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Free group automorphisms with parabolic boundary orbits

ARNAUD HILION

For N > 4 , we show that there exist automorphisms of the free group FN which have
a parabolic orbit in @FN . In fact, we exhibit a technology for producing infinitely
many such examples.

20E05, 20E36, 37B25, 37E15; 20F65, 37B05

1 Introduction

An automorphism ' of the free group FN of rank N induces a homeomorphism @'

of the (Gromov) boundary @FN of FN . The dynamics of the map @' on @FN has
been studied a lot; see Levitt and Lustig [13; 14; 15; 16] and the author’s thesis [10].
We give a survey of the known results relevant in our context in Section 3. In this paper,
we focus on the following question:

Does there exist an automorphism ' of FN such that there is a parabolic
orbit for the homeomorphism @'?

We say that an automorphism ' has a parabolic orbit if there exists two points
X;Y 2 @FN , X ¤ Y , such that

lim
k!˙1

@'k.Y /DX:

We note that this implies that X is a fixed point of @' . In such a situation, the point
X 2 @FN is called a parabolic fixed point for ' , and the set f@'k.Y / j k 2Zg is called
a parabolic orbit for ' . We prove:

Theorem 1.1 For N > 4 there exists an infinite family f'k jk 2Ng of automorphisms
of FN which have a parabolic orbit, such that for any k; k 0;p;p0 2 N , 'p

k
and 'p0

k0

are conjugate if and only if k D k 0 and p D p0 .

Discussions with some of the experts of the subject have led the author to feel that the
existence of such parabolic orbits come somehow as a surprise. To put Theorem 1.1 in
perspective, we would like to mention the following three facts.

First, given a compact set K and a homeomorphism f of K , one says that f has
North-South dynamics, if (i) f has precisely two distinct fixed points xC and x� ,
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934 Arnaud Hilion

(ii) limk!C1 f
k.y/D xC and limk!C1 f

�k.y/D x� for all y 2K X fx�;xCg,
and (iii) the limit of f k when k tends to infinity is uniform on compact subsets of
K X fx�g and the limit of f �k is uniform on compact subsets of K X fxCg. It is
proved in Levitt and Lustig [13] that “most” automorphisms of FN , in a precise sense
we do not explain here, have North-South dynamics on @FN . In particular, they cannot
have a parabolic orbit.

Second, let ı be the automorphism of F2D ha; bi defined by ı.a/D a and ı.b/D ba.
The outer automorphism class D of ı is sometimes called a Dehn twist automorphism.
The reader, who has in mind the action by isometries of SL2.Z/ on the hyperbolic plane,
should be warned that Dehn twist automorphisms do not give rise to parabolic orbits
in @F2 . We give in Section 6 a description of all possible dynamics of automorphisms
of F2 in the outer class Dn , for n 2 Z.

Third, more generally, it is known that geometric automorphisms of FN do not have
parabolic orbits in @FN . We recall that an automorphism ' of FN is geometric if
there exist a surface S (with nonempty boundary) with fundamental group �1.S/

isomorphic to FN and a homeomorphism f of S which induces ' on FN Š �1.S/.
More details are given in Section 4.2. As a consequence, since all automorphisms
of F2 are known to be geometric, one obtains:

Proposition 1.2 No automorphism of F2 has a parabolic orbit.

To our knowledge, the question of the existence of automorphisms with a parabolic
orbit is still open for F3 .

Acknowledgments I would like to express my gratitude to Gilbert Levitt, who has
posed the question of the existence of parabolic orbits as part of my thesis project [10],
and has consistently encouraged me to publish my results since then. I would like
to thank Pascal Hubert and Erwan Lanneau for helpful discussions about dilatation
coefficients of matrices in SL2.Z/. I am grateful to Martin Lustig for his active interest
in the present paper.

This work has been supported by the Agence Nationale de la Recherche grant number
ANR-10-JCJC 01010.

2 A first example

For the impatient reader, we give a first example of an automorphism of F4Dha; b; c; di

with a parabolic orbit “inside F4 ” (using Proposition 3.5, this gives immediately a
parabolic orbit in @F4 ).
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Let ' be the automorphism defined by

'W a 7! a

b 7! ba

c 7! ca2

d 7! dc:

The inverse of ' is given by

'�1
W a 7! a

b 7! ba�1

c 7! ca�2

d 7! da2c�1:

The common limit point of the forward and backward iteration of ' (called a “parabolic
fixed point”) will be the element ba�1 D ba�1a�1a�1a�1 � � � 2 @F4 . The element
of F4 which gives rise to a parabolic orbit with this limit point is bd�1 . We calculate:

bd�1 '
7! bac�1

� d�1 '
7! bc�1

� c�1d�1 '
7! ba�1c�1

� a�2c�1c�1d�1

'
7! ba�2c�1

� a�4c�1a�2c�1c�1d�1 '
7! � � �

b � d�1 '
�1

7! ba�1
� ca�2d�1 '

�1

7! ba�2
� ca�4ca�2d�1

'�1

7! ba�3
� ca�6ca�4ca�2d�1 '

�1

7! � � �

In these calculations, we help the reader to follow through the iteration by introducing
an extra � which is “mapped” to the � in the next iteration step. The crucial feature is
that at any of these � no cancellation does occur. We see that limk!C1 '

k.bd�1/D

limk!C1 '
�k.bd�1/D ba�1 . A more formal justification is given in Section 5.

3 Basics

This section serves sort of as glossary: We summarize in a sequence of brief subsec-
tions the basic definitions and facts which are needed to follow the arguments in the
subsequent sections. The expert reader is encouraged to skip the first few subsections
(and to go back later to them, if need be). However, the terminology introduced in the
last subsections is nonstandard and should be read carefully.
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3.1 The induced boundary homeomorphism

Let FN denote the free group of finite rank N > 2. The boundary @FN of FN

is a Cantor set. If A D fa1; : : : ; aN g is a basis of FN , we denote by A˙1 the
set fa1; : : : ; aN ; a

�1
1
; : : : ; a�1

N
g. A word w D w1 � � �wp (wi 2 A˙1 ) is reduced if

wiC1 ¤ w
�1
i . The free group FN can be understood as the set of (finite) reduced

words in A˙1 . Then the boundary @FN is naturally identified to the set of (right)
infinite reduced words X D x1 � � �xp : : : with xi 2A˙1 , xiC1 ¤ x�1

i . The cylinder
defined by a reduced word w D w1 � � �wp is the set of right-infinite reduced words
X D x1 � � �xk � � � which admit w as prefix: xi D wi for i 2 f1; : : : ;pg. A basis of
topology of @FN is given by the set of all such cylinders.

An automorphism ' of a free group FN induces a homeomorphism @' of the bound-
ary @FN . This can easily be checked by considering a standard set of generators
of the automorphisms group Aut.FN / of FN . Alternatively, this can be seen as a
consequence of the fact that a quasi-isometry of a proper Gromov-hyperbolic space
induces a homeomorphism on the boundary of this space; see Ghys and de la Harpe [7].
Indeed, FN equipped with the word metric associated to a basis A, is a proper Gromov–
0–hyperbolic space, and any automorphism of FN is a quasi-isometry of FN with
respect to this metric.

3.2 Compactification of FN

Let xFN denote the union of FN and its boundary @FN , ie xFN D FN [ @FN . Given
a basis of FN , if w is a reduced word, let Cw be the set of reduced finite or infinite
words which have w as prefix. A basis of topology of xFN is given by the finite subsets
of FN and the sets Cw (with w describing all the reduced words of FN ). Then xFN

is a compact set, and the inclusions of FN and @FN in xFN are embeddings. If ' is
an automorphism of FN , x' will denote the map defined by x'.g/D '.g/ if g 2 FN

and x'.X /D @'.X / if X 2 @FN . The map x' is a homeomorphism of xFN .

3.3 Getting rid of periodicity

Let f be a homeomorphism of a topological space X . We denote by Fix.f /Dfx 2X j
f .x/D xg the set of fixed points of f , and by Per.f /D

S
k2N Fix.f k/ the set of

periodic points of f .

Levitt and Lustig have proved in [14] that there exists an integer p , which depends
only on the rank N of FN , such that for all ' 2 Aut.FN /, the periodic points of x'p

are fixed points: Fix.x'p/ D Per.x'p/. This result has been refined by Feighn and
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Handel in [5], where the notion of “forward rotationless” outer automorphism has been
introduced. This lead us to say, in this paper, that an automorphism ' 2 Aut.FN / is
rotationless if Fix.x'/D Per.x'/. The previously mentioned result can be rephrased as
follows:

Theorem 3.1 (Levitt–Lustig) Any automorphism ' 2 Aut.FN / has a power 'p

(p 2N ) which is rotationless.

3.4 Nature of fixed points

Let ' be a rotationless automorphism of FN . The set Fix.'/ is a subgroup of FN ,
which is called the fixed subgroup of ' . This fixed subgroup has finite rank; see
Cooper [4]. More precisely, Bestvina and Handel [2] proved that rank.Fix.'//6 N .
In particular, Fix.'/ is a quasiconvex subgroup of FN , and thus its boundary @Fix.'/
naturally injects into @FN . By continuity of x' , every point of @Fix.'/ is contained
in Fix.@'/. Following Nielsen, these fixed points of @' are called singular; the fixed
points of @' which are not singular are called regular.

A fixed point X of @' is attracting if there exists a neighbourhood U of X in xFN

such that the sequence x'k.x/ converges to X for all x in U . A fixed point X of @'
is repulsing if it is attracting for @'�1 . Gaboriau et al [6] proved that:

Lemma 3.2 Let ' 2 Aut.FN /. A regular fixed point of @' is either attracting or
repulsing.

However, outside of the regular fixed point set, ie for singular fixed points, the dynamics
can be quite a bit more complicated. In particular, there may exist mixed fixed points, ie
fixed points which serve as attractor for some orbits, and simultaneously as repeller for
others. This phenomenon is rather common; some concrete examples will be spelled
out in the subsequent sections.

A particular case of a mixed fixed point is the case (defined in the Introduction) of a
parabolic fixed point. Thus we obtain as special case the following consequence of
Lemma 3.2:

Remark 3.3 Any parabolic fixed point of ' is singular.

3.5 Limit points

Let ' be a rotationless automorphism of FN . For any x 2 xFN , if limk!C1 x'
k.x/

exists, we denote it by !'.x/. In [16], Levitt and Lustig proved:

Algebraic & Geometric Topology, Volume 12 (2012)
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Theorem 3.4 (Levitt–Lustig) Let ' 2Aut.FN / be rotationless. Then for any x2 xFN

the sequence x'k.x/ converges to some element !'.x/ 2 Fix.x'/.

A point X 2 @Fix.'/ is a !–limit point of ' if there exists x 2 xFN such that
X D !'.x/. A point X 2 @Fix.'/ is a limit point of ' if it is a !–limit point of '
or '�1 . Let L!' denote the set of !–limit points of ' and let L' denote the set of
limit points of ' .

For any g 2 FN , g ¤ 1, the sequence gk has a limit in @FN when k!C1: this
limit is denoted by g1 .

Proposition 3.5 Let '2Aut.FN / be a rotationless automorphism. If g2FNXFix.'/,
then

!'.g/D !'.g
1/:

Proof The proof is a simple adaptation of the arguments in the proof of [13, Proposi-
tion 2.3]. We fix a basis A of FN . We note that for all g 2 FN X f1g, the Gromov
product .g;g1/ (ie the length of longest common prefix) of g and g1 is bigger than
1
2
.jgj C 1/ (where jgj denotes the length of g in the basis A). If g … Fix.'/, then

the length of 'k.g/, and thus also the Gromov product .'k.g/; .'k.g//1/, tend to
infinity. Theorem 3.4 implies that !'.g/D !'.g1/.

Proposition 3.5 shows that L!' D f!'.X / j X 2 @FN g. We do not know whether
L!' D f!'.g/ j g 2 FN g holds.

3.6 Isoglossy classes

For any ' 2Aut.FN /, two points X;Y 2 @FN are called isogloss (with respect to ' ) if
there exists some g 2 Fix.'/ such that X D gY . It follows directly from this definition
that isoglossy is an equivalence relation. The fixed subgroup Fix.'/ acts naturally on
the fixed point set Fix.@'/, which is thus naturally partitioned into isoglossy classes.
If X;Y 2 Fix.@'/ are isogloss, then they are of same “dynamical type”: they are
simultaneously singular, attracting, repulsing, mixed, parabolic or limit points.

3.7 Dynamics graph

Let ' 2 Aut.FN / be a rotationless automorphism. We associate to ' a graph �' ,
called the dynamics graph of ' . The vertices of �' are the isoglossy classes of points
of L' . There is an oriented edge from the isoglossy class x1 to the isoglossy class x2

if there exists some representatives Xi of xi and X 2 @FN such that !'�1.X /DX1
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�
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�

Figure 1. North-South dynamics graph

and !'.X /DX2 . The main theorem of [10] states that �' is a finite graph. We give
in Figure 1 the dynamics graph of an automorphism which has North-South dynamics
on @FN .

Finally, we note that, for a rotationless automorphism ' , the existence of parabolic
orbit is equivalent to the fact that there is an edge of the dynamics graph �' which is a
loop.

Remark 3.6 In [11], Levitt introduces a graph in order to code the dynamics of so-
called “simple-dynamics homeomorphisms” of the Cantor set C : a homeomorphism
f W C ! C has simple dynamics if the set Fix.f / of its fixed points is finite, and if
the sequence f n uniformly converges on any compact set disjoint from Fix.f /. If
' 2 Aut.FN / is a rotationless automorphism with trivial fixed subgroup, then @' has
simple dynamics, and the graph �' is the same as the one defined in [11]. In this case,
the fixed points of @' are either attracting or repulsing. Thus, if one is interested in
parabolic orbits, which are the main focus of the present paper, one has to purposefully
leave to world of “simple dynamics” homeomorphisms.

4 Examples

4.1 Inner automorphisms

Let iu 2 Aut.FN / denote the conjugation, or inner automorphism, by u 2 FN , ie
iu.g/D ugu�1 for all g 2 FN . The set Inn.FN / of inner automorphisms of FN is a
normal subgroup of Aut.FN /. The quotient group, denoted by Out.FN /, is the group
of outer automorphisms of FN .

The homeomorphism @iuW @FN ! @FN induced by iu is the left translation by u:
@iu.X / D uX . If u ¤ 1, the map @iu has precisely 2 fixed points: u1 and u�1

(where u1 is the limit of the sequence uk , and u�1 is the limit of the sequence u�k ,
for k!C1). Moreover, for any point X 2 @FN different from u�1 , the sequence
@'k.X / converges to u1 when k tends to infinity. One checks easily that the map @iu
has North-South dynamics, from u�1 to u1 , on @FN ; see [13] for instance.
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Remark 4.1 We note that the fixed subgroup of iu is cyclic, generated by the root
of u (ie the element v 2 FN such that uD vp with p 2N maximal). In particular,
u1 and u�1 are singular fixed points of iu . This shows that when defining “X is an
attracting fixed point of ' ” in Section 3.4, it makes a crucial difference that we request
the neighbourhood U of X to be taken in xFN and not just in @FN .

4.2 Geometric automorphisms

Let † be a compact surface with fundamental group �1.†/ isomorphic to FN (in
particular, † has nonempty boundary). The surface † can be equipped with a hy-
perbolic metric (ie a metric of constant curvature equal to �1) in such a way that
every boundary component of the boundary of † is a geodesic. The universal cover z†
of † is then identified with a closed convex subset of the hyperbolic plane H2 , and
the Gromov boundary @z† of z†, which is naturally identified with the boundary @FN

of FN , injects in the boundary (or circle at infinity) S1 of H2 . Since S1 is a circle,
it can be equipped with a natural cyclic order. This order on S1 induces a cyclic order
on @FN .

In his fundamental work [19; 20; 21], Nielsen proposed an original and fruitful point of
view to study homeomorphisms of surfaces. The basic idea is that the behaviour of a
homeomorphism f of a surface † is well reflected by the collection of all the lifts zf
of f to z† which have each much simpler individual behaviour. This idea is at the
origin of what is now called “Nielsen–Thurston classification” of homeomorphisms of
surfaces (see Handel and Thurston [9]), and it has much influenced the study of (outer)
automorphisms of free groups (see Gaboriau et al [6], Feighn and Handel [5], Handel
and Mosher [8]). The key fact is that any lift zf of f induces a homeomorphism @ zf

of @z†. A basic (but rather fundamental) remark is that @ zf preserves the cyclic order
on @z†� S1 .

An homeomorphism f of † induces an outer automorphism of �1.†/, and thus an
outer automorphism ˆ 2 Out.FN / (in fact, this outer automorphism ˆ only depends
on the mapping class of f ). Such an outer automorphism ˆ of FN (and also any
automorphism ' 2ˆ) is called geometric. Classical Galois theory for covering spaces
states that the lifts of f are in bijective correspondence with the automorphisms in
the outer class ˆ. More precisely, an automorphism ' 2ˆ and a lift zf of f are in
correspondence if and only if

'.g/ ı zf D zf ıg 8g 2 FN ;

where the elements of FN are considered as deck transformations of z†. As a conse-
quence, the dynamics of @ zf on @z† and the dynamics of @' on @FN are conjugate
via the natural identification between @z† and @FN .

Algebraic & Geometric Topology, Volume 12 (2012)



Free group automorphisms with parabolic boundary orbits 941

It follows from the previous discussion that, for any geometric automorphism ' 2

Aut.FN /, the homeomorphism @' of @FN must preserve a cyclic order on @FN .

Another fact proved by Nielsen is that @ zf has at least 2 periodic points on @FN (for a
proof in the context of free groups; see [14]). This means that there exists a positive
power of @ zf which has at least 2 fixed points on @FN . Both these facts (existence of
2 fixed points and preservation of a cyclic order) yield directly:

Proposition 4.2 A geometric automorphism of FN cannot have a parabolic orbit
in @FN .

This fact is particularly meaningful for the free group of rank 2. Indeed, it is well known
that any outer automorphism of F2 can be induced by a homeomorphism of a torus
with one boundary component; see Nielsen [18]. This is precisely how Proposition 1.2
is proved.

4.3 Outer automorphisms

Although well known, we believe that at this point it might be wise to alert the less
expert reader about a common misunderstanding. It is by no means true that any two
automorphisms '; '0 which belong to the same outer automorphism class ˆ, must
have conjugate dynamics. Indeed, their dynamics graphs �' and �'0 may look quite
different. Concrete examples are easy to come by, and some are given in the subsequent
sections.

The reader who wants to be more subtle can easily check that indeed some automor-
phisms in ˆ have naturally conjugate dynamics. The resulting isogredience classes go
again all the way back to Nielsen (see also [13]), and one could associate to ˆ a total
dynamics graph which is the disjoint union of the �' over a set of representatives for
the single isogredience classes. However, this goes beyond the scope of this paper.

5 Parabolic orbits

5.1 Structure of a parabolic fixed point

Let ' 2 Aut.FN / be an automorphism, and X 2 Fix.@'/ be a parabolic fixed point
for ' . We have seen (cf Remark 3.3) that X must be singular. A point X 2 @FN is
rational if it a fixed point of an inner automorphism, ie X Du1 for some u2FN Xf1g.
It is proved in [10] that singular limit points of ' are rational. We deduce the following:
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Lemma 5.1 A parabolic fixed point X of ' 2 Aut.FN / is a singular rational point:
X D u1 with u 2 Fix.'/.

Moreover, we have:

Proposition 5.2 Let ' be an automorphism of FN , and X 2 Fix.@'/ be a parabolic
fixed point for ' . Then any neighborhood of X in @FN contains a full orbit f@'k.Y / j

k 2 Zg � @FN

Proof We have seen that X D u1 , with u 2 Fix.'/. We consider a given neigh-
borhood V of X . Let # D f@'k.Y // j k 2 Zg be a parabolic orbit for X . We
note that # [fX g is a compact subset of @FN . Moreover, u�1 … # [fX g because
Y … Fix.@'/. Since the sequence .@i

p
u /p2N uniformly converges on compact subsets

of @FN X fu
�1g towards u1 when p tends to infinity (see Section 4.1), the set

@i
p
u .#/ is contained in V , up to taking p sufficiently large. We remark that, since

u 2 Fix.'/, @i
p
u .@'

k.Y //D @'k.upY /, and thus @i
p
u .#/D up# is a parabolic orbit

for X .

5.2 Automorphisms of F4 which have parabolic orbits

For any k 2N , consider the automorphism 'k of F4 D ha; b; c; di given by

'k W a 7! a

b 7! ba

c 7! cakC1

d 7! dc

and its inverse
'�1

k W a 7! a

b 7! ba�1

c 7! ca�k�1

d 7! dakC1c�1:

The rose R4 is the geometric realization of graph with one vertex and 4 edges. We put
an orientation on each edge, and we label them by a, b , c and d . We can turn R4 into a
length space by declaring that each edge has length 1. As usual, the automorphisms '˙1

k

can be realized as homotopy equivalences f ˙
k

of the rose R4 where each edge is
mapped linearly to the edge path with label preassigned by '˙1

k
.

In fact, the automorphisms '˙1
k

define outer automorphisms which are unipotent
polynomially growing in the sense of Bestvina, Feighn and Handel [1], and the maps f C

k

Algebraic & Geometric Topology, Volume 12 (2012)



Free group automorphisms with parabolic boundary orbits 943

satisfy the conclusions of [1, Theorem 5.1.8]. We do not quote here the statement of
this theorem, which would lead us to introduce a lot of technical background, but we
freely use in the sequel some consequences of it.

Let A be a basis of FN . We denote by Œg� the reduced word, in the basis A, representing
the element g 2 FN . Let ' be an automorphism of FN . A splitting of g 2 FN for '
is a way to write g D g1 � � �gn such that:

(i) n > 2,

(ii) for all i 2 f1; : : : ; ng, gi 2 FN X f1g,

(iii) for all p 2 N , for all i 2 f1; : : : ; n� 1g, Œ'p.gi/�Œ'
p.giC1/� D Œ'

p.gigiC1/�

(this means that no cancellation occurs between Œ'p.gi/� and Œ'p.giC1/�).

In that case, we note g D g1 � � �gn , and each gi is called a brick of the splitting.

We now apply that [1, Theorem 5.1.8] to the given family 'k and obtain:

Lemma 5.3 For all g 2 F4 , there exists some p0 2 N such that for all p > p0 ,
Œ'

p

k
.g/� and Œ'�p

k
.g/� have a splitting, the bricks of which are either edges or paths of

the following labels: baqb�1 , caqc�1 , baqc�1 or caqb�1 , for some q 2 Z.

Remark 5.4 For the reader who is familiar with the terminology of [1], the edge paths
labelled by baqb�1 , caqc�1 , baqc�1 or caqb�1 are precisely the exceptional paths
of the improved train-track map fk .

Remark 5.5 As a consequence of Lemma 5.3, one can easily check that the sequence
.jŒ'

p

k
.g/�j/p2N of lengths of Œ'p

k
.g/� is bounded above by a polynomial of degree 2

in p .

It is claimed in Maslakova [17] that there exists a general algorithm to compute the
fixed subgroup of a given automorphism of FN . There exist some easier algorithms
for special cases: for instance, one could use Cohen and Lustig [3] to compute the
fixed subgroup of 'k . In fact, it is sufficient to determines the so called indivisible
Nielsen paths; see Bestvina and Handel [2].

Let NP denote the set faq; baqb�1; caqc�1 j q 2Zg. We notice that NP � Fix.'k/.
For an element g 2 F4 , we consider the splitting of Œ'p

k
.g/�D g1 �g2 � : : : �gr given

by Lemma 5.3. If gi 2NP for all i 2 f1; : : : ; rg, then g 2 Fix.'k/. Otherwise, there
is some i0 such that gi 2NP for all i 2 f1; : : : ; i0g and gi0C1 …NP . For simplicity,
we write !'k

D !k . Then !k.g/ D g1 : : :gi0
!k.gi0C1/ 2 @F4 . This shows that

Fix.'k/D ha; bab�1; cac�1i.
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Moreover, we thus obtain all the isoglossy classes of limit points of 'k by consid-
ering all the !k.h/ with h 2 fb˙1; c˙1; d˙1; baqc�1; caqb�1 j q 2 Zg. A direct
computation gives 'p

k
.b/ D bap , 'p

k
.c/ D cap.kC1/ , 'p

k
.baqc�1/ D baq�kpc�1 ,

'
p

k
.d/DdccakC1ca2.kC1/ � � � ca.p�1/.kC1/ , 'k.d

�1/D c�1 � d�1 . We derive that:
� !k.b/D baC1 ,
� !k.c/D !k.caqb�1/D caC1 ,
� !k.b

�1/D !k.c
�1/D !k.d

�1/D a�1 ,
� !k.baqc�1/D ba�1 ,
� !k.d/DXC

k
,

where XC
k
D !k.d/ D dccakC1ca2kC2ca3kC3 : : :. We have thus shown that there

are only 5 isoglossy classes in L!'k
, given by XC

k
, a�1 , caC1 , baC1 , ba�1 .

Theorem 5.6 The set f'k j k 2 Ng is a family of automorphisms of F4 , such that
each 'k has a parabolic orbit. The dynamics graph of 'k is given in Figure 2. For any
k; k 0;p;p0 2N , 'p

k
and 'p0

k0
are conjugate if and only if k D k 0 and p D p0 .

ba�1== baC1
��

ZZ
bd�1

b

bc�1

XC
k

X�
k

doo aC1
b�1

// a�1 ca�1
c //d�1

oo caC1

Figure 2. The dynamics graph of 'k has 3 connected components. A label g

has been added to each edge: it means that !k.g/ is the endpoint of the edge
and !�

k
.g/ is the origin of the edge.

Proof We write !'�1
k
D !�

k
. Arguing for '�1

k
as we have done for 'k , we obtain:

� !�
k
.b�1/D !�

k
.c�1/D aC1 ,

� !�
k
.c/D !�

k
.d�1/D ca�1 ,

� !�
k
.b/D ba�1 ,

� !�
k
.bc�1/D baC1 ,

� !�
k
.d/DX�

k
,

where X�
k
D !�

k
.d/ D dakC1c�1a2kC2c�1a3kC3c�1 : : :. Again, there are only 5

isoglossy classes in L!'�1
k

, given by X�
k

, aC1 , ca�1 , ba�1 , baC1 .

Algebraic & Geometric Topology, Volume 12 (2012)



Free group automorphisms with parabolic boundary orbits 945

Note that 'k.bd�1/ D bac�1 � d�1 is a splitting for 'k . Hence !k.bd�1/ D

!k.bac�1/ D ba�1 . On the other hand, b � d�1 is a splitting for '�1
k

. Hence
!�

k
.bd�1/D !�

k
.b/D ba�1 . Thus ba�1 is parabolic fixed point for 'k .

Suppose that 'p

k
and 'p0

k0
are conjugate (k; k 0;p;p0 2N ): there exists  2 Aut.F4/

such that 'p

k
D  '

p0

k0
 �1 . Let Mk ;Mk0 ;P 2 GL.4;Z/ be the matrices obtained by

abelianization of respectively 'k , 'k0 and  . Then

M
p

k
D

0BB@
1 p .kC 1/p 1

2
.kC 1/p.p� 1/

0 1 0 0

0 0 1 p

0 0 0 1

1CCA :
Computing M

p

k
P D PM

p0

k0
, one sees that P must have the following shape:

P D

0BB@
�1 �1 �2 �3

0 �2 0 �4

0 �5 �3 �6

0 0 0 �4

1CCA
with

(1) p0.k 0C 1/�3 D p.kC 1/�1 and p0�3 D p�4:

We deduce that det P D �1�2�3�4 , and thus �i 2 f˙1g, since det P D˙1. From (1)
we derive k D k 0 and p D p0 .

5.3 Parabolic orbits for N > 5

For any k 2N , consider the automorphism ˛k of F5 D ha; b; c; d; ei given by

˛k W a 7! a

b 7! ba

c 7! cakC1

d 7! dc

e 7! e:

Since the restriction of ˛k to ha; b; c; di is 'k , clearly, !˛k
.bd�1/D!˛�1

k
.bac�1/D

ba�1 is a parabolic fixed point for ˛k . Considering the abelianization and arguing as
previously, we check that if k ¤ k 0 and p¤ p0 , then ˛p

k
and ˛p0

k0
cannot be conjugate.

If N > 6, we split FN D F4 �F2 �FN�6 . We first recall some facts about Out.F2/.
It is well known, since Nielsen [18], that the abelianisation morphism from Out.F2/
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to GL2.Z/ is an isomorphism. If M 2 SL2.Z/ has a trace bigger than 2, then M has
an eigenvalue � > 1 which is an algebraic unity of a quadratic extension of Q: we
call � the dilatation of M . For all k 2N prime, there exists Mk 2 SL2.Z/ such that
the dilatation �k of Mk belongs to Q.

p
k/XQ. This implies in particular that for

all p 2N , �p

k
2Q.
p

k/XQ. We choose �k 2Aut.F2/ in the outer class represented
by Mk . Then the automorphism �

p

k
has growth rate equal to �p

k
.

We define ˇk 2 Aut.FN / by ˇk D '1 � �k � id, where id is the identity on FN�6 .
Again, !ˇk

.bd�1/D !ˇ�1
k
.bac�1/D ba�1 is a parabolic fixed point for ˇk . Since

'1 is polynomially growing, it follows that the growth rate of ˇp

k
is �p

k
(see for

instance [12]). This proves that ˇp

k
is not conjugate to ˇp0

k0
if k ¤ k 0 or p ¤ p0 ,

because the growth rate is a conjugacy invariant and because Q.
p

k/\Q.
p

k 0/DQ
(if k and k 0 are prime integers).

This finishes the proof Theorem 1.1. In view of Proposition 1.2, it remains to ask the
following question, the answer of which we do not know:

Question 5.7 Does there exist an automorphism of F3 which has a parabolic orbit?

6 Dehn twist automorphisms of F2

In this last section, we calculate the dynamics graphs of all the automorphisms in the
outer class of ın (n 2Z, n¤ 0), where ı is the automorphism of F2 D ha; bi defined
by ı.a/D a and ı.b/D ba.

Let D2Out.F2/ be the outer class of ı . As explained in Section 4.2, the automorphisms
in the outer class Dn (n 2 Z) cannot have parabolic orbits. We are going to describe
more precisely the dynamics induced on @FN by the automorphisms in the outer
class Dn (n 2 Z, n ¤ 0). For that, we pursue the strategy of [6; 13], where the
interested reader will be able to find details of the following constructions.

The rose R2 is the geometric realization of the graph with one vertex and 2 edges.
We put an orientation on each edge, and we label them by a and b . We can turn R2

in a length space by declaring that each edge has length 1. We represent Dn by an
homotopy equivalence f of R2 defined in the following way: f is the identity on the
edge a and linearly sends the edge b to the edge path labelled ban .

The universal cover zR2 of R2 is a tree, equipped by the action of F2 by deck transfor-
mations. We lift the labels of the edges of R2 to the edges of zR2 . Equivalently, zR2

can be considered as the Cayley graph of F2 relative to the generating set fa; bg. Let
T be the tree obtained by contracting in zR2 all the edges labelled by a: the action
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of FN on zR2 induces an action of F2 on T by isometries. We note that the stabilizer
of a vertex of T is conjugate to the subgroup hai � FN generated by a.

As in the geometric case (see Section 4.2) the automorphisms in the outer class Dn

are in 1:1 correspondence with the lifts of f to zR2 . Moreover, these lifts of f induce
isometries of T . More precisely, the isometry H of T associated to the automorphism
ın 2Dn satisfies

ın.g/ ıH DH ıg 8g 2 FN ;

where the elements of FN are considered as isometries of T . Then, for u 2 FN , the
map Hu D u ıH is the isometry of T associated to the automorphism iu ı ı

n 2Dn ,
since .iu ı ın/.g/ ıHu DHu ıg holds for all g 2 FN .

If Hu is a hyperbolic isometry of T , then iu ı ı
n has North-South dynamics and the

fixed points of iu ı ı
n are determined by the ends of the axis of Hu in T ; see [13].

If Hu is an elliptic isometry, let P 2 T be a fixed point of Hu . There exists some
w 2 FN such that the stabilizer of P in FN is whaiw�1 . The fact that P is a fixed
point of Hu then results in the existence of an integer k 2Z such that uın.w/Dwak .
Or equivalently, such that iu ı ı

n D iw ı .iak ı ın/ ı i�1
w . Indeed,

iu ı ı
n
D iwak.ın.w//�1 ı ın

D iwakın.w�1/ ı ı
n

D iw ı iak ı iın.w�1/ ı ı
n

D iw ı iak ı ın
ı iw�1 :

s

The dynamics of @.iu ı ın/ is thus conjugate to the dynamics of @.iak ı ın/ for some
k 2Z. We are now going to study in more detail the automorphisms iak ıın for k 2Z,
and in particular, to give their dynamics graphs.

The inverse of iak ı ın is ia�k ı ı�n . We note that

iak ı ın
W a 7! a ia�k ı ı�n

W a 7! a

b 7! akban�k b 7! a�kbak�n

b�1
7! ak�nb�1a�k b�1

7! an�kb�1ak :

Thus the dynamics of @.iak
2
ı ın/ depends on the sign of k and of n� k .

Remark 6.1 Let � 2 Aut.FN / defined by �.a/ D a�1 and �.b/ D b�1 . We note
that iak ı ın and ian�k ı ın are conjugate by the involution � .

First case Assume k.n� k/ D 0. Since ın and ian ı ın are conjugate by � (see
Remark 6.1), we focus on ın . One can check that Fix.ın/D ha; bab�1i. Let X be a
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point in @F2X @ha; bab�1i, and let x be the longest prefix of X in ha; bab�1i. Then
X D xY , with no cancellation between x and Y , and the first letter of Y is equal to b

or to b�1 . If Y begins by b , then !ın.Y /D ba1 and !ı�n.Y /D ba�1 . If Y begins
by b�1 , then !ın.Y /D a�1 and !ı�n.Y /D a1 . Hence ın has 2 isoglossy classes of
!–limit points (with representatives ba1 and a�1 ), and ı�n has 2 isoglossy classes
of !–limit points (with representatives ba�1 and a1 ). The dynamics graph of ın is
given in Figure 3.

ba1 a�1

�
�
�
�
�
�
�
� b�1a�1 a1

ba�1

OO

a1

OO

b�1a1

OO

a�1

OO

k D 0 k D n

Figure 3. Dynamics graph of iak ı ın for k.n� k/D 0

Second case k.n�k/ < 0. We suppose that k > n (from which one deduces the case
k < 0 by using Remark 6.1). The fixed subgroup is Fix.iak ı ın/D hai. We note that
!iak ıın.b/D !iak ıın.b�1/D a1 and !.iak ıın/�1.b/D !.iak ıın/�1.b�1/D a�1 . It
follows that @.iak ı ın/ has North-South dynamics on @F2 ; see Figure 4.

a�1

�
�
�
�
�
�
� a1

a1

OO

a�1

OO

k < 0 k > n

Figure 4. Dynamics graph of iak ı ın for k.n� k/ < 0

Third case k.n � k/ > 0, ie 0 < k < n. We check that the fixed subgroup is
equal to Fix.iak ı ın/D hai. We note that !iak ıın.b/D a1 , !iak ıın.b�1/D a�1 ,
!.iak ıın/�1.b/ D a�1 and !.iak ıın/�1.b�1/ D a1 . For x 2 @F2 , it follows that
!iak ıın.X / and !.iak ıın/�1.X / depend only on the first occurrence of the letter b

or b�1 in X : if it is b , then !iak ıın.X / D a1 and !.iak ıın/�1.X / D a�1 ; if it
is b�1 , then !iak ıın.X /D a�1 and !.iak ıın/�1.X /D a1 . We say that @.iak ı ın/

has semi-North-South dynamics on @F2 ; see Figure 5.
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a�1

��
a1

BB

Figure 5. Dynamics graph of iak ı ın for k.n� k/ > 0
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