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The link volumes of some prism manifolds

JAIR REMIGIO-JUÁREZ

YO’AV RIECK

We calculate the link volume of an infinite family of prism manifolds. As a corollary,
we show that the link volume is not finite-to-one.

57M27; 57M25, 57M12

1 Introduction

In [13] the second named author and Yamashita defined the link volume, an invariant of
closed orientable 3–manifolds that measures how efficiently a given manifold can be
represented as a branched cover of S3 . We use the notation M

d
! .S3;L/ to denote

a covering projection from M to S3 , branched along L and of degree d . We restrict
to the case where L is a hyperbolic link. Then the complexity of M

d
! .S3;L/ is

defined to be d Vol.S3 nL/, that is, the degree of the cover times the volume of the
complement of the branch set. The link volume of a closed orientable 3–manifold M

is denoted LinkVol.M / and defined to be the infimum of the complexities of all covers
(of all possible degrees) M

d
! .S3;L/, that is,

LinkVol.M /D inffd Vol.S3
nL/ jM

d
! .S3;L/; L hyperbolicg:

In [13] the basic properties of link volume are explored, and it is shown that many of
these properties are similar to the corresponding properties of the hyperbolic volume.
However, the link volume seems quite challenging to calculate in general.

In this paper we calculate the link volume of all but finitely many members of an
infinite family of prism manifolds denoted Mn , where Mn is defined to be the 2–fold
cover of S3 branched along the link Ln (see Figure 1).

The manifolds Mn are all Seifert manifolds with finite fundamental group. Each Mn

admits exactly two Seifert fibrations, one with Seifert symbols .On; 1I 4n�1
2
/ and the

other with Seifert symbols .Oo; 0I 1
2
;�1

2
; �2

4n�1
/. For details and other background

material see Section 2. Let V0.D 3:66 : : :/ denote the volume of the Whitehead link
exterior. Note the Whitehead link is L0 and since S3nLnŠS3nL0 , Vol.S3nLn/DV0

for all n. In [1] Agol proved that S3 nL0 and S3 nP are the 2–cusped hyperbolic
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nD 2

Figure 1: The link Ln

manifolds of smallest volume, where P is the .�2; 3; 8/ pretzel link. Using this result
we obtain:

Theorem 1.1 For all but finitely many n, LinkVol.Mn/D 2V0 .

It is well known that the hyperbolic volume function is finite-to-one. In [13] it was
asked whether the link volume is finite-to-one as well. By Lemma 2.3 the manifolds Mn

are all distinct; combining these results we obtain:

Corollary 1.2 There exist infinitely many distinct manifolds with the same link vol-
ume.

After going over background material in Section 2, in Section 3 we prove Proposition
3.1 that the knots that are obtained from the .�2; 3; 8/ pretzel link via Dehn surgery
on the unknotted component are all twisted torus knots (see Section 2.1 for definition)
of the form T .5; 5nC 1I 2; 1/. In Section 4 we prove Proposition 4.1, which is of
independent interest. In it we show that all but finitely many of the knots that have
volume less than V0 are either twist knots or T .5; 5nC 1I 2; 1/ twisted torus knots.
Finally, in Section 5, we prove Theorem 1.1.
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2 Background

By manifold we mean 3–dimensional manifold. Unless otherwise stated, all manifolds
and surfaces considered are assumed to be connected and orientable. In addition, every
manifold is assumed to be compact or obtained from a compact manifold by removing
some of its boundary components. A knot is a smooth embedding of S1 into S3 . A
link is collection of disjoint knots.

A closed orientable surface of positive genus embedded in a 3–manifold is called
incompressible if the inclusion map induces a monomorphism between the fundamental
groups. An incompressible surface is called essential if it is not boundary parallel.
A manifold is called atoroidal if it does not admit an essential torus. A surface
with nonempty boundary properly embedded in a manifold is called essential if it is
incompressible, boundary incompressible and not boundary parallel. For details about
this and other standard notions in 3–manifold topology see Hempel [7] or Jaco [8].

2.1 Notation

Throughout this paper, we use the following notation: The Whitehead link is denoted W

(see Figure 2). The 2–component link obtained by n Dehn twists on one of the
components of W is denoted Ln . The knot obtained from one component of W

by 1=n Dehn surgery about the other component is called a twist knot, denoted Wn

(see Figure 3). The .�2; 3; 8/ pretzel link is denoted P (see Figure 4). Note that one
component of P is unknotted and the other is a trefoil. The knot obtained by 1=n

Dehn surgery on the unknotted component of P is denoted by Pn . The p=q torus
knot is denoted T .p; q/. The twisted torus knot T .p; qI r; s/ is the knot obtained from
T .p; q/ by performing s full Dehn twists on r strands (see Figure 5).

2.2 Branched covers

We assume familiarity with the concept of branched covers; see, for example, Fox [5].
For convenience of the reader we bring the basic definitions and facts here. Let F1

and F2 be closed surfaces. A map pW F1! F2 is called a branched cover if it is onto
and at every point x 2 F1 , p is modeled on the map D2!D2 given by z 7! zd (for
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Figure 2: The Whitehead link W

Figure 3: Twist knot Wn

Figure 4: The .�2; 3; 8/ pretzel link P

some d ) with x corresponding to 0. Here and throughout this paper D2 �C is the
unit disk. The number d is called the local degree at x ; note that the local degrees
at different preimages of the same point of F2 need not be the same. It is easy to see
that the set of points of local degree not equal to one is finite. The image of this set is
called the branch set.

Let L � S3 be a link. A map pW M ! S3 is a cover branched over L if the
restriction pjp�1.S3nL/W p

�1.S3 nL/! S3 nL is a cover, and every x 2 p�1.L/

has a neighborhood U , parametrized as D2 � .0; 1/, with L\U corresponding to
f0g � .0; 1/ and pjU is modeled on the map D2 � .0; 1/ ! D2 � .0; 1/ given by
.z; t/ 7! .zd ; t/. We call d the local degree at x ; note that the local degrees at different
preimages of the same point of L need not be the same. The degree of p is defined to
be the degree of pjp�1.S3nL/ .

It is well known (see, for example, Fox [5]) that if M is a cover of S3 branched
over L and of degree d , then M is determined by a representation of �1.S

3 nL/

Algebraic & Geometric Topology, Volume 12 (2012)
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Figure 5: The twisted torus knot T .p; qI r; s/

into Sd , the group of permutations on d elements. Finite generation of �1.S
3 nL/

and finiteness of Sd imply the following well known fact:

Lemma 2.1 For given link L � S3 and integer d , there are only finitely many
manifolds M that are covers of S3 , branched over L and of degree at most d .

2.3 Seifert manifolds

We assume the reader is familiar with Seifert manifold, that is, circle bundles over
orbifolds. An orientable Seifert manifold with a given fibration is determined by its
Seifert symbols as follows: .Oy;gIˇ1=˛1; : : : ; ˇr=˛r / (where y D o or y D n and
all other letters represent integers) is the orientable Seifert manifold over the orientable
surface of genus g � 0 (if y D o) or nonorientable surface with g � 1 cross caps (if
y D n); each fraction ˇi=˛i represents a fiber with multiplicity ˛i (so if ˛i D˙1 the
fiber is regular and it is exceptional otherwise; all exceptional fibers must be listed).
The same Seifert manifold can be represented using Seifert symbols in infinitely many
ways and we refer the reader to Seifert’s original paper [15] for details. In particular,
we may reorder the exceptional fibers.
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2.4 Montesinos links

A Montesinos link is a link L� S3 that has the form given in Figure 6.

ˇ1=˛1 ˇ2=˛2 ˇr=˛r

g components

Figure 6: A Montesinos link

In that figure, ˇi=˛i represents the rational tangle of that slope. We refer the Spanish
speaking reader to the original paper of Montesinos [10] or [11, Section 4.7]. There
Montesinos proves the following:

Lemma 2.2 The double cover of S3 branched over the Montesinos link L is a Seifert
manifold with the following Seifert symbols:

(1) When g D 0, .Oo; 0Iˇ1=˛1; : : : ; ˇr=˛r /.

(2) When g > 0, .On;gIˇ1=˛1; : : : ; ˇr=˛r /.

2.5 The manifolds Mn

The manifolds studied in this paper, denoted Mn , n2Z, are defined in the introduction
as the double covers of S3 branched over the links Ln . As seen in Figure 7, Ln can
be seen as a Montesinos link in two distinct ways, giving rise to two Seifert fibrations
on Mn , one with the symbols .Oo; 0I 1

2
;�1

2
; �2

4n�1
/ and the other with the symbols

.On; 1I 4n�1
2
/.

In Orlik [12, Theorem 2, pages 111–112] Mn is shown belong to a class of manifolds
called prism manifolds. There it was shown that Mn has exactly two Seifert fibrations,
and that the fundamental group of Mn is finite. Therefore Mn is atoroidal.

The following summarizes the necessary information about Mn :
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Figure 7: The link Ln seen in two distinct ways
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Lemma 2.3 For each n2Z, Mn has exactly two Seifert fibrations, one with the Seifert
symbols .Oo; 0I 1

2
;�1

2
; �2

4n�1
/ and the other with the symbols .On; 1I 4n�1

2
/. Also,

Mn is atoroidal and the manifolds Mn are distinct, that is, for n¤ n0 , Mn 6Š Mn0 .

2.6 Essential surfaces

A surface F in a Seifert manifold M is called horizontal if at every point p 2 F , F

is transverse to the fiber. Let B be the base orbifold of M . If F is horizontal, then
the projection M ! B induces a branched cover F ! B . The local degree at p 2 F

is exactly the multiplicity of the Seifert fiber through p . In particular, if the degree of
the cover F ! B is d , then

�.F /D d�orb.B/;

where � is the Euler characteristic and �orb is the orbifold Euler characteristic (see, for
example, Scott [14]). F is called vertical if at every p 2 F , F is tangent to the fibers;
equivalently, F is the preimage of a 1–manifold embedded in B . See, for example,
Jaco [8, VI.34] for a proof of the following well known fact:

Lemma 2.4 If F is an essential surface in a Seifert manifold M with base orbifold B ,
then one of the following holds:

(1) F can be isotoped to be vertical and �.F /D 0.

(2) F can be isotoped to be horizontal and �.F / D d�orb.B/ for some integer
d > 0.

2.7 Hyperbolic manifolds

By hyperbolic manifold M we mean a complete finite volume Riemannian 3–manifold
locally modeled on hyperbolic 3–space H3 . It is well known that M is the interior of
a compact manifold with boundary tori. The Riemannian metric on M is unique by
Mostow’s Rigidity, and induces a volume form on M . Integrating this form we obtain
the volume of M , denoted by Vol.M /. A link L� S3 is called hyperbolic if S3 nL

is a hyperbolic manifold. By the work of Jørgensen and Thurston [16, Chapter 5] (see,
for example, Kobayashi and Rieck [9] for a detailed description) the set of hyperbolic
volumes is well ordered. Hence in any subset of hyperbolic manifolds there is a (not
necessarily unique) manifold of least volume. Cao and Meyerhoff [3] showed that
the complement of figure eight knot and its sister are the smallest volume hyperbolic
manifold with one cusp (we note that the sister is not the exterior of a knot in S3

and hence will play no role in this work). Agol [1] showed that the exteriors of the
Whitehead link and the .�2; 3; 8/ pretzel link are the hyperbolic manifolds of least
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volume among all hyperbolic manifolds with at least two cusps. Recall that we denoted
these links by W and P , respectively.

Notation 2.5 We denote Vol.S3 nW / by V0 .

2.8 Bundles over S 1

A manifold is a bundle over S1 if it has the form .F � Œ0; 1�/=..x; 0/ � .�.x/; 1//,
where F is a surface and �W F ! F a diffeomorphism; � is called the monodromy of
the manifold and the manifold is denoted by M� . In this subsection we briefly review
the structure of 3–manifolds that fiber over S1 , due to Thurston. We refer to the image
of F � f0g as F �M� . Then F is essential in M� .

Assume that �.F / < 0. By the Thurston–Nielsen classification of surface homomor-
phisms, � has one of the following forms:

(1) pseudo-Anosov

(2) periodic

(3) reducible

We refer the reader to Casson and Bleiler [4] for details. Then M� has one of the
following forms:

(1) When � is pseudo-Anosov, M� is hyperbolic (as described in Section 2.7).

(2) When � is periodic, M� is a Seifert manifold and F is horizontal (by construc-
tion).

(3) When � is reducible, there is a collection of disjointly embedded essential circles
C �F so that �.C /DC . Then the image of C � Œ0; 1� in M� is a collection of
disjointly embedded essential tori, say T . Denote the closures of the component
of M� cut open along T by Vi (i D 1; : : : ; n). Then every Vi fibers over S1

with fiber F \Vi and for an appropriate choice of C , the monodromy �jF\Vi

is either pseudo-Anosov or periodic; accordingly, Vi is either hyperbolic or a
Seifert manifold. When dealing with reducible monodromy, we will always
assume that C was chosen so that T and Vi have these properties.

3 The knots Pn

Recall the definition of a twisted torus knot from Section 2.1. In this section we study
the knots Pn . Recall that Pn was obtained from P (the .�2; 3; 8/ pretzel link) by
1=n Dehn surgery on the unknotted component. The trace of the unknotted component
is an unknot in S3 .

Algebraic & Geometric Topology, Volume 12 (2012)
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Proposition 3.1 The knot Pn is the T .5; 5nC 1I 2; 1/ twisted torus knot. Moreover,
T .5; 5nC 1I 2; 1/ naturally embeds in an unknotted solid torus V and the trace of the
unknotted component of P is a core of the complementary solid torus.

Proof For nD 0, see Figure 8; the trace of the unknotted component is in boldface.
For all other n, perform an n Dehn twist on the unknotted component of P as given
in the top right corner of that figure.

4 Knots of small volume

Proposition 4.1 Let the knots Wn and Pn be as in Section 2.1, and let V0 be as in
Notation 2.5. The set

LD fL� S3
jL is a hyperbolic link and Vol.S3

nL/ < V0g

consists entirely of knots, and all but finitely many of these knots are of the form Wn

or Pn .

Proof By Agol [1], the minimal volume hyperbolic manifolds with two cusps are
S3 nW and S3 nP and Vol.S3 nW /DVol.S3 nP /D V0 . Hence every link in L is
a knot.

Let yL be the knots in L that are not of the form Wn or Pn . Assume, for a contradiction,
that yL is infinite. Gordon and Luecke proved that knots are determined by their
complements [6], hence there are infinitely many distinct manifolds in fS3nL jL2 yLg.

Thus fS3 nL jL 2 yLg is an infinite collection of hyperbolic manifolds, all of volume
at most V0 . By Jørgensen and Thurston, there exists an infinite subcollection yL0 � yL
and a hyperbolic manifold X so that every manifold in fS3 nL jL 2 yL0g is obtained
from X by Dehn filling, and Vol.X /�V0 (see, for example, Benedetti and Petronio [2,
Theorem E.4.8]). Since the manifolds in fS3 nL jL 2 yL0g have cusps, X must have
at least two cusps. By Agol, X Š S3 nW or X Š S3 nP .

It is easy to see that if a knot is obtained by filling one component of S3 nW then it is
of the form Wn . If infinitely many nontrivial knots are obtained by filling a boundary
component of S3 nP then (since the knots are in S3 ) the boundary component filled
must correspond to the unknotted component of P and the slope filled must be of the
form 1=n with respect to the usual meridian and longitude; hence the knot is of the
form Pn . This contradicts our assumption.
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Š

Figure 8: Pn is a twisted torus knot.
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5 Proof of Theorem 1.1

First we prove:

Lemma 5.1 For all but finitely many n, Mn is not the double cover of S3 branched
over a hyperbolic link L with Vol.S3 nL/ < V0 .

Proof Note that for a given link L�S3 , the double cover of S3 branched along L is
unique. Hence, it suffices to show that there are finitely many links in S3 with volume
less than V0 whose double cover is Mn , for some n. By Proposition 4.1 we only need
to consider knots of the form Wn and Pn .

Note that Wn are twist knots (see Figure 3). These are very simple Montesinos links,
and the double covers of S3 branched along them are lens spaces, and hence are
not Mn . Thus it suffices to show that only finitely many Mn ’s are double covers of S3

branched along Pn .

Let U be the unknotted component of the .�2; 3; 8/ pretzel link. Let V DS3�N.U /

and let k � V be the knotted component of the .�2; 3; 8/ pretzel link, that is, k is the
image of the twisted torus knot T .5; 1I 2; 1/ in V ; see the top right knot in Figure 8.
Note that .S3;Pn/ is obtained from .V; k/ by Dehn filling. Let zV be the double cover
of V branched along k . Then the double cover of S3 branched along Pn is obtained
from zV by Dehn filling.

It is easy to see from Figure 8 that we may choose a parametrization of V as D2�S1

so that k intersects every disk of the form D2 � fptg transversally at exactly five
points. Hence zV inherits a structure of a fiber bundle over S1 with fiber the double
cover of D2 branched over five points; it is easy to see that this fiber is the surface of
genus 2 and one puncture, denoted by F2;1 .

By Thurston’s classification of bundles over S1 , the monodromy of zV has one of the
following forms (recall Section 2.8):

(1) pseudo-Anosov

(2) periodic

(3) reducible

If the monodromy is pseudo-Anosov, then zV is hyperbolic. Then by Thurston’s Dehn
Surgery Theorem, all but finitely many fillings are hyperbolic, and hence are not Mn .
We assume from now on that the monodromy is not pseudo-Anosov.
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If the monodromy is periodic, then zV is a Seifert manifold. Then the Seifert fibration
of zV induces a Seifert fibration on every manifold obtained from it by Dehn filling but
one, and the core of the attached solid torus is a fiber. Assume that one of these manifolds
is Mn . Then the Seifert fibration of zV is obtained from a Seifert fibration of Mn by
removing a fiber. By Lemma 2.3, Mn admits exactly two Seifert fibrations, one with
Seifert symbol .On; 1I 4n�1

2
/ and the other with Seifert symbol .Oo; 0I 1

2
;�1

2
; �2

4n�1
/.

Note that the fiber removed may be exceptional or regular. The possible base orbifolds
and their orbifold Euler characteristics after removing a fiber are:

(1) a Möbius band with no singular points, �orb.base/D 0.

(2) a Möbius band with one singular point of index 2, �orb.base/D�1
2

.

(3) a disk with exactly three singular points, two of index 2 and one of index 4n�1,
�orb.base/D�1C 1

4n�1
.

(4) a disk with exactly two singular points, both of index 2, �orb.base/D 0.

(5) a disk with exactly two singular points, one of index 2 and one of index 4n� 1,
�orb.base/D�1

2
C

1
4n�1

.

Since F2;1 is a fiber in a fibration over S1 , it is essential in zV . By Lemma 2.4,
after isotopy we may assume it is horizontal or vertical, but the latter is impossible
since �.F2;1/D�3¤ 0. Hence we may assume that F2;1 is horizontal and branch
covers the base orbifold, where the indices of the singular points are the degrees of
the branching. Applying Lemma 2.4 again we see that the Euler characteristic of F2;1

equals the degree of the cover (say d ) times the orbifold Euler characteristic of the
base. In (1) and (4) this is impossible.

In (3), the equation �.F2;1/D d�orb.base/ means for some d , �3D d.�1C 1
4n�1

/.
Solving for n we see that nD .2d � 3/=.4d � 12/. It is easy to see that only finitely
many integral values of d correspond to integral values of n; hence only finitely
many Mn can be obtained in this way, that is to say, for only finitely many values of n,
there exists m, so that Mn is the double cover of S3 branched over Pm .

In (5), the equation �.F2;1/D d�orb.base/ means for some d , �3D d.�1
2
C

1
4n�1

/.
Solving for n we see that nD .3d � 6/=.4d � 24/. In this case too, it is easy to see
that only finitely many integral values of d correspond to integral values of n; hence
only finitely many Mn can be obtained in this way.

In (2), F2;1 is the cover of a Möbius band branched over one singular point of index 2.
Since F2;1 is orientable, the cover factors through the orientation double cover, which
is an annulus with two singular points, each of index 2. Since the indices are 2,
F2;1 is a cover of the annulus of an even degree, say 2m. Hence d D 4m, and the
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equation �.F2;1/D d�orb.base/ becomes �3D 4m�orb.base/D 4m�1
2
D�2m. This

is impossible, since m is an integer.

Finally, we consider reducible monodromy. In that case, the monodromy induces a torus
decomposition on zV . We denote the components of this decomposition by V1; : : : ;Vk .
Recall from Section 2.8 that for each i , Vi is either a hyperbolic manifold or a Seifert
manifold, with boundary a nonempty collection of tori that are incompressible in Vi

and in zV . We may assume that the boundary of zV is contained in V1 . Hence V1 has
at least two boundary components.

There is a natural correspondence between Dehn fillings of zV and Dehn fillings of V1

along @ zV �@V1 obtained by filling the same curve ˛ . When filling V1 , the components
of @V1 n @ zV are not filled. We denote corresponding fillings by zV .˛/ and V1.˛/.

If V1 is hyperbolic, then for all but finitely many fillings V1.˛/ is hyperbolic. When
V1.˛/ is hyperbolic, @V1.˛/ D @V1 n @ zV is a nonempty collection of essential tori
in V1.˛/. Since these tori are also incompressible into zV n int.V1/, they are essential
in zV .˛/; hence zV .˛/ is toroidal. By Lemma 2.3, Mn is atoroidal. Hence, only finitely
many fillings of zV give a manifold of the form Mn in this case.

If V1 is a Seifert manifold then for all but one slope ˛ , V1.˛/ is a Seifert manifold;
recall that @V1.˛/¤∅. If @V1.˛/ is incompressible in V1.˛/, then as above, zV .˛/
is toroidal and hence is not Mn . The only Seifert manifold that has a compressible
boundary is the solid torus. The only Seifert manifolds that can be filled to give a solid
torus are solid tori with one fiber removed. If the fiber is the core of the solid torus
then V1 is a torus cross an interval; but by construction @V1 n@ zV is essential in zV and
in particular it is not boundary parallel. Hence, the fiber removed is a regular fiber in a
fibration of the solid torus that has exactly one exceptional fiber. Here is an alternate
description: since the solid torus is a Seifert manifold over the disk with at most one
exceptional fiber, removing a fiber yields a Seifert manifold over the annulus with at
most one exceptional fiber. Essentiality of @V1n@ zV implies that there is an exceptional
fiber.

On the other hand, by construction, V1 fibers over S1 with fiber F2;1 \ V1 (recall
Section 2.8). For convenience we note that since @F2;1 has exactly one component,
F2;1 \V1 is connected. Since V1 is not T 2 � Œ0; 1�, it is not a fiber bundle over S1

with fiber an annulus. Hence, F2;1\V1 is not an annulus. Since F2;1\V1 is a fiber
in a fibration over S1 , it is essential and can be isotoped to be vertical or horizontal;
since it is not an annulus, it is horizontal. Hence the slope defined by F2;1\ @ zV and
the slope defined by the regular fiber in the Seifert fibration of V1 are distinct.

Since V1 is a Seifert manifold over the annulus with one exceptional fiber, V1.˛/ is a
solid torus if and only if ˛ intersects a regular fiber exactly once. Denoting the regular
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fiber by f , this condition can be written as �.f; ˛/D 1, where �. � ; � / is the absolute
value of the algebraic intersection number on @ zV .

On the other hand, @F2;1 projects to the boundary of the meridian of V . Recall that
V D S3 n int.N.U //, where U denotes the unknotted component of the .�2; 3; 8/

pretzel link. We obtain Pn � S3 from k � V by Dehn filling; since the ambient
manifold is S3 the meridian of the attached solid torus intersects the meridian of V

at exactly one point, say x . By construction, the preimage of the meridian disk of V

is F2;1 ; thus the preimage of the meridian of V is @F2;1 . The preimage of the meridian
of the solid torus attached to V is (one or two) meridians of the solid torus attached
to zV , defining the slope ˛ . Hence, @F2;1 \ ˛ is contained in the preimage of x .
The preimage of x under a double cover consists of two points. We conclude that
�.@F2;1; ˛/� 2.

Hence there are two distinct slopes on @ zV , denoted f and @F2;1 , so that ˛ , the slope
filled, fulfills the following:

(1) �.f; ˛/D 1.

(2) �.@F2;1; ˛/� 2.

It is an easy exercise to show that there are only finitely many slopes that fulfill these
two conditions simultaneously.

This completes the proof of Lemma 5.1.

We now prove Theorem 1.1. Since Mn is the double cover of S3 branched over Ln

and Vol.S3 nLn/D V0 , LinkVol.Mn/� 2V0 . Also, LinkVol.Mn/ < 2V0 if and only
if one of the following holds:

(1) Mn is a double cover of S3 branched over a hyperbolic link L such that
Vol.S3 nL/ < V0 .

(2) Mn is the p–fold cover of S3 branched over a hyperbolic link L such that
Vol.S3 nL/ < 2V0=p , for p � 3.

Lemma 5.1 shows that there are only finitely many manifolds Mn in (1).

In (2) we only consider links L with Vol.S3 nL/ < 2V0=p � 2V0=3. We claim that
this set is finite. To see that, assume it is infinite. Recall again that hyperbolic links
with Vol.S3 nL/� 2V0=3< V0 are knots, as mentioned in Proposition 4.1. Hence, by
Gordon and Luecke [6] there are infinitely many S3 nL with Vol.S3 nL/� 2V0=3.
Then, as in the proof of Proposition 4.1, we have an infinite subcollection of the
set fS3 nL j L is hyperbolic and Vol.S3 nL/ � 2V0=3g and every manifold in this
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subcollection is obtained by filling a hyperbolic manifold with at least two cusps
and volume at most 2V0=3. But Agol [1] shows that any hyperbolic manifold with
at least two cusps has volume at least V0 , contradicting our assumption there were
infinitely many such links. Fix a link L with Vol.S3 nL/ < 2V0=p � 2V0=3. To
obtain manifolds M with LinkVol.M /< 2V0 as a cover branched over L, we consider
covers of degree p < 2V0=Vol.S3 nL/. (We note that by Cao and Meyerhoff [3]
Vol.S3 n L/ � 2 and hence p D 3.) By Lemma 2.1, there are only finitely many
manifolds that cover S3 branched over L and of bounded degree, and we conclude
that in (2) there are only finitely many manifolds.

This completes the proof of Theorem 1.1.
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