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Computation-free presentation of the fundamental group
of generic .p; q/–torus curves

ENRIQUE ARTAL BARTOLO

JOSÉ IGNACIO COGOLLUDO AGUSTÍN

JORGE ORTIGAS-GALINDO

We present a new method for computing fundamental groups of curve complements
using a variation of the Zariski–van Kampen method on general ruled surfaces. As
an application we give an alternative (computation-free) proof for the fundamental
group of generic .p; q/–torus curves.

14F45, 14H30, 14H50; 57M05, 57M12, 14H10, 14E05

Introduction

O Zariski [9] computed the fundamental group of the complement in P2 of the dis-
criminant curve of the projection of a generic cubic surface in P3 onto P2 . Such
group turns out to be Z=2Z�Z=3Z and this is related to the fact that the equation of
such a curve is of the type f 3

2
Cf 2

3
D 0, where fm is a homogeneous polynomial of

degree m in three variables. Even if not all the details are fully justified in that paper,
the result is true and the techniques therein are behind the well-known Zariski–van
Kampen method [9; 8].

Following these ideas, M Oka [7] proved that the fundamental group of the complement
of the projective curve with equation .xpCyp/qC .yqC zq/p D 0 is isomorphic to
Z=pZ �Z=qZ, for p; q coprime. In order to obtain this result the author is forced
to perform long computations as a result of using the Zariski–van Kampen method
(see [6] for another approach given by A Némethi). By standard arguments, the same
computations used by Oka are true for the complement of f q

p Cf
p

q D 0, which will
be called from now on a .p; q/–torus curve, for generic fp and fq : there is an isotopy
from any generic .p; q/–torus curve to Oka’s curve. Therefore the fundamental group
of the complement of f q

p Cf
p

q D 0 is isomorphic to Z=pZ�Z=qZ as well.

In this note, we present a new method to compute fundamental groups of complements
of curves via Nagata transformations and fibrations from ruled rational surfaces. This
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way we give an alternative computation for the fundamental group of generic .p; q/–
torus curves.

The idea is to use the first part to compute the fundamental group in a degenerated case
and then use orbifold fundamental group techniques to recover the generic case.

Acknowledgements All authors are partially supported by the Spanish Ministry of
Education grant MTM2010-21740-C02-02.

1 Zariski–van Kampen Method on ruled surfaces

We will describe this general method in a particular example using the idea of the
classical Zariski–van Kampen Method on Hirzebruch surfaces.

Let N WD 2mC 1 be an odd number coprime with d WD aC b , a; b 2N coprime. We
consider the plane projective curve C WD CN;a;b defined by the following equation:

(1-1) FN;a;b.x;y; z/ WD xaN ybN
C .xN

CyN
Cxmymz/d D 0:

This curve has degree dN . Note that P WD Œ0 W 0 W 1� is a singular point of C . Let us
consider the pencil of lines passing through P . We denote them by Lt , t 2 P1 �

C[f1g, where

Lt WD

�
fy � tx D 0g if t 2C;

fx D 0g if t D1:

The lines L0 and L1 intersect C only at P . Since the multiplicity of .C;P / equals
2mdD .N�1/d , a generic line Lt intersect C at Nd�.N�1/dDd points outside P .
The tangent cone of .C;P / consists of the two lines L0 and L1 . In order to study
this singularity we perform a blowing-up at P . With suitable charts the local equation
of the strict transform of the branches tangent to L0 are of the form

(1-2) xaN yd
C .xN yCyCxm/d D 0;

which is tangent to y D 0 (as far as m> 1), the equation of the exceptional divisor on
this chart. Let y1 WD yCxm . Then (1-2) becomes

(1-3) xaN .y1�xm/d C .y1CxN y1�xNCm/d D 0:

Looking at its Newton polygon, we deduce that such a singularity is topologically
equivalent to yd

1
CxaNCmd D 0. Since gcd.d; aN Cmd/D 1, it is irreducible.

Something analogous occurs when considering the branches at the infinitely near
point associated with the tangent direction L1 . Blowing-down, we can describe the
topological type of the original singularity .C;P /.
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Lemma 1.1 The singularity .C;P / has two branches. The branch tangent to L0

is of type .aN Cmd; aN C .mC 1/d/ and the branch tangent to L1 is of type
.bN C .mC 1/d; bN Cmd/.

Using Riemann–Hurwitz arguments, any other line through P intersects C transversally
outside P and in particular P is the only singular point of C .

We want to compute the fundamental group of P2 n C using a generalized Zariski–
van Kampen method where P is the projection point. For the classical Zariski–van
Kampen method the projection point is a generic point outside C . In our case, not
only P 2 C but also the tangent cone of .C;P / consists of two lines; hence, for any
choice of line at infinity we should deal with vertical asymptotes and this is a strong
technical problem. In order to deal with these issues, we are going to perform Nagata’s
elementary operations to some ruled surfaces. Since it will be more useful for our
purposes, we replace Nagata’s elementary operations by a sequence of blowing-ups
and blowing-downs.

Let �0W †1 ! P2 be the blowing-up of P2 at P and denote by E WD ��1
0
.P /

the exceptional divisor. The divisor E is a .�1/–curve which is a section of the
ruling …1W †1! P1 .

Convention 1.2 For the sake of simplicity, given a blowing-up, the strict transform of
a curve will keep the same notation.

One has the following properties:

(†1 1) ��1
0
.C/D C [E .

(†1 2) L0 and L1 are the only fibers of …1 which are nontransversal to C (and to
C [E ).

Figure 1 describes the standard ruling …1 of †1 . The number in brackets after a
divisor represents its self-intersection. This is not yet a good model for any Zariski–
van Kampen based method since the curve C intersects the negative curve E . Let
Pt WD Lt \E . Following Lemma 1.1 and (1-2)–(1-3), we deduce that .C;P1/ is a
singular point of type .aNCmd; d/, the curve E is tangent to C and .C �E/P1 Dmd .

Analogously .C;P0/ is a singular point of type .bNCmd; d/, the curve E is tangent to
C and .C �E/P0

Dmd . To separate E and C we perform m blowing-ups at P1DP0
1

(and the following .m� 1/ infinitely near points P
j
1 at E , j D 1; : : : ;m� 1), where

P
j
1 WD C \E

j
1 and E

j
1 is the exceptional divisor obtained after blowing up P

j�1
1 .

Also, note that the multiplicity of C at P
j
1 is d . Note that the point Pm

1 is not on E
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E[−1]

C[(2N − 1)d2]L0[0] L∞[0]

P0 P∞

Lt[0]

Figure 1. Projection after the blowing-up of P

E[−N ]

C[Nd2]

Em
0 [−1] Em

∞[−1]

Pm
0 Pm

∞

Em−1
0 [−2] Em−1

∞ [−2]

E1
∞[−2]E1

0 [−2]

L0[−1] L∞[−1]

Figure 2. The surface y†

anymore. One repeats this procedure for P0 D P0
0

. This way a surface y† is obtained
as shown in Figure 2. Now, we can blow down the curves L1;E

1
1; : : : ;E

m�1
1 and

L0;E
1
0
; : : : ;Em�1

0
in order to obtain a ruled surface †N where C is disjoint to E .

The singularity type of .C;Pm
1/ is .aN; d/ and it is transversal to Em

1 . Analogously,
the singularity type of .C;Pm

0
/ is .bN; d/ and it is transversal to Em

0
.

Proposition 1.3 The monodromy action on †N is given as follows. Let Lt be
a generic fiber. We can choose meridians �0 , �1 , and �t on P1 n fp0;p1;ptg

around the images p0;p1;pt of the fibers Em
0
;Em
1;Lt of …N W †N !P1 , such that

�0 ��1 ��t D 1 2 �1.P
1 n fp0;p1;ptg/. For these meridians, the braid monodromy

is given by

(1-4) �0 7! ˇ0 D .�d�1 � � � �1/
aN ; �1 7! ˇ1 D .�d�1 � � � �1/

bN ;

where the �1; : : : ; �d�1 are appropriate half twists generating the braid group Bd

on Lt based on the set Lt \ C .
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Proof The braid monodromy is defined over P1 n fp0;p1;ptg (which is like a two-
punctured C ). We need to take out a fiber, say Lt , in order to have a trivialization that
allows one to define the braids. From the topological type of the singularity at Pm

0
we

know that the image ˇ0 of �0 can be chosen to be a conjugate of .�d�1 � � � �1/
aN ,

hence after an appropriate choice of the generators �i , the image ˇ0 can be set to be ex-
actly .�d�1 � � � �1/

aN . Once the generators �i are fixed and using the topological type
of the singularity Pm

1 , the image ˇ1 of �1 will be a conjugate of .�d�1 � � � �1/
bN .

Since Lt is generic, we are in †N and we are avoiding the negative section E , we
have that the image of ��1

t D �1 ��0 is �2N , where �2 D .�d�1 � � � �1/
d is the

positive generator of the center of Bd ; see Kharlamov and Kulikov [5, Lemma 2.1].
Hence, ˇ1 D .�d�1 � � � �1/

bN is as in the statement.

Note that

(1-5) P2
n .C[L0[L1/Š†1 n .C[E[L0[L1/Š†N n .C[E[Em

0 [Em
1/:

Lemma 1.4 The meridians of L1 and Em
1 (resp. L0 and Em

0
) are conjugate in y†.

As a consequence,
�1.P

2
n C/Š �1.†N n .C [E//:

Proof Let us consider the sequence of blowing-ups used to obtain Figure 2 from
Figure 3. Note that if we blow up a smooth point on a divisor D , a meridian of

E[−N ]

C[Nd2]

Em
0 [0] Em

∞[0]

Pm
0 Pm

∞

Figure 3. The situation on †N

the exceptional component equals a meridian of D . This gives the first statement.
The second part is a consequence of (1-5) and the following well-known fact: let S

be a quasiprojective surface and let A be an irreducible curve in S , then the map
�1.S nA/! �1.S/ is surjective and its kernel is normally generated by a meridian
of A.

Theorem 1.5 �1.P
2 n C/Š Z=dZ�Z=N Z.

Algebraic & Geometric Topology, Volume 12 (2012)



1270 Enrique Artal Bartolo, José Ignacio Cogolludo Agustín and Jorge Ortigas-Galindo

Proof The Zariski–van Kampen method on †N n .C [E/ provides a way to obtain
a presentation of �1.†N n .C [E// as follows. Let us define ˇ WD .�d�1 � � � �1/

N .
According to this, ˇ0 D ˇ

a and ˇ1 D ˇb in (1-4). Then,

(1-6) �1.†N n .C [E//

D h�1; : : : ; �d j �i D �
ˇ0
i ; �i D �

ˇ1
i ; 1� i � d; .�d � � ��1/

N
D 1i:

Since gcd.a; b/D 1, the first two sets of relations in (1-6) can be replaced by �i D�
ˇ
i ,

1� i � d . Since by hypothesis gcd.d;N /D 1, these are exactly the relations of the
fundamental group of torus knot of type .d;N /, which is given by Ad D BN for
B D�d � � ��1 . The last relation in (1-6) implies BN D 1, hence the result follows.

2 Torus curves

Definition 2.1 A .p; q/–torus curve, gcd.p; q/D1, is a curve C admitting an equation
f

q
p Cf

p
q D 0, where fm is a homogeneous polynomial of degree m in three variables.

We say that C is a generic torus curve if the curves of equation fp D 0 and fq D 0

intersect transversally at pq distinct points and they are the only singular points of C .

The following result is straightforward.

Proposition 2.2 Let C0; C1 be .p; q/–torus curves, C1 being generic. Then, there is a
continuous path  W Œ0; 1�! Ppq (Pd is the projective space of all curves of degree d )
such that if we denote Ct WD  .t/, then Ct is a generic .p; q/–torus curve, 8t 2 .0; 1�.

We apply the following result which can be found in Dimca [3] or Zariski [9].

Proposition 2.3 Let  W Œ0; 1� ! Pd be a continuous map and denote Ct WD  .t/.
Assume that Ct are equisingular for all t 2 .0; 1�.
(D1) If C0 is also equisingular, then C0 and C1 are isotopic and hence �1.P

2 nC0/Š

�1.P
2 n C1/.

(D2) If C0 is reduced, then there is a natural epimorphism

(2-1) �1.P
2
n C0/

�.C1;C0/
�!! �1.P

2
n C1/

defined as

�1.P
2
n C0/

i�
 �
Š
�1.P

2
nR.C0//

i�
�!! �1.P

2
n Ct /

.D1/
 !
Š

�1.P
2
n C1/;

where R.C/ means a regular neighborhood and the maps denoted by i are
inclusions.

Directly from Theorem 1.5 and Propositions 2.2 and 2.3, the following holds.
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Corollary 2.4 There is a natural epimorphism Z=pZ�Z=qZ � �1.P
2 n C/ for any

generic .p; q/–torus curve C .

The final step involves orbifold maps. Let us recall the definitions.

Definition 2.5 An orbifold X' is a quasiprojective Riemann surface X with a function
'W X !N taking value 1 outside a finite number of points.

Definition 2.6 For an orbifold X' , let p1; : : : ;pn be the points such that mj WD

'.pj / > 1. Then, the orbifold fundamental group of X' is

�orb
1 .X'/ WD �1.X n fp1; : : : ;png/=h�

mj
j D 1i;

where �j is a meridian of pj . We denote X' by Xm1;:::;mn
.

Definition 2.7 Let X' be an orbifold and Y a smooth algebraic variety. A dominant
algebraic morphism �W Y !X defines an orbifold morphism Y !X' if for all p 2X ,
the divisor ��.p/ is a '.p/–multiple.

The following proposition has been proved by Catanese, Keum and Oguiso [2] and the
two first named authors [1].

Proposition 2.8 Let �W Y ! X define an orbifold morphism Y ! X' . Then � in-
duces a morphism ��W �1.Y /! �orb

1
.X'/. Moreover, if the generic fiber is connected,

then �� is surjective.

Proposition 2.9 Let C be a .p; q/–torus curve C . Then there exists a natural epimor-
phism �C W �1.P

2 n C/! Z=pZ�Z=qZ. Moreover, if C0; C1 are .p; q/–torus curves,
C1 generic, then the map �.C1; C0/ in (2-1) satisfies

(2-2)

�1.P
2 n C0/ �1.P

2 n C1/

Z=pZ�Z=qZ

�.C1; C0/

�C0
�C1

Proof For a curve C the map �C comes from the orbifold map P2nC!P1
p;qnfŒ1 W�1�g

given by Œx W y W z� 7! Œf
q

p W f
p

q �. The genericity guarantees that the generic fiber is
irreducible. The last statement comes from the fact that the orbifold map can be put in
a family.

Remark 2.10 There is a slight ambiguity in Proposition 2.9, since a torus curve may
admit several decompositions. The last statement is true if the deformation respects the
decompositions.
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Let C0 be a curve with Equation (1-1), for N D p , a C b D d D q . Then, by
Theorem 1.5, the map ' WD �C1

ı �.C1; C0/ defines an epimorphism

(2-3) Z=pZ�Z=qZ � Z=pZ�Z=qZ:

Theorem 2.11 The fundamental group of any generic .p; q/–curve is isomorphic to
the free product Z=pZ�Z=qZ.

Proof It is enough to prove that (2-3) is an isomorphism which is a consequence of
the fact that Z=pZ�Z=qZ is a Hopfian group; see Karrass and Solitar [4].
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