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Inequivalent handlebody-knots
with homeomorphic complements

JUNG HOON LEE

SANGYOP LEE

We distinguish the handlebody-knots 51; 64 and 52; 613 in the table, due to Ishii et
al, of irreducible handlebody-knots up to six crossings. Furthermore, we construct
two infinite families of handlebody-knots, each containing one of the pairs 51; 64 and
52; 613 , and show that any two handlebody-knots in each family have homeomorphic
complements but they are not equivalent.

57M50

1 Introduction

Given a knot in S3 , its regular neighborhood is a knotted solid torus. Conversely,
an embedded solid torus in S3 uniquely determines a knot. Thus we may regard an
embedded solid torus as a knot in S3 . Instead of an embedded solid torus in S3 ,
consider an embedded handlebody. We may regard it as a kind of a knot. Following
Ishii, Kishimoto, Moriuchi and Suzuki [3], we say that a handlebody embedded in S3

is a handlebody-knot.

Throughout this paper, by a handlebody-knot we will mean a genus two handlebody
embedded in S3 . A handcuff graph or a � –curve � in a handlebody-knot H is called a
spine if H is a regular neighborhood of � . The spine of H is not uniquely determined,
but any two spines are related by a finite sequence of isotopies and IH-moves (see
Ishii [2]), where an IH-move is a local move on a spatial trivalent graph depicted in
Figure 1.

Figure 1
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Two handlebody-knots H1 and H2 are said to be equivalent if there exists an isotopy
of S3 that takes H1 to H2 , or equivalently if there exists an orientation-preserving
automorphism h of S3 such that h.H1/DH2 . A handlebody-knot H is reducible
if there exists a 2–sphere S in S3 such that S \H is a disk separating H into two
solid tori. Otherwise, it is irreducible. Note that H is irreducible if S3 � int.H / is
@–irreducible.

As done for knots, we can use regular diagrams of spines of a handlebody-knot to define
the crossing number of the handlebody-knot. Ishii, Kishimoto, Moriuchi and Suzuki
recently give a table of handlebody-knots such that any irreducible handlebody-knot
with six or fewer crossings or its mirror image is equivalent to one of the handlebody-
knots in the table. See [3, Table 1]. By using some invariants, they distinguish all
handlebody-knots in their table except only for the two pairs .51; 64/ and .52; 613/.
See Figure 2.

Figure 2

Consider the handcuff graphs ˆn; ‰n in S3 , shown in Figure 3, where a rectangle
labeled by an integer n denotes a vertical right-handed twist of two strings with 2n

crossings. Let Vn and Wn denote regular neighborhoods of ˆn and ‰n , respectively.
Put Xn D S3� int.Vn/ and Yn D S3� int.Wn/.

Let ‚nDˆn or ‰n , and let ZnDXn or Yn correspondingly. The handcuff graph ‚n

consists of two vertices and three edges, two forming loops and one connecting the two
loops. One of the two loops bounds a disk intersecting the vertical twist in two points.
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Figure 3

By twisting along the disk, one can transform ‚n into ‚m for any other integer m.
This shows that Zn is homeomorphic to Zm .

For any submanifold M of S3 , denote by M � the mirror image of M . We say that
M is amphicheiral if an isotopy of S3 takes M to M � . The main result of the present
paper is the following.

Theorem 1.1 Let n and m be distinct integers.

(1) No two of Vn;V
�

n ;Vm;V
�

m are equivalent.

(2) No two of Wn;W
�

n ;Wm;W
�

m are equivalent.

In particular, Vn and Wn are not amphicheiral for each integer n.

By calculating fundamental groups, one can show that X0 and Y0 are not homeomor-
phic. This implies that Vn and Wm are not equivalent for any integers n and m.

It is a celebrated result of Gordon and Luecke that if two knots in S3 have homeomor-
phic complements then the homeomorphism between the two complements extends
to an automorphism of S3 [1]. In contrast, Motto [5] showed that handlebody-knots
are not determined by their complements. We remark that our infinite families of
inequivalent handlebody-knots are also of this type.

We can now distinguish the handlebody-knots 51; 64 , and 52; 613 in the table due to
Ishii et al.

Corollary 1.2 (1) No two of 51; 5
�
1
; 64; 6

�
4

are equivalent.

(2) No two of 52; 5
�
2
; 613; 6

�
13

are equivalent.

In particular, 51; 52; 64; 613 are not amphicheiral.
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Proof The sequences of pictures in Figure 4(a),(b) show that V0 and V�1 are re-
spectively equivalent to 51 and 64 , and the sequences of pictures in Figure 4(c),(d)
show that W0 and W1 are respectively equivalent to 52 and 6�

13
. Hence the result

immediately follows from Theorem 1.1.

Figure 4

Some figures in this paper are best viewed in color; readers confused by figures in a
black-and-white version are recommended to view the electronic version.
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2 Curves in the boundary of a genus two handlebody

A properly embedded disk in a 3–manifold M is essential if it is not isotopic to a disk
in @M . A properly embedded compact surface in M , which is neither a disk nor a
sphere, is essential if it is incompressible and is not @–parallel. Given a set fc1; : : : ; cng

of disjoint simple loops in @M , M Œc1[ � � � [ cn� will denote the 3–manifold obtained
by attaching 2–handles to M along disjoint neighborhoods of c1; : : : ; cn .

Throughout this section, H will denote a genus two handlebody. A simple loop in @H
is called a primitive curve if there exists a disk in H , called a dual disk, that intersects
the loop in a single point.

Lemma 2.1 Let c1; c2 be two disjoint nonisotopic primitive curves in @H . If there
are two disjoint nonisotopic essential disks D1;D2 of H each of which is a common
dual disk of c1 and c2 , then the fundamental group of H Œc1[ c2� is either the infinite
cyclic group or the cyclic group of order 2.

Proof The two disks D1;D2 cut H into a 3–ball B and c1[ c2 into four arcs. Let
DCi ;D

�
i be the copies of Di on @B for i D 1; 2. There are two cases; the four arcs

together with the four disks D˙
1
;D˙

2
form two cycles of length 2 or a single cycle

of length 4. See Figure 5. One easily sees that the fundamental group of H Œc1[ c2�

is the infinite cyclic group in the first case and it is the cyclic group of order 2 in the
latter case.

An element x of the free group F of rank 2 is called a primitive element if there exists
an element y 2 F such that x;y generate F .

Lemma 2.2 Let A be an essential separating annulus in H . Let c1; c2 be two essential
simple loops in @H which are disjoint from @A. Suppose that A separates c1 and c2 .
Then one of c1 and c2 represents a proper power of a primitive element of the free
group �1.H /.

Proof By Kobayashi [4, Lemma 3.2(i)], A cuts H into a solid torus H1 and a genus
two handlebody H2 . Since A separates c1 and c2 , we may assume c1 � H1 and
c2 � H2 . Let Ai be the copy of A in @Hi for i D 1; 2. Then the core of A1 is
parallel to c1 in @H1 , and the core of A2 represents a primitive element of the free
group �1.H2/.

If c1 were a meridian curve of H1 then A would be compressible in H . If c1 were
homotopic to the core of H1 then A would be @–parallel in H . Hence c1 is homotopic
in H1 to n .� 2/ times around the core of H1 .
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Figure 5

Let x be a generator of the infinite cyclic group �1.H1/, and let y; z be two elements
generating the free group �1.H2/. Here, we may assume that xn is represented by
the core of A1 (or c1 ) and y is represented by the core of A2 . By the Van Kampen’s
theorem, �1.H / has three generators x;y; z and one relation xn D y . Thus �1.H /

is the free group on x and z , and c1 represents xn in the group �1.H /.

Lemma 2.3 Let c1; c2 be two simple loops in @H which are not contractible in H .
Suppose that there exists a properly embedded disk D in H � c1[ c2 which splits H

into two solid tori, each containing one of c1 and c2 . Then any such disk is isotopic
to D in H � c1[ c2 .

Proof Let E be a properly embedded disk in H � c1[ c2 which splits H into two
solid tori H1 and H2 with ci �Hi for each i D 1; 2. Suppose that E is not isotopic
to D in H � c1[ c2 .

If E is disjoint from D then D and E are parallel in H , that is, they cut off a 1–handle
D � I from H . Since neither c1 nor c2 is contractible in H , @D � I does not meet
any of c1 and c2 . This means that D� I is, in fact, the parallelism between D and E

in H � c1[ c2 . This contradicts our assumption on E .

We may assume that the intersection D\E is transverse and minimal up to isotopy
of E . Then a standard disk swapping argument shows that D \ E has no circle
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components. An arc component of D\E , outermost in D , cuts off a subdisk of D .
Surgery on E along the subdisk yields two disks, both of which are disjoint from
c1 [ c2 . Let E0 be any of these disks. Then E0 lies in a solid torus Hi for some
i D 1; 2. By the minimality of jD \Ej, E0 is parallel in H � c1 [ c2 to neither E

nor a disk in @H . Hence E0 is a meridian disk of the solid torus Hi , cutting it into a
3–ball in which ci lies. This implies that ci is contractible in H , a contradiction.

3 Vn and Vm .n ¤ m/ are not equivalent

Consider ˆ0 . The drawings in Figure 4(a) depict an isotopy from V0 to 51 , showing
that there exists a properly embedded nonseparating annulus A0 in X0 as shown in
Figure 6(a). Cutting X0 along A0 gives a new compact 3–manifold U as shown in
Figure 6(b), where the two loops in @U are the cores of the two copies AC

0
and A�

0

of A0 in @U . Let c˙ be the loops. After an isotopy, U becomes the complement of
a standardly embedded genus two handlebody in S3 (see Figure 7), so U itself is a
genus two handlebody.

Figure 6

Let C D cC[ c� . Take three essential nonseparating disks X;Y;Z in U as shown in
Figure 8(a). These three disks divide U into two 3–balls B˙ and C into arcs. See
Figure 8(b). Let X˙;Y ˙;Z˙ be copies of X;Y;Z in @B˙ . Then C˙ D C \B˙

consists of five arcs, two connecting X˙ and Y ˙ , two connecting X˙ and Z˙ , and
one connecting Y ˙ and Z˙ . Set �DX [Y [Z and �˙DX˙[Y ˙[Z˙ . Then
@B˙� .�˙[C˙/ is a union of (open) disks.

Lemma 3.1 U does not contain an essential disk or annulus or a properly embedded
Möbius band which is disjoint from C .
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Figure 7

Figure 8

Proof Assume for contradiction that U contains such a surface F .

First, suppose that F is a disk. The intersection F \ � may be assumed to be
transverse and minimal among all essential disks of U that are disjoint from C . Note
that F \� ¤ ∅, since otherwise F would be properly embedded in either BC or
B� with @F \ .�˙[C˙/D∅ and hence F would be parallel to a disk in @U . By
the minimality of jF \�j, F has no circle components of intersection with �. An
arc component of intersection, outermost in F , cuts off a disk F 0 from F . Any two
disks in �˙ are joined by an arc in C˙ , so the arc F 0\ @U together with an arc in
@� bounds a disk in @U that is disjoint from C . This disk could be used to reduce
jF \�j, contradicting the minimality assumption. Hence F is not a disk.

The fundamental group �1.U / is a free group generated by two elements x and y ,
where x and y are respectively represented by the cores of the 1–handles N.X /

and N.Y /, attached to the 3–ball N.Z/. See Figure 8(b). The two loops cC

and c� represent two group elements x and xyxy�1x�1y�1 . Hence the 3–manifold
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QD U ŒcC[ c�� has a trivial fundamental group, so it is a 3–ball. Since F is disjoint
from C , F is properly embedded in Q. No Möbius bands can be properly embedded
in a 3–ball, so F must be an annulus. Since every properly embedded annulus in
a 3–ball is separating, F must be separating in U . Splitting U along F , we get a
solid torus U1 and a genus two handlebody U2 , where the core of the copy of F

in @U1 winds the solid torus U1 at least two times in the longitudinal direction. See
[4, Lemma 3.2(i)].

Neither x nor xyxy�1x�1y�1 is a proper power of a primitive element of the
group �1.U /. Thus it follows from Lemma 2.2 that the two loops cC and c� are
not separated by F . Since cC and c� are not parallel in @U , they are contained
in U2 . Hence F splits Q into U1 and U2Œc

C[ c��. In particular, F cuts off the solid
torus U1 from the 3–ball Q so that the core of the copy of F in @U1 is homotopic to
at least two times around the core of U1 . This is impossible.

Lemma 3.2 A0 is incompressible and @–incompressible in X0 .

Proof Since each of cC and c� represents a nontrivial element of the free group
�1.U /, A0 is incompressible. Suppose that A0 is @–compressible. Then there exists a
properly embedded disk D in U intersecting C in a single point. We may assume that
D intersects cC . Then the frontier of a neighborhood of D[ cC in U is an essential
separating disk in U that is disjoint from C , contradicting Lemma 3.1. Hence A0 is
@–incompressible.

Lemma 3.3 X0 is irreducible and @–irreducible. Hence Xn is irreducible and @–
irreducible for any integer n.

Proof It is clear that X0 is irreducible. If X0 is @–reducible then any compressing
disk for @X0 can be isotoped to be disjoint from A0 . Then it lies in U as an essential
disk disjoint from cC[ c� . This contradicts Lemma 3.1.

Since Xn is @–irreducible, Vn is an irreducible handlebody-knot.

Lemma 3.4 A0 is a unique properly embedded nonseparating annulus in X0 up to
isotopy.

Proof Let A be a properly embedded nonseparating annulus in X0 that is not
isotopic to A0 . The @–irreducibility of X0 implies that A is incompressible and
@–incompressible.

Algebraic & Geometric Topology, Volume 12 (2012)



1068 Jung Hoon Lee and Sangyop Lee

We may assume that A had been chosen to intersect A0 transversely and minimally
among all properly embedded nonseparating annuli in X0 . Note that A must inter-
sect A0 , otherwise A would survive in U and be incompressible, so by Lemma 3.1
A would be parallel to either AC

0
or A�

0
in U and hence be parallel to A0 in X0 ,

contradicting the choice of A.

Suppose that there are circle components of A\A0 that are inessential on both A

and A0 . Let ˛ be a circle component of A\A0 that is innermost on A0 among all
such circle components. Then ˛ bounds a disk D in A and a disk D0 in A0 . Note
that the interior of D0 is disjoint from A, since otherwise an innermost component
of A\D0 on D0 would bound a compressing disk for A. We now obtain a new
nonseparating annulus .A�D/[D0 , which is properly embedded in X0 and can
be isotoped so as to intersect A0 transversely with fewer components of intersection.
This contradicts the choice of A. Hence each circle component of A\A0 , if it exists,
is essential on at least one of A and A0 . Suppose that there are circle components
of A\A0 that are essential on one of the annuli A and A0 , and inessential on the
other annulus. Let ˇ be a circle component of A\A0 that is innermost on (say) A

among all such circle components (the argument for the case ˇ �A0 is similar). Then
ˇ bounds a disk E in A. Since no circle components of A\A0 are inessential on
both A and A0 , the interior of E misses A0 by the choice of ˇ . This implies that E

is a compressing disk for A0 , a contradiction. We conclude that all circle components
of A\A0 , if they exist, are essential on both A and A0 .

A similar argument, using an outermost arc component of intersection instead of an
innermost circle component and using the @–incompressibility of A[A0 instead of the
incompressibility, shows that all arc components of A\A0 , if they exist, are essential
on both A and A0 . Thus all the components of A\A0 are either circles or arcs.

First, suppose that they are all circles. Take an annulus cut off from A by an outermost
component of A\A0 in A, and surger A0 along this annulus. The resulting surface is
a union of two annuli disjoint from A0 . Let A0

0
be any one of these two annuli. Since

one boundary circle of A0
0

is isotopic to that of A0 (or A), A0
0

must be incompressible
in X0 and hence in U . By Lemma 3.1, A0

0
must be @–parallel in U , which implies that

A0
0

is either @–parallel in X0 or parallel to A0 . In any case, we can reduce jA\A0j,
giving a contradiction.

Now suppose that all components of A\A0 are arcs that are essential on both A

and A0 . The arcs divide A into rectangles R1; : : : ;Rn , where nD jA\A0j. Consider
R D R1 . We may regard R as a properly embedded disk in U whose boundary
intersects C D cC[ c� in two points. There are two cases; @R intersects each of cC

and c� in a single point, or @R intersects only one of cC and c� , say, cC . In the

Algebraic & Geometric Topology, Volume 12 (2012)



Inequivalent handlebody-knots with homeomorphic complements 1069

former case, each of cC and c� is a primitive curve in U , that is, it is a generator of
the free group �1.U / of rank two, but it is easy to see from Figure 8(b) that one of cC

and c� is not a generator.

In the latter case, the two points in @R\ cC split cC into two arcs a1 and a2 . Let
Si .i D 1; 2/ be a properly embedded surface in U obtained from R by attaching a
band along ai and then pushing the interior of the resulting surface into the interior of
U . Note that Si is disjoint from C for each i D 1; 2. The two ends of ai must lie on
the same side of R (then Si is an annulus), otherwise Si would be a Möbius band,
contradicting Lemma 3.1.

If R were @–parallel in U then we could reduce jA\A0j. Thus R is an essential
disk in U . First, suppose that R is a nonseparating disk in U . Consider any Si and
recall that Si is obtained from the nonseparating disk R by attaching a band. Any
such annulus has boundary circles which are not mutually parallel in @U and at least
one of which is essential in @U . Since the two boundary circles of Si are not mutually
parallel in @U , Si is not @–parallel in U . Since at least one boundary circle of Si

is essential in @U , Si is incompressible in U , otherwise a compression of Si would
yield an essential disk in U disjoint from C , contradicting Lemma 3.1. Hence Si is
an essential annulus. This contradicts Lemma 3.1 again.

Suppose that R is an essential separating disk in U . Then R splits U into two solid
tori U1 and U2 , where Si can be pushed into Ui . If the core of some Si winds Ui

at least two times in the longitudinal direction, then Si is an essential annulus in U ,
contradicting Lemma 3.1. Thus the core of each Si is homotopic to the core of Ui . This
implies that cCDa1[a2 is a primitive curve in U . Since c� does not intersect R[cC ,
c� is also a primitive curve in U . See Figure 9. This contradicts our observation that
one of cC and c� is not a primitive curve in U .

Figure 9

Lemma 3.5 V0 is not amphicheiral.
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Proof Assume that there exists an orientation-preserving automorphism h of S3 that
takes V0 to V �

0
(and then X0 to X �

0
). Take a regular neighborhood N.A0/ of the

nonseparating annulus A0 in X0 . Put Ah D h.A0/ and N.Ah/D h.N.A0//. Then
zVh D V �

0
[N.Ah/ is the image of zV0 D V0 [N.A0/ under the automorphism h.

The frontier of N.A0/ in X0 consists of two annuli whose cores cC and c� run
along @ zV0 as shown in Figure 6(b), where U in the figure may be considered as the
closed complement of zV0 . Each core c˙ bounds a disk D˙ in zV0 . Let c˙

h
D h.c˙/

and D˙
h
D h.D˙/. Then c˙

h
are the cores of the frontier annuli of N.Ah/ in X �

0
and

they bound disks D˙
h

.

Note that Ah is a properly embedded nonseparating annulus in X �
0

. By Lemma 3.4
A�

0
is a unique properly embedded nonseparating annulus in X �

0
up to isotopy. Hence

Ah and A�
0

are isotopic in X �
0

.

Note that cl. zV0 �N.D˙// is an embedded solid torus in S3 . The core of the solid
torus is either the unknot or the right-handed trefoil according to the choice of the
disks DC and D� . We may assume that the core is the unknot for D� and the
right-handed trefoil for DC . See Figure 10. Similarly, cl. zVh �N.D˙

h
// is a solid

torus embedded in S3 whose core is either the unknot or the left-handed trefoil. The
orientation-preserving automorphism h takes cl. zV0�N.DC// to cl. zVh�N.DC

h
// or

cl. zVh�N.D�
h
//. This implies that the right-handed trefoil is equivalent to the unknot

or the left-handed trefoil, both of which are impossible.

Figure 10

Recall that twisting V0 n times along the shaded disk in Figure 11(a) defines a home-
omorphism �k W X0! Xk . By Lemma 3.4, Ak D �k.A0/ is up to isotopy a unique
nonseparating annulus in Xk . Note that Ak � S3 is an unknotted annulus with k full
twists and its boundary is the .2; 2k/–torus link (if k D˙1, the boundary is the Hopf
link). See Figure 11(b).
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@1A0

@2A0

Figure 11

Let ck ; dk be the two loop edges of ˆk and ek the nonloop edge. Then Vk is
a union of two solid tori Vk;1 D N.ck/;Vk;2 D N.dk/, and a 1–handle Hk D

cl.N.ek/ � Vk;1 [ Vk;2/. It may be assumed that Vk;1 contains the boundary of
the shaded disk in Figure 11(a). Each boundary component of Ak is not contractible
in Vk if k¤ 0, and a cocore disk Dk for the 1–handle Hk splits Vk into two solid tori,
isotopic to Vk;1 and Vk;2 , each of which contains one boundary component of Ak . Let
@iAk.i D 1; 2/ denote the boundary component of Ak lying in Vk;i . See Figure 11(b).

Lemma 3.6 There exists an orientation-preserving automorphism of the pair .S3;V�1/

which interchanges V�1;1 and V�1;2 .

Proof Figure 4(b) allows us to regard V�1 as 64 . It is easy to see that an involution
on .S3; 64/ is defined by rotating 64 through � about a vertical axis. The involution
is the desired automorphism.

Proof of Theorem 1.1(1) First, assume that Vn is amphicheiral for some nonzero
integer n (V0 is not amphicheiral by Lemma 3.5), that is, there is an orientation-
preserving homeomorphism of pairs .S3;Vn/! .S3;V �n /. Note that An and A�n
are up to isotopy unique nonseparating annuli in Xn and X �n , respectively. Hence
composing with an orientation-preserving automorphism of the pair .S3;V �n /, if
necessary, we may assume that the homeomorphism takes An to A�n . In other words,
An and A�n are isotopic in S3 . However, one of the annuli An and A�n has right-
handed jnj full twists and the other left-handed jnj full twists, so they cannot be
isotopic. This gives a contradiction. Therefore Vn is not equivalent to its mirror image
for any integer n.

Let n;m be distinct integers, and assume that there is a homeomorphism of pairs
hW .S3;Vn/! .S3;Vm/, where h may or may not preserve the orientation of S3 .
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Similarly as above, we may assume that h.An/DAm . Then h.@An/D @Am , which
means that h takes a .2; 2n/–torus link to a .2; 2m/–torus link. Hence m D n or
mD�n. The former contradicts the assumption that n and m are distinct. If nD 0

then h must preserve the orientation of S3 by Lemma 3.5, so h is isotopic to the
identity of S3 and we have nothing to prove. Hence we may assume that mD�n and
n¤ 0. Since the twists of An and A�n are reversed, h must be orientation-reversing.

By Lemma 2.3 D˙n , a cocore disk of the 1–handle H˙n in V˙n , is up to isotopy a
unique essential separating disk in V˙n which separates the two boundary components
of A˙n , so it may be assumed up to isotopy of V�n that h.Dn/DD�n and moreover
h.Hn/ D H�n . This implies that h takes each solid torus Vn;i.i D 1; 2/ to one of
the two solid tori V�n;1 and V�n;2 . Note that @1A˙n is homotopic to ˙n times the
core of V˙n;1 , while @2A˙n is homotopic to the core of V˙n;2 . Hence when jnj � 2,
h.@iAn/D @iA�n for each i D 1; 2, which implies h.Vn;i/DV�n;i . When jnj D 1, by
composing h with an orientation-preserving automorphism of the pair .S3;V�1/ given
in Lemma 3.6 we may assume that h.Vn;i/D V�n;i for each i D 1; 2. In particular,
we may always assume that cn , the core of Vn;1 , is mapped by h onto c�n , the core
of V�n;1 . Consider the composition

.S3;Vn/
h
�! .S3;V�n/

r
�! .S3;V ��n/;

where r is a reflection. See Figure 12. Let f be the restriction of the composi-
tion r ı h onto the pair .S3 � Vn;1;Vn � Vn;1/. Then f W .S3�Vn;1;Vn�Vn;1/!

.S3�V �
�n;1

;V ��n�V �
�n;1

/ is an orientation-preserving homeomorphism of pairs.

Figure 12

Note that .S3;Vn/ is obtained from .S3;V0/ by 1=n–surgery on c0 . Also, .S3;V ��n/

is obtained from .S3;V �
0
/ by 1=n–surgery on c�

0
. These two surgeries define two
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orientation-preserving homeomorphisms of pairs as follows:

.S3�V0;1;V0�V0;1/
g
�! .S3�Vn;1;Vn�Vn;1/;

.S3�V �
0;1
;V �

0
�V �

0;1
/

g�

�! .S3�V �
�n;1

;V ��n�V �
�n;1

/:

For example, twisting n times along the shaded disk in Figure 11(a) defines g .
The composition .g�/�1 ı f ı g is an orientation-preserving homeomorphism from
.S3�V0;1;V0�V0;1/ to .S3�V �

0;1
;V �

0
�V �

0;1
/. Note that the composition takes a

meridian of c0 to a meridian of c�
0

. Hence .g�/�1 ı f ıg extends to an orientation-
preserving homeomorphism of pairs from .S3;V0/ to .S3;V �

0
/. This contradicts

Lemma 3.5.

4 Wn and Wm .n ¤ m/ are not equivalent

Consider ‰0 . An isotopy of S3 gives the pictures in Figure 13, showing that there
exists a nonseparating annulus A0 in Y0 . Cutting Y0 along A0 gives a genus two
handlebody U . Let A˙

0
be the two copies of A0 in @U and c˙ the cores of A˙

0
.

See Figure 14(a) for c˙ , where U is the outside of the standardly embedded genus
two surface and Y0 can be recovered by gluing the annulus neighborhoods A˙

0
of c˙

in the manner indicated in the figure. An external view of .U; c˙/ is illustrated in
Figure 14(b), that is, U is the inside of the standardly embedded genus two surface in
the figure.

Figure 13

Lemma 4.1 U does not contain an essential disk or a properly embedded nonseparat-
ing annulus disjoint from cC[ c� .

Proof First, note that both c˙ are primitive curves in U , so U Œc˙� are solid tori.
Also, it is easy to see that the fundamental group of U ŒcC[ c�� is cyclic with order 3.

Assume that there exists an essential disk D in U disjoint from cC [ c� . If D is
a nonseparating disk in U then it is also nonseparating in U ŒcC [ c�� and hence
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Figure 14

the fundamental group of U ŒcC [ c�� contains an element of infinite order, con-
tradicting the observation above. Hence D separates U into two solid tori UC

and U� . Since U does not contain a nonseparating disk disjoint from cC[ c� , both
UC and U� intersect cC [ c� and hence we may assume that c˙ � U˙ . Then
Z3 Š �1.U Œc

C [ c��/ Š �1.U
CŒcC�/ � �1.U

�Œc��/, so either �1.U
CŒcC�/ Š Z3 ,

�1.U
�Œc��/ D 1 or �1.U

CŒcC�/ D 1, �1.U
�Œc��/ Š Z3 . In the first case, since

U ŒcC� is the union of UCŒcC� and U� along the disk D , its fundamental group is
�1.U Œc

C�/Š �1.U
CŒcC�/��1.U

�/Š Z3 �Z. This contradicts our observation that
U ŒcC� is a solid torus. In the latter case, we get a contradiction in a similar way.
Therefore we conclude that U does not contain an essential disk disjoint from cC[c� .

Assume that there exists a properly embedded nonseparating annulus A in U which is
disjoint from cC[ c� . Since A is disjoint from cC[ c� , A survives in U ŒcC[ c��

as a properly embedded nonseparating annulus. Capping off the boundary sphere of
U ŒcC[c�� with a 3–ball, we get a 3–manifold without boundary, in which A extends
to a nonseparating sphere. But the fundamental group of the 3–manifold is the cyclic
group of order 3 and hence the 3–manifold cannot contain a nonseparating sphere, a
contradiction.

Lemma 4.2 Let D0 � U be the disk illustrated in Figure 15. Then up to isotopy D0

is a unique properly embedded disk in U which is commonly dual to cC and c� .

Proof Let D be a common dual disk of cC and c� that is not isotopic to D0 .
We may assume that D intersects D0 transversely and the intersection D \D0 is
minimal among all such disks. If D were disjoint from D0 , then by Lemma 2.1
�1.U Œc

C[ c��/Š Z or Z2 , contradicting the fact that �1.U Œc
C[ c��/Š Z3 .

By the minimality of jD\D0j, the intersection D\D0 has no circle components. An
outermost arc of intersection in D0 cuts off a subdisk from D0 which intersects cC[c�

in at most one point. Surgery on D along the subdisk produces two disks D1;D2 .

Algebraic & Geometric Topology, Volume 12 (2012)



Inequivalent handlebody-knots with homeomorphic complements 1075

Figure 15

One of these disks, say, D1 intersects cC [ c� in at most two points. Note that D1

is essential in U , otherwise jD\D0j could be reduced. By Lemma 4.1 D1 cannot
be disjoint from cC[ c� . If D1 had exactly one point of intersection with cC[ c�

then there would exist an essential (separating) disk in U disjoint from cC [ c� ,
contradicting Lemma 4.1. Hence D1 intersects cC[ c� in two points, and so does the
other disk D2 . One of the two disks D1 and D2 is a common dual disk of cC and c� ,
and the other intersects one of cC and c� in two points. The former disk contradicts
the minimality of jD\D0j.

Lemma 4.3 A0 is incompressible and @–incompressible in Y0 .

Proof One sees from Figure 14(b) that both c˙ are primitive curves in U , so A0 is
incompressible. Suppose that A0 is @–compressible. Let D be a @–compressing disk
for A0 . Then D is an essential disk in U which intersects cC[c� in a single point. We
may assume that D intersects cC but not c� . Then cC becomes a longitudinal curve of
the solid torus U Œc��, since D , a meridian disk of U Œc��, intersects cC in a single point.
This implies that U ŒcC[ c�� is a 3–ball. But in the proof of Lemma 4.1 we already
observed that the fundamental group of U ŒcC[ c�� is the cyclic group of order 3.

Lemma 4.4 Y0 is irreducible and @–irreducible. Hence Yn is irreducible and @–
irreducible for any integer n.

Proof The same argument as in the proof of Lemma 3.3 applies here by using
Lemma 4.1 instead of Lemma 3.1.

Since Yn is @–irreducible, Wn is an irreducible handlebody-knot.

Lemma 4.5 A0 is a unique properly embedded nonseparating annulus in Y0 up to
isotopy.
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Proof Let A be a properly embedded nonseparating annulus in Y0 which is not
isotopic to A0 . The @–irreducibility of Y0 implies that A is incompressible and
@–incompressible.

The intersection A\A0 may be assumed to be transverse and minimal up to isotopy.
Suppose that the intersection is empty. Then A lies in U and is disjoint from cC[ c� .
Also, A is incompressible and not @–parallel in U , since otherwise A would be
compressible in Y0 or parallel to A0 or an annulus in @Y0 . By Lemma 4.1 A is
separating in U . Since A is nonseparating in Y0 , A must separate cC and c� . It
follows from Lemma 2.2 that one of cC and c� represents a proper power of a primitive
element of �1.U /, contradicting the fact that both c˙ are primitive curves in U . Hence
A\A0 is not empty.

The same argument as in the third and fourth paragraphs in the proof of Lemma 3.4
applies to show that all the components of A\A0 are essential on both A and A0

and that they are all either circles or arcs. First, suppose that they are all circles. Then
surgery on A0 along an annulus cut off from A by an outermost component of A\A0

in A yields two properly embedded annuli A1;A2 in Y0 which are disjoint from A0 .
Each annulus Ai.i D 1; 2/ is not isotopic to A0 by the minimality assumption on
jA\A0j. Since we already observed that any nonseparating annulus in Y0 which
is not isotopic to A0 cannot be disjoint from A0 , each Ai is separating in Y0 . This
implies that A0 is separating in Y0 , a contradiction.

Now suppose all the components of A\A0 are arcs that are essential on both A and A0 .
Then the arcs cut A into rectangles R1; : : : ;Rn . Each rectangle Ri can be considered
as a properly embedded disk in U , which is essential by the minimality of A\A0 . Also,
each @Ri intersects cC[c� in two points. There are two possibilities for the intersection
of each @Ri with cC[ c� ; for each i , either @Ri intersects each of cC and c� in a
single point or @Ri intersects one of cC and c� in two points and misses the other.

Suppose that some Ri intersects one of the cores cC and c� in two points. Note
that each arc of A\A0 has two copies in @U , one in AC

0
and the other in A�

0
. This

implies that some Rj .j ¤ i/ intersects the other core in two points. See Figure 16(a).
We may assume that Ri has two points of intersection with cC (and then Rj has two
points of intersection with c� ). Then Ri is disjoint from c� , implying that Ri is a
properly embedded disk in the solid torus U Œc��. Also, cC is a simple loop in @U Œc��
intersecting Ri in two points. Since a 2–handle addition on U Œc�� along cC results
in the 3–manifold U ŒcC [ c�� with �1.U Œc

C [ c��/ Š Z3 , Ri must be @–parallel
in U Œc��. This implies that Ri is separating in U . Similarly, Rj is separating in U .
Since any two disjoint separating essential disks in a genus two handlebody are parallel,
Ri and Rj are parallel in U . Since Rj is disjoint from cC , Ri can be isotoped to
be disjoint from cC (and still from c� ). This contradicts Lemma 4.1.
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Figure 16

Hence each @Ri intersects each cC and c� in a single point, that is, each Ri is
commonly dual to cC and c� . By Lemma 4.2 all the rectangles R1; : : : ;Rn are
isotopic to the disk D0 in Figure 15 and hence they are mutually parallel in U . Let
a˙i DRi \A˙

0
for i D 1; : : : ; n. We may assume that R1; : : : ;Rn had been labeled

so that aC
1
; : : : ; aCn appear in AC

0
successively along the orientation of cC . Then

a�
1
; : : : ; a�n appear in A�

0
successively along the reversed orientation of c� , since the

algebraic intersection number of @D0 with the two oriented loops cC [ c� is zero.
See Figure 16(b). In Y0 , the arcs aC

1
; : : : ; aCn and the arcs a�

1
; : : : ; a�n are identified

in pair to form A. The identification defines a permutation � of f1; : : : ; ng such that
aCi is identified with a�

�.i/
. In fact, �.i/��i C k mod n for some integer k .

Suppose that n is odd. By replacing k with kCn, if necessary, we may assume that k

is even. Then �.k=2/��k=2C k � k=2 mod n. This implies nD 1, otherwise we
would obtain a disconnected surface from the rectangles R1; : : : ;Rn by identifying
aCi and a�

�.i/
.i D 1; : : : ; n/. Even if nD 1, the identification produces a Möbius band

because the two oriented loops cC and c� intersect oppositely with @R1 . This gives
a contradiction.

Suppose that n is even. The complementary regions of R1 [ � � � [Rn in U can be
alternately colored black and white. If �.i/��i C k mod n for some odd integer k

then black regions match with black regions and white regions match with white regions,
implying that A is separating in Y0 . Hence k is even. Then �.k=2/� k=2 mod n,
and two opposite sides aC

k
and a�

k
of Rk are identified to form a Möbius band. This

is also impossible.

Proof of Theorem 1.1(2) Let @1A0 and @2A0 denote the two boundary components
of A0 as shown in Figure 17. After an isotopy, the two loops appear in @Y0 as shown
in the last drawing in the figure.
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@1A0

@2A0

Figure 17

Recall that twisting W0 n times along the shaded disk in Figure 18 defines a homeo-
morphism �nW Y0! Yn . By Lemma 4.5, AnD �n.A0/ is a unique properly embedded
nonseparating annulus in Yn up to isotopy. Let @iAn D �n.@iA0/ for i D 1; 2. The
core of An is an embedded circle in S3 , isotopic to any boundary component of An

in S3 along a half of An . One easily sees that @1An is a .3; 3n�1/–torus knot, and
so is the core.

Figure 18

Assume that Wn is amphicheiral. Then there is an orientation-preserving homeo-
morphism of pairs .S3;Wn/! .S3;W �n /. Since An and A�n are respectively up to
isotopy unique nonseparating annuli in Yn and Y �n by Lemma 4.5, composing with
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an orientation-preserving automorphism of the pair .S3;W �n /, if necessary, we may
assume that the homeomorphism takes An to A�n . This implies that An and A�n are
isotopic in S3 . In particular, their cores are isotopic. The core of An is a .3; 3n�1/–
torus knot, while that of A�n is the mirror image of a .3; 3n�1/–torus knot. It is well
known that every nontrivial torus knot is not amphicheiral. If n¤ 0 then a .3; 3n�1/–
torus knot is not the trivial knot, so it is not amphicheiral. Hence nD 0. However, @A0

is a .2;�6/–torus link (see the first drawing in Figure 17), while @A�
0

is the mirror
image of a .2;�6/–torus link. The two torus links are not isotopic, a contradiction.
Hence Wn is not amphicheiral for any integer n.

Let n and m be distinct integers. Then neither of the .3; 3n�1/–torus knot and its
mirror image is isotopic to the .3; 3m�1/–torus knot. Hence a similar argument as
above shows that neither of Wn and W �n is equivalent to Wm .
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