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Cobordism of exact links

VINCENT BLANLŒIL

OSAMU SAEKI

A .2n � 1/–dimensional .n � 2/–connected closed oriented manifold smoothly
embedded in the sphere S2nC1 is called a .2n� 1/–link. We introduce the notion
of exact links, which admit Seifert surfaces with good homological conditions. We
prove that for n � 3 , two exact .2n � 1/–links are cobordant if they have such
Seifert surfaces with algebraically cobordant Seifert forms. In particular, two fibered
.2n� 1/–links are cobordant if and only if their Seifert forms with respect to their
fibers are algebraically cobordant. With this broad class of exact links, we thus clarify
the results of Blanlœil [1] concerning cobordisms of odd dimensional nonspherical
links.

57Q45; 57Q60, 57R65, 57R40

1 Introduction

In [1], Blanlœil obtained a lot of important results concerning cobordisms of odd
dimensional nonspherical links. Unfortunately, some statements must be clarified,
since there are even counterexamples. In fact, when studying knot cobordisms it is
very difficult to begin with an arbitrary Seifert surface of a given link. For example,
if we consider Sn�1 �DnC1 embedded trivially in S2nC1 as a Seifert surface of its
boundary link K Š Sn�1 �Sn , then the associated Seifert form is represented by the
0�0 matrix, since Hn.S

n�1�DnC1IZ/ vanishes. If there existed a simple link K0 , ie
a link K0 admitting an .n�1/–connected Seifert surface, which is cobordant to K and
with algebraically cobordant Seifert form (for details, see Section 2), then K0 would
necessarily be diffeomorphic to the sphere S2n�1 . This gives a simple counterexample
to [1, Propositions 2.1 and 2.2].

In this paper, we will instead use a reasonably broad class of Seifert surfaces, called
exact Seifert surfaces, and obtain similar results.

Throughout the paper, we work in the smooth category. All homology and cohomology
groups are with integer coefficients. The symbol “Š” denotes a diffeomorphism
between manifolds or an appropriate isomorphism between algebraic objects.
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2 Preliminaries

Let us first recall some definitions.

Definition 2.1 Let K be a closed .2n� 1/–dimensional manifold embedded in the
.2nC 1/–dimensional sphere S2nC1 . We suppose that K is .n� 2/–connected. (We
adopt the convention that a space is .�1/–connected if it is not empty.) We further
assume that it is oriented. Then we call K or its (oriented) isotopy class a .2n�1/–link,
or simply a link.

A link K is a knot if K is a homotopy .2n� 1/–sphere.

Definition 2.2 Two .2n�1/–links K0 and K1 in S2nC1 are said to be cobordant if
there exists a properly embedded oriented 2n–dimensional manifold X in S2nC1�Œ0; 1�

such that

(1) X is diffeomorphic to K0 � Œ0; 1�, and

(2) @X D .�K0 � f0g/[ .K1 � f1g/,

where �K0 is obtained from K0 by reversing the orientation.

It is known that for every .2n � 1/–link K , there exists a compact oriented 2n–
dimensional submanifold F of S2nC1 having K as boundary.

Definition 2.3 Let K be a .2n � 1/–link. A compact oriented 2n–dimensional
submanifold F of S2nC1 having K as its oriented boundary is called a Seifert surface
associated with K .

Definition 2.4 We say that a .2n�1/–link is simple if it admits an .n�1/–connected
Seifert surface.

Definition 2.5 We say that a .2n�1/–link K is fibered if there exist a smooth fibration

�W S2nC1
XK! S1

and a trivialization
� W N.K/!K �D2

of a closed tubular neighborhood N.K/ of K in S2nC1 such that �jN.K /XK coincides
with �ı� jN.K /XK , where � W K�.D2Xf0g/!S1 is the composition of the projection
to the second factor and the obvious projection D2 X f0g ! S1 .
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Note that then the closure of each fiber of � in S2nC1 is a compact 2n–dimensional
oriented manifold whose boundary coincides with K . We shall often call the closure
of each fiber simply a fiber.

Furthermore, we say that a fibered .2n� 1/–link K is simple if each fiber of � is
.n� 1/–connected.

Definition 2.6 Suppose that F is a compact oriented 2n–dimensional submanifold
of S2nC1 , and let G be the quotient of Hn.F / by its Z–torsion. The Seifert form
associated with F is the bilinear form

AW G �G! Z

defined as follows. For .x;y/ 2G �G , we define A.x;y/ to be the linking number
in S2nC1 of �C and �, where � and � are n–cycles in F representing x and y

respectively, and �C is the n–cycle � pushed off F into the positive normal direction
to F in S2nC1 .

By definition a Seifert form associated with a .2n�1/–link K is the Seifert form asso-
ciated with F , where F is a Seifert surface associated with K . A matrix representative
of a Seifert form with respect to a basis of G is called a Seifert matrix.

Definition 2.7 Let A be the set of all bilinear forms defined on free Z–modules G of
finite rank. Set "D .�1/n . For A 2A, let us denote by AT the transpose of A, by S

the "–symmetric form AC "AT associated with A, by S�W G!G� the adjoint of S

with G� being the dual HomZ.G;Z/ of G , and by xS W xG � xG! Z the "–symmetric
nondegenerate form induced by S on xG DG=Ker S� . A submodule M of G is said
to be pure if G=M is torsion free, or equivalently if M is a direct summand of G . For
a submodule M of G , let us denote by M^ the smallest pure submodule of G that
contains M . We denote by SM the image of M in xG by the natural projection map.

Definition 2.8 Let AW G � G ! Z be a bilinear form in A. The form A is Witt
associated to 0 if the rank m of G is even and there exists a pure submodule M of
rank m=2 in G such that A vanishes on M �M . Such a submodule M is called a
metabolizer for A.

Definition 2.9 Let Ai W Gi � Gi ! Z, i D 0; 1, be two bilinear forms in A. Set
G DG0˚G1 , AD .�A0/˚A1 , S DAC "AT , and Si DAiC "A

T
i , i D 0; 1. The

form A0 is said to be algebraically cobordant to A1 if there exist a metabolizer M

for A such that SM is pure in xG , an isomorphism 'W Ker S�
0
! Ker S�

1
, and an
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isomorphism � W Tors.Coker S�
0
/! Tors.Coker S�

1
/ which satisfy the following two

conditions:

M \Ker S� D
˚
.x; '.x// jx 2 Ker S�0

	
� Ker S�0 ˚Ker S�1 D Ker S�;(c1)

d.S�.M /^/D
˚
.y; �.y// jy 2 Tors.Coker S�0 /

	
(c2)

� Tors.Coker S�0 /˚Tors.Coker S�1 /D Tors.Coker S�/;

where d is the quotient map G�! Coker S� and “Tors” means the torsion subgroup.
In the above situation, we also say that A0 and A1 are algebraically cobordant with
respect to ' and � .

Remark 2.10 As pointed out in Blanlœil and Saeki [3] the relation of algebraic
cobordism may not be an equivalence relation on the set of all integral bilinear forms
of finite rank (see also Vogt [7]). However, it is an equivalence relation on the set of all
unimodular bilinear forms of finite rank, as shown in Blanlœil and Michel [2].

3 Exact links

Definition 3.1 Suppose n� 2. A Seifert surface F of a .2n� 1/–link K is said to
be exact if the sequence

0!Hn.K/!Hn.F /=Tors Hn.F /!Hn.F;K/=Tors Hn.F;K/!Hn�1.K/! 0;

derived from the homology exact sequence for the pair .F;K/, is well defined and
exact. Note that the homomorphism

Hn.F;K/=Tors Hn.F;K/!Hn�1.K/

may not be well defined in general. Here, we impose the condition that this map should
be well defined. A .2n�1/–link is said to be exact if it admits an exact Seifert surface.

Example 3.2 Consider K D Sn�1 �Sn embedded trivially in S2n � S2nC1 , n� 2.
Then K is a .2n� 1/–link and it bounds two Seifert surfaces F0 D Dn � Sn and
F1 D Sn�1 �DnC1 , both of which are embedded in S2n . Then F0 is exact, while
F1 is not, since Hn.S

n�1 �Sn/!Hn.S
n�1 �DnC1/ is not a monomorphism.

Lemma 3.3 For n� 2, we have the following.

(1) A simple .2n� 1/–link is always exact. In fact, every .n� 1/–connected Seifert
surface is exact.

(2) A fibered .2n� 1/–link is always exact. In fact, every fiber is exact.

(3) A .2n� 1/–knot is always exact. In fact, every Seifert surface is exact.
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Proof In the following, let K be a .2n� 1/–link and F a relevant Seifert surface.

(1) Let us consider the exact sequence

HnC1.F;K/!Hn.K/!Hn.F /!Hn.F;K/!Hn�1.K/!Hn�1.F /:

Then we have the desired result, since HnC1.F;K/ŠH n�1.F /D 0, Hn�1.F /D 0,
and Hn.F / and Hn.F;K/ are torsion free.

(2) If F is a fiber of a fibered link, then it is easy to see that S2nC1XF is homotopy
equivalent to F . Hence, by Alexander duality, we have

zHi.F /Š zH
2n�i.F /

for all i , where zH� and zH� denote reduced homology and cohomology groups,
respectively. Consider the exact sequence

0! zHnC1.F /!HnC1.F;K/!

zHn.K/! zHn.F /! Hn.F;K/!

zHn�1.K/! zHn�1.F /!Hn�1.F;K/! 0:

(Recall that K is .n� 2/–connected.) Since

zHn�1.F /Š zH
nC1.F /ŠHn�1.F;K/

and zHn�1.F /!Hn�1.F;K/ is an epimorphism, it must be an isomorphism. Hence
Hn.F;K/! zHn�1.K/ is an epimorphism. Furthermore, since

zHnC1.F /Š zH
n�1.F /ŠHnC1.F;K/;

zHnC1.F /!HnC1.F;K/ is a monomorphism, and zHn.K/ is torsion free, the homo-
morphism zHnC1.F /!HnC1.F;K/ must be an isomorphism. Thus zHn.K/! zHn.F /

is a monomorphism. Since zHn.K/ is torsion free, the map

zHn.K/! zHn.F /=Tors zHn.F /

is also a monomorphism. Finally, since zHn.F / Š zH
n.F / Š Hn.F;K/, we have

Tors zHn.F /Š Tors Hn.F;K/. Then we see easily that the sequence

0! zHn.K/! zHn.F /=Tors zHn.F /!Hn.F;K/=Tors Hn.F;K/! zHn�1.K/! 0

is well defined and exact.

(3) If K is a homotopy sphere, then Hn.K/D 0D zHn�1.K/, and hence

0! zHn.F /!Hn.F;K/! 0

is exact. Thus the result is obvious. This completes the proof.

Algebraic & Geometric Topology, Volume 12 (2012)



1448 Vincent Blanlœil and Osamu Saeki

The following can be regarded as a correction of [1, Proposition 2.1].

Proposition 3.4 Let K be an exact .2n � 1/–link, n � 2, and A its Seifert form
associated with an exact Seifert surface. Then, there exists a simple .2n� 1/–link K0

cobordant to K such that the Seifert form of K0 associated with an .n� 1/–connected
Seifert surface is algebraically cobordant to A.

Remark 3.5 Note that when nD 1, every 1–link admits a connected Seifert surface,
and hence is simple.

Proof of Proposition 3.4 Let F be an exact Seifert surface of K . By exactly the
same method as in Blanlœil[1] and Levine [6], with the help of an engulfing theorem,
we can perform embedded surgeries on F inside the disk D2nC2 along spheres a of
dimensions � n� 1 embedded in F so that we obtain a simple link K0 cobordant
to K and an .n� 1/–connected Seifert surface F 0 for K0 .

Let us examine the relationship between the Seifert forms with respect to F and F 0 .
If the sphere a along which the surgery is performed is of dimension less than or equal
to n� 2, then it does not affect the n–th homology of F . We again denote by F the
result of such surgeries: in particular, F is .n�2/–connected. Let us now consider the
case where a is of dimension n� 1. In the following, Œa� will denote the homology
class in Hn�1.F / represented by a, where we fix its orientation once and for all.

Case 1 The class Œa� has infinite order in Hn�1.F /.

Since K is exact, the boundary homomorphism @�W Hn.F;K/!Hn�1.K/ is surjec-
tive. By the exact sequence

Hn.F;K/
@�
�!Hn�1.K/

i�
�!Hn�1.F /

j�
�!Hn�1.F;K/;

where i W K! F and j W F ! .F;K/ are the inclusions, we see that j� is injective
and hence j�Œa� has infinite order in Hn�1.F;K/ŠH nC1.F /. Therefore, there exists
an .nC 1/–cycle za of F such that the intersection number a � za does not vanish. We
choose za so that mD ja � zaj.> 0/ is the smallest possible.

Let  W Dn �DnC1!D2nC2 be the n–handle used by the surgery in question such
that  .Sn�1 � f0g/D a. As in [1], let us put

FT D F X Int. .Sn�1
�DnC1//; F?

D FT [ .D
n
�Sn/:
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Let us consider the Mayer–Vietoris exact sequence associated with the decomposition
F D FT [ .S

n�1 �DnC1/:

HnC1.F /
s
�!Hn. .S

n�1
�Sn//!Hn.FT /!Hn.F /

t
�!Hn�1. .S

n�1
�Sn//

u
�!Hn�1.FT /˚Hn�1. .S

n�1
�DnC1//:

Since the map s is given by the intersection number with a, its image coincides with
mZ � Z Š Hn. .S

n�1 �Sn//. Furthermore, since u is an injection, t is the zero
map. Therefore, we have the exact sequence

0! Zm!Hn.FT /!Hn.F /! 0:

Therefore, the inclusion FT ! F induces an isomorphism

Hn.FT /=Tors Hn.FT /!Hn.F /=Tors Hn.F /:

Remark 3.6 In [1], it is stated that the map s is surjective, since the image is generated
by the intersection of the .nC 1/–cycle dual to a and  .Sn�1 �Sn/. However, such
an .nC 1/–cycle dual to a may not exist, since @F may not be a sphere. Here, we
used the assumption that F is an exact Seifert surface in order to show that the map s

is nontrivial.

Similarly we also have the following exact sequence obtained from the Mayer–Vietoris
exact sequence associated with the decomposition F? D FT [ .D

n �Sn/:

0!Hn. .S
n�1
�Sn//!Hn.FT /˚Hn. .D

n
�Sn//!Hn.F

?/

!Hn�1. .S
n�1
�Sn//

u0

�!Hn�1.FT /:

Note that the map u0 is injective, since the image of the composition

Hn�1. .S
n�1
�Sn//

u0

�!Hn�1.FT /
v
�!Hn�1.F /

is generated by Œa� which is of infinite order, where v is the homomorphism in-
duced by the inclusion. Therefore, we see that the inclusion induces an isomorphism
Hn.FT /!Hn.F

?/.

Summarizing, we have the isomorphisms

Hn.F /=Tors Hn.F /
Š
 �Hn.FT /=Tors Hn.FT /

Š
�!Hn.F

?/=Tors Hn.F
?/

induced by the inclusions.

Case 2 The class Œa� has finite order in Hn�1.F /.
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Let us denote the order of Œa� by p > 0. There exists an n–chain � in F such that
@� D pa. We may assume that � does not intersect with a outside of its bound-
ary. Then, we have an n–chain � 0 in FT such that Œ@� 0� D pŒ .Sn�1 � f�g/� in
Hn�1. .S

n�1 �Sn//.

As before, we have the exact sequence

Hn. .S
n�1
�Sn//

w
�!Hn.FT /!Hn.F /! 0:

Since Œ .f�g�Sn/� 2Hn.FT / has nonzero intersection number with the homology
class in Hn.FT ; @FT / represented by � 0 , we see that the map w above is injective.
Note that then .Imw/^ is infinite cyclic. Let a generator of .Imw/^ be denoted by
` 2Hn.FT /. Then, we have the exact sequence

0! Zh`i !Hn.FT /=Tors Hn.FT /!Hn.F /=Tors Hn.F /! 0;

where Zh`i denotes the infinite cyclic group generated by `. This implies that

Hn.FT /=Tors Hn.FT /Š .Hn.F /=Tors Hn.F //˚Zh`i:

Similarly, we have the exact sequence

0!Hn. .S
n�1
�Sn//!Hn.FT /˚Hn. .D

n
�Sn//!Hn.F

?/

t 0

�!Hn�1. .S
n�1
�Sn//

u0

�!Hn�1.FT /!Hn�1.F
?/! 0:

The image of p times the generator of Hn�1. .S
n�1 �Sn// by u0 vanishes, since

it bounds � 0 in FT . On the other hand, if p0 times the generator belongs to Ker u0

for some p0 with 0 < p0 < p , then the order of Œa� is strictly less than p , which is
a contradiction. Therefore, the image of s0 is generated by z D pŒ .Sn�1 � f�g/�.
Hence, we have the exact sequence

0!Hn.FT /!Hn.F
?/

t 0

�! Zhzi ! 0;

where Zhzi is the infinite cyclic group generated by z 2Hn�1. .S
n�1 �Sn//. Let

�? be the n–cycle in F? obtained by the union of p times  .Dn � f�g/ and � 0 . Set
`? D Œ�?� 2Hn.F

?/. Then the image of `? by t 0 coincides with ˙z . Therefore, we
see that Hn.F

?/=Tors Hn.F
?/Š .Hn.FT /=Tors Hn.FT //˚Zh`?i.

Summarizing, we have

Hn.F
?/=Tors Hn.F

?/Š .Hn.F /=Tors Hn.F //˚Zh`i˚Zh`?
i:

So, in this case, the rank of the n–th homology group increases by two as a result of
the surgery.
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In the following, we denote by F the original Seifert surface for K and by F 0 the
.n� 1/–connected Seifert surface for K0 obtained as a result of the surgeries. Set
G DHn.F /=Tors Hn.F /. Note that

(3-1) G0 DHn.F
0/=Tors Hn.F

0/ŠG˚

�M
i2I

�
Zh`ii˚Zh`?

i i
��
;

where the indices in I correspond to the surgeries necessary to kill the torsion of the
.n� 1/–th homology, and `i (or `?

i ) corresponds to the generator ` (resp. `? ) above
(see Case 2).

Let A (or A0 ) be the Seifert form for F (resp. F 0 ) defined on Hn.F /=Tors Hn.F /

(resp. Hn.F
0/=Tors Hn.F

0/). Furthermore, let S (or S 0 ) be the intersection form
of F (resp. F 0 ). Note that Ker S� Š Hn.K/ corresponds to Ker .S 0/� Š Hn.K

0/

under the isomorphism (3-1).

Set BD .�A/˚A0 and SBD .�S/˚S 0 , which are bilinear forms defined on G˚G0 .
Note that G can be identified with a submodule of G0 under the isomorphism (3-1).
Let M be the submodule of G˚G0 generated by the elements of the form .x;x/ with
x 2G and by `i , i 2 I .

As in [1], we see easily that M is a metabolizer for B . Furthermore, SM is pure in
G˚G0 and we can easily check that

M \Ker S�B D f.x;x/ 2G˚G0 jx 2 Ker S�g:

Let y be an arbitrary nonzero element of Tors .Coker S�/. We denote the order of y

by q . Let
@0�W G

�
DHn.F;K/=Tors Hn.F;K/!Hn�1.K/

be the homomorphism induced by the boundary homomorphism, which is well defined
and surjective, since F is an exact Seifert surface. Furthermore, the map

Hn.F /=Tors Hn.F /!Hn.F;K/=Tors Hn.F;K/

induced by the inclusion is identified with S� by virtue of the Poincaré duality, and its
image coincides with Ker @0� . (We also have similar statements for .S 0/� as well.)

Thus, there exists a zy 2 G� such that @0� zy D y under the identification Coker S� D

Hn�1.K/. Then, q.zy; zy/ 2G�˚ .G0/� lies in S�
B
.M /, which implies that .zy; zy/ 2

G�˚ .G0/� lies in S�
B
.M /^ . Therefore, we have

(3-2) d.S�B.M /^/� f.y;y/ jy 2 Tors .Coker S�/g

under the natural identification

Coker S� DHn�1.K/DHn�1.K
0/D Coker .S 0/�:
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Lemma 3.7 The order of d.S�
B
.M /^/ coincides with that of Tors .Coker S�/.

Proof Since S�
B
.M / is of finite index in S�

B
.M /^ , we can write

S�B.M /^=S�B.M /Š

kM
iD1

Zai
;

where ai are positive integers such that ai divides aiC1 for all i D 1; 2; : : : ; k � 1,
and k D rank S�

B
.M /^ . (Here, we do not exclude the case where a1 D � � � D ar D 1

for some r with 1� r � k .)

Since SM is pure in G˚G0 , we have S�
B
.G˚G0/\S�

B
.M /^ D S�

B
.M / by [2, Sec-

tion 2]. Therefore, the quotient map d W G�˚.G0/�!Coker S�
B

restricted to S�
B
.M /^

can be identified with the quotient map S�
B
.M /^! S�

B
.M /^=S�

B
.M /.

Consider SBW G˚G0 �G˚G0! Z, the "–symmetric nondegenerate bilinear form
induced from SB on G˚G0D.G˚G0/=Ker S�

B
. Since SM is pure in G˚G0 , we have

a submodule N of G˚G0 such that G˚G0D SM ˚N . Note that S�
B
.M /^=S�

B
.M /

is naturally isomorphic to SB
�. SM /^=SB

�. SM /. Therefore, by taking appropriate
bases of SM and N , we may assume that a matrix representative of SB is of the form�

0 D

"DT �

�
;

where D is the k�k diagonal matrix with diagonal entries a1; a2; : : : ; ak . In particular,
the order of

Tors .Coker S�B/D Coker SB
�
DG˚G0

�
=SB

�.G˚G0/

is equal to .a1a2 � � � ak/
2 .

Note that

SB
�. SM /^=SB

�. SM /Š S�B.M /^=S�B.M /Š

kM
iD1

Zai
:

Therefore, the order of

Coker SB
�
D Coker xS�˚Coker SS 0�

coincides with the square of the order of SB
�. SM /^=SB

�. SM /. Therefore, we have
the lemma.

Combining the above lemma with (3-2), we have

d.S�B.M /^/D f.y;y/ jy 2 Tors .Coker S�/g:
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Therefore, we conclude that A and A0 are algebraically cobordant. This completes the
proof of Proposition 3.4.

As a corollary, we have the following, which can be regarded as a correction of [1,
Proposition 2.2].

Proposition 3.8 Let K be an exact .2n � 1/–link, n � 3, and A its Seifert form
associated with an exact Seifert surface. Then, there exists a simple .2n� 1/–link K0

cobordant to K such that the Seifert form of K0 associated with an .n� 1/–connected
Seifert surface coincides with A.

Proof By Proposition 3.4, there exists a simple .2n� 1/–link K00 cobordant to K

such that the Seifert form A00 of K00 associated with an .n� 1/–connected Seifert
surface is algebraically cobordant to A. On the other hand, it is known that there exists
a simple .2n� 1/–link K0 whose Seifert form associated with an .n� 1/–connected
Seifert surface coincides with A. Since A and A00 are algebraically cobordant, we see
that K0 and K00 are cobordant by [2]. Then, K and K0 are cobordant, and the desired
result follows.

Remark 3.9 We do not know if the above proposition holds also for nD 2 or not.

For exact links, we have the following, which can be regarded as a correction of [1,
Théorème 1].

Theorem 3.10 Let K and K0 be exact .2n� 1/–links, n� 3. If their Seifert forms
with respect to exact Seifert surfaces are algebraically cobordant, then K and K0 are
cobordant.

Proof By Proposition 3.8, there exists a simple .2n� 1/–link zK (or zK0 ) cobordant
to K (resp. K0 ) such that the Seifert form of zK (resp. zK0 ) with respect to an .n� 1/–
connected Seifert surface coincides with the Seifert form of K (resp. K0 ) with respect
to an exact Seifert surface. By our assumption, the Seifert forms of zK and zK0 are
algebraically cobordant. Then, by [2], we see that zK and zK0 are cobordant. Therefore,
K and K0 are cobordant.

Algebraic & Geometric Topology, Volume 12 (2012)
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4 Cobordism of fibered links

The following can be regarded as a correction of [1, Théorèmes 2 et A].

Theorem 4.1 Let K and K0 be two fibered .2n�1/–links, n�3. Then, K and K0 are
cobordant if and only if their Seifert forms with respect to their fibers are algebraically
cobordant.

Proof By Lemma 3.3, a fiber of a fibered link is always exact. Thus, by Theorem 3.10,
if the Seifert forms with respect to the fibers are algebraically cobordant, then K

and K0 are cobordant.

Conversely, suppose that K and K0 are cobordant. Let A (or A0 ) be the Seifert form
of K (resp. K0 ) with respect to a fiber. By Proposition 3.8 and Lemma 3.3, there exists
a simple .2n� 1/–link zK (or zK0 ) cobordant to K (resp. K0 ) such that the Seifert
form with respect to an .n� 1/–connected Seifert surface coincides with A (resp. A0 ).
Since A and A0 are unimodular, we see that zK and zK0 are fibered (see Durfree [4] and
Kato [5]). Since K and K0 are cobordant, we see that zK and zK0 are also cobordant.
Then, by Blanlœil and Michel [2], we see that A and A0 are algebraically cobordant.
This completes the proof.

We finish with an open problem.

Question 4.2 Does there exist a link which is not exact?
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