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Brunnian braids on surfaces
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We determine a set of generators for the Brunnian braids on a general surface M for
M 6DS2 or RP2 . For the case M DS2 or RP2 , a set of generators for the Brunnian
braids on M is given by our generating set together with the homotopy groups of a
2–sphere.

57M07, 57M99; 20F36, 55Q40

1 Introduction

Let M be a compact connected surface, possibly with boundary, and let Bn.M /

denote the n–strand braid group on a surface M . From the point of view of braids,
compactness of a surface is not essential: braids stay the same if you replace a boundary
component by a puncture. However the number of punctures must be finite, so that the
fundamental group and the braid groups will be finitely generated.

A Brunnian braid means a braid that becomes trivial after removing any one of its
strands. The formal definition of Brunnian braids is given in Section 2. A typical
example of a 3–strand Brunnian braid on a disk is the braid given by the expression
.��1

1
�2/

3 , where �1 and �2 are the standard generators of the 3–strand braid group
h�1; �2 j �1�2�1 D �2�1�2i.

Let Brunn.M / denote the set of the n–strand Brunnian braids. Then Brunn.M / forms
a subgroup of Bn.M /. A classical question proposed by G S Makanin [19] in 1980
is to determine a set of generators for Brunnian braids over the disk. Brunnian braids
were called smooth braids by Makanin. This question was answered by D L John-
son [12] and G G Gurzo [11]. J Y Li and J Wu [16; 23] gave different approach to this
question. In the 1970s, H Levinson [14; 15] defined a notion of k –decomposable braid,
which becomes trivial after removal of any arbitrary k strings. In his terminology a
decomposable braid means 1–decomposable and therefore, Brunnian.
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A J Berrick, F R Cohen, Y L Wong and J Wu [2] gave a connection between Brunnian
braids and the homotopy groups of spheres. In particular, the exact sequence

(1-1) 1! BrunnC1.S
2/! Brunn.D

2/! Brunn.S
2/! �n�1.S

2/! 1

was proved for n> 4.

J Birman [3, Question 23, page 219] asked how to determine a free basis for the
intersection Brunn.D

2/\Rn�1 where

Rn�1 D Ker.Bn.D
2/! Bn.S

2//:

Her motivation was that the kernel of the Gassner representation is a subgroup of
Brunn.D

2/\Rn�1 . From the exact sequence (1-1) it follows that Birman’s question,
for n> 5, is about a free basis of Brunnian braids over the sphere S2 . As far as we
know this question remains open.

The purpose of this article is to determine a set of generators for Brunn.M / for a
general surface M . We are able to determine a generating set for Brunn.M / except in
two special cases, where M D S2 or RP2 . For the case M D S2 or RP2 , we are able
to determine a generating set for a (normal) subgroup of Brunn.M /, with the factor
group given by �n�1.S

2/.

Recall the notion of the symmetric commutator product (see Li and Wu [17] and
Mikhailov, Passi and Wu [20]). Given a group G , and a set of normal subgroups
R1; : : : ;Rn .n�2/, the symmetric commutator product of these subgroups is defined as

ŒR1; : : : ;Rn�S WD
Y
�2†n

ŒŒR�.1/;R�.2/�; : : : ;R�.n/�;

where †n is the symmetric group of degree n.

Let Pn.M / be the n–strand pure braid group on M . Let D2 be a small disk in M .
Then the inclusion f W D2 ,!M induces a group homomorphism

f�W Pn.D
2/ �! Pn.M /:

Recall that the pure Artin braid group Pn.D
2/ is a subgroup of the braid group

Bn D h�1; : : : ; �n�1 j �i�iC1�i D �iC1�i�iC1; i D 1; : : : ; n� 2;

�i�j D �j�i ; ji � j j � 2i:

generated by the elements

Ai;j D �j�1�j�2 � � � �iC1�
2
i �
�1
iC1 � � � �

�1
j�2�

�1
j�1;
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for 1� i < j � n. Let Ai;j ŒM �Df�.Ai;j / and let hhAi;j ŒM �iiP be the normal closure
of Ai;j ŒM � in Pn.M /. Note that a set of generators for hhAi;j ŒM �iiP is given by
ˇAi;j ŒM �ˇ�1 for ˇ 2 Pn.M /. Thus a set of generators for the iterated subgroup

ŒhhA1;nŒM �iiP ; hhA2;nŒM �iiP ; : : : ; hhAn�1;nŒM �iiP �S

can be given.

Now we compute Brunn.M / as follows.

Theorem 1.1 Let M be a connected 2–manifold and let n� 2. Let

Rn.M /D ŒhhA1;nŒM �iiP ; hhA2;nŒM �iiP ; : : : ; hhAn�1;nŒM �iiP �S :

(1) If M 6D S2 or RP2 , then

Brunn.M /DRn.M /:

(2) If M D S2 and n� 5, then there is a short exact sequence

Rn.S
2/ ,! Brunn.S

2/� �n�1.S
2/:

(3) If M DRP2 and n� 4 then there is a short exact sequence

Rn.RP2/ ,! Brunn.RP2/� �n�1.S
2/:

Remark (1) Assertion (2) fails for nD 3; 4. A free basis for Brun4.S
2/ was given

in [2]. Assertion (3) fails for n D 2; 3. For the cases n � 3, our result is given in
Propositions 3.3, 3.6 and 4.9 by explicit computations.

(2) In the classical case where M D D2 , assertion (1) gives a better format for
answering Makanin’s question as we describe Brunnian braids as an explicit iterated
commutator subgroup. In this case the assertion was proved in [17]. Assertion (2) was
essentially given in [2, Theorem 1.2]. Here we give an explicit determination for the
kernel of Brunn.S

2/! �n�1.S
2/ for n � 5. Assertion (3) gives a new connection

between Brunnian braids and homotopy groups. The first case in assertion (3) (nD 4)
is that the Hopf map S3! S2 lifts to a 4–strand Brunnian braid on RP2 .

(3) For the classical case, the inclusion

Rn.D
2/ ,! Brunn.D

2/

was observed by Levinson [15, page 53].
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By Corollary 2.5, Brunn.M / is a normal subgroup of Bn.M / for n� 3. As an abstract
group, Brunn.M / is a free group of infinite rank for n� 3 with M 6D S2 or RP2 , for
n� 5 with M D S2 and for n� 4 with M DRP2 . A natural question is whether the
factor group Bn.M /=Brunn.M / is finitely presented. Our answer to this question is
positive.

Theorem 1.2 Let M be a connected compact 2–manifold. Then the factor groups
Pn.M /=Brunn.M / and Bn.M /=Brunn.M / are finitely presented for each n� 3.

The article is organized as follows. In Section 2, we give a review on Brunnian braids.
The determination of a generating set for Brunnian braids is given in Section 3. In
Section 4, we compute the 3–strand Brunnian braids on the projective plane. The
proof of Theorem 1.2 is given in Section 5. In Section 6, we give an algorithm for
determining a free basis for Brunnian Braids. In the Appendix we prove the technical
results stated in Section 4.

2 Brunnian braids

2.1 Configuration spaces and the braid groups

Let M be a topological space and let M n be the n–fold Cartesian product of M . The
n–th ordered configuration space, F.M; n/ is defined by

F.M; n/D f.x1; : : : ;xn/ 2M n
j xi 6D xj for i 6D j g

with the subspace topology on M n . The symmetric group †n acts on F.M; n/ by
permuting coordinates. The orbit space

B.M; n/D F.M; n/=†n

is called the n–th unordered configuration space. The braid group Bn.M / is defined
to be the fundamental group �1.B.M; n//. The pure braid group Pn.M / is defined to
be the fundamental group �1.F.M; n//. From the covering F.M; n/!F.M; n/=†n ,
there is a short exact sequence of groups

1! Pn.M /! Bn.M /!†n! 1:

A geometric description of the elements in Bn.M / can be given as follows. Let
.q1; : : : ; qn/ be the basepoint of F.M; n/ and let

pW F.M; n/! F.M; n/=†n
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be the quotient map. The basepoint of F.M; n/=†n is chosen to be p.q1; : : : ; qn/. Let
Œ�� be an element in �1.F.M; n/=†n/ represented by a loop �W S1! F.M; n/=†n .
Since

pW F.M; n/! F.M; n/=†n

is a covering, the loop � lifts to a unique path z�W Œ0; 1� ! F.M; n/ starting from
z�.0/D .q1; : : : ; qn/ and ending with z�.1/D .q�.1/; : : : ; q�.n// for some � 2†n . Let

z�.t/D .z�1.t/; : : : ; z�n.t// 2 F.M; n/�M n:

Then z�i.t/ 6D z�j .t/ for i 6D j and any 0� t � 1. The strands

f.z�i.t/; t/ j 1� i � ng

in the cylinder M � Œ0; 1� give the intuitive braided description of �. The precise
definition of geometric braids is as follows.

Let fp1;p2; : : : ;png be n distinct points in M . Consider the cylinder M � I . A geo-
metric braid

�D f�1; : : : ; �ng

at the basepoints fp1; : : : ;png is a collection of n paths in the cylinder M � I such
that �i.t/D .�i.t/; t/ and

(1) �1.0/D p1; : : : ; �n.0/D pn ;

(2) �1.1/D p�.1/; : : : ; �n.1/D p�.n/ for some � 2†n ;

(3) �i.t/ 6D �j .t/ for 0� t � 1 and i 6D j .

Let �Df�1; : : : ; �ng and �0Df�0
1
; : : : ; �0ng be two geometric braids. We say that � is

equivalent to �0 , denoted by �� �0 , if there exists a continuous sequence of geometric
braids

�s
D .�s; t/D f.�s

1.t/; t/; : : : ; .�
s
n.t/; t/g; 0� s � 1;

such that

(1) �s
1
.0/D p1; : : : ; �

s
n.0/D pn for each 0� s � 1;

(2) �s
1
.1/D �0

1
.1/; : : : ; �s

n.1/D �
0
n.1/ for each 0� s � 1;

(3) �0 D � and �1 D �0 .

In other words � � �0 if and only if they represent the same path homotopy class in
the configuration space F.M; n/. We also use the term geometric braid to mean an
equivalence class of geometric braids.
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The product of two geometric braids ˇ and ˇ0 is defined to be the composition of
the strands. More precisely, let ˇ be represented by �D f�1; : : : ; �ng with �1.1/D

p�.1/; : : : ; �n.1/ D p�.n/ and let ˇ0 be represented by �0 D f�0
1
; : : : ; �0n/. Then the

product ˇˇ0 is represented by

� � �0 D f�1 � �
0
�.1/; : : : ; �n � �

0
�.n/g;

where �i � �
0
�.i/

is the path product.

2.2 Removing strands

A simple (half-open) curve in a space M is a continuous injection � W RCD Œ0;1/!M .
The distinct points fp1; : : : ;png in M are said to be well-ordered with respect to a
simple curve � if there exist points ti 2 Œ0; 1� with 0 � t1 < t2 < � � � < tn such that
pi D �.ti/ for 1� i � n.

Let p D .p1; : : : ;pn/ and p0 D .p0
1
; : : : ;p0n/ be two sets of n distinct well-ordered

points with respect to � with pi D �.ti/ and p0i D �.t
0
i/. Define

L.p;p0/.s/D fL.p;p0/i.s/D �..1� s/ti C st 0i/ j 1� i � ng

for 0� s � 1; L.p;p0/.s/ 2M n . Observe that, for each 1� i < j � n and 0� s � 1,

.1� s/ti C st 0i < .1� s/tj C st 0j

as ti < tj and t 0i < t 0j . So L.p;p0/.s/ is a set of n distinct well-ordered points with
respect to � for 0� s � 1.

Now let pD .p1; : : : ;pn/ and p0 D .p0
1
; : : : ;p0n/ be two sets of n distinct points on

the curve � . There exist unique permutations �; � 2†n such that

p� D .p�.1/; : : : ;p�.n// and p0� D .p
0
�.1/; : : : ;p

0
�.n//

are well-ordered with respect to � . We call

L.p� ;p0� /
��1

fL.p� ;p0� /��1.i/ j 1� i � ng

an n–strand � –linear braid from p to a permutation of p0 .

Let M be a space with a simple curve � and let the basepoints .p1;p2; : : : ;pn/ of
the braids on M be well-ordered with respect to � . The system of removing strands
di W Bn.M /! Bn�1.M / is defined as follows:

Definition Let ˇ 2 Bn.M / be a braid represented by �D f�1; : : : ; �ng with

�1.1/D p�.1/; : : : ; �n.1/D p�.n/:
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Then the braid di.ˇ/ is defined to be the equivalence class represented by the path
product of the strands given by

L� f�1; : : : ; �i�1; �iC1; : : : ; �ng �L0;

where L is the � –linear braid from .p1; : : : ;pn�1/ to .p1; : : : ;pi�1;piC1; : : : ;pn/,
and L0 is the � –linear braid from .p�.1/; : : : ;p�.i�1/;p�.iC1/; : : : ;p�.n// to a per-
mutation of .p1; : : : ;pn�1/.

It follows from this definition that the operation di does not depend on the choice
of � in the class ˇ . Intuitively, the operation di W Bn.M /! Bn�1.M / is obtained by
forgetting the i –th strand and gluing back to the fixed choice of the basepoints using
� –linear braids.

From now on we always assume that the space M has a simple curve � and that the
basepoints of the braids on M are located on the curve � starting with a set p of
well-ordered points with respect to � and ending with a permutation on p. Recall that
there is a short exact sequence

1! Pn.M /! Bn.M /!†n! 1:

The braid group Bn.M / acts on the right on the letters f1; 2; : : : ; ng through the
epimorphism Bn.M /!†n , which can be described as follows. Let ˇ be represented
by an n–strand geometric braid

�D f�i.t/ j 1� i � ng

with �i.0/D pi . Then i �ˇ is given by the formula

�i.1/D pi�ˇ

for 1� i � n.

Proposition 2.1 [2, Proposition 4.2.1(1)] Let M be a space with a simple curve.
Then the operations

di W Bn.M /! Bn�1.M /; 1� i � n;

satisfy the following identities:

(1) didj D dj diC1 for i � j .

(2) di.ˇˇ
0/D di.ˇ/di�ˇ.ˇ

0/.

Corollary 2.2 The map di is homomorphism when restricted to the pure braid
group Pn.M /.
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Note In [2], the removing-strand operations are labeled by d0; : : : ; dn�1 to coincide
with simplicial terminology. The above identities are directly translated from [2,
Proposition 4.2.1(1)].

2.3 Brunnian braids

Definition 2.3 Let M be a space with a simple curve. A braid ˇ 2 Bn.M / is called
Brunnian if di.ˇ/ D 1 for each 1 � i � n. The set of n–strand Brunnian braids is
denoted by Brunn.M /. For convention, any 1–strand braid is regarded as a Brunnian
braid.

Intuitively a Brunnian braid means a braid that becomes trivial after removing any one
of its strands. If ˇ; ˇ0 2 Brunn.M /, then

di.ˇˇ
0/D di.ˇ/di�ˇ.ˇ

0/D 1

for 1� i � n and so the product ˇˇ0 2 Brunn.M /. Similar ˇ�1 is Brunnian provided
ˇ is. Thus Brunn.M / is a subgroup of Bn.M /.

Proposition 2.4 Suppose M is a space with a simple curve. Then the subgroup
Brunn.M /\Pn.M / is normal in Bn.M / for each n� 1.

Proof Let ˇ 2 Brunn.M /\Pn.M / and let  2 Bn.M /. Then

di.ˇ
�1/D di.ˇ/di�.ˇ/.

�1/

D di. /di� .ˇ/di�.ˇ/.
�1/

D di. /di�.ˇ/.
�1/

for 1 � i � n. Since ˇ 2 Pn.M /, the elements  and ˇ have the same image in
†nDBn.M /=Pn.M / and so i � .ˇ/D i � . The assertion follows from the equation

1D di.1/D di.
�1/D di. /di� .

�1/D di. /di�.ˇ/.
�1/:

Corollary 2.5 Let M be a space with a simple curve. Then Brunn.M / is a normal
subgroup of Bn.M / for n� 3.

Proof According to [2, Proposition 4.2.2], Brunn.M /�Pn.M / for n� 3 and hence
the result.

The case nD 2 is exceptional, since Corollary 2.5 does not hold in this case.
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Proposition 2.6 Let M be a connected 2–manifold. Then Brun2.M / is a normal
subgroup of B2.M / if and only if �1.M /D f1g.

Proof If �1.M /D f1g, then B2.M /D Brun2.M / as B1.M /D �1.M /.

Suppose that �1.M / 6D f1g. Let D2 be a small disk in M X @M . The inclusion
f W D2!M induces canonical maps

.f; f /W F.D2; 2/� F.M; 2/ and .f; f /W F.D2; 2/=†2� F.M; 2/=†2:

Thus there is a commutative diagram of short exact sequences of groups

1 � P2.M / � B2.M / � †2 � 1

1 � P2.D
2/

f

� B2.D
2/

.f;f /�

f

� †2

wwwwwww
� 1:

Let �1 be a generator for B2.D
2/D Z. Then .f; f /�.�1/ 6D 1 in B2.M / as it has

nontrivial image in †2 D B2.M /=P2.M /. From the commutative diagram

B2.D
2/

.f;f /�
� B2.M /

B1.D
2/D f1g

di

g
f�
� B1.M /

di

g

for i D 1; 2, the element ˇ D .f; f /�.�1/ is a Brunnian braid on M . Let p1 be the
basepoint of M . Choose a loop

!W Œ0; 1�!M

with !.0/D !.1/D p1 representing a nontrivial element in �1.M /. Take the second
basepoint p2 such that p2 is not on the curve !.Œ0; 1�/ and construct a 2–strand
braid  represented by

�.t/D f�1.t/; �2.t/g

with �1.t/D .!.t/; t/ and �2.t/D .p2; t/ for 0� t � 1 in the cylinder M � I . Then
d1. /D1 as represented by the straight line-segment given by �2 , and d2. /D Œ!� 6D1

is the path homotopy class represented by ! . Observe that  is a pure braid. We have
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di.
�1/D .di. //

�1 . From

d1.ˇ
�1/D d1. /d1� .ˇ/d1�.ˇ/.

�1/

D d1. /d1.ˇ/d2.
�1/

D d1. /d1.ˇ/d2. /
�1

D 1 � 1 � Œ!��1

6D 1;

the conjugate ˇ�1 is not Brunnian and so Brun2.M / is not normal. This finishes
the proof.

3 Generating sets for Brunnian braids on surfaces

In this section, M is a connected compact 2–dimensional (oriented or nonoriented)
manifold. The classical Fadell–Neuwirth Theorem will be useful in computations.

Theorem 3.1 [7] The coordinate projection

ı.i/W F.M; n/! F.M; n� 1/; .x1; : : : ;xn/ 7! .x1; : : : ;xi�1;xiC1; : : : ;xn/

is a fiber bundle with fiber M XQn�1 , where Qn�1 is a set of .n� 1/ distinct points
in M .

Proposition 3.2 Up to a change of basepoint for the pure braid group Pn.M / the
homomorphism di coincides with the homomorphism of fundamental groups induced
by ı.i/ :

di D hiı
.i/
� W Pn.M /! Pn�1.M /;

where hi is the automorphism of �1.F.M; n�1// induced by the change of basepoints

.F.M;n�1/; .p1; : : : ;pi�1;piC1; : : : ;pn//! .F.M;n�1/; .p1; : : : ;pn�1//:

Let D2 be a small disk in M X @M . The basepoints fp1;p2; : : :g for the braids on
M are chosen inside D2 X @D2 . The embedding f W D2�M induces a map

f n
W F.D2; n/=†n� F.M; n/=†n

and so a group homomorphism

f n
� W Bn.D

2/D �1.F.D
2; n/=†n/ �! Bn.M /D �1.F.M; n/=†n/
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with a commutative diagram

Bn.D
2/

f n
�

� Bn.M /

Bn.D
2/=Pn.D

2/D†n

gg
DD †n D Bn.M /=Pn.M /:

gg

For any braid ˇ 2 Bn.D
2/, we write ˇŒM � (or simply ˇ if there are no confusions)

for the braid f n
� .ˇ/ on M .

Recall that the Artin braid group Bn.D
2/ is generated by �1; : : : ; �n�1 with defining

relations

(1) �i�j D �j�i for ji � j j � 2;

(2) �i�iC1�i D �iC1�i�iC1 for each i ,

where as a geometric braid, �i is the canonical i –th elementary braid of n–strands
that twists the positions i and i C 1 once with the i th strand above the .i C 1/ st and
puts the trivial strands on the remaining positions. Also recall that the pure Artin braid
group Pn.D

2/ is generated by

Ai;j D �j�1�j�2 � � � �iC1�
2
i �
�1
iC1 � � � �

�1
j�2�

�1
j�1

for 1� i < j � n.

3.1 2–Strand Brunnian braids

Proposition 3.3 Let M be any connected 2–manifold. Then the 2–strand Brunnian
braids are determined as follows:

(1) Brun2.M /\P2.M / is the normal closure of the element A1;2 in B2.M /.

(2) Brun2.M / is the subgroup of B2.M / generated by Brun2.M /\P2.M / and �1 ,
that is Brun2.M /D hBrun2.M /\P2.M /; �1i.

Proof (1) Let hhA1;2ii
B be the normal closure of A1;2 in B2.M /. By Proposition 2.4,

Brun2.M /\P2.M / is normal in B2.M /. Since A1;2 is a pure Brunnian braid,

hhA1;2ii
B
� Brun2.M /\P2.M /:
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To see the equality, consider the commutative diagram of fiber sequences

F �M X fp2g
�

i0
�M

M X fp1g

g
�
i2
� F.M; 2/

i1

g

\

ı.2/

�M

wwwwwww

M

i

g

\

DDDDDDDM

ı.1/

g
� �;
g

where i2.x/D .p1;x/ and i1.x/D .x;p2/ and F is a homotopy fiber of i , which is
equivalent to a fiber of i 0 . From the middle row, there is an exact sequence

(3-1) �2.M / � �1.M X fp1g/
i2�
� �1.F.M; 2//

D P2.M /
d2
�� �1.M /D P1.M /:

Note that

Brun2.M /\P2.M /D Ker.d1W P2.M /! P1.M //\Ker.d2W P2.M /! P1.M //:

Consider the diagram of short exact sequences of groups

(3-2)

hh!ii
i2�j
�� Brun2.M /\P2.M /

�1.M X fp1g/
g

\

i2�
�� Ker.d2W P2.M /! P1.M //

g

\

P1.M /

i�gg
DDDDDDDDDDDDD P1.M /;

d1

g

where ! 2�1.M Xfp1g/ is represented by a small circle around p1 . Its commutativity
follows from construction and i2� is an epimorphism by the exact sequence (3-1). It
follow from diagram (3-2) that Brun2.M /\P2.M / is the normal closure of i2�.!/

in Ker.d2/. From the commutative diagram

�1.M X fp1g/
i2�
� �1.F.M; 2//

�1.D
2
X fp1g/D Z

f�

f

i2�
� Š�1.F.D; 2//;

.f;f /�

f
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we get
i2�.!/DA˙1

1;2

and hence assertion (1) follows.

(2) Note that the braid �1 is Brunnian and represents the nontrivial element of
B2.M /=P2.M /' Z=2. From the short exact sequence

1! P2.M /! B2.M /!†2! 1;

we get the following commutative diagram

1 � Brun2.M /\P2.M / � Brun2.M / � †2 � 1

1 � P2.M /
g

\

� B2.M /
g

\

� †2

wwwwwww
� 1;

and the assertion follows.

Corollary 3.4 Let M be a connected 2–manifold. Then

B2.M /=.Brun2.M /\P2.M //

is the quotient group of B2.M / obtained by adding the single relation

A1;2 D �
2
1 D 1:

3.2 Homotopy properties of configuration spaces of surfaces

The following (well-known) fact will be useful for the computations in the next subsec-
tions.

Lemma 3.5 Let M be a connected 2–manifold.

(1) If M 6D S2 or RP2 , then F.M; n/ is a K.�; 1/–space for n� 1. In particular,
�2.F.M; n//D 0 for n� 1.

(2) �2.F.S
2; n//D 0 for n� 3.

(3) �2.F.RP2; n//D 0 for n� 2.

Proof Assertion (1) follows from the fact that M and M nQn�1 are K.�; 1/ spaces
together with Fadell–Neuwirth fibration (Theorem 3.1).

Assertion (2) was proved by Fadell and Van Buskirk [8, Corollary, page 244].

Assertion (3) was proved by Van Buskirk in [22, Corollary, page 82].
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3.3 3–Strand Brunnian braids

We will now determine the 3–strand Brunnian braids on M . By [2, Proposition 4.2.2],

Brunn.M /� Pn.M /

for n� 3. Thus the determination is given by

Brunn.M /D Brunn.M /\Pn.M /D

n\
iD1

Ker.di W Pn.M /! Pn�1.M //

for n� 3.

For a subset S in Pn.M /, we write hhSiiP for the normal closure of S in Pn.M /,
while we keep the notation hhSii for the normal closure of S in Bn.M /.

Proposition 3.6 Let M be a connected 2–manifold. Then the 3–strand Brunnian
braids on M are determined as follows:

(1) Brun3.S
2/D P3.S

2/D Z=2.

(2) If M 6D S2 or RP2 , then

Brun3.M /D ŒhhA1;3ii
P ; hhA2;3ii

P �;

the commutator subgroup of the normal closures in P3.M / of A1;3 and A2;3 ,
respectively.

Proof Assertion (1) follows directly from the fact that P3.S
2/DZ=2 (which follows,

for example, from [9, Theorem 3.1]) and P2.S
2/ D f1g. For assertion (2), observe

that dkAi;j D 1 for k D i; j . Thus

hhAi;3ii
P
� Ker.d3W P3.M /! P2.M //\Ker.di W P3.M /! P2.M //

for i D 1; 2 and so the inclusion

ŒhhA1;3ii
P ; hhA2;3ii

P �� Brun3.M /

is clear.

From the commutative diagram of the fiber sequences

(3-3)

M X fp1;p2g
�
i3
� F.M; 3/

ı3
� F.M; 2/

M X fp1g

g

\

�
i2
� F.M; 2/

ı2

g
ı2
�M;

ı2

g
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where i3.x/D .p1;p2;x/ and i2.x/D .p1;x/, together with the facts that �2.M /D0

and �2.F.M; 2// D 0 (Lemma 3.5), there is a commutative diagram of short exact
sequences

(3-4)

�1.M X fp1;p2g/ �
i3�
� P3.M /

d3
�� P2.M /

�1.M X fp1g/

d2j

g
�

i2�
� P2.M /

d2

g
d2
�� P1.M /:

d2

g

It follows from this diagram that

i3�W Ker.d2j/ �! Ker.d3W P3.M /! P2.M //\Ker.d2W P3.M /! P2.M //

is an isomorphism. Since d2jW �1.M X fp1;p2g/! �1.M X fp1g/ is induced by the
inclusion

M X fp1;p2g
� �M X fp1g;

Ker.d2j/ is the normal closure of Œ!2� in �1.M X fp1;p2g/, where !2 is a small
circle around p2 . Similarly, the inclusion

M X fp1;p2g
� �M X fp2g

induces a homomorphism

d1jW �1.M X fp1;p2g/ � �1.M X fp2g/

with the property that

i3�W Ker.d1j/ �! Ker.d3W P3.M /! P2.M //\Ker.d1W P3.M /! P2.M //

is an isomorphism and Ker.d1j/ is the normal closure of the homotopy class Œ!1� in
�1.M X fp1;p2g/, where !1 is a small circle around p1 . Thus

(3-5) i3�W Ker.d1j/\Ker.d2j/ �! Brun3.M /

is an isomorphism. By applying results of Brown [4] and Brown and Loday [5] to the
homotopy pushout diagram of K.�; 1/–spaces

M X fp1;p2g
��M X fp1g

M X fp2g

g

\

� �M;
g

\
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we get an isomorphism

Ker.d1j/\Ker.d2j/

ŒKer.d1j/;Ker.d2j/�
Š �2.M /D 0;

and so,
Ker.d1j/\Ker.d2j/D ŒKer.d1j/;Ker.d2j/�:

Together with the isomorphism (3-5) this gives

(3-6) Brun3.M /D Œhhi3�.Œ!1�/ii
P ; hhi3�.Œ!2�/ii

P �:

Note that the basepoints fp1;p2g are chosen in the interior of the small disk D2 . From
the commutative diagram

(3-7)

�1.M X fp1;p2g/ �
i3�
� P3.M /

�1.D
2
X fp1;p2g/

f�

f

�
i3�
� P3.D

2/;

f 3
�

f

we have i3�.Œ!1�/DA˙1
1;3

and i3�.Œ!2�/DA˙1
2;3

. Assertion (2) follows from replacing
i3�.Œ!i �/ by Ai;3 in Equation (3-6).

The projective plane case is dealt with separately in Section 4.

3.4 Colimits of classifying spaces

Given a group G and its normal subgroups R1; : : : ;Rn , let us define their complete
commutator subgroup as follows

(3-8) ŒŒR1;R2; : : : ;Rn�� WD
Y

I[JDf1;2;:::;ng
I\JD∅

�\
i2I

Ri ;
\

j2J

Rj

�
:

It is clear that
ŒŒR1; : : : ;Rn���R1\ � � � \Rn

and that the quotient
R1\ � � � \Rn

ŒŒR1;R2; : : : ;Rn��

is an abelian group with a natural ZŒG=R1 : : :Rn�–module structure, where the action
is defined via conjugation in G . An n–tuple of normal subgroups .R1; : : : ;Rn/ is
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called connected in G if either n� 2, or n� 3 and for all subsets I;J � f1; : : : ; ng

with jI j � 2; jJ j � 1 (without the conditions of formula (3-8)) we have the equality

(3-9)
�\

i2I

Ri

��Y
j2J

Rj

�
D

\
i2I

�
Ri

�Y
j2J

Rj

��
:

We will make use of the following result from Ellis and Mikhailov [6]:

Theorem 3.7 Let G be a group, n � 2, and .R1; : : : ;Rn/ an n–tuple of normal
subgroups in G such that the .n�1/–tuples .R1; : : : ; yRi ; : : : ;Rn/ are connected for
all 1 � i � n. Let X be the topological space arising as the colimit of classifying
spaces K.G=

Q
i2I Ri ; 1/, where I ranges over all subsets I ¨ f1; : : : ; ng. Then there

is an isomorphism of abelian groups

�n.X /'
R1\ � � � \Rn

ŒŒR1; : : : ;Rn��
:

3.5 n–Strand Brunnian braids for n � 4

Now we are going to determine Brunn.M / for n � 4. The case Brun4.S
2/ was

determined in [2, Proposition 7.2.2]. Our computation will exclude this special case.

Lemma 3.8 Let M be a connected 2–manifold. Let

dk W Pn.M /! Pn�1.M /

be the operation that removes the k –th strand.
(1) Suppose that M 6D S2 or RP2 . Then, for n� 2,

Ker.dn/\Ker.dk/D hhAk;nii
P

for 1� k � n� 1 and therefore

Brunn.M /D

n�1\
kD1

hhAk;nii
P :

Moreover in�W �1.MXfp1;p2; : : : ;pn�1g/!Pn.M / is a monomorphism with

in�.Ker.dk j//D hhAk;nii
P ;

where in is given as in (3-3) and

dk jW �1.M X fp1; : : : ;pn�1g/ �! �1.M X fp1; : : : ;pk�1;pkC1; : : : ;pn�1g/

is the group homomorphism induced by inclusion.
(2) If M D S2 , then the above statement holds for n� 5.
(3) If M DRP2 , then the above statement holds for n� 4.
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Proof Diagram (3-3) can be extended to the general case, and so we have the starting
commutative diagram for n� 2 and 1� k � n� 1

(3-10)

�1.M X fp1;p2; : : : ;pn�1g/ �
in�
� Pn.M /

dn
�� Pn�1.M /

�1.M X fp1; : : : ;pk�1;pkC1; : : : ;pn�1g/

dk j

g
�
ik�
� Pn�1.M /

dk

g
dn�1
�� Pn�2.M /

dk

g

where ik.x/D .p1; : : :pk�1;x;pkC1; : : : ;pn�1/. Let us consider the homomorphism

ik�W �1.M X fp1; : : : ;pk�1;pkC1; : : : ;pn�1g/! Pn�1.M /:

It is a monomorphism except 2 cases:

M D S2 and nD 4;(3-11)

M DRP2 and nD 3:(3-12)

For n D 2 this is identical isomorphism. For n D 3 and M D S2 �1.M X fpig/,
i D 1, 2, is the trivial group, so ik� is a monomorphism. For the other cases it follows
from the exact sequence of the fibration and since

�2.F.M; n� 2//D 0 for

8̂<̂
:

n� 3 if M 6DRP2;S2;

n� 4 if M DRP2;

n� 5 if M D S2

(by Lemma 3.5). For the exceptional case (3-11) �1.S
2 X fp1;pk ;p3g/ is infinite

cyclic and P3.S
2/ is the cyclic group of order 2. For the exceptional case (3-12)

�1.RP2 X fpig/, i D 1, 2, is infinite cyclic and P2.RP2/ is isomorphic to the finite
quaternionic group Q8 [22] (see also Section 4). Thus

in�W Ker.dk j/ �! Ker.dn/\Ker.dk/

is an isomorphism for the cases

n� 2 if M 6D S2;RP2;(3-13)

n> 3 if M DRP2;(3-14)

n> 4 if M D S2:(3-15)

Note that Ker.dk j/ is the normal closure in �1.M X fp1;p2; : : : ;pn�1g/ of the ho-
motopy class Œ!k �, where !k is a small circle around pk . For the same reasons as in
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diagram (3-7), we have in�.Œ!k �/DA˙1
k;n

and so

Ker.dn/\Ker.dk/D in�.Ker.dk j//� hhAk;nii
P :

On the other hand, hhAk;nii
P � Ker.dn/\Ker.dk/ because Ak;n lies in the normal

subgroup Ker.dn/\Ker.dk/. Thus, for all cases (3-13)–(3-15),

Ker.dn/\Ker.dk/D hhAk;nii
P :

Hence, the result.

The remaining question is of course how to determine the intersection of the normal
subgroups hhAk;nii

P for general n. The following result is also given by Li and Wu [17,
Equation (4.1)]. (Note: In [17], the proof was given by checking K.�; 1/–hypothesis.
Our proof is given by checking the connectivity hypothesis in Theorem 3.7.)

Theorem 3.9 Let M be a connected 2–manifold and let fp1; : : : ;png be the set of n

distinct points in M X @M . Let

di jW �1.M X fp1; : : : ;png/ �! �1.M X fp1; : : : ;pi�1;piC1; : : : ;png/

be the group homomorphism induced from the inclusion by filling in the missing
point pi . Then� n\

iD1

Ker.di j/

�.
ŒKer.d1j/;Ker.d2j/; : : : ;Ker.dnj/�S Š �n.M /

for each n� 2.

Proof The surface M can be viewed as a colimit of the spaces M X
F

i2I pi , where
I ranges over all subsets I ¨ f1; : : : ; ng. Denote G WD �1.M X fp1; : : : ;png/ and
Ri WDKer.di j/. Since punctured surfaces are aspherical, the spaces M X

F
i2I pi are

classifying spaces for groups G=
Q

i2I Ri . Let us check that the connectivity condition
(3-9) holds for every .n�1/–tuple of subgroups .R1; : : : ; yRm; : : : ;Rn/; 1 �m � n.
For nD 2; 3, the connectivity condition holds by definition. We prove the statement by
induction on n. We fix the number m: 1�m� n, and prove the connectivity (3-9) of
the .n�1/–tuple .R1; : : : ; yRm; : : : ;Rn/. Let I;J � f1; : : : ; ym; : : : ; ng. Suppose that
I \J ¤∅. Then the left and right-hand sides of (3-9) are equal to

Q
j2J Rj and the

condition is proved. So, we can assume that I \J D∅. Consider the epimorphism

fJ W G!G
. Y

j2J

Rj :
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The condition (3-9) is equivalent to the condition

(3-16) fJ

�\
i2I

Ri

�
D

\
i2I

fJ .Ri/:

Any punctured surface has a free fundamental group and

fJ .Ri/D Kerf�1

�
M X

G
k2I

pk

�
! �1

�
M X

G
k2I; k¤i

pk

�
g:

By induction we have \
i2I

Ri D ŒŒRi1
; : : : ;RijIj ��

for IDfi1; : : : ; ijI jg due to Theorem 3.7 and the fact that punctured surface is aspherical.
The same argument shows that\

i2I

fJ .Ri/D ŒŒfJ .Ri1
/; : : : ; fJ .RijIj/��

(we repeat argument for the punctured surface with discs glued to jJ j boundary
components, the surface remains punctured since M X fp1; : : : ;png has at least n

boundary components). The same argument shows that

ŒŒRi1
; : : : ;RijIj ��D ŒRi1

; : : : ;RijIj �S ;

ŒŒfJ .Ri1
/; : : : ; fJ .RijIj/��D ŒfJ .Ri1

/; : : : ; fJ .RijIj/�S :

Since fJ is a homomorphism, the condition (3-16) and hence (3-9) follow. Again
observe that

ŒŒR1;R2; : : : ;Rn��D ŒR1; : : : ;Rn�S ;

hence the needed statement follows from Theorem 3.7.

Proof of Theorem 1.1 By Lemma 3.8,

Brunn.M /D

n�1\
iD1

hhAi;niiy
P

and hhAk;niiy
P D in�.Ker.dk j//. The assertion follows by Theorem 3.9.
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4 3–Strand Brunnian braids on the projective plane

4.1 Braid group of the projective plane

There exist several presentations of the group Bn.RP2/. See, for example, van
Buskirk [22] or Gonçalves and Guaschi [10]. We will use a presentation similar
to presentations of the surface braid group from [22].

Theorem 4.1 The group Bn.RP2/ can be presented as having the set of generators

�1; �2; : : : ; �n�1; �;

where in the braid � the first string represents a nontrivial element of the fundamental
group and the rest of the braid is trivial; the generators �1; �2; : : : ; �n�1 are the images
of classical braid generators of the disk; the set of defining relations is the following:

�i�iC1�i D �iC1�i�iC1; i D 1; 2; : : : ; n� 2;

�i�j D �j�i ; ji � j j> 1;

��i D �i�; i 6D 1;

��1
1 ���1

1 �D ���1
1 ��1;

�2
D �1�2 � � � �n�2�

2
n�1

�n�2 � � � �2�1.

The proof of Theorem 4.1 is given in the Appendix.

Remark 4.2 Geometrically, the element � can be depicted similarly to that of [1,
Figure 10].

There is a canonical homomorphism � W Bn.RP2/�!†n , �.�i/D .i; iC1/, �.�/D e .
The kernel, Ker.�/, is the pure braid group Pn.RP2/. This group was studied in [10].
We will find a presentation for P3.RP2/ which we shall use later. Consider at first the
group B2.RP2/. We have

B2.RP2/D h�; �1 j �
�1
1 ���1

1 �D ���1
1 ��1; �

2
D �2

1 i:

This group has order 16 and P2.RP2/ is isomorphic to the quaternion group Q8 of
order 8 [22]. The relation �2 D �2

1
gives that P2.RP2/ is normally generated by � .

Let us define the following element of P2.RP2/:

uD �1��
�1
1 :

The Reidemeister–Schreier method (see [18, Theorem 2.9]) gives the presentation

(4-1) P2.RP2/D h�;u j �u�D u; �2
D u2

i:
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This presentation is equivalent to

P2.RP2/D h�;u j �u�D u�1; �2
D u2

i;

which appears in Lemma 4.6.

Consider now the case nD 3. We have

B3.RP2/D h�; �1; �2 j �1�2�1 D �2�1�2; ��2 D �2�;

��1
1 ���1

1 �D ���1
1 ��1; �

2
D �1�

2
2�1i:

To construct a presentation for P3.RP2/ we use the Reidemeister–Schreier method.
As representatives of cosets of the normal subgroup P3.RP2/ in the group B3.RP2/

we take the elements: e , �1 , �2 , �2�1 �1�2 , �1�2�1 . Then by [18, Theorem 2.7] the
group P3.RP2/ is generated by elements

ka.ka/�1;

where a 2 f�; �1; �2g, k 2 fe; �1; �2; �2�1; �1�2; �1�2�1g and the bar denotes the
mapping from words to their coset representatives [18, page 88]. Having in mind that
�2��

�1
2
D � , we obtain that the group P3.RP2/ is generated by

�; uD �1��
�1
1 ; w D �2�1��

�1
1 ��1

2 ; A12; A23 D �
2
2 ; A13 D �2�

2
1�
�1
2 :

The following set of defining relations is obtained by application of Reidemeister–
Schreier method [18, Theorem 2.9]:

A12A13A�1
12 DA�1

23 A13A23; A12 D �
2
1 .A13A23/A

�1
12 DA13A23;

�A23�
�1
DA23; u.A�1

23 A13A23/u
�1
DA�1

23 A13A23;(4-2)

�.A�1
13w

�1A13/�
�1
D w�1A13; �.A�1

13w/�
�1
D w;(4-3)

�.A�1
12 u/��1

D u;

u.A�1
23w

�1A23/u
�1
D w�1A23; u.A�1

23w/u
�1
D w;(4-4)

A�1
23 A13A23A12 D �

2; A12A13 D �
2; A12A23 D u2;(4-5)

A13A23 D w
2:(4-6)

From these relations we have the following formulas for conjugation by A12 , � , u:

A12A13A�1
12 DA�1

23 A13A23; A12A23A�1
12 DA�1

23 A�1
13 A23A13A23;
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A12wA�1
12 D w;(4-7)

�w��1
D w�1A�1

13w
2; �A13�

�1
D w�1A�1

13w;(4-8)

�A23�
�1
DA23;

uwu�1
D w�1A�1

23w
2; uA23u�1

D w�1A�1
23w;(4-9)

uA13u�1
D w�1A�1

23wA�1
23wA23w:(4-10)

Remark 4.3 Relation (4-7) can be more easily seen directly from the relations in
B3.RP2/. Relations (4-8) are obtained from relations (4-3). Relations (4-9) are obtained
from relations (4-4). Relation (4-10) is obtained from relations (4-6) and (4-9).

We see from these formulas that the subgroup

U3.RP2/D hw;A13;A23 jA13A23 D w
2
i

is normal in P3.RP2/. Geometrically, it can be identified with �1.RP2 X fp1;p2g/

which is included in the short exact sequence (see diagram (3-4))

�1.RP2
X fp1;p2g/ �

i3�
� P3.RP2/

d3
�� P2.RP2/

and so U3.RP2/ is the free group of rank 2 and P3.RP2/=U3.RP2/' P2.RP2/.

We can exclude the generators A12 , A13 from the list of generators for P3.RP2/,
using the formulas

(4-11) A12 D u��1u�1�; A13 D w
2A�1

23 :

The proof of the following statement is given in the Appendix.

Lemma 4.4 The group P3.RP2/ is generated by elements

�; u; w; A23

and has the following relations:

�w��1
D w�1A23; �A23�

�1
DA23;(1)

��1w�DA23w
�1; ��1A23�DA23;(10)

uwu�1
D w�1A�1

23w
2; uA23u�1

D w�1A�1
23w;(2)

u�1wuDA�1
23w; u�1A23uDA�1

23wA�1
23w

�1A23;(20)

��1u��1u�1
D wA�1

23w; u�1��1u�1�DA�1
23 :(3)
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Remark 4.5 A similar presentation was constructed in [10, page 765], but in the list
of relations there, in the fourth relation of formula .3/ instead of

��1
2 B2;3�2 D B�1

2;3�3B2;3�
�1
3 B2;3;

it should be
��1

2 B2;3�2 D B�1
2;3�3B�1

2;3�
�1
3 B2;3:

Let us introduce new generators aD �w , b D wu. Then we have from Lemma 4.4
the following statement.

Lemma 4.6 The group P3.RP2/ can be generated by elements

a; b; w; A23

and has the following relations:

awa�1
D w�1A23; aA23a�1

D w�1A23w;(4)

a�1waD w�1A23; a�1A23aD w�1A23w;(40)

bwb�1
DA�1

23w; bA23b�1
DA�1

23 ;(5)

b�1wb DA�1
23w; b�1A23b DA�1

23 ;(50)

bab�1
D a�1; a2

D b2:(6)

In particular, ha; bi ' P2.RP2/� P3.RP2/.

From this lemma we have the following statement.

Proposition 4.7 There exists the split short exact sequence

1 �! U3.RP2/ �! P3.RP2/
d3
�! P2.RP2/ �! 1;

and hence P3.RP2/D U3.RP2/hP2.RP2/.

This proposition was proved by Gonçalves and Guaschi [10]. It was also proved there
that for nD 2; 3 and for all m� 4 the short exact sequence

1 �! Pm�n.RP2
n fx1;x2; : : : ;xng/ �! Pm.RP2/ �! Pn.RP2/ �! 1

does not split.
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4.2 3–Strand Brunnian braids on the projective plane

In order to pass to Brunnian braids recall the geometric interpretations for the generators
� , u, w . We represent RP2 as a 2–gon L where opposite points on the two edges are
identified in the standard manner. In the braid � , the second and the third strings are
just two parallel lines. Its first strand passes through the edge of L. The braids u and w
are defined in a similar manner. In u, the second strand passes through the edge and, in
w , the third one. The braid A23 is defined as in the braid group of a disk. Remember
that the presentation for P2.RP2/ is given by formula (4-1). Hence the maps

d1; d2; d3W P3.RP2/ �! P2.RP2/

act on the generators by the rules

d1W

8̂̂<̂
:̂

a �! u;

b �! u�;

A23 �! A12;

w �! u;

d2W

8̂̂<̂
:̂

a �! �u;

b �! u;

A23 �! 1;

w �! u;

d3W

8̂̂<̂
:̂

a �! �;

b �! u;

A23 �! 1;

w �! 1:

From the exact sequence of Proposition 4.7 we see that Brun3.RP2/ is a subgroup
of U3.RP2/ and so in our study of Brunnian braids on RP2 we can restrict ourselves
looking at U3.RP2/ and the action of d1 and d2 on it. We write the action of d3 as
supplementary information.

We have
d1.w

4/D d2.w
4/D u4; d3.w

4/D 1;

and since u4 D 1 in P2.RP2/ then w4 2 Brun3.RP2/. Similarly

d1.A
2
23/DA2

12; d2.A
2
23/D d3.A

2
23/D 1;

and since A2
12
D �4

1
D 1 in P2.RP2/ (see formula (4-1)), then A2

23
2 Brun3.RP2/.

For the commutator Œw;A23� we have

d1.Œw;A23�/D Œu;A12�; d2.Œw;A23�/D d3.Œw;A23�/D 1;

and A12 lies in the center of P2.RP2/, so d1.Œw;A23�/D1 and Œw;A23�2Brun3.RP2/.

Now we are going to determine a free basis for Brun3.RP2/.

Lemma 4.8 Let F.S/ be the free group (freely) generated by the set S . Given x 2 S ,
let Cq.xx/ Š Z=q be the cyclic group of order q generated by a formal generator xx .
Let px W F.S/! Cq.xx/ be the group homomorphism with p.y/D 1 for y 6D x 2 S

and px.x/D xx . Then Ker.px/ has a free basis

fxq;y; Œy;xj � j y 2 S; y 6D x; 1� j � q� 1g:
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Proof By using Schreier method, Ker.px/ has a free basis

fxq;x�j yxj
j y 2 S; y 6D x; 0� j � q� 1g

which is equivalent to the generating set in the statement as

Œy;xj �D y�1.x�j yxj /

and hence the assertion.

Proposition 4.9 As a subgroup of B3.RP2/, Brun3.RP2/ has a free basis given by

x2
2 ; x4

1 ; Œx4
1 ;x2�;

Œx2;x1�; ŒŒx2;x1�;x2�;

Œx2;x
2
1 �; ŒŒx2;x

2
1 �;x2�;

Œx2;x
3
1 �; ŒŒx2;x

3
1 �;x2�;

where x1 D w and x2 DA2;3 .

Proof Consider the projection px1
W F.x1;x2/! C4.x1/. (It is d2 in our case.) By

the above lemma, Ker.px1
/ has a free basis given by

S D fx4
1 ;x2; Œx2;x1�; Œx2;x

2
1 �; Œx2;x

3
1 �g:

The assertion follows by applying the above lemma to the projection px2
W F.x1;x2/!

C2.x2/ (d1 in our case) restricted to the subgroup F.S/D Ker.px1
/.

Let us describe the quotient groups P3.RP2/=Brun3.RP2/ and B3.RP2/=Brun3.RP2/.

Proposition 4.10 (1) Let xw and xA be the images of w and A23 respectively after
applying the natural projection

U3.RP2/ �! U3.RP2/=Brun3.RP2/:

Then

U3.RP2/=Brun3.RP2/D h xw; xA j xw4
D xA2

D 1; xA xw D xw xAi ' Z4˚Z2:

(2) The quotient P3.RP2/=Brun3.RP2/ has order 64 and is the semidirect product

P3.RP2/=Brun3.RP2/D .U3.RP2/=Brun3.RP2//hP2.RP2/:

More precisely P3.RP2/=Brun3.RP2/ is generated by

xw; xA; a; b
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and has defining relations:

xw4
D xA2

D 1; xA xw D xw xA; bab�1
D a�1; a2

D b2;

a�1
xwaD xw�1 xA; a�1 xAaD xA;(1)

a xwa�1
D xw�1 xA; a xAa�1

D xA;(10)

b�1
xwb D xw xA; b�1 xAb D xA;(2)

b xwb�1
D xw xA; b xAb�1

D xA:(20)

Proof The first statement follows from Proposition 4.9 and the second statement
follows from Proposition 4.9 and Lemma 4.6.

Remark 4.11 The relations without primes are equivalent to those with primes.

Using the short exact sequence

(4-12) 1 �! P3.RP2/ �! B3.RP2/ �!†3 �! 1;

we want to describe B3.RP2/ as an extension of P3.RP2/ by †3 .

Proposition 4.12 The group B3.RP2/ can be presented as having generators

a; b; w; A23; �1; �2;

satisfying relations .4/–.6/ from Lemma 4.6 and the following relations:

�1�2�1 D �2�1�2

�2
1 D a2w�2; �2

2 DA23:(4-13)

��1
1 a�1 D bA�1

23 ;(4-14)

��1
1 b�1 D aw�1A23w

�1;(4-15)

��1
1 w�1 D w;(4-16)

��1
1 A23�1 D w

2A�1
23 ;(4-17)

��1
2 a�2 D ab.w�1A23/

2;(4-18)

��1
2 b�2 D bA23;(4-19)

��1
2 w�2 D bw�1A23;(4-20)

��1
2 A23�2 DA23:(4-21)

The proof is given in the Appendix.
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Proposition 4.13 The quotient B3.RP2/=Brun3.RP2/ has order 384 and is an exten-
sion of P3.RP2/=Brun3.RP2/ by †3 :

1 �! P3.RP2/=Brun3.RP2/ �! B3.RP2/=Brun3.RP2/ �!†3 �! 1:

The quotient B3.RP2/=Brun3.RP2/ is generated by

xw; xA; a; b; �1; �2;

and has defining relations:

xw4
D xA2

D 1; xA xw D xw xA; bab�1
D a�1; a2

D b2;

a�1
xwaD xw�1 xA; a�1 xAaD xA;

b�1
xwb D xw xA; b�1 xAb D xA;

�1�2�1 D �2�1�2

�2
1 D a2

xw2; �2
2 D

xA;

��1
1 a�1 D b xA; ��1

1 b�1 D a xA xw2; ��1
1 xw�1 D xw; ��1

1
xA�1 D

xA xw2;

��1
2 a�2 D ab xw2; ��1

2 b�2 D b xA; ��1
2 xw�2 D b xA xw�1; ��1

2
xA�2 D

xA:

Proof This follows directly from Proposition 4.10(2) and Proposition 4.12.

5 Proof of Theorem 1.2

5.1 Some lemmas on free groups

Let S be a set and let F.S/ be the free group freely generated by S . Let S0 be a set
and let x1;x2; : : : be additional letters. Let Sn D S0 [ fx1; : : : ;xng be the disjoint
union. Consider the group homomorphism

di W F.Sn/! F.Sn�1/; 1� i � n;

defined by

(5-1) di.x/D

8̂<̂
:

x if x 2 S0 or x D xj with j < i;

1 if x D xi ;

xj�1 if x D xj with j > i:

Roughly speaking, di is obtained by sending xi to 1 and keeping other generators.
The following lemma is a special case of [17, Theorem 4.3].
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Lemma 5.1 Let di W F.Sn/! F.Sn�1/ be defined by the formula (5-1). Then

k\
jD1

Ker.di/D ŒKer.d1/;Ker.d2/; : : : ;Ker.dk/�S

for 2� k � n.

Let H be a normal subgroup of G . A set X of elements of H is called a set of
normal generators for H in G if H is the normal closure of X in G . We say that H

has finitely many normal generators in G if there is a finite set X such that H is the
normal closure of X in G .

Lemma 5.2 Let R1 and R2 be normal subgroups of G . Suppose that

(1) R1 has finitely many normal generators;

(2) R2 has finitely many generators (in the usual sense).

Then the commutator subgroup ŒR1;R2� has finitely many normal generators.

Proof Let fa1; : : : ; amg be a set of normal generators for R1 . The set of generators
for R1 can be given as fg�1aig j 1 � i � m; g 2 Gg. Let fb1; : : : ; bng be a set of
generators for R2 . Let H be the normal closure of

fŒai ; bj � j 1� i �m; 1� j � ng:

Now take any r 2R2 , r D bi1
: : : bik

. Then

Œai ; r �D Œai ; bi1
�g1Œai ; bi2

�g�1
1 � � �gj Œai ; bijC1

�g�1
j � � �gk�1Œai ; bik

�g�1
k�1;

where gj D bi1
� � � bij . So Œai ; r � 2H for any r 2R2 . Now

Œg�1aig; bj �D g�1Œai ;gbj g�1�g 2H;

because gbj g�1 2R2 . This implies that ŒR1;R2�DH .

Lemma 5.3 Let M be a connected compact 2–manifold with nonempty boundary.
Let n� 2. Then the subgroup

k\
iD1

Ker.di W Pn.M /! Pn�1.M //\Ker.dnW Pn.M /! Pn�1.M //

has finitely many normal generators in Pn.M / for each 1� k � n� 1.
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Proof The proof is given by induction on k . The assertion holds for k D 1 by
Lemma 3.8. Suppose that the assertion holds for k � 1. Consider the short exact
sequence of groups

�1.M X fp1; : : : ;pn�1g/ �
i�
� Pn.M /

dn
�� Pn�1.M /:

Let Œ!i � 2 �1.M X fp1; : : : ;pn�1g/ represented by a small circle around pi . By
Lemma 3.8, for each 1 � i � n� 1, the subgroup Ker.di/\Ker.dn/ is the normal
closure of Œ!i � in �1.M X fp1; : : : ;pn�1g/. Let Ri D Ker.di/\Ker.dn/. Note that
�1.M X fp1; : : : ;pn�1g/ is a free group with a basis containing the elements Œ!i � for
1� i � n� 1. By Lemma 5.1,

k\
iD1

Ri D ŒR1;R2; : : : ;Rk �S

D

kY
jD1

� \
i2f1;:::;y|;:::;kg

Ri ;Rj

�

because Ri is the kernel of

di jW �1.M X fp1; : : : ;pn�1g/ �! �1.M X fp1; : : : ;pi�1;piC1; : : : ;pn�1g/

for 1� i � n� 1, and\
i2f1;:::;y|;:::;kg

Ri D ŒR1;R2; : : : ;Rj�1;RjC1; : : : ;Rk �S :

It should be noticed also that for normal subgroups H1 , H2 , H3 of a group G

ŒH1;H3� ŒH2;H3�D ŒH1H2;H3�;

see, for example, Serre [21, identity (2’), Proposition 1.1]. It follows that

(5-2)

k\
iD1

.Ker.di/\Ker.dn//

D

kY
jD1

� \
i2f1;:::;y|;:::;kg

.Ker.di/\Ker.dn//;Ker.dj /\Ker.dn/

�

�

kY
jD1

� \
i2f1;:::;y|;:::;kg

.Ker.di/\Ker.dn//;Ker.dj /

�
:
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On the other hand, since� \
i2f1;:::;y|;:::;kg

.Ker.di/\Ker.dn//;Ker.dj /

�
�

k\
iD1

.Ker.di/\Ker.dn//;

for every j D 1; : : : ; k , we have

(5-3)
k\

iD1

.Ker.di/\Ker.dn//D

kY
jD1

� \
i2f1;:::;yj ;:::;kg

.Ker.di/\Ker.dn//;Ker.dj /

�
:

By induction, the subgroup \
i2f1;:::;yj ;:::;kg

.Ker.di/\Ker.dn//

has finitely many normal generators for every j D 1; : : : ; k . From the short exact
sequence of groups

�1.M X fp1; : : : ;pj�1;pjC1; : : : ;png/ � � Pn.M /
dk
�� Pn�1.M /;

the subgroup Ker.dj / has finitely many generators. By Lemma 5.2, the commutator
subgroup � \

i2f1;:::;yj ;:::;kg

.Ker.di/\Ker.dn//;Ker.dj /

�
has finitely many normal generators for every j D 1; : : : ; k and hence the groupTk

iD1.Ker.di/\Ker.dn// has finitely many normal generators. The induction is fin-
ished.

5.2 Proof of Theorem 1.2

The proof is given by two different cases.

Case 1 M is a connected compact manifold with nonempty boundary. It is a well-
known fact that groups Pn.M / and Bn.M / are finitely presented; it can be seen
directly using the fibration of Theorem 3.1 and the fact that an extension of finitely
presented groups is finitely presented [13, Corollary 2, page 140].

By Lemma 5.3,

Brunn.M /D

n�1\
iD1

Ker.di/\Ker.dn/
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has finitely many normal generators in Pn.M /. This implies the factor groups
Pn.M /=Brunn.M / and Bn.M /=Brunn.M / are finitely presented.

Case 2 M is a compact closed manifold. Let zM D M X fq1g. Using the exact
sequence of the fibration of Theorem 3.1 and induction on n we conclude that the
inclusion f W �M !M induces an epimorphism

f n
� W Pn. �M /! Pn.M /:

Since

Brunn. �M /D ŒhhA1;niiy
Pn. �M /; hhA2;nii

Pn. �M /; : : : ; hhAn�1;nii
Pn. �M /�S ;

we have

f n
� .Brunn. �M //D ŒhhA1;niiy

Pn.M /; hhA2;nii
Pn.M /; : : : ; hhAn�1;niiy

Pn.M /�S :

From the fact that Brunn. �M / has finitely many normal generators in Pn. �M /, the
subgroup

ŒhhA1;nii
Pn.M /; hhA2;nii

Pn.M /; : : : ; hhAn�1;nii
Pn.M /�S

has finitely many normal generators in Pn.M /.

If M 6DS2 or RP2 with n� 3, then, by Theorem 1.1 and Proposition 3.6, the subgroup

Brunn.M /D ŒhhA1;niiy
Pn.M /; hhA2;nii

Pn.M /; : : : ; hhAn�1;nii
Pn.M /�S

has finitely many normal generators in Pn.M /. Therefore, Pn.M /=Brunn.M / and
Bn.M /=Brunn.M / are finitely presented for M 6D S2 or RP2 with n� 3.

If M D S2 , then P3.S
2/=Brun3.S

2/ D f1g and B3.S
2/=Brun3.S

2/ D Z=2. For
nD 4, the group Brun4.S

2/ has 5 generators according to [2, Proposition 7.2.1]. Thus
P4.S

2/=Brun4.S
2/ and B4.S

2/=Brun4.S
2/ are finitely presented. For n � 5, by

Theorem 1.1, Brunn.S
2/ is a finite extension of the subgroup

ŒhhA1;niiy
Pn.S

2/; hhA2;nii
Pn.S

2/; : : : ; hhAn�1;nii
Pn.S

2/�S

because �n�1.S
2/ is finite. Thus Brunn.S

2/ has finitely many normal generators
in Pn.S

2/ and so the assertion holds for the case M D S2 .

If M DRP2 , then Brun3.RP2/ has 9 generators according to Proposition 4.9. Thus
P3.RP2/=Brun3.RP2/ and B3.RP2/=Brun3.RP2/ are finitely presented. For n� 4,
by (3) of Theorem 1.1 together with fact that �n�1.S

2/ is finitely generated, the
subgroup Brunn.RP2/ has finitely many normal generators, and so the assertion holds
for the case M DRP2 .
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6 An algorithm for determining a free basis for Brunnian
braids

By Lemma 3.8, in order to get a free basis for BrunnC1.M /, it suffices to determine a
free basis for

(6-1)
n\

iD1

Ker.di jW �1.M X fp1; : : : ;png/! �1.M X fp1;
^i: : :;png//:

Let M be connected a 2–manifold with nonempty boundary and let !i be a small
circle around pi . Then

�1.M X fp1; : : : ;png/D F.S0 t fŒ!1�; : : : ; Œ!n�g/;

where �1.M /D F.S0/. Let S be a set and let T be a subset of S . By a projection
homomorphism

� W F.S/! F.T /

we mean here a group homomorphism defined by

�.x/D

�
x if x 2 T;

1 if x 2 S nT:

In our case, the homomorphisms di j are projection homomorphisms in the following
sense:

Let S D S0 t fŒ!1�; : : : ; Œ!n�g and let

Ti D S0 t fŒ!1�; : : : ; Œ!i�1�; Œ!iC1�; : : : ; Œ!n�g

for 1� i � n. Then
di jW F.S/! F.Ti/

is the projection homomorphism for each 1 � i � n. The algorithm in [23, Sec-
tion 3] provides a recursive formula to determine a free basis for the intersection
subgroup

Tn
iD1 Ker.di j/, as follows. For x a reduced word in the alphabet S , and y

a reduced word in the alphabet T , define �.x;y/ by induction on the word length
of y :

(1) �.x;y/D x if y is the empty word;

(2) �.x;y/D Œ�.x;y0/; z� � if y D y0z� with z 2 T and � D˙1.

Let V be a set of reduced words in the alphabet S , and let W be a set of reduced
words in the alphabet T , a subalphabet of S . Define a set of words in the alphabet S :

A.V /W D f�.x;y/ j x 2 V and y 2W g:
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By [23, Proposition 3.3], A.fS nT g/F.T / is a free basis for the kernel of the projection
homomorphism � W F.S/! F.T /. Now for the subsets T1; : : : ;Tn of S , construct a
subset A.T1; : : : ;Tk/ of F.S/ by induction on k for 1� k � n:

(1) A.T1/DA.fS nT1g/F.T1/ .

(2) Let

T
.2/
2
D fw 2A.T1/ j w D Œ: : : Œx;y

�1

1
�; : : :�;y

�t

t � with x;yj 2 T2; �j D˙1 for all j g

and define
A.T1;T2/DA.A.T1//F.T .2/

2
/
:

(3) Suppose A.T1; : : : ;Tk�1/ is defined so every element in A.T1; : : : ;Tk�1/ are
written in the form of iterated commutators in F.S/ with entries given by
˙ powers of elements in S . Let

T
.k/

k
D fw 2A.T1; : : : ;Tk�1/ j w D Œx

�1

1
; : : : ;x

�`

`
� with xj 2 Tk for all j g;

where Œx�1

1
; : : : ;x

�`

`
� are the elements in A.T1; : : : ;Tk�1/ that are written as

iterated commutators. Define

A.T1; : : : ;Tk/DA.A.T1; : : : ;Tk�1//F.T .k/

k
/
:

By [23, Theorem 3.4], A.T1; : : : ;Tk/ is a free basis for
Tk

iD1 Ker.di j/ for 1� k � n.
In particular, A.T1; : : : ;Tn/ is a free basis for

Tn
iD1 Ker.di j/.

Note In the construction of A.V /W , the words are obtained as iterated commutators
with a fixed choice of commutator brackets from left to right. The above algorithm
is given by iterating the process of A.V /W and so the words in A.T1; : : : ;Tn/ are
given in the form of iterated commutators with commutator bracket operations given
as compositions of left-to-right brackets.

7 Appendix: Proofs of statements of Section 4

Proof of Theorem 4.1 We start with the presentation of van Buskirk [22, page 83],
also studied in [10]. It has the 2n�1 generators �1; �2; : : :, �n�1 , �1; : : : ; �n; subject
to the following relations:

�i�iC1�i D �iC1�i�iC1; i D 1; 2; : : : ; n� 2;(i)

�i�j D �j�i ; ji � j j> 1;(ii)

�j�i D �i�j ; j 6D i; i C 1;(iii)
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�i D �i�iC1�i ;(iv)

��1
iC1�

�1
i �iC1�i D �

2
i ;(v)

�2
1 D �1�2 � � � �n�2�

2
n�1

�n�2 � � � �2�1.(vi)

Let us show at first that the system (i)–(vi) is equivalent to the system (i)–(iv), (vi) and
the relations

(7-1) ��1
i �i�

�1
i �i D �i�

�1
i �i�i ; i D 1; : : : ; n� 1:

We multiply the equality (7-1) by �i�
�1
i �i�

�1
i on the left-hand side and we obtain

�i�
�1
i �i�

�1
i ��1

i �i�
�1
i �i D �

2
i ; i D 1; : : : ; n� 1:

Then we use the expression
�iC1 D �

�1
i �i�

�1
i

from (iv) and we obtain (v). Hence, the relations (7-1) hold in Bn.RP2/.

Now we show by induction that we can eliminate all the equalities in (7-1) except the
first one, ie for i D 1,

(7-2) ��1
1 �1�

�1
1 �1 D �1�

�1
1 �1�1:

In other words we will show that relations (7-1) for i D 2; : : : , n�1 are consequences
of relations (i)–(iv) and (7-2). For i D 2 we start with (7-2) and multiply it by ��1

1
��1

2

on the left-hand side and by ��1
2
��1

1
on the right-hand side. We get

��1
1 ��1

2 ��1
1 �1�

�1
1 �1�

�1
2 ��1

1 D ��1
1 ��1

2 �1�
�1
1 �1�1�

�1
2 ��1

1 :

We apply relations (i) to this relation on the right-hand side and on the left-hand side,
we obtain

��1
2 ��1

1 ��1
2 �1�

�1
1 �1�

�1
2 ��1

1 D ��1
1 ��1

2 �1�
�1
1 �1�

�1
2 ��1

1 �2:

Further we apply relation (iii) to permute �1 and ��1
2

in all four appearances of �1 in
the last relation, we get

��1
2 ��1

1 �1�
�1
2 ��1

1 ��1
2 �1�

�1
1 D ��1

1 �1�
�1
2 ��1

1 ��1
2 �1�

�1
1 �2:

Now apply relation (i) to the middle parts of both sides of the last relation, and obtain

��1
2 ��1

1 �1�
�1
1 ��1

2 ��1
1 �1�

�1
1 D ��1

1 �1�
�1
1 ��1

2 ��1
1 �1�

�1
1 �2:

Use relation (iv) in the form �2 D �
�1
1
�1�
�1
1

and obtain

��1
2 �2�

�1
2 �2 D �2�

�1
2 �2�2:
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This is relation (7-1) for i D 2. Suppose now that for i our statement is true: the
relation

��1
i �i�

�1
i �i D �i�

�1
i �i�i

is a consequence of relations (i)–(iv) and (7-2). Multiplying this relation by ��1
i ��1

iC1

on the left-hand side and by ��1
iC1

��1
i on the right-hand side and applying relations

(i)–(iv) as before we obtain relation (7-1) for iC1. So all relations (v) can be replaced
by one relation (7-2).

Let us consider, now, relations (iii) and show that all of them are consequences of
relations (i), (ii), (iv) and relations

(7-3) �1�i D �i�1; i 6D 1:

Let j > 1, then it follows from (iv) that

�j D �
�1
j�1�

�1
j�2 � � � �

�1
1 �1�

�1
1 � � � �

�1
j�2�

�1
j�1:

Consider �i�j . Let i < j � 1, then using relations (i), (ii) and (7-3) we have

�i�j D �i�
�1
j�1�

�1
j�2 � � � �

�1
1 �1�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �iC1�1�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �1�iC1�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �1�

�1
1 � � � �

�1
j�2�

�1
j�1�i D �j�i :

If i > j , then using relations (i) and (7-3) we have

�i�j D �i�
�1
j�1�

�1
j�2 � � � �

�1
1 �1�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �i�1�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �1�i�

�1
1 � � � �

�1
j�2�

�1
j�1

D ��1
j�1�

�1
j�2 � � � �

�1
1 �1�

�1
1 � � � �

�1
j�2�

�1
j�1�i D �j�i :

Hence all relations (iii) are consequences of relations (i), (ii), (iv) and (7-3). So, we
can delete generators �2; : : : ; �n; and relations (iv) from the presentation and replace
relations (iii) and (v) by relations (7-3) and (7-2) respectively.

Proof of Lemma 4.4 Relations .10/ and .20/ follow from relations (1) and (2) respec-
tively. Relation (1) follows from (4-8), and relation (2) is (4-9). The first relation in (3)
follows from (4-11), the second relation in (4-5), and the second relation in (4-8). The
second relation in (3) follows from (4-11) and the third relation in (4-5). To prove
that the statement of the lemma gives a presentation of P3.RP2/, denote by P the

Algebraic & Geometric Topology, Volume 12 (2012)



Brunnian braids on surfaces 1643

group which has a presentation given by these generators and relations. There exists an
evident homomorphism

�W P ! P3.RP2/:

The subgroup U3.RP2/ generated by w and A2;3 is a free subgroup in P as it is free
after the mapping by � . It can be seen that the quotient P=U3.RP2/ is isomorphic
to P2.RP2/ (relations (3)); so � becomes an isomorphism after comparison of exact
sequences:

U3.RP2/ � � P �� P2.RP2/

U3.RP2/

g
�
i3�
� P3.RP2//

�

g
d2
�� P2.RP2/:

g

This completes the proof.

Proof of Proposition 4.12 The first relation in (4-13) follows from the definition of
the elements a and w , and the relations of the presentation of B3.RP2/ with generators
�; �1 and �2 . The second relation in (4-13) is the definition of A23 .

To construct the formulas of conjugation we can take the corresponding relations from
the paper of van Buskirk [22] and rewrite them in our generators of P3.RP2/. We can
also prove these formulas using the relations that we already know to hold in B3.RP2/.
Let us do it. At first let us prove (4-17). We start with the two equal expressions
for A13 :

(7-4) ��1
1 �2

2�1 D �2�
2
1�
�1
2 ;

which is true in B3.RP2/. We insert �2�
�1
2

in the right-hand part of (7-4):

��1
1 �2

2�1 D �2�
2
1�2�

�2
2 :

Then we use the relation �2 D �1�
2
2
�1 from the presentation of B3.RP2/:

��1
1 �2

2�1 D �2�1�
2��1

1 ��1
2 A�1

23 :

Since A23 D �
2
2

and w D �2�1��
�1
1
��1

2
, we have

��1
1 A23�1 D w

2A�1
23 :

To prove relation (4-16), we start with the definition of w :

�2�1��
�1
1 ��1

2 D w:

Since ��2 D �2� we have

�2�1��
�1
1 ��1

2 D .�2�1�
�1
2 /�.�2�

�1
1 ��1

2 /D .��1
1 �2�1/�.�

�1
1 ��1

2 �1/D �
�1
1 w�1;

Algebraic & Geometric Topology, Volume 12 (2012)



1644 Valery G Bardakov, Roman Mikhailov, Vladimir V Vershinin and Jie Wu

and so
��1

1 w�1 D w:

To prove relation (4-15), we start with relation (10 ) from Lemma 4.4

��1w�DA23w
�1;

which is equivalent to
w�D �A23w

�1:

Since ��1
1
w�1 D w and ��1

1
u�1 D � we have

��1
1 wu�1 D .�w/w

�1A23w
�1:

Using the definition of a and b , aD �w , b D wu, we obtain relation (4-15).

For relation (4-14), we start with the equality

w D .A23w
�1/.wA�1

23w/

and apply the conjugation formulas (10 ) and (3) from Lemma 4.4. This gives

w D .��1w�/.��1u��1u�1/;

which is equivalent to

(7-5) w D ��1wu��1u�1:

We rewrite the first equation in (3) from Lemma 4.4 in the form

�.wA�1
23w/u�u�1

D 1

and multiplying the right-hand side of (7-5) by �.wA�1
23
w/u�u�1 , we obtain

w D ��1wu��1u�1�.wA�1
23w/u�u�1:

We apply (1) of Lemma 4.4 and we get

w D ��1wu��1u�1�.�A23w
�2��1/u�u�1:

Using the formulas

A12 D u��1u�1�; A�1
13 DA23w

�2;

we obtain

w D ��1wA12�A�1
13 A�1

12 or �w D wA12�A�1
13 A�1

12 :

Conjugating it by ��1
1

we have

��1
1 .�w/�1 D wuA�1

23 ;

which is (4-14).
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Formula (4-21) follows from A23 D �
2
2

.

To prove relation (4-20), we start with the first relation in (20 ) of Lemma 4.4 and we
rewrite it in equivalent forms

u�1wuDA�1
23w, 1D u�1wuw�1A23, uD wuw�1A23

or
��1

2 .�2�1��
�1
1 ��1

2 /�2 D wuw�1A23

which is equivalent to (4-20):

��1
2 w�2 D bw�1A23:

For relation (4-19), we start with the identity

.bw�1A23/.A
�1
23wA23/D bA23:

Using the formula
��1

2 u�2 DA�1
23wA23;

and (4-20), we get
.��1

2 w�2/.�
�1
2 u�2/D bA23:

This is equivalent to (4-19):

��1
2 .wu/�2 D bA23:

Finally let us prove relation (4-18). We start with the identity

1D .A�1
23w/w

�1A23:

Using (20 ) of Lemma 4.4 we get

1D .u�1wu/w�1A23

and then
uD .wu/w�1A23:

We multiply this equality by �w from the left-hand side

�wuD .�w/.wu/w�1A23;

which is equivalent to
�b D abw�1A23:

Since � and �2 commute, this is the same as

.��1
2 ��2/b D abw�1A23:
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Multiply this equality by w�1A23 from the right-hand side

.��1
2 ��2/.bw

�1A23/D ab.w�1A23/
2;

and use (4-20)
��1

2 �w�2 D ab.w�1A23/
2;

which is equivalent to (4-18):

��1
2 a�2 D ab.w�1A23/

2:

The proof that B3.RP2/ has a presentation as in the statement of the Proposition is
the same as the proof of the presentation of Lemma 4.4 with the help of the exact
sequence (4-12).
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