
Algebraic & Geometric Topology 12 (2012) 1081–1098 1081

The link concordance invariant from Lee homology

JOHN PARDON

We use the knot homology of Khovanov and Lee to construct link concordance
invariants generalizing the Rasmussen s–invariant of knots. The relevant invariant for
a link is a filtration on a vector space of dimension 2jLj . The basic properties of the
s–invariant all extend to the case of links; in particular, any orientable cobordism †

between links induces a map between their corresponding vector spaces which is
filtered of degree �.†/ . A corollary of this construction is that any component-
preserving orientable cobordism from a Kh–thin link to a link split into k components
must have genus at least bk=2c . In particular, no quasi-alternating link is concordant
to a split link.

57M25, 57M27, 57Q60

1 Introduction

Using Lee’s modification [18] of Khovanov homology [14], Rasmussen [26] introduced
for every knot K an even integer valued invariant, known as the s–invariant. It
shares some of the basic properties of the classical knot signature; in particular it is
a homomorphism from the group of smooth concordance classes of knots to 2Z and
gives a lower bound for twice the smooth slice genus (though the signature also does
this in the topological category, whereas the s–invariant does not). The definition of
the s–invariant is purely combinatorial, and, like many other knot invariants coming
out of quantum algebra, it so far lacks any intrinsic geometric definition. One of the
main reasons for interest in this invariant is that it is by definition algorithmically
computable (though some cleverness is needed to do large calculations quickly; cf
Bar-Natan [3] and Freedman, Gompf, Morrison and Walker [8]) and is one of the
few tools known to give useful lower bounds on the smooth slice genus of knots. In
particular, Rasmussen [26] showed via direct calculation that s.Tp;q/D .p�1/.q�1/,
thus proving the Milnor conjecture that g4.Tp;q/D

1
2
.p� 1/.q� 1/, a hard theorem

of Kronheimer and Mrowka [15; 17; 16] proved (twice) using gauge theory.

In this paper, we consider the natural generalization of the s–invariant to a concor-
dance invariant of links. Everything we do will be in the smooth category. Since
the s–invariant can detect the deep differences between the smooth and topological
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categories in four dimensions, this restriction is in fact necessary for this theory. In
particular, knot and link concordance is meant in the smooth sense.

Denote the Khovanov–Lee homology groups of a link by Kh�Lee.L/. Lee [18] showed
that Kh�Lee.L/ is surprisingly simple: there is an isomorphism

L
orientations of LQ �

!

Kh�Lee.L/. We denote the former group by O.L/, and in Section 4, we will define it
as a functor (we will specify the maps associated to cobordisms). Kevin Walker [27]
informs the author that (with suitable choice of Lee deformation parameter) there is an
equivalence of functors between O and Kh�Lee (Rasmussen [26; 25] has proved a sort
of approximate equivalence of functors). The natural generalization of the s–invariant
is thus the pullback of the s–filtration on Kh�Lee.L/ to a filtration on O.L/. To get a
numerical invariant, we can take the following (which is perhaps slightly coarser).

Definition 1.1 For an oriented link L�R3 , we associate a function dLW Z�Z!Z�0

so that the values dL.h; s/ give the dimensions of the associated graded pieces
.Khh

Lee.L//
s=.Khh

Lee.L//
sC1 (where .Kh�Lee.L//

s denotes the subspace of elements
of filtration level � s ).

For a knot K , it is a theorem of Rasmussen [26] that dK .0; s.K/˙ 1/D 1 and dK is
otherwise zero (this being the defining property of the s–invariant). For a link L, the
vector space Kh�Lee.L/ has dimension 2jLj , and, as one might expect, the support of
the function dL can be much more complicated as we shall see in a few examples.

Theorem 1.2 Let L be a link with orientation o. The invariant dLW Z�Z! Z�0

satisfies the following basic properties:

(1)
P

s�jLjCk mod 4 dL.h; s/ is zero if k is odd, and if k is even it equals one
half the number of orientations o1 of L such that lk.o1/� lk.o/ D �h. Here
lk.o/D

P
i<j lk.Lo

i ;L
o
j / (sum over the components of L).

(2) dL1tL2
D dL1

� dL2
(convolution).

(3) dxL.h; s/D dL.�h;�s/.

(4) If † is a component-preserving orientable cobordism between L1 and L2

(ie H0.Li/
�
! H0.†/), then

P
s�a dL1

.h; s/�
P

s�aC�.†/ dL2
.h; s/ for all

h 2 Z.

(5) dL is a link concordance invariant.

(6) d.L;o/.hC lk.o/; sC 3 lk.o// is independent of orientation o.
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For links with a large number of components, it is reasonable to expect that the
invariant dL will be a strong invariant of link concordance. As one sees in the theorem
above, the invariant dL is best suited for studying cobordisms which do not merge
components of L. In general, if one wants to derive information about a given orientable
cobordism, then the relevant object is the s–filtration restricted to the subspace of O.L/
generated by those orientations extending to orientations of the cobordism. The larger
this subspace, the more likely the invariant is to be useful.

Beliakova and Wehrli have defined an integer s.L; o/ for a link with an orienta-
tion [5]. This corresponds to the s–filtration restricted to the 2–dimensional subspace
of Kh�Lee.L/ generated by that orientation and its reverse. Just like for knots, one
shows that on this subspace, the filtration is supported in two levels s˙ 1, and this
defines s.L; o/. This invariant is best suited for studying oriented cobordisms which are
allowed to merge components of L. Examples show that the function o 7! s.L; o/ is a
weaker invariant that dL . One expects that dL is a weaker invariant that the filtration
on O.L/ but we don’t have any examples to prove this at present (mainly because dL

is often easy to derive from Kh�—which there exist programs to compute—whereas
the s–filtration on O.L/ is not). We discuss examples in Section 5 and at the end of
Section 4.1.

In Section 3, we use the invariants dL to derive the following corollary, which appears
to be new.

Corollary 1.3 A component-preserving orientable cobordism between a Kh–thin link
and a link split into m components must have genus at least bm=2c. In particular, Kh–
thin links (in particular quasi-alternating links; see Definition 3.5) are not concordant to
split links.

It is known (via properties of the Alexander module) that alternating links are not
concordant to split links; see Kawauchi [13]. It would be interesting to try to prove
Corollary 1.3 (say, restricted to quasi-alternating links) using the Alexander module.1

This corollary is interesting because the s–invariant for alternating knots is equal to the
knot signature, and thus gives no new information (the inequality gtop

4
.K/� 1

2
j�.K/j

is classical; see Murasugi [21, page 416, Theorem 9.1]). It is interesting to note that
Khovanov homology has a reputation for being easy to compute (at least, compared to
gauge theoretic invariants which give results similar to the Milnor conjecture), but hard
to use to prove general theorems, since its structure in general is still poorly understood.

1We recently learned of a preprint [9] by Stefan Friedl and Mark Powell which apparently presents
such a proof.
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Thus the above corollary is interesting in that it is a general statement which doesn’t
intrinsically involve Khovanov homology (at least, if one restricts to quasi-alternating
links).

There have recently been efforts (see Freedman, Gompf, Morrison and Walker [8])
to prove that some specific proposed counterexamples to the smooth 4–dimensional
Poincaré conjecture are in fact exotic by proving some specific links are not slice in the
standard B4 (links which, by virtue of coming from Kirby diagrams for the proposed
counterexample, are by definition slice in the proposed exotic B4 ). By slice, we mean
strongly slice, ie bounding a disjoint union of disks in B4 . Since these are usually
multicomponent links, it may be helpful to compute the entire filtration on Kh�Lee.L/:
for a link with many components, this a priori may be a much stronger invariant than
the set of s–invariant values for some associated knots which are implied to be slice if
the link is slice (computing these s–invariant values was the strategy employed in [8]).
We should, however, also note that, in accordance with the growing relations between
Khovanov homology and gauge theory, some would conjecture that the s–filtration
should be invariant under concordance of links in any homotopy R3 � Œ0; 1�, and thus
would not imply in any straightforward manner that any homotopy B4 is exotic.

One thinks that an invariant of links similar to dL could be defined using the Link
Floer Homology of Ozsvath–Szabó [22; 24] as an appropriate generalization of the
� –invariant. One would expect this invariant to satisfy similar properties as the
s–filtration on Kh�Lee.L/. It is perhaps interesting to note that the vector space O.L/
appears in the Link Floer Homology theory in the guise of ^�H1.#jLjS1 �S2/ (once
we take the union of our link with the unknot).

Acknowledgements This paper represents part of the author’s Senior Thesis at Prince-
ton University, advised by Zoltán Szabó. I thank him for lots of generous time spent
meeting and discussing mathematics. John Baldwin, the second reader for my thesis,
also made some useful comments. I thank the referee for a very close reading of this
paper and for the many resulting corrections and clarifications, as well as contributions
concerning the examples in Section 5.

2 Khovanov–Lee homology

In this section, we give a quick review of Lee’s deformation [18] of Khovanov ho-
mology [14] aimed at our intended application. For a good introduction to Khovanov
homology; see Bar-Natan’s articles [1; 2]. The maps for cobordisms were first proved
consistent by Jacobsson [12].
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To be completely explicit, we define Khovanov–Lee homology via Khovanov’s chain
complex using the following Frobenius algebra V :

(2-1)

V DQv�˚QvC; �.1/D vC;

�.vC/D 0; m.v�˝ v�/D avC;

�.v�/D 1; m.v�˝ vC/D v�;

�.vC/D v�˝ vCC v�˝ vC; m.vC˝ v�/D v�;

�.v�/D v�˝ v�C avC˝ vC; m.vC˝ vC/D vC:

Setting aD0 yields Khovanov homology (a is the Lee deformation parameter). If a¤0,
then .m; �; �; �/ admit simple descriptions in terms of the basis x˙ D v�˙

p
avC ,

and this implies that the resulting homology is essentially isomorphic to Lee homology.
The only difference between different values of a¤ 0 is that the maps associated to
a cobordism † carry a factor of .2

p
a/��.†/=2 . This makes Lee’s original choice

of a D 1 slightly inconvenient, so for the remainder of the paper we set a D 1
4

(as
suggested by Walker [27]).

Theorem 2.1 For every oriented link L, there is an associated Z–graded vector
space Kh�Lee.L/ over Q (the grading � is called the homological grading). Furthermore,
each Khh

Lee.L/ carries a descending filtration, called the s–filtration. Every oriented
cobordism †�R3�Œ0; 1� from L1 to L2 induces a homomorphism F†W Kh�Lee.L1/!

Kh�Lee.L2/ (defined up to ˙1) which respects the homological grading, and which is
filtered of degree �.†/. We have the following additional properties:

(1) Khh
Lee.L/ carries an absolute Z=4Z grading which is supported in gradings

� jLj mod 2, and these two pieces have equal dimensions. The s–filtration
breaks up as a filtration on each of the pieces, and the s–filtration on the degree
k 2 Z=4Z piece is supported on integers s � k mod 4.

(2) Kh�Lee.L1 tL2/D Kh�Lee.L1/˝Kh�Lee.L2/ (naturally), and this is an isomor-
phism of the homological grading and the s–filtration.

(3) Kh�Lee.
xL/ is naturally the dual of Kh�Lee.L/.

(4) (Lee [18]) dim Kh�Lee.L/ D 2jLj . In fact, dim Khh
Lee.L/ is the number of

orientations o of L such that lk.o/ � lk.o1/ D �h, where o1 is the given
orientation of L, and lk.o/ D

P
i<j lk.Lo

i ;L
o
j / (sum over the components

of L).

(5) Kh�Lee is a functor from the appropriately defined category of links and cobor-
disms (see Clark, Morrison and Walker [7]).

(6) Kh�Clk.o/
Lee .L; o/.�3 lk.o// is independent of orientation o (where .q0/ means an

upwards shift of the s–filtration by q0 ).
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Remark 2.2 Clark, Morrison, and Walker [7] and Caprau [6] have shown how to
define Khovanov–Lee homology (with indeterminate a) so that the maps associated to
cobordisms no longer have a sign ambiguity. This requires adjoining i D

p
�1 to the

coefficient ring.

Definition 2.3 For an oriented link L�R3 , we associate a function dLW Z�Z!Z�0

so that the values dL.h; s/ give the dimensions of the associated graded pieces
.Khh

Lee.L//
s=.Khh

Lee.L//
sC1 (where .Kh�Lee.L//

s denotes the subspace of elements
of filtration level � s ).

Theorem 1.2 (the basic properties of dL ) follows directly from the basic properties
of Kh�Lee listed in Theorem 2.1.

3 Applications to link concordance

Definition 3.1 A cobordism † between two links L1 and L2 is said to be component-
preserving if and only if H0.L1/

�
! H0.†/

�
 H0.L2/. Note that a component-

preserving orientable cobordism of genus 0 is exactly a link concordance.

Remark 3.2 One is perhaps also interested in relaxing the restrictive notion of compo-
nent-preserving cobordism to color-preserving cobordism, where multiple components
of the link could have the same color. Now certainly this case is also easily handled
using the invariant Kh�Lee.L/. The necessary data is a coloring of the link, and a choice
of relative orientation on each colored component (by relative orientation, we mean
an orientation up to overall reversal). Then the relevant invariant is just the restriction
of the s–filtration to the subspace of Kh�Lee.L/ generated by all orientations agreeing
with the given relative orientations on each colored component.

Lemma 3.3 The map F†W Kh�Lee.L1/ ! Kh�Lee.L2/ induced by a component-
preserving orientable cobordism is an isomorphism of vector spaces.

Proof This follows from Rasmussen [26, page 434, Proposition 4.1].

Definition 3.4 A link L is said to be Kh–thin if and only if Kh�.L/ is supported on
exactly two diagonals of the form qD q0C2h˙1 (hD� is the homological grading).

The spectral sequence from Kh�.L/ to Kh�Lee.L/ implies that for a Kh–thin link, the
support of dL is contained in the same two diagonals s D q0C 2h˙ 1.
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Definition 3.5 Oszváth and Szabó [23] define the set of quasi-alternating links to
be the set of links generated by the unknot using the following skein operation: if
L0 and L1 are quasi-alternating and det L1 D det L0 C det L1 , then L1 is also
quasi-alternating (where L0;L1;L1 are given as in Figure 1).

Figure 1. Local pictures of L0 , L1 , L1

It is standard that all nonsplit alternating links are quasi-alternating. Quasi-alternating
links are known to be both Kh–thin and bHFK –thin by Manolescu and Ozsváth [20],
though Greene [10] has shown that there are non-quasi-alternating links that are both
Kh–thin and bHFK –thin.

Proposition 3.6 (Corollary 1.3) Let L be a Kh–thin link, and suppose † is a
component-preserving orientable cobordism between L and M D M1 t � � � tMk .
Then g.†/� bk=2c.

Proof Fix an orientation on L, which thus orients each Mi .

We know (from Theorem 1.2(1)) that the support of the s–filtration on Kh0
Lee.Mi/ has

diameter at least 2. Thus (by Theorem 1.2(2)) Kh0
Lee.M / has s–filtration of diameter

at least 2k . Since L is Kh–thin, the s–filtration on Kh0
Lee.L/ has diameter equal to 2

(using the spectral sequence from Kh� to Kh�Lee ).

The cobordism and its reverse induce two maps:

(3-1) Kh0
Lee.L/

F†
��! Kh0

Lee.M /
F�†
���! Kh0

Lee.L/

These are both isomorphisms by Lemma 3.3. Also, we know that both maps are filtered
of degree �2g.†/.

Without loss of generality, suppose the s–filtration on Kh0
Lee.L/ is supported in de-

grees ˙1. Then since the isomorphism F�†W Kh0
Lee.M / �! Kh0

Lee.L/ is filtered
of degree �2g.†/, the s–filtration on Kh0

Lee.M / must be supported in degrees
� 1C 2g.†/. Similarly, looking at F†W Kh0

Lee.L/ �! Kh0
Lee.M /, we see that the

s–filtration on Kh0
Lee.M / must be supported in degrees ��1�2g.†/. Thus we have

2C 4g.†/� 2k , so g.†/� d.k � 1/=2e D bk=2c.
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The following corollary to Proposition 3.6 is already known via properties of the
Alexander module [13].

Corollary 3.7 No nonsplit alternating link is concordant to a split link.

4 The orientation group

In this section we define a (almost tautological) .1C1/–dimensional (projective) TQFT
which we call the orientation group. It is isomorphic to the TQFT used to define Lee
homology (with Lee deformation parameter aD 1

4
). In fact, Walker [27] informs us that

the orientation group is isomorphic to Kh�Lee as a functor. The goal of the construction
in this section is to give a natural intrinsic description of the maps associated to
cobordisms.

For any manifold X , we let jX j denote the number of connected components of X .

Definition 4.1 For an orientable manifold X , let O.X / denote the set of orientations
of X . Let O.X / denote the Q–vector space with basis indexed by O.X /. We
also define a natural inner product h � ; � i on O.X / by declaring that this basis be
orthonormal.

Definition 4.2 Let o 7! xo denote reversal of orientation; this is an involution of O.X /

and of O.X /.

By a relative orientation on a manifold X , we mean an orientation up to overall reversal
of orientation, that is, an element of O.X /=.o 7! xo/ (which we often think of as a
pair .o;xo/).

Definition 4.3 We define a mod 4 grading on O.X / by declaring that the C1

eigenspace of o 7! xo have grading �jX j and that the �1 eigenspace of o 7! xo have
grading 2� jX j.

Lemma 4.4 We have a natural isomorphism O.X1[X2/DO.X1/˝O.X2/ which
respects the involution o 7! xo as well as the mod 4 grading.

Proof Clearly O.X1 [ X2/ D O.X1/ �O.X2/, and this gives us the desired iso-
morphism of vector spaces, which clearly respects reversal of orientation. Now by
examining the definition of the mod 4 grading in terms of the map o 7! xo, one easily
sees that this implies that the mod 4 grading is preserved as well.
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Henceforth we shall only be interested in O.X / in the case that X is a 1–manifold.

Definition 4.5 If A is an orientable cobordism between X and Y , then we define
a map FAW O.X / ! O.Y / (up to overall multiplication by ˙1) as follows. Let
�AW O.A/! f˙1g satisfy the property that reversing the orientation on some compo-
nent A1 �A multiplies the value of �A by .�1/.�.A1/�jA1\X jCjA1\Y j/=2 (note that
since A is orientable, �.A1/�jA1\X jC jA1\Y j � �.closed surface/� 0 mod 2).
Clearly there are two such functions �A , differing by a sign. Then we define (up to ˙1)

(4-1) FA.˛/ WD
X

o2O.A/

�A.o/h˛; ojX i ojY :

By definition, orientations of X which do not extend to A get annihilated by FA .
More generally, an orientation is sent to a linear combination of those orientations
on Y which are compatible with the cobordism A and the input orientation of X .
Rasmussen [26, page 434, Proposition 4.1] showed a similar property of Kh�Lee in the
process of defining the s–invariant.

Lemma 4.6 The maps associated to cobordisms are functorial in the sense that if
A is a cobordism between X and Y and B is a cobordism between Y and Z , then
FA[Y B D FB ıFA .

Proof We have that

FB.FA.˛//D
X

oB2O.B/

X
oA2O.A/

�B.oB/�A.oA/h˛; oAjX ihoAjY ; oBjY i oBjZ

D

X
o2O.A[Y B/

�A.ojA/�B.ojB/h˛; ojX i ojZ :
(4-2)

Now just observe that the function O.A[Y B/! f˙1g given by �A.ojA/�B.ojB/

satisfies the property which defines �A[Y BW O.A[Y B/! f˙1g for the construction
of FA[Y B .

Lemma 4.7 The map FA on O is homogeneous of degree �.A/ with respect to the
mod 4 grading.

Proof Note that by definition of the mod 4 grading, we have

(4-3)
FA.x̨/D FA.˛/ () FA homogeneous of degree jX j � jY j;

FA.x̨/D�FA.˛/() FA homogeneous of degree 2CjX j � jY j:
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Now we calculate

(4-4)

FA.x̨/D
X

o2O.A/

�A.o/hx̨; ojX i xojY

D

X
o2O.A/

�A.xo/h˛; ojX i ojY :

Now by the definition of �A , this equals .�1/.�.A/�jX jCjY j/=2FA.˛/. Thus we have

(4-5)
�.A/�jX jCjY j � 0 mod 4 D)FA homogeneous of degree jX j�jY j;

�.A/�jX jCjY j � 2 mod 4 D)FA homogeneous of degree 2CjX j�jY j;

which exactly says FA is homogeneous of degree �.A/.

The following description shows the isomorphism with Lee’s TQFT (with aD 1
4

).

Lemma 4.8 The map FA has the following alternative description. We decompose A

into iterated handle additions (eg using a Morse function on A), and then to each of the
handle additions, we associate maps as follows.

For a 0–handle, we map ˛ to ˛˝ .o�xo/, where o is an orientation on the new circle.

For a 1–handle which splits a component, the map sends every orientation to its
extension to the new manifold.

For a 1–handle which joins two components, the map sends orientations which do not
extend to the new manifold to zero, and sends orientations which do extend to their
natural extension multiplied by ˙1 depending on the orientation of the new merged
circle.

For a 2–handle, the map sends o˝˛ to ˛ and xo˝˛ to ˛ .

Proof That it suffices to splice together the maps for elementary cobordisms follows
from Lemma 4.6. We just have to calculate the maps coming from k –handle additions,
k 2 f0; 1; 2g. These are given completely explicitly by Definition 4.5, which gives the
result.

It is interesting to note that even with this trivial construction, there is a good reason
why if we want to make O.L/ into a functor, we have no choice but to use maps that
are only defined up to ˙1. For instance, consider the birth of a circle. Note that the
birth of a circle is the same cobordism as the birth of a circle followed by an isotopy
from the circle to itself which reverses orientation. Thus they must induce the same

Algebraic & Geometric Topology, Volume 12 (2012)
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map. However, the image of the birth of a circle is o�xo, and this clearly changes sign
under the isotopy.

If we are interested in links embedded in R3 , and we want functoriality with respect to
orientable cobordisms embedded in R3 � Œ0; 1�, then it is probably possible to twist
by an appropriate homomorphism �1.funoriented loops in R3g/! f˙1g to get rid of
the sign ambiguity in O . We note that Hatcher [11] has proved the Smale Conjecture,
which is equivalent to the fact that the space of unoriented unknotted loops in R3

deformation retracts onto the space of unoriented circles in R3 , and the fundamental
group of this space is indeed Z=2Z. We suspect this type of twisting is morally what
fixes the functoriality of Khovanov homology as in [7; 6].

4.1 Properties of the s–filtration on O.L/

Under the equivalence between Kh�Lee.L/ and O.L/, we get a natural definition of
the s–filtration on O.L/. The space O.L/ carries a number of natural operations,
and it is reasonable to ask how they respect the s–filtration. We answer a few of these
questions in this section, using only the functorial properties of O.L/ under cobordism.
Because we use these soft methods, the properties we derive here would also be valid
for a hypothetical generalization of the � –invariant to links.

The following is a rough analogue of Livingston’s result [19] that s.K�/� s.KC/�

s.K�/C 2 (here K� and KC differ at exactly one crossing, which is positive for KC
and negative for K� ).

Lemma 4.9 Suppose L1 and L2 differ by a single crossing change. There is of course
a natural isomorphism �W O.L1/

�
!O.L2/. Let O.L1/

C denote the space generated
by orientations in which the given crossing is positive (and similarly define O.L1/

� ,
O.L2/

C and O.L2/
� ). Pick a strand at the given crossing and an orientation of that

strand. Let  W O.L2/!O.L2/ be defined by  .o/D �.o/o, where �.o/D 1 if o
agrees with the chosen orientation on the chosen strand, and �.o/ D �1 otherwise.
Then we have:

(1)  ı�W O.L1/!O.L2/ is filtered of degree �2.

(2) �W O.L1/
�!O.L2/

C is filtered of degree 0.

Proof Our strategy is to find cobordisms which induce the required maps.

For statement (1), consider the following. Passing the two strands through each other
yields an immersed cobordism of Euler characteristic 0 from L1 to L2 . There are two
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possible resolutions of the double point, giving two maps O.L1/!O.L2/. Using
(4-1), we see that the two maps are

O.L1/
projection
������!O.L1/

C
�jO.L1/C

�������!O.L2/
 
�!O.L2/;(4-6)

O.L1/
projection
������!O.L1/

�
�jO.L1/�

�������!O.L2/
 
�!O.L2/:(4-7)

Since the Euler characteristic of each resolved cobordism is �2, both of these maps are
filtered of degree �2. The sum of the two projections is the identity map on O.L1/,
so the sum of (4-6) and (4-7) is just  ı� ; hence it is filtered of degree �2 as well.

For statement (2), consider the following. By Rasmussen, O.T2;3/ is supported in
s–filtration levels 1 and 3. Since the mod 4 grading agrees with the s–filtration, we
see that oCxo lies in filtration level 3. Thus the map O.L1/

�!O.L1/
�˝O.T2;3/

given by ˛ 7!˛˝.oCxo/ is filtered of degree 3. Now consider an immersed cobordism
starting at L1 t T2;3 which first passes the strands of the crossing of L1 through
each other to get L2 , then unknots the T2;3 in a similar manner, and then merges
the resulting unknot with L2 . The two double points are of opposite signs (when the
crossing goes from negative in L1 to positive in L2 ), so they can be tubed together to
obtain a cobordism of genus 1. Thus the resulting map O.L1/

�˝O.T2;3/!O.L2/
C

is filtered of degree �3. The composite is �W O.L1/
�!O.L2/

C (as is clear from
(4-1)), so we are done.

Definition 4.10 Given a specific orientation oi on a component Li of L, let the
map Resoi

W O.L/!O.L/ be orthogonal projection onto the subspace where Li is
oriented by oi . For a relative orientation oij of Li [Lj (two components of L), let
Resoij ;xoij

W O.L/! O.L/ be projection onto the subspace where Li [Lj has this
relative orientation, composed with multiplication by � W O.L/! f˙1g which flips
sign depending on the orientation on Li .

The following should be thought of as a generalization of Rasmussen’s theorem that
characterizes dK for knots K .

Lemma 4.11 The operators Resoi
and Resoij ;xoij

are both filtered of degree �2.

Proof For Resoij ;xoij
, consider the cobordism formed by first adding a 1–handle

connecting Li and Lj (in such a way that the given relative orientation extends over
the cobordism) and then adding a second 1–handle splitting the resulting component
back into Li[Lj . Clearly this cobordism induces the map Resoij ;xoij

W O.L/!O.L/,
and it has Euler characteristic �2, so we are done.
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For Resoi
, let U be the unknot, and consider the map O.L/! O.L/˝O.U / D

O.L t U / given by ˛ 7! ˛ ˝ o. This is filtered of degree �1. Now compose
with the map O.L t U / ! O.L/ given by the cobordism obtained by adding a
1–handle to merge the unknot and Li (such that the orientation o and the desired
orientation oi extend over the 1–handle). This cobordism has Euler characteristic �1,
so the composition O.L/!O.L/˝O.U /!O.L/ is filtered of degree �2. This
map also clearly equals Resoi

.

Lemma 4.12 Let  W O.L/!O.L/ be defined by  .o/D �.o/o, where �.o/D˙1

depending on the orientation of some specific component Li �L. Then  is filtered
of degree �2.

Proof Such a map is a linear combination of Resoi
and Resxoi

.

Lemma 4.13 For every ˛ 2 O.L/, we have s.˛/ D min.s.˛ C x̨/; s.˛ � x̨//. In
particular, it follows that s.˛/D s.x̨/.

Proof Note that ˛C x̨ and ˛� x̨ are in different mod 4 gradings, so they are sent
to different mod 4 gradings in Kh�Lee.L/. Thus by Theorem 2.1 property (1), we
know that s.˛C x̨/ and s.˛� x̨/ are different mod 4. Thus s.˛C x̨/¤ s.˛� x̨/, so
s.˛/Dmin.s.˛C x̨/; s.˛� x̨//.

Suppose we have a relative orientation .o;xo/ of L. Let Vo;xo �O.L/ be the subspace
generated by o and xo. Then let us consider the restriction of the s–filtration to
Vo;xo DQ.oCxo/˚Q.o�xo/. Note that this direct sum decomposition is into mod 4

graded pieces; thus the elements oCxo and o�xo are sent to different mod 4 gradings
in Kh�Lee.L/ which differ by exactly 2. Thus the s–filtration on Vo;xo is completely
described by the two integers s.oCxo/ and s.o�xo/ (which differ by 2 mod 4). By
Lemma 4.12, s.oCxo/ and s.o� xo/ differ by exactly two, and we let the oriented
s.L; o/D 1

2
Œs.oCxo/C s.o�xo/�.

Definition 4.14 The invariant constructed in the previous paragraph is s.L; o/. It was
first defined by Beliakova and Wehrli [5].

For a knot K , there is just one relative orientation. This gives Rasmussen’s invari-
ant s.K/, which determines the s–filtration on Kh�Lee.K/. For links, however, there
is much more to the s–filtration on Kh�Lee.L/ that is not captured by the function
o 7! s.L; o/. For example, for any alternating link L with zero linking matrix, all
s.L; o/ are equal (say, to s0 ), and

P
i;j dL.i; j /t

iqj D 2jLj�1qs0.qC q�1/. On the
other hand, if L is unlink on n components, then s.L; o/ are all equal (this time to
1�n), however in this case

P
i;j dL.i; j /t

iqj D .qCq�1/n . Thus for link concordance,
the s–filtration on O.L/ is a stronger invariant than the function o 7! s.L; o/.
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5 Examples

We now summarize some calculations of the invariant dLW Z�Z! Z�0 for some
links L. We used the package KnotTheory` maintained by Bar-Natan [4], in partic-
ular the program to calculate Khovanov homology written by Scott Morrison. This
allows us to calculate Kh�.L/ for the link in question. We use the simple fact that if
dim Khh.L/D dim Khh

Lee.L/, then by virtue of the spectral sequence from Kh�.L/
to Kh�Lee.L/, the support of the s–filtration on Khh

Lee.L/ is given exactly by the q–
graded dimension of Khh.L/. Many interesting links have lots of crossings, and thus
computing the Khovanov homology is time consuming on a computer; we just list the
cases that we have been able to compute.

Most of the links in the standard link tables are quasi-alternating, so they do not present
a particularly interesting case for the filtration on Kh�Lee.L/ (it is just supported in
two levels, so only their absolute height is interesting). So instead, we’ve taken as our
examples some links with extra structure.

The function dL is a link concordance invariant, and thus there are some easy corollaries
using Theorem 1.2 distinguishing the link concordance classes of the links we consider
below from other links whose dL one could calculate (eg one can easily see which
are concordant to a quasi-alternating link). Theorem 1.2 also implies effective bounds
on the genus of component-preserving orientable cobordisms between these links and
links with certain splitting numbers.

5.1 Cablings of T2 ;p

Let Lp be the .2; 0/–cabling of T2;p . Then the linking matrix of Lp is zero, and we
have (for p odd, 1� p � 11)

(5-1)
X
i;j

dLp
.i; j / � t iqj

D 1C q2
C q2p�4

C q2p�2:

We conjecture that this is true for all odd p � 1. We can prove the following:

Lemma 5.1 Fix an odd integer p � 5. Let .oC;xoC/ be the relative orientation of Lp

where the two strands are oriented in the same direction, and let VC be the subspace
of O.Lp/ generated by .oC;xoC/. Similarly define .o�;xo�/ and V� with the two
strands oriented in opposite directions.

Then the s–filtration on O.L/D VC˚V� splits up as a filtration on each V˙ . Fur-
thermore, VC is supported in filtration degrees .2p� 4; 2p� 2/, and V� is supported
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in degrees .0; 2/ or .�2; 0/. In particular, we have

(5-2)
X
i;j

dLp
.i; j / � t iqj

D

8<:
1C q2

or
q�2C 1

9=;C q2p�4
C q2p�2:

Of course, it is not true in general that the s–filtration splits up as a direct sum over all
relative orientations .o;xo/ of filtrations on Vo;xo (for example, this fails for any split
link by Theorem 2.1 property (2)).

Proof We thank the referee for the argument in this paragraph. The standard diagram
for T2;p has p positive crossings, so the 2–cabling in the blackboard framing is the
.2; 2p/–cable, which we call L0p . Orient both Lp and L0p via oC (we let oC denote
the orientation on L0p corresponding naturally to oC on Lp ). Now L0p has a positive
diagram coming from the positive diagram of T2;p . In this diagram, there are 4p

crossings and 4 circles in the oriented resolution. Thus by Rasmussen [26, page 439,
Section 5.2], we have sL0p

.oC/D 4p� 4. Now we can transform L0p into Lp by p

crossing changes (they differ by 2p half-twists between the two strands). Thus p

iterated applications of Lemma 4.9 imply that

(5-3) sLp
.oC/� 2p� 4:

On the other hand, Lp bounds two parallel copies of a Seifert surface for T2;p , each
of genus 1

2
.p � 1/. These give a component-preserving cobordism of genus p � 1

from Lp to the unlink. Every orientation o of the unlink has s.o/D�2. Thus

(5-4) sLp
.oC/� sunlink.o/C 2.p� 1/D 2p� 4:

Thus sLp
.oC/D 2p� 4. By the discussion surrounding Definition 4.14, this shows

that the restriction of the s–filtration to VC is supported in degrees .2p� 4; 2p� 2/.

Now for o� , observe that adding a 1–handle merging the two components of Lp yields
the unknot U . Thus if we orient Lp by o� , we have maps O.Lp/!O.U /!O.Lp/,
and in fact they give isomorphisms

(5-5) V�
�
�!O.U /

�
�! V�

which are filtered of degree �1. Since O.U / is supported in degrees ˙1, and V� is
supported in even degrees (which differ by exactly two), we see that the support of V�
is either .0; 2/ or .�2; 0/.

Now it remains to show the s–filtration on O.L/ decomposes as the direct sum of the fil-
trations on each V˙ . In other words, we need to show s.˛CC˛�/Dmin.s.˛C/; s.˛�//
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for all pairs ˛˙ 2 V˙ . Our assumption p � 5 implies 2p � 4 > 2, so by the
results above, we have s.˛C/ ¤ s.˛�/ (unless ˛C D ˛� D 0). It follows that
s.˛CC˛�/Dmin.s.˛C/; s.˛�//.

5.2 Tn;n

We now consider the .n; n/–torus links for 1� n� 6 (with all components oriented
the same direction). We haveX
i;j

dT1;1
.i; j / � t iqj

D qC q�1;

X
i;j

dT2;2
.i; j / � t iqj

D Œ1C q2�C .tq3/2Œq�2
C 1�;

X
i;j

dT3;3
.i; j / � t iqj

D Œq3
C q5�C .tq3/4Œq�3

C 3q�1
C 2q�;

X
i;j

dT4;4
.i; j / � t iqj

D Œq8
Cq10�C .tq3/6Œq�2

C4C3q2�C .tq3/8Œq�4
C3q�2

C2�;

X
i;j

dT5;5
.i; j / � t iqj

D Œq15
C q17�C .tq3/8ŒqC 5q3

C 4q5�

C .tq3/12Œq�5
C 5q�3

C 9q�1
C 5q�;X

i;j

dT6:6
.i; j / � t iqj

D Œq24
C q26�C .tq3/10Œq6

C 6q8
C 5q10�

C .tq3/16Œq�4
C 6q�2

C 14C 9q2�

C .tq3/18Œq�6
C 5q�4

C 9q�2
C 5�:

In accordance with Theorem 1.2 property (6), it is natural to separate out factors of tq3 .
For nD 5; 6, computing the final answer requires the use of Theorem 1.2 property (1),
in particular the fact that the dimensions of Kh�Lee supported in s–filtration level jLj
and jLj C 2 are equal (this enables us to see which parts of Kh� are killed in the
spectral sequence).

The referee has noticed the following pattern for the values of dTn;n
. Define polynomials

Pn;k 2QŒq; q�1� for n� 0 and 0� 2k � n by the recurrence

P0;0 D 1;(5-6)

for n� 1 Pn;k D

8̂<̂
:

qPn�1;k�1C q�1Pn�1;k 2kC 2� n;

qPn�1;k�1C
1
2
.1C q�1/Pn�1;k 2kC 1D n;

2Pn�1;k�1 2k D n;

(5-7)
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where we interpret Pn;k as zero if k < 0. Certainly Pn;k are some sort of q–deformed
binomial coefficients. Then for 1� p � 6, we have

(5-8)
X
i;j

dTn;n
.i; j / � t iqj

D

nX
kD0

.tq3/2k.n�k/q.n�2k/2Pn;min.k;n�k/.q
2/:

One would naturally conjecture that this equality holds for all larger p as well.
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