. In [16], Hemmer proved the following for the symmetric
group:

Lemma 6.2 (Hemmer [16, Theorem 2.4]) Fix r � 1. Let H be any subgroup of Sr

and V an H –representation. Let Q denote the trivial representation of Sn�r . Then the
sequence of Sn –representations fIndSn

H�Sn�r
.V �Q/gn2N is uniformly representation

stable, stabilizing for n� 2r .

In [6, Theorem 4.6], Church and Farb adapt the proof to the hyperoctahedral group.
We reproduce their proof, with more explicit attention paid to the bounds on the stable
range.

Lemma 6.3 (Church and Farb [6]) Fix r � 1. Let H be any subgroup of Wr , and
V an H –representation. Let Q denote the trivial representation of Wn�r . Then the
sequence of Wn –representations fIndWn

H�Wn�r
.V�Q/gn2N is uniformly representation

stable, stabilizing for n� 2r .

Proof We first observe that

IndWn

H�Wn�r
.V �Q/D IndWn

Wr�Wn�r

�
.IndWr

H
V /�Q

�
;

and so it would suffice to prove the theorem for an irreducible representation V .�C; ��/

of Wr , and then apply the result to each irreducible factor of IndWr

H
V . Throughout

this proof, for notational simplicity, we refer to irreducible representations by the full
padded partitions.

By a lemma of Geck and Pfeiffer [12, Lemma 6.1.3],

IndWn

Wr�Wn�r

�
V .�C; ��/�V .�C; ��/

�
D

M
.�C;��/

C �C

�C;�C
C ��

��;��V .�C; ��/
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where C �
�;�

denotes the Littlewood–Richardson coefficient. According to the clas-
sification of irreducible hyperoctahedral representations, the trivial representation of
Wn�r is V ..n� r/; .0//, and so

IndWn

Wr�Wn�r

�
V .�C; ��/�Q

�
D

M
.�C;��/

C �C

�C;.n�r/
C ��

��;.0/V .�
C; ��/:

It is a standard result that

C ��

��;.0/ D

(
1 if �� D ��

0 if �� ¤ ��:

(See, for example, Fulton [11] for the combinatorics of the Littlewood–Richardson
coefficients.)

Then,

IndWn

Wr�Wn�r

�
V .�C; ��/�Q

�
D

M
�C

C �C

�C;.n�r/
V .�C; ��/

D

M
�C

V .�C; ��/

where the final sum is taken over all Young diagrams �C that are constructed by adding
.n� r/ boxes to the Young diagram �C , with no two boxes added to the same column.
When n > 2r , then n� r > r , so .n� r/ is necessarily greater than the number of
columns of �C , which implies that at least one box must be added to the first row.
Thus, when n> 2r , the function ‘removing a box from the first row’ gives a bijection
between the admissible partitions of n and those of .n�1/, a bijection which identifies
a double partition �Œn� with �Œn� 1�. It follows that the decomposition stabilizes once
n� 2r .

Having proved Lemma 6.3, our objective now is to decompose the representations
H k.P†nIQ/ into a sum of subrepresentations of the form IndWn

H�Wn�r
.V �Q/.

Proof of Theorem 6.1 By Lemma 4.3, H k.P†nIQ/ is the rational vector space over
a basis indexed by the forests on Œn� with .n� k/ connected components. Let P be a
partition of Œn� into .n�k/ subsets; we call its subsets blocks. Define H P.P†nIQ/�
H k.P†nIQ/ to be the Q–span of the set of those forests whose connected components
are the blocks of P. Define xP to be the partition of n associated to P, given by the
block sizes.

Consider, for example, the case where nD 6, k D 2, and PD ff1g; f2; 4g; f3; 5g; f6gg.
Then H P.P†nIQ/ is the four-dimensional subspace spanned by the basis elements
shown in Figure 2, and xPD .2; 2; 1; 1/.
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1 3 5

2 4 6

1 3 5

2 4 6

1 3 5

2 4 6

1 3 5

2 4 6

˛�
2;4
^˛�

3;5
˛�

3;5
^˛�

4;2
˛�

2;4
^˛�

5;3
˛�

4;2
^˛�

5;3

Figure 2. A basis for H ff1g;f2;4g;f3;5g;f6gg.P†6IQ/

Given any n and any partition P of Œn�, we can compute the action of Wn on
H P.P†nIQ/. An element �i 2 .Z=2Z/n � Wn either fixes or negates each basis
element of H k.P†nIQ/, and so stabilizes H P.P†nIQ/. An element �i 2 Sn �Wn

permutes the labels on the vertices, and so the Sn –orbit of H P.P†nIQ/ are all
subspaces H P0.P†nIQ/ of H k.P†nIQ/ with xP0 D xP. We therefore have a decom-
position:

H k.P†nIQ/D
M

partitions P of Œn�
with .n�k/ blocks

H P.P†n/

D

M
�`n

j�jD.n�k/

M
fP j xPD�g

H P.P†n/

D

M
�`n

j�jD.n�k/

IndWn

Stab.P�/
H P�.P†n/

for some fixed P� with xP� D �.

For any �, the stabilizer Stab.P�/ � Wn is generated by all elements �i , by the
permutations that permute the numbers within a block of P� , and by the permutations
that interchange two blocks of P� of the same size. If P� has .n� r/ blocks of size
one, then we may decompose the stabilizer as Stab.P�/ŠH �Wn�r , where H is a
subgroup of Wr , and Wn�r acts by permuting the singleton blocks. Since the singleton
blocks of P� are those numbers that do not appear as an index in any basis element of
H P�.P†nIQ/, this direct factor Wn�r acts trivially on H P�.P†nIQ/.

We note moreover that, whenever k > 0, not all vertices can be singletons, and so we
satisfy the hypothesis of Lemma 6.3 that r � 1.

The maps
�n�1W H

�.P†n�1IQ/!H�.P†nIQ/

map ˛�i1;j1
^ : : :^ ˛�ik ;jk

2H k.P†n�1IQ/ to ˛�i1;j1
^ : : :^ ˛�ik ;jk

2H k.P†nIQ/,
and accordingly, they map a rooted forest of ..n�1/�k/ trees on Œn�1� to the rooted
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forest of .n� k/ trees on Œn� obtained by adding the singleton vertex n. For each
partition P of Œn�1�, the map �n�1 induces an isomorphism of Wn�1 –representations

H P.P†n�1IQ/ŠH P[ffngg.P†nIQ/:

When n > 2k , any partition PC of Œn� into .n� k/ blocks must have at least one
singleton block. Thus H PC.P†nIQ/ is in the Wn –orbit of .P[ ffngg/ for some
partition P of Œn� 1�. It follows that

H k.P†nIQ/D
M
�`.n/
j�jD.n�k/

IndWn

Stab.P�/
H P�.P†n/

D

M
�`n�1

j�jD.n�1�k/

IndWn�1

Stab.P�[ffngg/
H P�[ffngg.P†n/

for some choices of P� and P� with xP� D �, xP� D � . The number of direct
summands in this decomposition therefore stabilizes once n� 2k .

For given � , we may choose P� so that its ..n�1/�r/ singleton blocks are

ffrC1g; frC2g; : : : ; fn�1gg;

and denote the complement, a partition of Œr �, by Pc . Since Stab.P� [ ffngg/ Š
H �Wn�r as above, we can iteratively write

IndWn

Stab.P�[ffngg/
H P�[ffngg.P†n/D IndWn

H�Wn�r
H P�[ffngg.P†n/�Q

D IndWn

H�Wn�r
H P� .P†n�1/�Q

D � � �

D IndWn

H�Wn�r
H Pc

.P†r /�Q:

We may conclude that the sequence fH k.P†nIQ/gn�2k of Wn –representations de-
composes into a finite sum of sequences of the form described in Lemma 6.3.

Among all partitions of Œn� into .n � k/ blocks, the number of singleton blocks is
minimal in the partition with k blocks of two elements, and .n� 2k/ singleton blocks.
This implies that the maximal value of r is 2k , and so we can ensure that n � 2r

whenever n� 4k . Theorem 6.1 now follows from Lemma 6.3.

We notice that we may use this same method of proof to prove representation stability
when we restrict the action of Wn to its subgroup Sn .
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Theorem 6.4 For each fixed k � 0, sequence of groups

fH k.P†nIQ/gn2N ;

considered as Sn –representations, is uniformly representation stable with respect to the
maps

�nW H
k.P†nIQ/!H k.P†nC1IQ/

induced by the ‘forgetful’ map P†nC1! P†n . The sequence stabilizes once n� 4k .

Proof Since this proof is so similar to that of Theorem 6.1, we merely give a sketch.
We may use the same decomposition of the cohomology groups as above, noting that

H k.P†nIQ/D
M
�`n

j�jD.n�k/

IndSn

Stab.P�/
H P�.P†n/

for some P� with xP� D �. Here, if P� has mj blocks of size j , then its stabilizer
Stab.P�/� Sn decomposes as

Stab.P�/D
nM

jD1

Sj oSmj

where Sj permutes the numbers within a block of size j , and Smj permutes the
mj blocks. In particular, if P� has .n � r/ blocks of size one, then we can write
Stab.P�/ Š H � Sn�r , where Sn�r permutes the singleton blocks. Then, using
Lemma 6.2 as above, we may conclude the theorem.

These results raise the question of whether it is true in general that a uniformly represen-
tation stable sequence of Wn –representations will restrict to a uniformly representation
stable sequence of Sn –representations. This is indeed the case, and will be shown in a
forthcoming paper. However, Theorem 6.4 gives a better stable range than the general
case.

7 The cohomology of the string motion group

Consider a short exact sequence of groups

1 // N // G // Q // 1

with finite quotient Q. Recall that, by a transfer argument, the restriction map
H k.GIQ/!H k.N IQ/ identifies the cohomology of G with the ring of invariants
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H k.N IQ/Q under the natural action of Q. (See, for example, Brown [4, Chapter
3.9].) It therefore follows from the exact sequence

1 // P†n
// †n

// Wn
// 1

that the cohomology of H k.†nIQ/ is isomorphic to the isotypic component of trivial
Wn –representations V ..0/; .0//n in H k.P†nIQ/.

The representation stability of H k.P†nIQ/ implies, in particular, that the multiplicity
of the trivial representation V ..0/; .0//n stabilizes for n sufficiently large, and therefore
that the dimension of H k.†nIQ/ is eventually constant. In fact, even the integral
homology groups of †n are eventually independent of n, a result proved by Hatcher
and Wahl [15, Corollary 1.2].

Hatcher and Wahl realize †n as follows: Let P WD S1 �D2 be the product of a
1–sphere S1 and the 2–disk D2 . Let Nn WDD3#P# � � � #P be the connected sum of
the 3–disk D3 with n copies of P . Then †n is the quotient of the mapping class
group �.Nn; @D

3/ WD �0Diff.Nn rel @D3/ by the subgroup generated twists along
spheres and disks with boundary in @Nn � @D

3 . Homological stability for †n is a
consequence of their stability theorems for mapping class groups of 3–manifolds.

From our description of H k.P†nIQ/, we can say more: for k � 1, the trivial
representation does not occur, and so the rational cohomology groups of †n vanish.

Theorem 7.1 For k � 1, the rational cohomology groups H k.†nIQ/ D 0. In
particular, the integral homology and cohomology groups of †n are finite.

Proof For a G –representation V , the averaging map

'W V ! V

u 7!
1

jGj

X
g2G

g �u

gives a linear projection of V onto the subspace fixed by G . Thus, to prove that
H k.P†nIQ/ contains no copies of the trivial representation, it suffices to show that
'.v/D 0 for every basis element v .

Suppose that, for some fixed basis element v , there were an involution ! 2Wn such
that ! � v D�v . Then by partitioning the sum by left cosets of H D f!; 0g, we find
that '.v/ vanishes:

'.v/D
1

jGj

X
g2Wn

g � v D
1

jGj

X
gH�Wn

�
g � vCg! � v

�
D

1

jGj

X
gH�Wn

�
g � .v� v/

�
D 0

Algebraic & Geometric Topology, Volume 12 (2012)



Representation stability for the cohomology of the pure string motion groups 927

For any basis element v D ˛�i1;j1
^˛�i2;j2

^ : : :^˛�ik ;jk
of H k.P†nIQ/, we will find

such an involution. Suppose that there is some number j 2 Œn� that appears as a second
index for an odd number of exterior factors of v . Then �j � v D �v , which implies
that '.v/ D 0. Next, suppose that there is no such number j . This means that, if
we take the rooted forest associated to v as described in Section 4, every vertex has
even outdegree. Choosing any tree in the forest with at least one edge, we can find
two terminal vertices p and q that have the same direct predecessor r . This implies
v includes the factors ˛�p;r and ˛�q;r , but that the numbers p and q do not appear as
any other index. Thus, the transposition ! D .p q/ 2 Sn induces an odd permutation
on the factors of the exterior product v , and '.v/D 0. This completes the proof that
H k.†nIQ/D 0 for k � 1.

The work of Collins [7] (later Jensen and Wahl [18]) implies that P†n is of type
FP1 . Since Œ†n W P†n�D 2nn!<1, it follows that †n is of type FP1 ; a standard
reference is Brown [4, Chapter 8]. The integral homology and cohomology groups are
finitely generated and torsion; they are finite groups.

An approach to computing these groups is developed in Griffin [14].

8 The cohomology of the braid-permutation group

This section originated in conversations with Allen Hatcher. It also owes to insights
from Tom Church.

Consider the group †Cn D h�i ; ˛i;j i of string motions that preserve the orientations of
the circles. This group has been called the braid-permutation group, since it is generated
by the classical braid group BnDh˛i;iC1�ii and the symmetric group SnDh�ii. Fenn,
Rimanyi and Rourke [9; 10] describe the group as a generalized braid group in which
some crossings are “welded”. They give a presentation for the group, and also show
that it is isomorphic to the automorphism group of the so-called free quandle. In [22],
Vershinin studies the algebraic topology of the braid-permutation group. Applications
of the group to mathematical physics are described by Baez, Crans and Wise in [1].
Brendle and Hatcher [3] give a geometric description of †Cn as the untwisted ring
group, the fundamental group of the 4n–manifold of configurations of n Euclidean
circles in R3 lying parallel to a fixed plane.

The symmetries of the groups H k.P†nIQ/ encode the structure of the cohomology
of †Cn . We see from the short exact sequence

1 // P†n
// †Cn

// Sn
// 1
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that the cohomology group H k.†Cn IQ/ is the group of invariants H k.P†nIQ/Sn .
The representation stability of the trivial Sn –representation V .0/n in Theorem 6.4
therefore implies classical rational stability for H k.†Cn IQ/.

Corollary 8.1 The braid-permutation group †Cn of orientation-preserving string mo-
tions is rationally cohomologically stable in the classical sense. For each k � 0,
H k.†Cn IQ/ŠH k.†C

nC1
IQ/ once n� 4k .

Remark In contrast to the case with the P†n , we cannot construct a map †C
nC1
!†Cn

by “forgetting” a circle, as there is no consistent way to chose among .nC1/ unlabeled
circles. Since R3 is open, however, there are maps †Cn !†C

nC1
that may be constructed

by ‘introducing’ a circle far from the origin of R3 . These maps induce the isomorphisms
in Corollary 8.1.

For low degree k , we can use the symmetries of H k.P†nIQ/ to directly compute
the Sn –invariant subspace:

For n� 2, the first cohomology H 1.†Cn IQ/DQ is one-dimensional, corresponding
to the trivial representation spanned byX

i¤j2Œn�

˛�i;j 2H 1.P†nIQ/:

For n� 3, the second cohomology H 2.†Cn IQ/DQ is also one-dimensional, corre-
sponding to the trivial representation spanned byX

i;j ;k2Œn� distinct

˛�i;j ^˛
�
j ;k 2H 2.P†nIQ/:

For n� 5, the cohomology H 3.†Cn IQ/DQ3 corresponding to the trivial representa-
tions spanned by X

i;j ;k;l2Œn� distinct

˛�i;j ^˛
�
j ;k ^˛

�
k;l 2H 3.P†nIQ/;

X
i;j ;k;l2Œn� distinct

˛�i;j ^˛
�
j ;k ^˛

�
l;k 2H 3.P†nIQ/; and

X
i;j ;k;l;m2Œn� distinct

˛�i;j ^˛
�
j ;k ^˛

�
l;m 2H 3.P†nIQ/:

These three vectors are obtained by summing over the Sn –orbits of each of the three
basis elements shown (respectively) in Figure 3.
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1 3

5

2 4

6

1 3

5

2

4

1 32

4

6

5

˛�
1;2
^˛�

2;3
^˛�

3;4
˛�

1;2
^˛�

2;3
^˛�

4;3
˛�

1;2
^˛�

2;3
^˛�

4;5

Figure 3. Elements of H 3.P†nIQ/ corresponding to a basis for H 3.†Cn IQ/

In general, each of these trivial representations is spanned by the symmetrization of some
basis element v 2H k.P†nIQ/. To ensure that this symmetrization does not vanish,
we need v 2H k.P†nIQ/ with the property that no element of Sn negates v . Taking
the basis for H k.P†nIQ/ described in Lemma 4.2 and Lemma 4.3, the symmetries of
a basis element may be seen from the associated rooted forests. Specifically, the trivial
representations will correspond to forests such that any permutation of the vertices
preserving the labelled, rooted graph structure will induce an even permutation of the
factors of the associated basis element. Such forests exist for all 1 � k � .n� 1/;
consider, for example, the simple path 1 2 � � � k .kC1/ along with isolated
vertices .kC2/ through n. Thus, for all n, H k.†Cn IQ/ is nontrivial in all dimensions
0� k � .n� 1/.

In [14, Example 6.2], Griffin gives a method of computing the integral homology of
†Cn from the structure of these rooted forests.

In [22], Vershinin proves that the plus construction of the classifying space of the
infinite braid-permutation group is homotopic to a component of �1S1 �S1 �Y ,
where Y is an infinite loop space. A better understanding of the combinatorics of the
rooted forests could illuminate the cohomological structure of this space.
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