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Products of Greek letter elements dug up
from the third Morava stabilizer algebra

Ryo KATO
KATSUMI SHIMOMURA

In [3], Oka and the second author considered the cohomology of the second Morava
stabilizer algebra to study nontriviality of the products of beta elements of the stable
homotopy groups of spheres. In this paper, we use the cohomology of the third
Morava stabilizer algebra to find nontrivial products of Greek letters of the stable

homotopy groups of spheres: a1y:, Bave, {1, @1, B5/,)v:B1 and (B1, p, y:) for ¢
with p}t(t? — 1) for a prime number p > 5.

55Q45; 55Q51

1 Introduction

Greek letter elements are well known generators of the stable homotopy groups of
spheres localized at a prime p. Studying products among these elements is an interesting
subject, and studied by several authors. For example, at an odd prime p, all products of
alpha elements are trivial. In [3], we used H*S(2) to study nontriviality of the product
of beta elements. In this paper, we use H*S(3) to find relations of Greek letters. The
multiplicative structure of H*S(3) was given by Yamaguchi [7], but unfortunately, it
has some typos. So here, our computation is based on Ravenel’s [4].

Let B,,, be the generator of the E;—term E %’1’ *q (S) of the Adams—Novikov spec-
tral sequence converging to the homotopy groups 74 (S) of the sphere spectrum S.
Hereafter, ¢ = 2p — 2 as usual. A relation given by Toda (see [4]) implies that 8,/
dies in the Adams—Novikov spectral sequence at a prime p > 2. At the prime two,
B3 /2 = 0 by Miller, Ravenel and Wilson [2, Proposition 8.22], while at the primes
three and five, Ravenel showed that ,85 /p survives to a homotopy element of 74 (.S)
and a1 B85/, = 0 for the generator o of 7,1 (S). Here, we show the following:

1.1 Theorem Ata prime p >3, 5/, survives to TT(p3—1)g—2(S) and a1 Bh/p =0.

1.2 Corollary At a prime p > 3, the Toda bracket (a1, a1, B/ p) (= o1 Bp2p2) is
defined.
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1.3 Remark It is already known that o ,sz /p2 survives in the Adams—Novikov
spectral sequence by the work of R Cohen [1]. Corollary 1.2 states that Cohen’s
element is a Toda bracket (o1, a1, B5/,).

At the prime 3, Ravenel showed these results in [4].

Let By, B2 and y; (¢ > 0) be the generators of Coker J of dimensions pg — 2,
(2p+1)g—2 and (tp*>+ (t — 1) p +t —2)q — 3, respectively.

1.4 Theorem Let p > 5, and ¢ be a positive integer with p4t(t> —1). Then, the

elements a1 yy, Baye, (a1, a1, B/ p)B1ye and (B1, p,y:) generate subgroups of the
stable homotopy groups of spheres isomorphic to Z./p. Besides, even in the case

p|(t + 1), the elements B1y; and (B1, p, y:) are generators of order p.

Note that (81, p, y:) = (yr, p, B1). Also, if t =1, then (yq, p, B1) = 0, while B,y
is nontrivial (see Section 5).

From here on, we assume that the prime number p is greater than three.

2 H*S(3) revisited

We begin with recalling some notation from Ravenel’s green book [4]. Let BP denote
the Brown—Peterson spectrum. Then, the pair

(BP*,BP*(BP)) = (Z(p)[vl, vy, .. .],BP*[ZI, t,.. ])

is a Hopf algebroid. Here, the degrees of v; and #; are 2p’ —2. The structure maps
act as follows:

nr(v1) =vi + ph
nRr(v2) =va +vitf + pt, mod (p*,v?)
nr(v3) =v3 + vzllpz + ity + pts
—pvlvzp_l(tz +tlp+l) mod (p?, v%, vé’)
At =n®1+1®4
21) A)=061+4 &1 +1Q15—vibig
M) =68 1+68t7 +4,@2 + 1@t mod (v, v2)

_ p3 p? P
A(t4)=t4®l—i—t3®l1 +tHh®t, +1h1 Q1 +1Q1
—v3bip mod (vy,v3)

pt p3 p? P
Alts) =151+ 14 Q1] +1381, +H®1; +11 Q1 +1Q1s
—v3b20 —v4b13 mod (p,vy,v2)
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for
1 k k+1 k+1
bie = (Ae)? =i w1-Ted )
k-‘rl_l
17 k+1y . k4+1_;
22 =- 3 (pi )t{@t{’ ’
L
1 k41 k+1 k+1 k+2 k41 k+1
b2k=;(A(z2)1’ —t @1l @ T 1@ v bey).

Let K(3)« = Fp[vs, v3_1] have the BP«—module structure given by v; v =vjv; = v§+1
if i =3, and = 0 otherwise, and
E(3) = K(3)* ®BP* BP*(BP) ®BP* K(3)*
= KO)ultr fa... )/ (3t =P t;:i > 0)  (by [4, 6.1.16])
is the Hopf algebra with structure inherited from BP.(BP). Define the Hopf algebra
S(3) by S(3) = X(3) ®k(3).fp» where K(3)« acts on Fp by v3-1=1. Then,
3
S() = Fplt1.12....1/(t] —t;:i > 0).
Now we abbreviate Extg(s)(Fp, Fpp) to H*S(3).

Consider integers d; (= d3,; in [4, 6.3.1])
0 i <0,
di = . .
max(i, pdi—_3) i >0.

Then, there is a unique increasing filtration of the Hopf algebroid S(3) with deg tip ' = d;
for 0 < j <3.

2.3 Theorem (Ravenel [4, 6.3.2]) The associated Hopf algebra E 08(3) is isomor-
J
phic to the truncated polynomial algebra of height p on the elements Zip fori >0 and
Jj € Z/3, with coproduct defined by
; j Kk+j
Yicotl @i i <3,

j
AGf) = j i
1V @1+1Q1f +bi_3 42 i>3.

Let L(3) be the Lie algebra without restriction with basis x; j for i >0 and j € Z/3
and bracket given by

/ J ;
{5i+jxi+k,j — O g Xi+ka fori+k =3,

xiixp ] = i
[Xi,j k1] otherwise,
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where 81". =1if i = j mod 3 and 0 otherwise, and L(3, k) the quotient of L(3)
obtained by setting x; ; = 0 for i > k. Then, Ravenel noticed in [4, 6.3.8]:

24 Theorem H™*(L(3,k)) for k < 3 is the cohomology of the exterior com-
plex E(h; j)on one-dimensional generators h;j with i < k and j € Z/3, with

coboundary
i—1

d(hij) =) hsjhizss+j-

s=1
From now on, we abbreviate /; j to /;j, and hyj to hj.

Under the above filtration, Ravenel constructed the May spectral sequences:

2.5 Theorem (Ravenel [4, 6.3.4, 6.3.5]) There are spectral sequences
(@) E»= H*(L(3,3)) = H*(E¢S(3)),
(b) E; = H*(EoS(3)) = H*(S(3)).

Since these spectral sequences collapse, H* S (3) is additively isomorphic to H*L(3, 3).
Therefore, we have a projection

(2.6) n: H*S(3) » E°H*S(3) = H*(EoS(3)) = H*L(3,3).

Note that the Massey product (h;, hj41,hiy2,h;) is homologous to vgz_p)l’l bita
represented by vgz_p)plbl’i_i_z of (2.2), and 7 assigns the Massey product to b; 4, €
H*L(3,3). Ravenel determined in [4, 6.3.34] the additive structure of H*L(3,3). In
particular, we have the following:

2.7 Theorem H™*L(3,3) contains submodules generated by the linear independent
elements

h1k1€3, b()klé':;, h()l, k()l, h()bobzl and hll
Here, | = hyhy1hso, ki = haihiv1 (i = 0,1), bo = hihsa + hathao + h3ihy,
by = hohsy + haohaz + haoho and §3 = h3o + h3y + has.

Proof In the table of the proof of [4, 6.3.34], we find the elements
ho, hy, ko, bo, by, | 1'=hohyhsy, and 3,

along with the first element /,k{3 of the theorem. We also have the element
—hiki1hzo = h1hyha1h3g in the table, which is the last element /;/ of the theorem.
Also in the table are h1kqh3q and h1k1h3,. We see that bok1 = —h1ki1h31 +hikihss
and so the second element is given by bok1$3 = —h1k1h3183 + hik1h3283.
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The element /1gbgb,/¢3 is computed as

hohahaihso(hihsy + haihao +hsthy)(hohst + haohas + haoho)(hzo + hzi + h32)
—2hoh1hahaohaihazhsohsihss.

Therefore, hgbob,! is the dual of the generator —%@ 3, and the elements /ybgb,/ and
hol are generators. Similarly, a computation

koll'ts = haohyhahayhsohohaahsi(hso + hay + h32)
= hohihahaohaihashsohsihs,

shows that kg is the dual of the generator /’{3. m]
2.8 Lemma In H*L(3, 3), h()kl =0 and kOkl =0.

Proof From the proof of [4, 6.3.34], we read off the relations /gk; = e3ph, and
kok1 = e3pg; in H*L(3,2). Since e3q cobounds /39 in H*L(3,3), the lemma
follows. U

3 Greek letter elements

Let E$'(X) denote the E,—term of the Adams—Novikov spectral sequence con-
verging to the homotopy group m;—s(X) of a spectrum X. Then the E,—term is
Extgp, (8p) (BP«, BP«(X)). We here consider the Ext-group Extgp, zp)(BP«, M) for a
BP.(BP)—comodule M as the cohomology of the cobar complex % M (cf [2]).

BP..(BP)
Consider a sequence A = (ag, a1, ...,dy) of nonnegative integers so that the sequence
p% vl ... ven is invariant and regular. For such a sequence A4, Miller, Ravenel

and Wilson introduced in [2] n—th Greek letter elements r)ﬁ’&) in the Adams—Novikov
E,—term E;”t(A) (S) by

3.1) 0y = 84,1+ San(vgn) € EXA(S)
for
vin € Exty P "D (BP.. BP. /I(A.n)).
Here, s(A) = an/an—1,ap—>,...,a9 and t(A) = 2a,(p" —1) —22;:& a;i(pt —1),
I(A, k) denotes the ideal of BPy generated by p?,vi', ..., vZ’i‘ll ;and 84 g1 is the

connecting homomorphism associated to the short exact sequence

Ak

0 — BPy/I(A, k)~ BP./I(A, k) — BPy/I(A, k + 1) — 0.
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In particular, we write o = n(l), B = n(z) and y = n(3). So far, only when n < 3,
many conditions for that Greek letter elements survives to homotopy elements are
known. We abbreviate 77( s(a) © 77;(1',11) if A=(1,...,1,ay) as usual. For example, we
consider B—elements defined by

Bs = 81.1).1(BL) € EZT119)(8)
for ﬂs = 81.1y.2(v3) € EMLL9(1(0)),

,Bpi/pi = ﬂpi/pi,l = 8(1’pi)’18(1’pi)’2(1)2 ) (S E%’t(l’p P )(S)

(3.2)

Hereafter we assume that the prime p is greater than three. We have the Smith—Toda

spectrum V (k) for k =0, 1,2 defined by the cofiber sequences
sZs5Svo)L s,

(33) 21V (0) S V(0) = V(1) i‘» z1H1Y(0),

seay 1y Loy Bove) B seenary),

Here, a € [V(0), V(0)]; is the Adams map and B € [V(1), V(1)](p+1)q is the vy—
periodic element due to L Smith. Note that the BPx—homology of these spectra are
BP«(V(k)) = BP«/ I} for the ideal I} of BPs generated by v; for 0 <i < k with
vo = p. We consider the Bousfield—Ravenel localization functor L3 with respect
to vy IBP. The E,—term EZ(L3V(2)) of L3V(2) is isomorphic to K(3)«® H*S(3),
whose structure is given in [4] (see also [7]), and we consider the composite

r: E} (S) — E5(V(2) 2 Ex 5 (L3V(2)) L (SQ3)) 5 H L(3,3).
Here the first map is induced from the inclusion ¢: S — V(2) to the bottom cell, the

second is from the localization map, the third is obtained by setting v3 = 1 and the
last is the projection (2.6).

3.4 Lemma The map r assigns the Greek letter elements as follows:

r(ay) =ho, r(B1) =—bo, r(B2)=2ko,
’”()/t)=—l(l2—1)l—l(l—1)k1§3 and r(Bp/p) =—by.

We also have B = h —vl ho € El’pq(V(())) for the generators h; ofEl’p 72(V(0))
represented by tp
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Proof First we consider the images of the Greek letter elements under the map

tx: E5(S) — E5(V(2)). In the cobar complex QBP p)yBP by (2.1),

i+1 i+1 i
d(vi) = pt;, d@] )—v1 lp —v? 7 mod (p) fori >0,
d(v%) = 2v1vztp + vltl mod (p, v} 7,
t 2
d(vy) = tvavy” ltlp + (2)v2v3 2t2p + (3)11;113 3t13p mod (p, vy, v3),

which imply

iy, (1) = [n], 8(1,1),2(v2) =[1] = p_lt1],

2 —1 p?
5(1,1),2(”%) = [2U2lp + Ulflp + Uf) vl Sa,p, 2(U§) = [f - Uf) plf)],
t 2 3 _
81,1135 = [tvg ltlp + (2)1)211’ 21 Py (3) vIvi T3, »? +v3z ]— Vi

for cochains y € QBP (BP)BP*/(p) and z € QBP (BP)BP*/(p, v1). Here, [x] denotes
a cohomology class represented by a cocycle x. The first one shows «; = /g, and the
second gives the last statement of the lemma. We further see that d (t ) =—pbir_1
for k> 1 and d(vg) = pt mod 1((2,1,1),k) fork=2,3 by (2.1)in € SZBP sp)BPx-
Moreover, [by;]’s are assigned to by in H* L(3,3) under the projection 7, and we
obtain

V5(1,pk—1),1(hk—vf - hk_l)z—bk_l fork =1,2,
r8i,1),1 (221} +U1l1p]) = 2k,

t
S10,2(0) = [t =D 2 o+ (5)uy 2 @7 +w] =,

2
réa,1,1,1 () = t(t = 1)t =2)h3ok, +l(l—1)75(1,1,1),1([lf@)llp +§llp®llzp ])

Here, w is a linear combination of terms in the ideal (v{,v;)?. Thus the relations
other than r(y;) follows.

We note that b, 1n (2.2) corresponds to fip1h3g + h3i1hay by A(ts)? in (2.1). Since
d(lp) = —lp ®lp + vpbll — pbyo by (2.1), we obtain

r5(1,1,1),1([¢f®llp +%f1p®112p D) =—(ha1h3o+h3tha)hy +hy1by = =31 =k {3,

which shows the relation on r(y;). a

Recall the cofiber sequences (3.3) and the v;—periodic element y € [V(2), V(2)]4,
g3 = (p?>+ p+ 1)q) due to H Toda. Then, the Greek letter elements in homotopy are
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defined by
(3.5) oy = jati, Br = Jﬂ; for By = JiBliyi and  y, = jjljzl/tizili
for ¢t > 0, and the Greek elements in the E,—term survives to the same named one in

homotopy by the Geometric Boundary Theorem (cf [4]).

Proof of Theorem 1.4 We begin with noticing that the element b; in H*L(3,3) is
the image of the Massey product (/4;, h;+1, hi+2, h;i) under , which is homologous
to b; represented by by; in (2.2). We further note that the Toda brackets (a1, a1, B 5 /p)
and (B, p, yr) are detected by a1 b, and &1y, of E5(S), respectively. Indeed, in the
first bracket, da,—1(b2) = o185/, by Corollary 4.4 below, and in the second bracket,
(B1.p.ve) = j{B]. p.vt). Under the condition on #, Lemmas 3.4, 2.7 and 2.8 imply
that each element of o;y;, Baye, a1b2y:fB1 and hyyy, as well as f1y;, generates
a submodule isomorphic to Z/p of the E;—term EJ(S). These are, of course,
permanent cycles, and nothing kills them in the Adams—Novikov spectral sequence
since each element has a filtration degree less than 2p —1. |

4 B7, in the homotopy of spheres

Let X and X be the (p—1)g— and (p—2)g—skeletons of the Brown—Peterson spec-
trum BP. Then, we have the cofiber sequences

— — 4 7 A./ _
(4.1) SLYE xSt and XS xS s vy

Then,
BP4(X) = BP4[x]/(x?) and BPy(X) = BPy[x]/(x?™1)

as subcomodules of BP.(BP), where x corresponds to ¢;. From [4, Chapter 7], we
read off the following:

42) b =0e E2PP9(X), which implies
E§s+e’tq(X) =0 ifs>pandt<(s—1)p>+(s+1+e)p.

4.3 Lemma bo: E2STe14(S) — E2s+2+e.(t+P)4(S) js monomorphic if s > p and
t<(s=Dp*+(s+e)p.

Proof Note that by = AA’, and the lemma follows from (4.2) and the exact sequences
4 }L/ —
E%s-ﬁ—e,(t-i—p—l)q(X) K_) E§s+e,tq(S) N E§s+1+e,(t+p—l)q(X)’
_ — A
E§s+e+1,(t+p)Q(X) N E§S+e+1,(t+p l)q(X)_> E§S+2+e’(t+p)q(S)

induced from the cofiber sequences in (4.1). O
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Ravenel showed that d3 p—1(B 2/ ,2) = o B4/, mod Ker B ? in the Adams—Novikov
spectral sequence for 74(S) [4, 6.4.1]. Here, the mapping ,Bp on E21""1 (P*+1q (S)
is a monomorphism by Lemma 4.3:

4.4 Corollary In the Adams—Novikov spectral sequence for m«(S),

3 3
drp—1(B 2 p2) = 1B, € EZLTL T () = p2r LU HDa(g),

Proof of Theorem 1.1 Consider the first cofiber sequence in (4.1). The Adams—
Novikov E,—term Equr3 (P*+9)4(X) vanishes for s > 0 by (4.2), so the element
(B p2p2) € E2 P’ q(X) survives to a homotopy element ,sz/pz € mx(X). In
general, we see that

4.5) Let 70 S — X denote the inclusion to the bottom cell. Then, A41(x) = aqx
~7 for x € EJ(S).

Put ,Bp/p = L*(,Bp/p) € E2’1’ 4(X), and we see that k*(ﬂp/P) =a185/p, and so
we see that B85/, detects an essential homotopy element e ( X p2/p2) € Tx (X) by
Corollary 4.4 and Shimomura [5], which we also denote by 5 ,.

Now turn to the second coﬁber sequence in (4.1). The relation bp = 0 of (4.2)
ylelds a cochain y = Zp o X'Vi € Q2P=1BP,(X) such that d(y) = b?, where

921’ IBP,. It follows that d(y) = bY —d(xP~")y,_; € Q*P BP4(X) for y =
Zp o X' )i € Q2PTIBPL(X). Inpartlcular d(yp—1)= 0eQ2P~1BP, and d(yp—2)=
(1= p)ti ® yp—1. By definition, these imply A, (y,—1) = b . Consider the exact
sequence obtained by applying the homotopy groups to the second cofiber sequence.
Then, ¢, (B5/,) =0 by (4.2), and so 85/, must be pulled back to an element £ €
7x(S) detected by y,_;. Since by = AL, boyp—1 = hobl ,and (ho,....ho)yp—1 =
ho(ho,....ho, yp—1), we see that

3
bY =(ho,....ho, yp—1) £0€ E3PP°4(S) mod kerhy.

Put b{’ = (ho,...,ho, yp—1) +c for c ekerhgy C E;p’p3q(S). Then, bf—c survives
to Bp/p € T (S).

The element o B f,’ /p is detected by ho(bf7 —c)= hobf7 in the Adams—Novikov E,—
term, which is killed by b, by Corollary 4.4. |

5 Remarks

5.1 A relation on Toda bracket

The relation {Bs, p, y:) = {y¢, p, Bs) follows immediately from results of Toda: By
definition, (Bs, p,y:) = jB) V@i and (vr, p, Bs) = jvu)Bs)i for By = j1B%i
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and y() = j1 j2y'iziy. Since V(2) and V(3) are V(0)-module spectra, 6(8) = 0
and 6(y) = 0 by Toda [6, Lemma 2.3]. Similarly, 6(iz) = 0 and 6(j;) = 0 for
k =1, 2. Therefore, [6, Lemma 2.2] implies 6(B(5)) = 0 and 6(y(;)) = 0. Therefore,
Bs)Y@) = v)B(s) by [6, Corollary 2.7] as desired.

5.2 On the action of y,

Note that y; = a18,—1. Then, a1y; = « ,Bp 1 = 0 and (a1,0l1,,3p/17),313/ =

_al(alaal’ﬂg/p>ﬂlﬂp—l - (Oll?alaal)lBP/Pﬂlﬁp—l _0 Slnce (Oll,oll,al) O
and (y1, p, B1) = Bp—1{a1, p, B1) = Bp—1jj1Biri = 0.
For ¢t > 2,

_ !
B =8a,1).180,1),2(V5) =811, 1([“’2 "+ (2)‘)1”5 2157 +v x])
= [1e— D2 @ — 1o+ (5)us P @] mod (p,vy)
= 1(t — v ko —tv5'he  mod (p,v;)

and al,Bz,Bp 1 € ES(SO) is prOJected to ho(2ky — 2v2b0)(2v ko +v; _Zbo) =
—2vp hokobo — 2h0vp 1b2 in E3 5(V(2)) under the induced map ix from the in-
clusmn i:S°—= V(@) to the bottom cell. Here, kg = [t ® tp + 5 t ® 121’ ]. Then,
this element is detected by 2v ko € Ej 3 = =Ey 2,(p*+p=1g (X A V(2)) in the small
descent spectral sequence. The klller of thlS element if any, stays in the E;—terms

2 2 —
E} = EXWPTHPI(x AV(2), E}=E}PT2r7DI(x AV(2)),
E? = ESP 204 (¥ AV (2)).

These are zero, and we see that the product is not zero.
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