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K.n/ Chern approximations of some finite groups

BJÖRN SCHUSTER

A few examples of 2–groups are presented whose Morava K–theory is determined
by representation theory. By contrast, a 3–primary example shows that in general
relations arising from representation theory do not suffice to calculate the Chern
subring of K.n/�.BG/ .

55N20, 55R35; 55T25

1 Introduction

Let E denote a complex oriented cohomology theory and G a finite group. As any
complex oriented theory comes with a theory of Chern classes of complex vector
bundles, complex representations offer a convenient source of E–cohomology classes
of BG , the classifying space of the group G . In many examples, one knows that Chern
classes suffice to generate E�.BG/, and it is natural to ask to what extend the relations
among them follow from representation theory, too.

This question is closely related to the problem of determining the so-called Chern
approximation of E�.BG/, a concept introduced by Strickland [9]: take all nontrivial
irreducible complex representations � of G , assign indeterminates to the Chern classes
of such � , and divide out by the relations obtained from the product structure of the
representation ring and all �–operations (for a precise definition see below). Strickland
then studies the resulting object in geometric terms, ie, the associated formal scheme
over the formal group E0CP1 .

We shall work with E DK.n/, the n–th mod p Morava K–theory with coefficients
K.n/� D Fp Œvn; v

�1
n �, where vn has degree �2.pn� 1/. Our calculations show that

for some 2–groups G , the K.n/ Chern approximation coincides with K.n/�.BG/.
To prove such results one has to perform two steps: First, establish that K.n/�.BG/ is
generated by Chern classes of complex representations; in the cases we shall study this
is already in the literature. Secondly, one has to show that the relations implied by the
structure of the representation ring RG suffice. To that end it is enough to produce an
upper bound for the rank of the resulting module (which spares us the necessity to use
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1696 Björn Schuster

Gröbner basis methods), and compare it to the rank of K.n/�.BG/, which by the first
step is given by the Euler characteristic formula of Hopkins, Kuhn and Ravenel [4].

Although to some extent motivated by the problem of finding the ring structure of
K.n/�.BG/, this is not the primary purpose of the present paper. For most of the
groups considered here, the multiplicative structure of K.n/�.BG/ has already been
determined using more efficient transfer methods; see Bakuradze [1] and Bakuradze and
Vershinin [3]. What interests us here is the question whether K.n/�.BG/ is already
determined, as K.n/�–algebra, by the representation theory of G . For our 2–group
examples this is true; however, for the nonabelian group of order 27 and exponent 3,
the answer is negative. This latter result has been known to Strickland for some time.

The paper is organised as follows. We start with a brief review of Chern approxi-
mations for K.n/–theory. The account given here is a “poor man’s version” of the
original, inasmuch we forego all mention of the finer geometric structure. Next we
record a few useful formulas, and the later sections contain the calculations for the
individual groups: dihedral, quaternion, semidihedral and quasidihedral groups, and
one 3–primary example.

Acknowledgements We are indebted to the first referee for useful hints regarding the
proof of Lemma 3.1(ii), and to both referees for suggesting many improvements to the
exposition.

2 Chern approximations for K.n/

Let G be a finite group. Suppose � and � are complex representations of dimension m

and r , respectively. Let �i.s/ and �j .t/ denote the elementary symmetric functions in
s1; : : : ; sm and t1; : : : ; tr . Recall that the k –th Chern class of � , say, can be identified
with the coefficient of X n�k in

Qr
iD1.X � ti/. Furthermore, the coefficient of X k inY

1�i�m
1�j�r

.1CX.si CF tj //

is a polynomial in the �i.s/ and �j .t/, say Pk.�1.s/; : : : ; �m.s/I �1.t/; : : : ; �r .t//.
Here and below we write xCF y to denote the formal sum of x and y .

Similarly, the coefficient of X k inY
i1<���<iq

.1CX.si1
CF si2

CF � � � CF siq
//

is a polynomial Lk in the �i.s/.
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The splitting principle implies that these power series determine then Chern classes of
products and exterior powers:

Proposition 2.1 (1) ck.�˝ �/D Pk.c1.�/; : : : ; cm.�/I c1.�/; : : : ; cr .�//.
(2) ck.�

q�/DLk.c1.�/; : : : ; cm.�//.

Next, recall Adams operations on the representation ring. Let � be a representation of
dimension m; set �t .�/D

P
i�0 �

i.�/t i (where �0�D 1), and define

 t .�/Dm�
t

��t .�/

d

dt
��t .�/:

Then  l� is the coefficient of t l in  t .�/. There are the well-known formulae linking
Adams operations and exterior powers via the Newton polynomials; in particular,
 k.�/D �k for any line bundle (one-dimensional representation). Hence for a direct
sum of line bundles one has

ck. 
l.�1˚ � � �˚�m//D ck.�

l
1˚ � � �˚�

l
m/D �k.Œl �.x1/; : : : ; Œl �.xm//

where xi D c1.�i/. Thus:

Proposition 2.2 For the K.n/ Chern classes one has ck. 
pr

�/D ck.�/
pr n

.

Definition 2.3 (Strickland [9]) Let G be a finite group. Let �1; : : : ; �k be the
distinct nontrivial irreducible complex representations of G . For each �i , choose
indeterminates cl;i , 1 � l � dim.�i/. Define C.GIK.n// to be the quotient of the
K.n/�–algebra on the cl;i by the relations imposed by Proposition 2.1.

As a consequence of Proposition 2.2, one gets the following special case of [9, Corol-
lary 10.3]. Our proof is but a paraphrase of the argument given there.

Corollary 2.4 For any finite group G , the rank of C.GIK.n// over K.n/� is finite.

Proof It suffices to show that all generators of C.GIK.n// are nilpotent. Let e be
the exponent of the group G and pr its p–part, ie, e D prf with f coprime to p .
Then  e.�/ D dim.�/ for any representation � of G . Thus for k � 1, one has
0 D ck. 

e�/ D ck. 
pr

 f�/ D ck. 
f�/p

r n

. Now let c� denote the total Chern
class; since we are working modulo p , we find that

1D c�. 
f�/p

r n

D c�.p
rn f�/D c�. 

f .prn�//

(using additivity) and thus ck. 
f .prn�//D 0 for all k � 1. But when f is coprime

to p , the series Œf �.x/ is an automorphism of the formal group law; thus ck 
f D 0 for

all k > 0 if and only if ck D 0 for all k > 0. This implies 1D c�.p
rn�/D c�.�/

pr n

,
whence the claim.
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There is an obvious map

chG W C.GIK.n// �!K.n/�.BG/

assigning to ck;i the Chern class ck.�i/. In general, this map is neither injective not
surjective: an example of noninjectivity is given in Section 7, whereas it certainly fails
to be onto whenever K.n/�.BG/ is not generated by Chern classes, as happens for
G DA4 at p D 2 (there are p–group examples, too).

Definition 2.5 We call the Chern approximation of G exact if chG is an isomorphism.

3 Some formulas

From now on we shall work with K.n/�.�/˝K.n/� Fp , ie, we set vn D 1.

We start by giving two approximations to the formal group law of Morava K–theory.

Lemma 3.1 (i) For any p ,

x1CF x2 D x1Cx2�
1

p

p�1X
iD1

�p

i

�
x

pn�1i
1

x
pn�1.p�i/
2

mod ..x1x2/
p2n�2

/:

If p is odd, this equality holds modulo ..x1Cx2/x1x2/
p2n�2

.

(ii) Let p D 2. Then

x1CF x2

D x1Cx2C .x1x2C .x1Cx2/.x1x2/
2n�1

/2
n�1

mod ...x1Cx2/x1x2/
22n�2

/:

Proof Part (i) is stated in Bakuradze and Priddy [2, Lemma 5.3] and (ii) is claimed
in Bakuradze and Vershinin [3, Lemma 2.2 (ii)], but, as the referee pointed out, the
explanation provided there falls short of a full proof. We therefore give an argument
which surely must be the one the authors of [3] had in mind. Since we need the notation
anyway, we also show (i), the proof being essentially the one from [2].

Specialising Theorem 4.3.9 of Ravenel’s green book [6] to the case where vn D 1 and
vi D 0 for n¤ i and simplifying it using [6, Lemma 4.3.8. (b)] givesXF

xi D

X
k�0

F
wk.x1;x2; : : :/

p.n�1/k

;
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for any number of variables, where the Witt polynomials wk.x1;x2; : : :/2ZŒx1;x2; : : :�

are characterised by w0 D �1.x1;x2; : : :/ and

X
i

x
pk

i D

kX
jD0

pjw
pk�j

j :

By construction, the Witt polynomials are symmetric, and in the case of two variables
x1;x2 one has

w1 D�
1

p

p�1X
jD1

�p

j

�
x

j
1
x

p�j
2

:

In particular, w1 is divisible by x1x2 , and by induction, all wk.x1;x2/ are in .x1x2/.
More precisely, for p odd one even has w1 2 .x1x2.x1Cx2//, whence the same holds
for all wk . For pD2, however, w1.x1;x2/Dx1x2 , but still wk 2 .x1x2.x1Cx2// for
k � 2. To see this, denote by qm the power sum xm

1
Cxm

2
. Newton’s identities reduce

to qmC1 D .x1C x2/qm � x1x2qm�1 .This gives q2k D .x1Cx2/
2k

C 2.x1x2/
2k�1

mod .x1x2.x1Cx2// by induction, hence

2kwk.x1;x2/D q2k �

k�1X
iD0

2iw2k�i

i

D .x1Cx2/
2k

C 2.x1x2/
2k�1

�w2k

0 � 2w2k�1

1 mod .x1x2.x1Cx2//

D 0 mod .x1x2.x1Cx2// :

Thus

x1CF x2 D .x1Cx2/CF

�
�

1

p

p�1X
iD1

�p

i

�
x

p�i
1

xi
2

�pn�1

mod ..x1x2/
p2n�2

/:

Writing now y1Dw0.x1;x2/ and y2Dw1.x1;x2/
pn�1

, repeating the same argument
leads to

x1CF x2 D w0.y1;y2/CF w1.y1;y2/
pn�1

mod ..y1y2/
p2n�2

/;

so certainly modulo .x1x2/
p2n�2

. But modulo p , one has

w1.y1;y2/
pn�1

D

�
�

1

p

p�1X
iD1

�p

i

�
.x1Cx2/

p�iw1.x1;x2/
pn�1i

�pn�1

and this is zero modulo .x1x2/
p2n�2

; the claim follows. For p odd, the second claim
of (i) follows from the same calculation, since w1.x1;x2/ is in .x1x2.x1Cx2//.
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Let now p D 2. Then, as w2.x1;x2/D x1x2 , we can no longer argue as before. On
the other hand, by part (i),

w0.y1;y2/CF w1.y1;y2/
2n�1

D w0.y1;y2/Cw1.y1;y2/
2n�1

Cw0.y1;y2/
2n�1

w1.y1;y2/
22n�2

mod .w0.y1;y2/
22n�2

w1.y1;y2/
23n�3

/, in particular mod .x1x2.x1 C x2//
22n�2

/.
But the third summand is also in ..x1x2.x1Cx2//

22n�2

/, so we finally arrive at

x1CF x2

D w0.y1;y2/Cw1.y1;y2/
2n�1

mod .x1x2.x1Cx2//
22n�2

D x1Cx2C .x1x2/
2n�1

..x1Cx2/.x1x2/
2n�1

/2
n�1

mod .x1x2.x1Cx2/
22n�2

/

as claimed.

Lemma 3.2 Let pD 2 and "; � 2RG be of dimension 1 and 2, respectively. Assume
further that "2 D 1. Set y D c1."/ and ci D ci.�/ (i D 1; 2). Then

(i) y2n

D 0;

(ii) c1."�/D c1C .yc1/
2n�1

;

(iii) c2."�/D y2Cyc1C c2Cy2n�1C1c2n�1

1
Cy2n�1

n�1X
kD1

c2n�1�2kC1
1

c2k�1

2 .

If in addition "� D � , then

(iv) .yc1/
2n�1

D 0;

(v) yc2
1
D y3 ;

(vi) yc1 D y2C

n�1X
kD1

y2n�2kC1c2k�1

2 .

Proof Part (i) is immediate from Œ2�.y/ D y2n

. For (ii) write � D �1 C �2 as a
sum of line bundles and xi D c1.�i/. By the splitting principle, we may calculate in
F2Œy�=.y

2n

/˝ F2Œx1;x2�
†2 , identifying c1 with x2C x2 and c2 with x1x2 . Then

by (i),

c1."�/D .yCF x1/C.yCF x2/D .x1Cx2/Cy2n�1

.x1Cx2/
2n�1

D c1C.yc1/
2n�1

;

using Lemma 3.1(i). Similarly,

c2."�/

D .yCF x2/.yCF x2/

Dy2
Cy.x1Cx2/Cx1x2Cy2n�1C1.x1Cx2/

2n�1

Cy2n�1

.x2n�1

1 x2Cx1x2n�1

2 /
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which gives (iii). Part (iv) is clear. Furthermore, if "� D � , (iii) reads as

c1 D yCy2n�1�1
n�1X
kD1

c2n�1�2kC1
1

c2k�1

2 mod ann.y/

whence

c2
1 D y2

Cy2n�2c2
1

n�1X
kD1

c2n�2kC1

1 c2k

2 D y2 mod ann.y/

which implies (v). Finally, (vi) is a consequence of (iii) and (v).

We also record the following formulas, which can be verified in similar style using
Lemma 3.1(ii).

Lemma 3.3 Let p D 2 and � 2RG of dimension 2. Set ci D ci.�/. Then

(i) c1.�
2/D c2n

1
;

(ii) c2.�
2/D c2

1
C c2n

1
c22n�1

2
mod .c1c2/

22n�1

;

(iii) c3.�
2/D c2nC2

1
C c2n

1
c2n

2
C c2nC1

1
c22n�1

2
mod c22n�1C2n

1
c22n�1

2

D c2n

1
c2n

2
mod c2nC1

1
;

(iv) c4.�
2/D c2

1
c2n

2
C c2nC1

2
C c2n

1
c22n�1C2n

2
mod c22n�1

1
;

(v) c1.�
2�/D c1C c2n�1

2
C c2n�1

1
c22n�2

2
mod .c1c2/

22n�2

.

4 The groups D8 and Q8

We start with dihedral and quaternion groups of order 8. Not only is this the simplest
case, it shall also furnish us with certain identities useful later on. The quaternion case
was already treated in detail in Strickland [9, Section 15] and is only included here
since it does not mean any extra effort.

Both groups have isomorphic complex representation rings, but they differ in the
�–structure. To fix notation, we use the following presentations of D8 and Q8 : both
are two generator groups, on g1;g2 , say, with relators

g2
1; g2

2; Œg1;g2�
2 for D8,

g4
1; g2

1g2
2; g1g�1

2 g1g2 for Q8.
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There are four one-dimensional representations and one irreducible of dimension two.
Let 
j be defined by 
j .gk/D .�1/ıj k (j ; k D 1; 2), and �D IndG

hg1g2i
.ˇ/ where

ˇ.g1g2/D i . Then one has 
 2
j D 1, 
j�D�, �2 D 1C 
1C 
2C 
1
2 , and

�2�D

(

1
2 for D8;

1 for Q8:

Let yiDc1.
i/ (iD1; 2) and cjDcj .�/ (j D1; 2). Then it is known that K.n/�.BG/

is multiplicatively generated by y1;y2 and c2 ; see Tezuka and Yagita [10] and Schuster
and Yagita [8]. The first relations are easy: from 
 2

i D 1 we immediately obtain

(1) y2n

1 D 0; y2n

2 D 0:

Now to 
i�D�: by Lemma 3.2, one obtains

.yic1/
2n�1

D 0;(2)

yic1 D y2
i C

n�1X
kD1

y2n�2kC1
i c2k�1

2 :(3)

We intend to use �2 D 1C 
1 C 
2 C 
1
2 next: one has c1.�
2/ D c1.�/

2n

by
Lemma 3.3(i), hence

(4) c2n

1 D y1Cy2C .y1CF y2/D .y1y2/
2n�1

:

Now (3) can be restated as

(3’) c1Cyi C

n�1X
kD1

y2n�2k

i c2k�1

2 2 ann.yi/

Using (1), raising this to the power 2n yields c2n

1
2 ann.yi/, which in turn implies

(5) yi.y1y2/
2n

D yic
2n

1 D 0

and thus, using (3) again,

c2nC1
1

D .y1y2/
2n�1

c1 D y2n�1�1
1 y2n�1

2

�
y2

1 C

n�1X
kD1

y2n�2kC1
1

c2k�1

2

�
D y2n�1C1

1
y2n�1

2 D y1c2n

1 D 0:

(6)

By Lemma 3.2(v),

(7) yic
2
1 D y3

i
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which implies y3
1
y2 D y1y2c2

1
D y1y3

2
. This gives

y1y2c1 D y2
1y2C

n�1X
kD1

y2n�2kC1
1

y2c2k�1

2 D y2
1y2C

n�1X
kD1

y1y2n�2k�1
2 c2k�1

2

D y2
1y2Cy1y2c1Cy1y2

2 ;

hence

(8) y2
1y2 D y1y2

2 :

Furthermore, since we may calculate modulo c2nC1
1

by (6), Lemma 3.3 implies

c2.�
2/D c2

1 C c2n

1 c22n�1

2 :

On the other hand

c2.1C
1C
2C
1
2/D y1y2C.y1Cy2/.y1Cy2Cy2n�1

1 y2n�1

2 /D y2
1Cy1y2Cy2

2

using (8), thus

(9) c2
1 D y2

1 Cy1y2Cy2
2 C .y1y2/

2n�1

c22n�1

2 :

Also, modulo c2nC1
1

one has c3.�
2/D c2n

1
c2n

2
and

c3.1C
1C
2C
1
2/Dy1y2.y1Cy2C.y1y2/
2n�1

/Dy2
1y2Cy1y2

2Cy1y2c2n

1 D 0;

leading to

(10) .y1y2/
2n�1

c2n

2 D 0 and c2
1 D y2

1 Cy1y2Cy2
2 :

So far, everything worked for either D8 or Q8 . Now that we shall use exterior powers,
things will start to differ. We have

c1.�
2�/D c1C c2n�1

2 C c2n�1

1 c22n�2

2

since we may calculate modulo c2n

1
c2n

2
by (10), and

c1.
1
2/D y1Cy2C .y1y2/
2n�1

;

hence

(11) c1 D

(
y1Cy2C .y1y2/

2n�1

C c2n�1

2
C c2n�1

1
c22n�2

2
for D8;

c2n�1

2
C c2n�1

1
c22n�2

2
for Q8:
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Together with (10) this gives

(12) y2
1 Cy1y2Cy2

2 D c2
1 D

(
c2n

2
Cy2

1
Cy2

2
for D8;

c2n

2
for Q8;

or

(13) c2n

2 D

(
y1y2 for D8;

y2
1
Cy1y2Cy2

2
for Q8:

For the dihedral group, equations (8), (10) and (13) furthermore imply

c2n�1

1 c22n�2

2 D .y2
1 Cy1y2Cy2

2/
2n�2

.y1y2/
2n�2

D ..y2
1 Cy2

2/y1y2/
2n�2

C .y1y2/
2n�1

D .y1y2/
2n�1

whence (11) reads as

(14) c1 D

(
y1Cy2C c2n�1

2
for D8;

c2n�1

2
C c22n�1

2
for Q8:

Finally, plugging all this into (3) results in

(15)
nX

kD1

y2n�2kC1
i c2k�1

2 D

(
y1y2 for D8;

y2
i for Q8:

Summing up, we get the following relations:

(1) y2n

i ;

(2) c2n

2
D

(
y1y2 for D8;

y2
1
Cy1y2Cy2

2
for Q8I

(3)
Pn

kD1 y2n�2kC1
i c2k�1

2
D

(
y1y2 for D8;

y2
i for Q8:

Furthermore, in (14) we have also identified c1 . Note these relations imply all the
others proved along the way, as well as c22n�1C2n�1

2
D 0.

It remains to check that these relations produce a module of the correct rank, which
according to the Euler characteristic formula of Hopkins, Kuhn and Ravenel [4, Theo-
rem B (Part 2)],

�n;p.G/D
X

A<G

�.A/

ŒG WA�
�n;p.A/
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where summation is over the abelian subgroups of G and � is a Möbius function on
the poset of abelian subgroups, should be 3

2
4n �

1
2
2n . From the relations one easily

reads off that the set (which works for either group)

B WD fyi
1ck

2 ;y
j
2

cl
2; c

m
2 j 1� i; j < 2n; 0� k; l < 2n�1; 0�m< 1

2
4n
C

1
2
2n
g

generates C.GIK.n//: by relation (2), we can eliminate any monomial divisible
by y1y2 , and (3) says that y

jC1
i c2n�1Ck

2
is in the span of B , for any j ; k � 0.

The cardinality of this set, which gives an upper bound for the rank of the Chern
approximation, is indeed equal to the rank of K.n/�.BG/. Since this is all that is
required, we have:

Theorem 4.1 Let G be either D8 or Q8 . Then

(1) K.n/�.BG/Š C.GIK.n//;

(2) K.n/�.BG/ is multiplicatively generated by the classes y1;y2; c2 subject to the
relations (1)–(3) above.

Remark Note that our relations coincide with those obtained by Bakuradze and
Vershinin in [3]. They use slightly different generators though, their x corresponds to
our y1 and c to y1CF y2 .

5 Dihedral, quaternion, and semidihedral groups

In order to prove a statement like (1) of Theorem 4.1, it is certainly not necessary to
determine the complete multiplicative structure.

Suppose one already knew that K.n/�.BG/ was generated by Chern classes of rep-
resentations. It then suffices to produce, using only formal consequences of the ring
structure of RG plus Adams and/or exterior power operations, enough relations among
the Chern classes of all irreducible representations so that the rank of the result is equal
to the Euler characteristic of G . This is the course we shall follow from now on; for
the assumption on generation by Chern classes we refer to our earlier work [7] and
Tezuka and Yagita [11],

Let
G D hs; t j s2mC1

D 1; t2
D se; tst�1

D sr
i

where e 2 f0; 2mg and r 2 f�1; 2m � 1g. Then G Š D2mC2 , the dihedral group of
order 2mC2 , for e D 0 and r D �1, whereas e D 2m , r D �1 corresponds to the
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generalised quaternion group Q2mC2 and e D 0, r D 2m � 1 to the semidihedral
group SD2mC2 . Except for this last case, mD 1 is allowed.

All three types have the same K.n/ Euler characteristic

�n;2.G/D
1

2
2.mC1/n

C 4n
�

1

2
2n
I

this again follows with the Euler characteristic formula of [4], keeping in mind the
following easily verified facts: (i) G has an index two cyclic subgroup, (ii) every other
maximal abelian subgroup has order four, (iii) there are 2mC 3 conjugacy classes of
elements, and (iv) �0;p.G/D 1 and �1;p.G/ is the number of conjugacy classes of
p–elements of G , for any group G and prime p . Indeed, from (i) and (ii) one has

�n;2.G/D
1

2
2.mC1/n

C˛4n
Cˇ2n

for some ˛; ˇ , and solving the equations �0;2.G/D 1 and �1;2.G/D 2mC 3 gives
the claimed formula.

Furthermore, it is shown eg in [7] that K.n/�.BG/ is concentrated in even degrees.

Let ADhsiŠC2mC1 and �W A!C� be a generator of RA with �.s/D exp.� i=2m/.
Define linear characters �1 and �2 by

�1.s/D�1; �1.t/D 1 and �2.s/D�1; �2.t/D�1:

The seemingly asymmetric definition will allow us to use the results of the previous
section to start inductive arguments. Then 1, �1 , �2 , and �1�2 are the linear characters
of G . Furthermore, set

�k D IndG
A .�

k/ .k 2 Z/:

Note �0D 1C�1�2 and �2m D �1C�2 for any of the three types, and �2mCr D �2m�r

for G dihedral or quaternion, or G semidihedral and r even, but �2kC1 D �2m�.2kC1/

for G semidihedral and 0� k < 2m�2 .

The irreducible two-dimensional complex representations of G are

�i.1� i < 2m/ for G DD2mC2 or Q2mC2 ;

�2j .1� j < 2m�1/; �˙.2kC1/.0� k < 2m�2/ for G D SD2mC2 :

The next two lemmas give the product structure and Adams and exterior power opera-
tions; verification is a routine exercise using complex characters.
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Lemma 5.1 (1) Let G be either dihedral or quaternion. Then �i�k D �2m�k

(0� k � 2m , i D 1; 2), and �j�k D �kCj C �k�j for j � k .

(2) Let G be semidihedral, i D 1; 2, and 0� j � k . Then

�i�k D

(
�2m�k k even; 0� k � 2m;

��k k odd; jkj< 2m�1;

�j�k D

(
�kCj C �k�j j or k even;

�kCj C �2m�kCj j and k odd:

Lemma 5.2  k�1 D �k for k odd and all three types. Furthermore,

 2�k D

8̂<̂
:

1� �1�2C �2k for G ŠD2mC2 , or G Š SD2mC2 and k even,

.�1/k.1� �1�2/C �2k for G ŠQ2mC2 ,

�1� �2C �2jkj for G Š SD2mC2 and k odd,

�2�k D

8̂<̂
:
�1�2 for G ŠD2mC2 or k even,

�2 for G Š SD2mC2 and k odd,

1 for G ŠQ2mC2 and k odd.

Now Adams operations can be recovered from exterior powers, thus setting � D �1 ,
one has:

Corollary 5.3 (1) RD2mC2 and R SD2mC2 are generated by �1 and � as ƒ–rings.

(2) RQ2mC2 is generated by �1; �2 and � as ƒ–ring.

Theorem 5.4 Let G be either D2mC2 , Q2mC2 , or SD2mC2 , with m � 2. Then
C.G;K.n//ŠK.n/�.BG/.

Proof Let yi D c1.�i/ and ck D ck.�/, k D 1; 2. It is known eg from our earlier
paper [7] that K.n/�.BG/ is generated by y1 , y2 and c2 , so all we have to show is
that C.G;K.n// has the correct rank.

Since G=hs4i ŠD8 , we may assume the following relations obtained in Section 4:

(16) y2n

1 D 0; y2n

2 D 0; y2
1y2 D y1y2

2 :

Then Lemma 5.2 implies  2m

� D 1� �1�2C �1C �2 ; applying c1 and c2 to this
identity yields, using (16),

(17.a) c2mn

1 D y1CF y2Cy1Cy2 D .y1y2/
2n�1
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and consequently

(17.b) c2mn

2 D c2mn

1 .y1CF y2/Cy1y2 D y1y2

since c2nm

1
.y1CF y2/ D .y1y2/

2n�1

.y1C y2C .y1y2/
2n�1

/ D 0 by Lemma 3.1(i)
and (16).

The identities for �2� in turn yield, according to Lemma 3.3(v),

(18) c1 D Y C c2n�1

2 C c2n�1

1 c22n�2

2 mod .c1c2/
22n�2

with

Y D

8̂<̂
:

y1CF y2 for G DD2mC2 ,

0 for G DQ2mC2 ,

y2 for G D SD2mC2 .

Next, apply c2 to �1�2� D � . Writing z D y1CF y2 D c1.�1�2/, note that by (16)
one has zj D .y1Cy2/

j for j > 1. Thus by Lemma 3.2 again,

zc1 D z2
CS where S D

n�1X
kD1

z2n�2kC1c2k�1

2 D

n�1X
kD1

.y1Cy2/
2n�2kC1c2k�1

2 :

Thus .y1Cy2/c1 D .y1Cy2/
2C .y1y2/

2n�1

c1CS . But

.y1y2/
2n�1

c1 D y2n�1
1 y2c1 D y2n�1

1 .y1c1C .y1Cy2/
2
C .y1y2/

2n�1

c1CS/D 0;

hence

c2mnC1
1

D 0;(19)

zc1 D .y1Cy2/c1 D .y1Cy2/
2
CS:(20)

By Lemma 3.2(v), zc2
1
D z3 . With (20) this implies .y1Cy2/c

2n

1
D zc2n

1
D z2n

c1D 0;
in particular, c22n�2

1
2 ann.y1Cy2/ since n� 2. Thus (18) gives

.y1Cy2/c1 D .y1Cy2/.Y C c2n�1

2 C c2n�1

1 c22n�2

2 /:

Together with (20) one obtains

(21) .y1Cy2/c
2n�1

2 D .y1Cy2/
2
CS C .y1Cy2/.Y C c2n�1

1 c22n�2

2 /

or

c2n�1

2 D y1Cy2C

n�1X
kD1

.y1Cy2/
2n�2k

c2k�1

2 CY Cc2n�1

1 c22n�2

2 mod ann.y1Cy2/
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whence

c22n�2

2 D .y1Cy2/
2n�1

CY 2n�1

D .zCY /2
n�1

mod ann.y1Cy2/;

and thus .y1C y2/c
2n�1

1
c22n�2

2
D z2n�1C1.zC Y /2

n�1

D 0 for all three cases. This
means we can rewrite (21) as

(22) .y1Cy2/c
2n�1

2 D S CY 0 with Y 0 D

8̂<̂
:

0 for G DD2mC2 ,

y2
1
Cy2

2
for G DQ2mC2 ,

y2
1
Cy1y2 for G D SD2mC2 .

Together with 17.b one then obtains

(23) c2.mC1/n�1C2n�1

2
D .y1y2c2/

2n�1

D y2n�1
1 .y1c2n�1

2 CS CY 0/D 0:

Finally, let � D . 2m�1�1�/ � . 2m�1

�/. Lemma 5.2 says that � is equal to both
�0 D � C �1� and �00 D � C �2� . Now c2.�/ can be expressed as a polynomial
in Y and c2 : Arguing as before with the splitting principle, we may assume that the
two-dimensional representation � is a sum �1C �2 of line bundles, whence

. 2m�1�1�/ � . 2m�1

�/D .�2m�1�1
1 C �2m�1�1

2 / � .�2m�1

1 C �2m�1

2 /:

The second Chern class of this expression is a power series in x1 D c1.�1/ and
x2D c1.�2/, which is symmetric in x1 and x2 and thus can be identified with a power
series in c1 and c2 . Since all classes are nilpotent, one is left with a polynomial in c1

and c2 . By virtue of (18) and nilpotence again, c1 can be written as a polynomial in Y

and c2 , so the same holds for c2.�/.

On the other hand, by Lemma 3.2 yet again,

(24) c2.� C �j�/D yj c1Cy2
j C c2

1 Cy2n�1

j c2n�1C1
1

Cy2n�1C1
j c2n�1

1

Cy2n�1

j

n�1X
kD1

c2n�1�2kC1
1

c2k�1

2

for j D 1; 2.

Case 1 G DQ2mC2 . Then Y D 0, so c2.�/ is a polynomial pQ.c2/ in c2 . By (18)
and (24),

c2.�
0/D y2

1 Cy1c2n�1

2 mod .c2n

2 /;

c2.�
00/D y2

2 Cy2c2n�1

2 mod .c2n

2 /;
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thus one obtains

y1c2n�1

2 D y2
1 CpQ.c2/ mod .c2n

2 /;(25.a)

y2c2n�1

2 D y2
2 CpQ.c2/ mod .c2n

2 /:(25.b)

Since all generators are nilpotent, this implies that y1c2n�1

2
and y2c2n�1

2
are linear

combinations of monomials yr
i cs

2
with s < 2n�1 whenever r > 0.

Thus we arrive at the following generating set for C.Q;K.n//:

fy
j
i ck

2 j i D 1; 2; 1� j < 2n; 0� k < 2n�1
g[ fcl

2 j 0� l < 2.mC1/n�1
C 2n�1

g:

This set has �n;2.G/ elements.

Case 2 For G dihedral or semidihedral, it turns out to be more convenient to replace
one of the generators y1;y2 with z D y1CF y2 ; we shall only treat dihedral groups
in detail. So let G DD2mC2 , then one has Y D y1CF y2 D z and

(180) c1 D y1Cy2C c2n�1

2 mod .c22n�2

2 /D zC c2n�1

2 mod .c22n�2

2 /:

Consequently, c2.�/ is a polynomial pD.z; c2/ in z and c2 , and we replace the
generator y2 by z . The relevant relations established above then take the form

y2n

1 D 0; z2n

D 0; y2
1z D y1z2;(160)

c2mn

1 D .y1z/2
n�1

;(17.a0)

c2mn

2 D y1zCy2
1 ;(17.b0)

and in particular

(220) zc2n�1

2 D

n�1X
kD1

z2n�2kC1c2k�1

2

This means that any polynomial in z and c2 can be expressed in terms of monomi-
als zic

j
2

with j < 2n�1 whenever i > 0.
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Now Equation (24) implies, together with (160 ) and (17.b 0 ),

c2.�
0/D y2

1 C c2
1 Cy1c1C .y1c1/

2n�1

.y1C c1/Cy2n�1

1

n�1X
kD1

c2n�1�2kC1
1

c2k�1

2

D y1.zC c2n�1

2 /C z2
Cy2

1 C .y1zCy1c2n�1

2 /.y1CyC c2n�1

2 /

Cy2n�1

1 c1

n�1X
kD1

z2n�1�2k

c2k�1

2 mod .c2n

2 /

D z2
Cy1c2n�1

2 C

n�1X
kD1

.y2n�2kC1
1

c2k�1

2 Cy2n�2k

1 c2k�1C2n�1

2
mod .c2n

2 /

D z2
Cy1c2n�1

2 C

n�1X
kD1

y2n�2kC1
1

c2k�1

2 mod .c2n�1C1
2

/:

Thus equating c2.�/ and c2.�
0/ yields an equation

(26) y1c2n�1

2 D

n�1X
kD1

y2n�2kC1
1

c2k�1

2 C z2
CpD.z; c2/ mod .c2n�1C1

2
/

which as before allows us to express y1cn�1
2

in terms of monomials yi
1
c

j
2

and zkcl
2

with j < 2n�1 for i > 0 and l < 2n�1 for k > 0, and the set

fyi
1ck

2 ; zj cl
2 j 1� i; j < 2n; 0� k; l < 2n�1

g[ fcr
2 j 0� r < 2.mC1/n�1

C 2n�1
g

with �n;2.G/ elements generates.

Remark A complete set of relations would be y2n

1
D 0, y2n

2
D 0, y1y2 D c2mn

2
,

.y1Cy2/c
2n�1

2 D

n�1X
iD1

.y1Cy2/
2n�2iC1c2i�1

2 C

8̂<̂
:

0 for G DD2mC2 ,

y2
1
Cy2

2
for G DQ2mC2 ,

y2
1
Cy1y2 for G D SD2mC2 ,

and

y1c2n�1

2 D

n�1X
jD1

y2n�2jC1
1

c2j�1

2 C

mnX
kD1

c
.2mnC1/2n�1�.2n�1/2k�1

2

C

n�1X
lD1

c
2mn�1.2n�2lC1/C2l�1

2
C

(
0 for G DD2mC2 ,

y2
1
Cy1y2 for G DQ2mC2 ; SD2mC2 .

Such relations were obtained in [3] (in slightly different form).
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6 Quasidihedral groups

The quasidihedral group QD2mC2 of order 2mC2 has a presentation

G D QD2mC2 D hs; t j s2mC1

D t2
D 1; tst D s2mC1

i:

Its centre ZDhs2i is cyclic of order 2m , the commutator subgroup hs2m

i has index 2.
The maximal abelian subgroups are C Dhsi, C 0Dhsti, both cyclic of order 2mC1 , and
hs2; tiŠC2m�C2 with common intersection Z . Thus the K.n/ Euler characteristic is

�n;2.G/D
3

2
2.mC1/n

�
1

2
2mn:

There are 2mC1 linear characters �r�s , 0� r < 2m , s D 0; 1, defined by

�.s/D exp.� i=2m�1/; �.t/D 1 and �.s/D 1; �.t/D�1;

respectively. For reasons to be explained below, we also consider � WD �2m�1

. Further-
more, the group has 2m�1 irreducible representations of dimension 2: let � 2RC be
a generator, �.s/D exp.� i=2m/, and set

�j D IndG
C .�

2jC1/; 0� j < 2m�1:

This accounts for all irreducible representations. The product structure of RG is

��j D �jC1; ��j D �j ;

�2
0 D �.1C �C �C ��/:

Also note that ��j D �j . Thus RG is generated by �, � , and � WD �0 . Finally, one
has �2� D ��� . Now set

x D c1.�/; y D c1.�/; z D c1.�/; c1 D c1.�/; c2 D c2.�/:

(Then x D z2.m�1/n

.)

From now on let n� 2. Since �2 D �2 D 1 and �� D �� D � , Lemma 3.2 implies

(27) y2n

D 0; x2n

D 0;

(28.a) xc1 D x2
C

n�1X
kD1

x2n�2kC1c2k�1

2 ;

(28.b) yc1 D y2
C

n�1X
kD1

y2n�2kC1c2k�1

2 :
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With Lemma 3.3(i), the identity �2 D �.1C �C �C ��/ gives

(29) c2n

1 D zC .yCF z/C .xCF z/C .xCF yCF z/D .xy/2
n�1

:

The same identity arises from  2� C ��� D �C ��C �� . As in the previous section,
this implies x.xy/2

n�1

D y.xy/2
n�1

D 0 and hence

(30) c2nC1
1

D 0

and xc2
1
D x3 as well as yc2

1
D y3 , and finally

(31) x2y D xy2:

Now apply c2 and c3 to the relation for �2 ; since we may calculate modulo c2nC1
1

,
Lemma 3.3 yields

(32) c2
1 D x2

CxyCy2
C c2n

1 .zC z2n

C c22n�1

2 /

and c2n

1
c2n

2
D c2n

2
z2 .

Next, we use �2� D ��� and Lemma 3.3(v). Applying c1 to this identity shows one
can dispense with z . Furthermore, since c2nC1

1
D 0, one has

(33) x D c1.�/D c1..�
2�/2

m�1

/D Œ2m�1�c1.�
2�/D

(
c2mn�1

2
for m> 2,

c2n

1
C c22n�1

2
for mD 2.

Thus the Chern approximation is generated by y; c1; c2 – just as K.n/�.BQD2mC2/,
according to [11]. Another generating set would be fy; z; c2g. More precisely, from

c1C c2n�1

2 C c2n�1

2 c22n�1

2 D c1.�
2�/D c1.���/D xCF yCF z

one obtains first

z D c1CxCyC ..xCy/z/2
n�1

C c2n

1 C c2n�1

2 C c2n�1

1 c22n�2

2

D c1CxCyC .xCy/2
n�1

.c2n�1

1 C c22n�2

2 /C c2n

1 C c2n�1

2 C c2n�1

1 c22n�2

2

and then, using the above expression (32) for c2
1

,

(34) z D c1CxCyC .xCy/2
n�1

c22n�2

2 C c2n

1 C c2n�1

2 C c2n�1

1 c22n�2

2 :

Plugging this back into (32) finally yields

(35) c2
1 D x2

CxyCy2
C c2n

1 c2n�1

2 D x2
CxyCy2

C .xy/2
n�1

c2n�1

2 :
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The resulting module is thus generated by the set

fc1ci
2 j 0� i < 2mn�1

g[ fc
j
2
j 0� j < 2.mC1/n�1

g

[ fykcl
2 j 1� k < 2n; 0� l < 2mn�1

g[ fycr
2 j 2

mn�1
� r < 2.mC1/n�1

g

of cardinality 3 � 2.mC1/n�1� 2mn�1 D �n;2.QD2mC2/. (This set was already shown
to be a basis in [1].) We conclude:

Theorem 6.1 The Chern approximation for quasidihedral groups is exact.

Precise relations for K.n/�.B QD2mC2/ŠC.QD2mC2 IK.n// are implicit in (27)–(35).
They were originally obtained in [1] using transfer methods and �–operations.

7 A 3–primary example

In this section we present a calculation of C.GIK.2// for G the nonabelian group of
order 27 and exponent 3, to a significant extent aided by MAPLE. We shall indicate
for each individual MAPLE computation which approximation to the formal group law
was used and why it suffices.

A presentation of G is

G D ha; b; c j a3
D b3

D c3
D Œa; c�D Œb; c�D 1; bab�1

D aci:

The centre Z of G is hci Š C3 with elementary abelian quotient. There are four
maximal abelian subgroups, ha; ci, hb; ci, hab; ci, ha2b; ci, all elementary abelian of
rank two and intersecting in the centre. Consequently,

�n;3.G/D
4

3
9n
�

1

3
3n:

There are several ways to calculate its Morava K–theory; either use the split extension
ha; ci!C!C3 (as done by Kriz; see [5]), or the central extension hci!G!Cp�Cp

(as in Tezuka and Yagita; see [10] for BP –cohomology). It turns out that K.n/�.BG/

is generated by Chern classes (or by transferred Euler classes). Thus this group has
the chance of having an exact Chern approximation; we shall however see that this is
not so.

First recall the complex representation theory of G . Define linear characters �1; �2 by

�1.a/D !; �1.b/D �1.c/D 1; �2.b/D !; �1.a/D �2.c/D 1
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where ! is a primitive third root of unity. Furthermore, let V D ha; ci � G , define

 2RV by 
 .a/D 1, 
 .c/D ! , and set �k D IndG

V .

k/ for k D 1; 2. The structure

of RG as a ƒ–ring is recorded in the following lemma.

Lemma 7.1 (1) The irreducible complex representations of G are �1; �2 , and
�i

1
�

j
2

, 0� i; j � 2.

(2) �3
j D1, �j�kD�k (j ; kD1; 2); �2

1
D3�2 , �2

2
D3�1 , �1�2D

P
0�i;j�2 �

i
1
�

j
2

.

(3)  2�1 D �
2�1 D �2 ,  2�2 D �

2�2 D �1 , �3�1 D �
3�2 D 1.

Thus �1; �2 and � WD �1 generate RG as a ƒ–ring. Set y1 D c1.�1/, y2 D c1.�2/,
and ck D ck.�/, then K.n/�.BG/ is generated by these classes.

The first relations are easy:  3�j D 1D  3� imply

y9
1 D 0; y9

2 D 0; c9
k D 0 .k D 1; 2; 3/:

Writing (formally) � D �1C �2C �3 as a sum of line bundles, and setting xi D c1.�i/,
we may calculate c1.�

3�/ as c1.�1�2�3/. The Witt polynomials wk being polynomials
in Chern classes they satisfy w9

k
D 0, too. Since �3� D 1, Ravenel’s formula (see

Section 3) gives

0D
X
n�0

F
wk.x1;x2;x3/

3k

D w0.x1;x2;x2/CF w1.x1;x2;x2/
3:

Now w0 D c1 and w1 D�c1c2C c3 , thus

(36) c1 D�c3
3 :

Next, we evaluate Chern classes of the identities �j� D � , j D 1; 2.

Modulo .c1C c3
3
; c9

2
; c9

3
/, one has

c1.�j�/D c1�y3
j c3

2

c2.�j�/D c2Cyj c3
3 Cy3

j .c
2
2c3� c3

2c3
3c5

3/Cy4
j c3

2 Cy6
j .�c2

2 C c6
2 � c2c6

3 � c4
3/

c3.�j�/D c3Cyj c2�y2
j c3

3 Cy3
j .1� c2c2

3 � c2
2c4

3 C c8
3/Cy4

j .c
2
2c3� c3

2c3
3 � c5

3/

�y5
j c3

2 Cy6
j .�c2c3� c2

2c3
3 C c5

2c3� c3
2c5

3 C c7
3/

Cy7
j .�c2

2 C c6
2 � c2c6

3 � c4
3/:

These expressions were obtained with MAPLE. Since y9
j D 0, it suffices to work with

the approximation (i) of Lemma 3.1 for this computation.
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We let MAPLE carry out the calculation in a polynomial ring, use a simple routine
to express symmetric polynomials in terms of elementary symmetric functions, ie
Chern classes, and reduce modulo relations already obtained. Subsequent computer
calculations always follow the same pattern. In particular, when calculating Chern
classes of exterior powers or Adams operations, we can express the representations in
question as sums of line bundles and calculate in a polynomial algebra.

The equation for c1 immediately implies

(37) y3
1c3

2 D y3
2c3

2 D 0:

Using this identity, the equation c2.�j�/D c2 simplifies to

0D yj c3
3 Cy3

j .c
2
2c3� c5

3/�y6
j .c

2
2 C c2c6

3 C c4
3/;

that is, c3
3
Dy2

j .c
5
3
� c2

2
c3/Cy5

j .c
2
2
C c2c6

3
C c4

3
/ mod ann.yj /. By squaring the lat-

ter identity, we obtain c6
3
D y4

j .c
4
2
c2

3
C c2

2
c6

3
/D y4

j c3
2
c6

3
D y6

j c4
2
c6

3
D 0 mod ann.yj /

or yj c6
3
D 0. Continuing to calculate modulo ann.yj / one obtains

c5
3 D y2

j .c
7
3 � c2

2c3
3/Cy5

j .c
2
2c2

3 C c6
3/D�y2

j c2
2c3

3 Cy5
j c2

2c3
3 mod ann.yj /

D�y2
j c2

2 Œy
2
j .c

5
3 � c2

2c3/Cy5
j .c

2
2 C c4

3/�Cy5
j c2

2c3
3 mod ann.yj /

D�y4
j c2

2c5
3 �y7

j c2
2c4

3 Cy5
j c2

2c2
c mod ann.yj /

D�y4
j c2

2 Œ�y4
j c2

2c5
3 �y7

j c2
2c4

3 Cy5
j c2

2c2
3 �

�y7
j c2

2c3Œy
2
j .c

5
3 � c2

2c3/Cy5
j .c

2
2 C c4

3/�Cy5
j c2

2c2
3 mod ann.yj /

D y5
j c2

2c2
3 mod ann.yj /:

Thus yj c5
3
D y6

j c2
2
c2

3
and by a similar calculation, y6

j c4
3
D�y8

j c2
2
c2

3
, hence

(38) yj c3
3 D�y3

j c2
2c3Cy6

j c2
2 :

These relations furthermore imply y7
j c3

3
D y4

j c5
3
D 0 and yj c2

2
c3

3
D 0.

The identity for the third Chern class now simplifies to

0D yj c2�y2
j c3

3 Cy3
j .1� c2c2

3/Cy4
j c2

2c3�y6
j c2c3Cy7

j c2
2

D yj c2Cy4
j c3

2c3�y7
j c2

2 Cy3
j .1� c2c2

3/Cy4
j c2

2c3�y6
j c2c3Cy7

j c2
2

D yj c2Cy3
j �y3

j c2c2
3 Cy4

j c2
2c3�y6

j c2c3:

Applying the resulting equation for yj c2 repeatedly then gives

(39) yj c2 D�y3
j �y5

j c2
3
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which together with (38) implies

(40) yj c3
3 D�y7

j c3:

Rewriting (39) as c2 D�y2
j �y4

j c3
3

mod ann.yj /, taking the square and using (40)
yields yj c2

2
D y5

j �y7
j c2

3
D y5

j Cyj c4
3

, whence

y5
1y2�y1y5

2 D .y1c2
2 Cy1c4

3/y2�y1.y2c2
2 Cy2c4

3/D 0

and then

(41) y3
1y2�y1y3

2D .�y1c2�y5
1c2

3/y2�y1.�y2c2�y5
2c2

3/D�.y
5
1y2�y1y5

2/c
2
3D0:

Next, we use �2 D 3� ��2� in the form  2� D �2� . Another MAPLE computation
shows that modulo .c1C c3

3
; c9

2
; c9

3
/,

c2.�
2�/D c2; c2. 

2�/D c2C c5
2 C c3

2c4
3 C c4

2c6
3 � c6

3 ;

c3.�
2�/D�c3; c3. 

2�/D�c3C c2c3
3 � c4

2c3C c5
2c3

3 C c6
2c5

3 � c8
2c3:

For this and the next MAPLE computation it suffices to use an approximation to the
formal group law which is accurate up to degree 40 (where the coordinate of the formal
group is given degree 1, so that ci has degree i ); this is good enough since the highest
degree nonzero monomial is c8

2
c8

3
. Such an approximation can be obtained by using

Witt polynomials.

The representation ring identity thus gives

c5
2 D c6

3 � c3
2c4

3 � c4
2c6

3 ;(42.a)

c2c3
3 D c4

2c3(42.b)

(for the second equality, observe that c2c3
3
D c4

2
c3 � c5

2
c3

3
� c6

2
c5

3
C c8

2
c3 yields

c5
2
c3

3
D c8

2
c3 and c6

2
c3

3
D 0). Combining (42.a) and (42.b) furthermore yields

(43) c6
2 D 0 and c5

2 D c6
3 :

It remains to analyse � ��2� D
P

0�i;j�2 �
i
1
�

j
2
DW†. With the aid of MAPLE once

again one obtains ck.� ��
2�/D 0 for k D 1; 3; 5; 7; 8; 9 and

c2.� ��
2�/D c5

2 C c3
2c4

3 C c4
2c6

3 C c6
3 ;(44.a)

c4.� ��
2�/D c5

2c6
3 � c6

2.1C c8
3/C c8

2c4
3 ;(44.b)

c6.� ��
2�/D�c2

2c6
3 C c3

2.1C c8
3/� c5

2c4
3 C c7

2(44.c)
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modulo .c3
1
C c3; c

9
2
; c9

3
/, which in light of (43) become

(45) ck.� ��
2�/D

8̂<̂
:
�c6

3
for k D 2,

c3
2

for k D 6,

0 otherwise.

On the other hand, another MAPLE computation (here clearly the approximation of
Lemma 3.1(i) to the formal group law suffices) gives ck.†/D 0 for k odd and

c2.†/D y6
1y4

2 Cy4
1y6

2 D�y8
1y2

2 ;

c4.†/D�y6
1y6

2 D 0;

c6.†/D�y6
1 �y6

2 �y4
1y2

2 �y2
1y4

2 �y8
1y6

2 �y6
1y8

2 D�y6
1 �y6

2 Cy4
1y2

2 ;

c8.†/D y6
1y2

2 Cy4
1y4

2 Cy2
1y6

2 Cy8
1y8

2 D 0;

where we also used (41). Consequently, c6
3
D y8

2
y2

2
and c3

2
D�y6

1
�y6

2
Cy4

1
y3

2
. This

exhausts what we can obtain from RG . Now define a set G WD ff1; f2; : : : ; f10g by

f1 D y9
1 ; f2 D y9

2 ; f3 D y1y3
2 �y3

1y2; f4 D y1c3
3 Cy7

1c3;

f5 D y2c3
3 Cy7

2c3; f6 D y1c2Cy3
1 Cy5

1c2
3 ; f7 D y2c2Cy3

2 Cy5
2c2

3 ;

f8 D c6
3 �y8

1y2
2 ; f9 D c2c3

3 � .y
8
1 Cy8

2 �y6
1y2

2/c3; f10 D c3
2 Cy6

1 Cy6
2 �y4

1y2
2 :

Then G generates the relations ideal. With respect to lexicographic ordering and
c2 > c3 > y2 > y1 , the set G ist indeed a Gröbner basis; it is not hard to check by
hand that all syzygies between the fi reduce to zero modulo G (or one may trouble
MAPLE once more). As a sample calculation we consider the syzygy s9;10 between
f9 and f10 : the leading terms are g9 D c2c3

3
and g10 D c3

2
, respectively, thus

s9;10 D c2
2.c2c3

3 �y8
1c3�y8

2c3Cy6
1y2

2c3/� c3
3.c

3
2 Cy6

1 Cy6
2 �y4

1y2
2/

D�y8
1c2

2c3�y8
2c2

2c3Cy6
1y2

2c2
2c3�y6

1c3
3 �y6

2c3
3 Cy4

1y2
2c3

3

whose summands are divisible by the leading monomials g6 D y1c2 , g7 D y2c2 ,
g4 D y1c3

3
and g5 D y2c3

3
, whence

s9;10 � y10
1 c2c3Cy12

1 c2c3
3 Cy10

2 c2c3Cy12
2 c2c3

3 �y8
1y2

2c2c3

�y10
1 y2

2c2c3
3 Cy12

1 c3Cy12
2 c3�y10

1 y2
2c3

��y8
1y2

2c2c3 ��y7
1y2

2c3.�y3
1 �y5

1c2
3/� 0:

The other cases are similar (and shorter).
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Thus one has an additive isomorphism

C.GIK.2//˝K.2/� F3 Š F3Œy1;y2�=.y
9
1 ;y

9
2 ;y1y3

2 �y3
1y2/˝F3Œc3�=.c

3
3/

˚F3fc
3
3 ; c

4
3 ; c

5
3 ; c2; c2c3; c2c2

3 ; c
2
2 ; c

2
2c3; c

2
2c2

3g:

Proposition 7.2 Let G be the nonabelian group of order 27 and exponent 3. Then
C.GIK.2// has rank 108.

Remark A similar result was communicated to the author by Strickland. In the same
article where Chern approximations are introduced, he also develops an associated
“generalised character theory.” In the case at hand, the vector space of “generalised
characters” also has rank 108.

To determine the ring structure of K.2/�.BG/ for this G , one may proceed by the
following observations: Firstly, K.2/�.BG/ is clearly a quotient of its Chern ap-
proximation. Secondly, the spectral sequence calculations alluded to above also give
the distribution of additive generators: K.n/�.BG/ is “equidistributed” in the sense
that rankK.n/� K.n/2i.BG/D rankK.n/� K.n/0.BG/� 1 for all i 6�0 mod 2.pn�1/.
Finally, one may calculate the restrictions to the maximal subgroups. Taken together
with the equalities yj c2

2
D y5

j �y6
j c2

3
deduced from f6 and f7 one obtains

zf10 WD c2
2 � .y

4
1 Cy4

2 �y2
1y2

2/C .y
6
1 Cy6

2 �y4
1y2

2/c
2
3 D 0:

Proposition 7.3 K.2/�.BG/ŠK.2/�Œy1;y2; c2; c3�=.f1; : : : ; f9; zf10/.
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