Algebraic & Geometric Topology 12 (2012) 1741-1761 1741

Simplicial models for trace spaces II:
General higher dimensional automata

MARTIN RAUSSEN

Higher Dimensional Automata (HDA) are topological models for the study of con-
currency phenomena. The state space for an HDA is given as a pre-cubical complex
in which a set of directed paths (d-paths) is singled out. The aim of this paper is to
describe a general method that determines the space of directed paths with given end
points in a pre-cubical complex as the nerve of a particular category.

The paper generalizes the results from Raussen [18; 19] in which we had to assume
that the HDA in question arises from a semaphore model. In particular, important
for applications, it allows for models in which directed loops occur in the processes
involved.

55P10, 55P15, 55U10; 68Q85, 68Q55

1 Introduction

1.1 Background

A particular model for concurrent computation in computer science, called Higher
Dimensional Automata (HDA), was introduced by Pratt [15] back in 1991. Mathemati-
cally, HDA can be described as (labelled) pre-cubical sets (with »—dimensional cubes
instead of simplices as building blocks; cf Brown and Higgins [2; 1]) with a preferred
set of directed paths (respecting the natural partial orders) in any of the cubes of the
model.

Compared to other well-studied concurrency models like labelled transition systems,
event structures, Petri nets, etc (for a survey on those, see Winskel and Nielsen [23]),
RJ van Glabbeek [22] showed that Higher Dimensional Automata have the highest
expressivity; on the other hand, they are certainly less studied and less often applied
so far.

All concurrency models deal with sets of stares and with associated sets of execution
paths (with some further structure). The interest is mainly in the structure of the spaces
of execution paths; typically, it is difficult to extract valuable information about the path
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space from the state space model. We use topological models for both state space and
the execution (=path) space consisting of the directed paths (called d-paths) in state
space. It is particularly important to know whether the path space is path-connected,
and, if not, to get an overview over its path components: Executions in the same path
component yield the same result (decision) in a concurrent computation; different
components may lead to different results. From a topological perspective, the ultimate
aim is to determine the homotopy type of these path spaces.

Higher Dimensional Automata are prototypes of directed topological spaces; see
Grandis [12; 13]. General topological properties of spaces of d-paths and of fraces
(=d-paths up to monotone reparametrizations; see Fahrenberg and Raussen [5; 16]) in
pre-cubical complexes were investigated in Raussen [17]. Raussen [18; 19] describes
an algorithmic method to determine the homotopy types of trace spaces for Higher
Dimensional Automata (and thus in particular to calculate and describe their compo-
nents) through explicitly constructed finite simplicial complexes for a restricted class
of model spaces:

(1) We had to stick to semaphore — or PV — models as described by Dijkstra [4] —
an important but restricted class of HDA. Loosely speaking, a PV-model space
is a hypercube I” — with [ the unit interval [0, 1] — from which a number of
n—dimensional hyperrectangles has been removed; see Raussen [18].

(2) We only considered model spaces without nontrivial directed loops.

For these restricted class of models, the resulting algorithm has meanwhile been
implemented with encouraging results; see Fajstrup et al [8].

In the present paper, we propose an algorithm extending the framework to full generality
yielding (generalized simplicial) models for spaces of traces in general pre-cubical
complexes; hence we cover models for general (unlabeled) HDA. For these, the
homotopy type of trace spaces between given end points is identified with an explicitly
constructed complex (a generalization of a simplicial complex); all components of that
complex are finite. Using this complex, topological invariants (eg homology) can be
calculated.

A price has to be paid: the algorithm determining this complex is, at least in gen-
eral, more intricate than in the semaphore case. Data structures can be much more
complicated, and we have no experience with running times yet.

1.2 Structure and overview of results

Section 2 introduces pre-cubical complexes as HDA; we abstract away from labels.
We introduce a signed L;—arc length on general paths in a pre-cubical complex with
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positive or negative values extending the definition from Raussen [17] for d-paths. It
is shown that this signed L {—arc length is invariant under homotopy with fixed end
points for all paths and that the range of the L—arc length map is discrete given a pair
of end points.

We introduce the class of nonbranching (and nonlooping) pre-cubical complexes in
Section 3. We show, that the space of traces between two points in such a complex is
always either empty or contractible.

In the central Section 4, we consider traces in pre-cubical complexes with branch points
but without nontrivial directed loops. We decompose such a complex into subcomplexes
without branch points and such that the associated trace spaces cover the trace space
corresponding to the entire complex. This decomposition can be quite complicated in
the presence of higher order branch points. The nerve of the poset category associated
to this cover is homotopy equivalent to trace space. Moreover, we construct a complex
(with cones of products of simplices as building blocks) homotopy equivalent to trace
space and “more economical” than this nerve.

In Section 5, we show that trace spaces for a pre-cubical complex with nontrivial
directed loops can be analysed through trace spaces in an associated covering space in
which lifts of paths depend on their L—arc length — and in which (nontrivial) d-loops
lift to nonloops.

In the final Section 6, we give a few hints about a possible implementation that, with a
pre-cubical set as input and using an associated directed graph, allows to determine the
poset category describing the associated trace space.

2 Pre-cubical complexes and length maps

2.1 Directed paths and traces in a pre-cubical complex

Properties of Higher Dimensional Automata (cf Section 1.1) are intimately related to
the study of directed paths in a pre-cubical set, also called a [1—set; this term (cf [6]) is
used in a similar way as a A—set — as introduced in [20] — for a simplicial set without
degeneracies. We use [, as an abbreviation for the n—cube 1" = [0, 1]" with the
product topology.

Definition 2.1 (1) A O-set or pre-cubical complex X is a family of disjoint sets
{X, | n = 0} with face maps 85.‘: Xy — Xy—1, 1 <i <n, k=0,1, satisfying
the pre-cubical relations 85.‘ 85. = 85._18{.‘ fori < j.
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(2) The geometric realization | X | of a pre-cubical set X is given as the quotient
space | X| = ([I,, X» x Op)/= under the equivalence relation induced from

@ x).0) = (x.851), x€Xpp1, 1=(t1.....1n) €0y,
with 8K = (1, tig ko tigs . ).

(3) A pre-cubical complex M is called non-self-linked (cf [9; 17]) if, for all n,
x € My and 0 <i <n, the 2'(7) iterated faces

ol dfix e My, ki=0.1, 1<lj<-<li=<n,

are all different.

In the future, we will not distinguish between a pre-cubical complex X and its geometric
realization and just write X for both. We will tacitly assume that all pre-cubical
complexes are non-self-linked; if necessary, after a barycentric subdivision.

We are interested in directed paths in X. A continuous path within a cube [, is a
d-path, if all » component functions are (not necessarily strictly) increasing. A path
in X is a d-path if it is the concatenation of d-paths within cubes; see Raussen [17,
Definition 2.2] for details. The set of all d-paths in X will be denoted 13(X yc x1
with subspaces P (X)(c,d) consisting of paths with p(0) =c and p(1) =d. These
spaces inherit a topology from the CO—topology on X/ (the uniform convergence
topology).

Reparametrization equivalent d-paths [5] in X have the same directed image (=trace)
in X . Dividing out the action of the monoid of (weakly increasing) reparametrizations
of the parameter interval I , We arrive at trace space T(X )(¢,d) (see Fahrenberg and
Raussen [5; 16]); it is shown in Raussen [17] to be homotopy equivalent to path space
I3(X )(c,d) for a far wider class of directed spaces X ; in the latter paper, it is also
shown that trace spaces enjoy nice properties; eg, they are metrizable, locally compact,
locally contractible, and they have the homotopy type of a CW—complex.

Notation Within X and for x € X', welet [ x :={y e X | 13(X)(y, x) # &} denote
the past of x.

2.2 Length maps

The L;—arc length of a d-path in a pre-cubical complex was introduced and studied
in Raussen [17]. The definition and important properties can be extended to general
nondirected paths; for these the (signed) L—arc length may be negative. This goes
roughly as follows:
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The signed Lq-length lli(p) of a path p: I — O, within a cube OJ,, is defined as
/ li( p) = 27=1 pj (1) — p;j(0). For any path p, that is the concatenation of finitely
many paths each of which is contained in a single cube, the signed L;-length is
defined as the sum of the lengths of the pieces; the result is independent of the choice
of decomposition — and of the parametrization! Moreover, it is nonnegative for every
d-path and positive for every nonconstant d-path.

This construction can be phrased more elegantly using differential one-forms on a
cubical complex (a special case of the PL differential forms introduced by D Sulli-
van [21] in his approach to rational homotopy theory, or of the closed one-forms on
topological spaces by Farber [10; 11]): On an n—cube e ~ [J,,, consider the particular
—form we = dxy + -+ 4+ dx, € Q1(0,). It is obvious that wike = (1 )*we with
|8k el |e| denotlng inclusion. Pasting together, one arrives at a particular (closed!)
l—form wy on every pre-cubical set X — the one-form that reduces to w, on every
cell e in X .

The signed length of a (piecewise differentiable) path y on X can then be defined
as / li()/) = fol y*wy and extended to continuous paths using uniformly converg-
ing sequences of such piecewise differentiable paths. This length is invariant under
orientation preserving reparametrization; it changes sign under orientation reversing
reparametrization; it is additive under concatenation and nonnegative for d-paths. It
yields a continuous map [ Ii: P(X)(xg,x1) = R. An application of Stokes’ theorem
shows:

Proposition 2.2 Two paths pg, p1 € P(X)(xg, x1) that are homotopic rel end points
have the same signed length: lli(po) = lli(pl). a

A more direct proof can be given along the lines of Raussen [17] using the contin-
uous map s: X — S! = R/Z given by s(e;x1,...,x,) = Y. x; mod 1. It is clear
from the construction, that / llL( p) = s(p(1)) —s(p(0)) mod 1. As a consequence,
/ li(P(X )(x0,x1)) is constant mod | and, in particular, a discrete subset of the reals.
Hence, / li is constant on a connected component, ie, a homotopy class of paths in
P(X)(x0,x1).

Remark 2.3 As remarked in Raussen [17, Remark 2.8] it is not possible to extend
nonnegative Li—arc length continuously to nondirected paths.

3 Trace spaces for nonbranching pre-cubical complexes

In the following two sections, we will only consider nonlooping pre-cubical complexes.
In such a complex X, the only directed loops are trivial, ie, constant.
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A (finite) such pre-cubical complex X will be called nonbranching if it satisfies the
following additional property:

(NB) Every vertex v € X is the lower corner vertex of a unique maximal cube ¢,
in X . This maximal cube ¢, contains thus all cubes with lower corner vertex v
as a (possibly iterated) lower face.

On a nonbranching cubical complex, there is a privileged directed flow
FX: X xRsog— X :

Every element x € X is contained in the interior or the lower boundary of a uniquely

determined maximal cube, ie, the maximal cube ¢, of its lowest vertex v. On the

interior and the lower faces of such a cube ¢y, this flow is locally given by the diagonal

flow:

(3-1) FcX(c;(xl,...,xn);t) =(c;x1+t,....,xp,+1t) for0<¢t=<1-— max Xx;.
1<i<n

On a maximal vertex vy with ¢ = ¢, = v; (a deadlock), F, CX is defined to be constant

in ¢ for 0 <¢.

On cubes, that are not lower boundaries of others, these flow lines are the gradient lines
of the 1-form wy from Section 2.2; this is not true on such lower boundaries. Piecing
together these local flows so that they satisfy the flow semigroup property yields a
piecewise-linear (hence Lipschitz continuous) global flow all of whose flow lines are
d-paths; note from the construction that this flow can only have equilibria at deadlocks.

Remark 3.1 At a branch point vy in a general (branching) pre-cubical complex X
(see Definition 4.3), it is not possible to construct such a flow. Diagonal flows on
several maximal cubes do not fit together on their intersections.

Lemma 3.2 A finite nonbranching connected pre-cubical complex X has a unique
maximal vertex v .

Proof First of all, there is at least one maximal vertex. Otherwise, one would have
d-paths of arbitrary length in X ; hence X — without nontrivial loops — could not be
finite.

Suppose vy, v2,...,0; € X,k > 1, is a list of all maximal vertices. Consider the
maximal vertices in the common past subcomplexes |v; N vj,i # j, and choose
among those the maximal ones (that cannot reach any of the others). Pick such a
maximal vertex v and consider the associated maximal cube ¢, .
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There is at least one edge in ¢, with v as lower boundary from which one can reach v;
and not v; ; likewise another edge from which one can reach v; and not v;. From the
top edge of ¢y, at least one of the v, in the list is reachable. As a consequence, from
at least one of the two edges mentioned before, rwo maximal vertices can be reached.
Contradiction to maximality! a

The key Proposition 2.8 from Raussen [18] generalizes as follows:

Proposition 3.3 For every pair of elements x, x1 € X in the geometric realization X
of a pre-cubical nonbranching complex X , trace space T (X )(x¢, x1) is either empty
or contractible.

Proof We assume that 7 (X)(x9,x1) # @ and, without restriction, that x; is the
maximal vertex in X ; in general, just replace X by |x; C X, still a nonbranching
complex; without deadlocks and unsafe regions.

The directed flow line corresponding to the flow FX (cf (3-1)) starting at x € X
and ending at x; (after linear renormalization so that its domain becomes the unit
interval ) will be called py € P(X)(x,x1).

A contraction H: ﬁ(X)(xo,xl) x I — f’(X)(xO,xl) to the flow path Hy = py, is
constructed as follows: For p € P(X)(xg, x1), let

p(s) t<s,
Ppy(iT5) s =t

H(p.1)(s) = {

Remark that H; = p and that an intermediate d-path H; follows p until p(¢) and
then it follows the flow line starting at p(¢) automatically ending at x .

Finally, the quotient map 13(X )(x0, X1) — T (X)(x9,x1) is a homotopy equiva-
lence [17]. O

This proof, using the diagonal flow F¥ | is different from the one given in Raussen
[18, Proposition 2.8] for the special case of cubical complexes arising from semaphore
models; but it is certainly similar in spirit.

4 Trace spaces for nonlooping pre-cubical complexes

In this section, we study traces in a more general finite pre-cubical complex X'; still
without nontrivial loops, but allowing for branch points: How to find subcomplexes
Y C X satisfying (NB)? Investigating the space of d-paths between xy and x; in X,
we assume that X = [Xg, X1] = 7Xg N | X1. In particular, X contains neither unsafe
nor unreachable regions. We start with an abstract description:
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4.1 An abstract simplicial model

The subcomplex given by the carrier sequence corresponding to any directed path (see
Fajstrup [6]), the sequence of cubes containing segments of that path, is obviously a
subcomplex satisfying (NB).

One may order NB subcomplexes of X by inclusion — chains are of bounded length
since there are only finitely many cubes — and focus on the maximal nonbranching
subcomplexes. Every d-path with a given start point is contained in a maximal NB sub-
complex, that is in general not uniquely determined. Traces contained in maximal NB
subcomplexes cover thus the space of all d-paths (with given start and end point).

Lemma 4.1 An intersection S = (| X; of subcomplexes X; each satisfying (NB)
satisfies (NB) as well. Hence the trace space T (S)(Xg,X1) is either contractible or

empty.

Proof The intersection of maximal cubes at every vertex will be the maximal cube in
the intersection and hence unique. For contractibility, use Proposition 3.3. Empty path
spaces may arise when S is not connected. a

The subcomplexes X; C X,i € I, satlsfymg (NB) that are maxlmal with respect to
inclusion give thus rise to a covering T(X,)(XO, x;) of trace space T(X )(x0,X1) by
contractible sets; in fact:

Theorem 4.2 For a finite pre-cubical complex X , the trace space T (X)(x0,x1) is
homotopy equivalent to the nerve of the covering given by the subspaces T (X;)(Xg,X1).

Proof The theorem is an almost immediate consequence of the nerve lemma; see
Kozlov [14, Theorem 15.21]. The subspaces X; are in general not open, and the
subspaces T (X;)(x9,x71) will in general not give rise to an open covering. According
to Raussen [17, Proposition 3.15], the trace space T(X )(X0,X1) has the homotopy
type of a CW-complex; the subspaces T (Xi)(xg,x1) correspond to subcomplexes.
The projection lemma [14, Theorem 15.19 and Remark 15.20] comparing homotopy
colimits with colimits holds also in this case. i

4.2 An index category

4.2.1 (Higher order) branch points The maximal subcomplexes X; from Theorem
4.2 may be very difficult to identify for a complex X with many cells. In the following,
we describe an algorithmic method that determines an index category C(X)(xg,X1)
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that can be represented by a complex T(X)(xg,X;) which is homotopy equivalent
to trace space i‘(X )(X0,X1). The building blocks of the complex T(X)(xq,x1) are
products of simplices and of cones of such spaces. The construction is similar in spirit
to that in Raussen [18], albeit, in the details slightly more complicated.

We investigate vertices in the 0—skeleton Xy C X at which condition (NB) from
Section 4 are violated:

Definition 4.3 A vertex v € X is called a branch point if there are more than one
maximal cube ¢ having v as lower vertex (ie, an iterate of 32 yields v). The set of all
such maximal cells with lower vertex v is called the branch set B, with |By| > 1.

Remark 4.4 Let v € X be a branch point with several maximal cubes cy,..., ¢,
with lower vertex v. Obviously, at most one of the cubes ¢; can be contained in every
of the (NB) subcomplexes X; from Section 4.1.

For a cell ¢ in X, we denote by ¢~ the geometric realization of ¢ and of all (iterated)
lower boundaries — not including mixed or upper boundaries. Hence, |¢~| = [0, 1["* for
an n—cell c. For a fixed branch point v and a branch cell ¢; € By, let

X} = ¢cj—uc(¢ g c;)
ci€By

consist of all points that, as far as they can reach any branch in B, they have to stay
in the past of the particular branch ¢;; C denotes the complement within X . Clearly,

X = UC]' €B, va ‘
Lemma 4.5 f(X)(XO, X1) = cher i“(Xj”)(xo, x1) for every branch point v.

Proof We need to show that T(che By X)) (X0.X1) = U, e, T(X?)(x0.%1): Ev-
ery d-path from xq to x; starts in the (past closed) set | [ ¢jeBy and then leaves it
for its (future closed) complement. The sets icj_ are all past closed; a d-path p that
has left one of these sets will never get back to it. In particular, there is at least one
(last) set X j“, ¢j € By, containing p. =]

Contrary to the special situation of pre-cubical complexes arising from PV —protocols
discussed in [18], it is not enough to consider only (1. order) branch points as the
following example (cf Figure 1) shows:
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A—2 0 . 1
Cl1
[ ] [ ] [} [ ]
bi> €12
B b1 ¢ ' :
by | 21 2 |ai
0 B, 2o A

Figure 1: Branch points in a 2D complex

Example 4.6 The complex X to be discussed arises from the 9 planar 2—cubes in
Figure 1 by identifying the two vertices denoted A. Remark the two special “horizontal”
and “vertical” d-paths from 0 to 1 through 4. The vertex A4 is the only branch point
in X ; it has branch set B4 ={ay, a»}. The subcomplex X IA arises from X by crossing
out the two cells ¢;1 and c¢1, — apart from the left boundary 1—cells. Likewise, for X’ 2A ,
the cells ¢y and c3, — apart from the lower boundary 1-cells — have to be deleted.
The first subcomplex has a secondary branch point B; with branches by; and b,.
Likewise, the second one has a secondary branch point B, with branches b,; and b5, .

The homotopy type of the trace space T(X)(0,1) will be identified in Example 4.12

below.

4.2.2 Theindex category C(X)(xo,X;) Hence, itisnecessary to consider secondary,
and in general higher order branch points, as well:

e The original space X comes with a set BP = {b', ..., b! } of branch points and
associated maximal branch cubes BC = {cj’:} and a surjective map p: BC | BP,
plc;)=0b".

* Forevery section s(1): BP 1 BC of the map p, consider the subcomplex X (1) =
M EBP(‘LC;(_I)(bi) UC(Up(jy=p; $¢;7) CX . Xy isin facta subcomplex of X
since the branch cubes are all maximal. It is a proper subcomplex containing Xg
and x;.

e Such a complex Xj(;) may have (second order) branch points bi(s(1)) €
BPg(;) and branch cubes cJ’- (s(1)) € BCg4(1) which come with a projection
p(s(1)): BCy(1) | BPg(1) and sections 5(2): BPg(1) 1 BCy(y).
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e Iterate: Given subsequent sections s(1),...,s(r) define a proper subcomplex
Xs(r) C Xs(r—l) as

Y= (1 [ (icé(‘k)(b,.) Y C( U g7 Xs(k—l)))’
0<k=<r b; €BP(s(k)) p(k)(j)=bi

with the convention that p(s(0)): BC(s(0)) | BP(s(0)) is the original projection
map p: BC | BP. This complex Xj(,) may give rise to sets of new branch cells
BCq(,) and branch points BPy(,) with a projection map p(s(r)): BCy(,y | BPg(;).
Since these subcomplexes become smaller and smaller under iteration in the
finite complex X, every such iteration will ultimately end in a subcomplex Xy,
without branch points.

* A subsequent sequence of sections s(k): BPgx) T BCyk), k =< r, is called
coherent and complete if X, satisfies property (NB); cf Section 3. The set of
all such coherent and complete sequences will be called CCS(X).

e Given a coherent and complete sequence s € CCS(X), we may associate
the set of branch points BP(s) = Jj—, BP;(x) and branch cubes BC(s) =
Uk=o BCy (k). the projection p(s): BC(s) | BP(s), and the “tautological” sec-
tion 5: BP(s) 1 BC(s); there are no branch cells to choose at depth s!

Definition 4.7 (1) The poset category M (X)(xg,X1) has as

e objects all pairs of the form (S, C) with @ # S C CCS(X) and C a set of
the form C = HbfGUses gp(s) Ci» 5(bi) € C; C BC(b;); with 5 denoting the
tautological section from Section 4.2.2,

o morphisms (S,C) <(S',C') & S < §',Vs e S,b eBP(s): C; € C].

Note that the minimal objects (S, D) of this category are composed of a set S with
precisely one element s and such that b; € BP(s) = |C;| = 1.

(2) To a section s € CCS(X), a branch point b; € BP(s(k)) and a branch cube
¢i € BC(s(k)), we associate the subspace (Xs(k))zi_ C X. To an object (S,C) in
M(X)(x0,X1) we associate the subspace X(g.cy:=1CX.

(3) The category C(X)(xq, X1 ) is the full subcategory of M (X)(xq, X1) whose objects
(S, C) are characterized by the fact that T'(X(s,c))(Xo.X1) is nonempty.

Proposition 4.8 (1) T(X)(xo, X1) = U(S,C) T(X(S,C))(xo, X1), where the union
extends over all objects of the category C(X)(Xg,X1).

(2) The subspace f(X(S,C))(XO, X1) Is contractible for every object (S, C) of the
subcategory C(X)(Xg, X1)-
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Proof (1) This follows from Lemma 4.5 by induction.

(2) According to Proposition 3.3, the trace space f(X s(r)) (X0, X1) is empty or con-
tractible for every complete coherent sequence of branches and branch points. For every
object (S, C) of the category C(X)(Xo,X1), the space X(g ) is a finite intersection
of spaces of type f(Xs(,))(xo,Xl), s €S. Apply Lemma 4.1. o

Remark 4.9 An algebraic representation of the category C(X)(xg,X;) is not as
straightforward as for semaphore models that resulted in a poset category of binary
matrices (cf Raussen [18]). In the general case, one has to consider combinations of
all branch point sequences (of different lengths) and the occuring branches — which
may have different cardinalities. I plan to develop algorithmically the representation of
C(X)(x¢,x1) in a future paper.

4.3 Homotopy equivalences

We will now present a description of the homotopy type of T(X )(Xp,X1) as a colimit
of simple spaces (generalizing the prodsimplicial complex for traces arising from
semaphore models; cf Raussen [18]). For simplicity, we will describe only the case
with branch points of order at most two.

In this case, to every first order branch point 5’ € BP, we associate the branch cells
BC’ = p~!(b'); a section s: BP1 BC gives rise to second order branch points in BP(s)
and, to every of the second order branch points b (s) € BP(s), a set of branch cells
BC’ (). Then, the total complex corresponding to all objects (S, C) corresponds to

AIBCHI=1 oo AIBCH =1 1—[ C(A|Bc1(s)|—1 N AlBCl(")(s)I—l)‘
s:BPBC
Here CX denotes the cone over X .

Asubset S = Sy x---x S CBC! x---x BC! corresponds to a product of simplices
Ag = AISII=1 o AlST=T A subset C(s) = l_[bi(s)eBP(s) C'(s), s: BP1 BC, of
products of first and second order branch cells corresponds to

AC(s5) 1= AICT O 5Ly AICTO@I=1 C AIBCI@I=T oy AIBCT ()11
An object (S, C) in M(X)(xg,X;) corresponds to
A(S.C)i=Agx [TCA () x [ ] *s.

SES s€S

with s the cone point in C(A€ (s)). Morphisms (S, C) < (S’, C’) correspond to
inclusions A(S,C) < A(S’,C’).
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Definition 4.10 The complex T(X)(xg, X;) is defined as the colimit
T(X)(Xo, X1) = COlimC(X)(xo,xl) A(S, C).

Theorem 4.11 The trace space f(X )(Xo, X1) is homotopy equivalent to

(1) the nerve A(C(X)(xg,X1)) of the poset category C(X)(Xg,X1), and
(2) the complex T(X)(xg,X1).

Proof The proof of Theorem 4.11 is analogous to that of [18, Theorem 3.5]: The
homotopy colimit of the functor associating the contractible spaces T (X)(s,0)(X0.X1),
resp. A(S, C) to an object (S, C) in C(X)(Xg,X;) is homotopy equivalent to the
functor associating the same point to every (S, C), ie to the nerve of that category.
Homotopy colimit and colimit of the first two functors are also homotopy equivalent;
by Lemma 4.5, this colimit is the entire trace space, resp. by definition the com-
plex T(X)(xq,X1). o

4.4 Example: Trace spaces for 2—dimensional pre-cubical complexes

Example 4.12 First, we look at the case of the space X described in Example 4.6
and Figure 1. There are four coherent and complete sequences of sections:

s1(A)=ayr, s1(1)(B1) =biy,
s2(4) =ay, s2(1)(By1) = b1z,
s3(A) = az, s3(1)(B2) = by,
s4(A) = az, s4(1)(B2) = by,

corresponding to minimal objects (S; = {s;}, C;) with C; the one-element set given
by the branches chosen by the section.

(4-1)

The only nontrivial intersection occurs for
T(X{'NXpH)0.1) and T(XJNX52)(0.1)

giving rise to the object (S14 = {81, 54}, C14 = {ay,az} x{b11} X {b22}). In this case,
the complex T(X)(0,1) is thus a disjoint union of the cones on two vertices (each of
this edges corresponds to one of the special horizontal and vertical traces) and product
of an edge with the cone on a vertex.

Using Theorem 4.11, we can conclude: T(X)(O, H)>TX)O0,1) = Tulul?is
homotopy equivalent to a set of three disjoint points.
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Example 4.13 The 2—dimensional complex X in Figure 2 below arises from gluing
the boundaries 13 of two 3—cubes [1* along a common face [J2. Its trace space has
previously been studied by Bubenik [3]. The complex has two branch points xy and A
and no higher order branch points.

S

C’ g
B [ Bl ’ °
A

X1

C

v

Figure 2: The complex X : Boundaries of two cubes glued together at com-
mon square AB'C’e

/

X0 A

!/

Bubenik’s “necklace” model yields a simplicial complex consisting of 16 triangles,
46 edges and 29 vertices which is seen to be homotopy equivalent to S'Vv S!. The
complex T(X)(xg,X;) — a prodsimplicial complex in the terminology of Kozlov [14],
since there are no higher order branch points — homotopy equivalent to f”(X ) (X9, X1)
(cf Theorem 4.11 above) is shown in Figure 3.

° ° ° °
AC’ cc’
. .....@® ° ° °
AA =
e —o ) B ) ° [ ] °
BB’ AB’ \E
° ° ° ° \ °

Figure 3: Prodsimplicial complex homotopy equivalent to the trace space for
X - and a homotopy equivalent complex

It consists of the five named squares in the nine square decomposition of a 2—torus
Al x A! —identify boundary edges as usual — to which a full triangle has been attached
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along the circle on the vertical (left=right) triangle (marked by double lines =). The
nine vertices correspond to 3 x 3 combinations of paths staying “under” the three
branches (2—cubes) corresponding to the two branch points xo and A in Figure 2.

The labels in the five marked squares refer to paths staying under two branches for each
of the branch points. They are marked by labels referring to traces through the points
mentioned. For example, AC’ denotes the space of all traces from x¢ to A (front and
bottom of the first cube) and then C’ (front and left of the second cube) and from C’
as an arbitrary d-path on the top square of the second cube to x;. It is easily seen,
that there are no d-paths corresponding to the remaining four squares BC', BA’, CA’
and CB’.

Furthermore, there is a full triangle (marked with =): Every trace entering the interior
of the “left” square xoB e C in Figure 2 leaves the past of the union of the branches
corresponding to branch point A4 ; such a path is therefore contained in all three sets Xj“l ,
giving rise to a full triangle A® x A2,

The complex T(X)(xg,x;) in Figure 3 consists thus of six 2—cells (five of type
Al x A, one of type A? x A?), 16 edges (all but the two stipled ones) and of all 9
vertices; it has Euler characteristic -1. A contraction of the full triangle can be extended
to a contraction of the entire space to a union of two full triangles (shown on the
right hand side of Figure 3) with three vertices (opposite vertices are identified). That
simplicial 2—complex contracts to a 1—complex S'v S!.

From Theorem 4.11, we may conclude: T(X)(Xo, x;)~Stvst,

5 Trace spaces for general pre-cubical complexes

In this section we outline, how the methods previously explained can be adapted to
trace spaces in a general pre-cubical complex X that may allow directed loops using
suitable coverings of the complex X :

5.1 Nonlooping length coverings

We exploit the d-map (directed map) s: X — St =~ R,z introduced in Raussen [17]:
just glue the maps s(x1,...,X,) = »_ x; mod 1 on individual cubes. Consider the
pullback X in the pullback diagram

72~ xxR

nl lidxexp
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The map 7 is a covering map with unique path lifting. Since exp can be interpreted
as a semi-cubical map, X can be conceived as a semi-cubical complex: every cube e
in X is replaced by infinitely many cubes (e, n), n € Z with boundary maps given as
d_(e,n) =(d—e,n),d4(e,n) = (04e,n+1).

The directed paths on X are those that project to directed paths in X under the
projection map 7. Note the maps exp and s — and hence 7w and 7, o S — preserve the
signed L —arc lengths from Section 2.2. Moreover, the L{-length / li( B) of a path p
in X (cf Section 2.2) with lift p can be expressed via the d-map S: X — X xR in
the pullback diagram as follows:

Lemma 5.1 (1) /{(p) = m2(S(F(1))) — 7m2(S(F(0))).
(2) X has only trivial directed loops.

Proof (1) This is clearly true locally in any cell as long as start and end point have
an L —distance less than one. Sum up and cancel!

(2) A directed path in X projects to a directed path in X with positive L;—length,
unless it is constant. Apply (1). a

Another method to construct this covering is to consider the homotopical length map

+
(X)) >Z—0

(cf Proposition 2.2) from the nondirected classical fundamental group of the cubical
complex X . Consider the cover X J X with fundamental group ¢ (X )=K dm(X)
the kernel of the homotopical length map. It can be given the structure of a pre-cubical
complex, and every element x in X has lifts x" € X, neZ. The projection map
X | X preserves signed L{-arc length. A path in X is directed if its projection
to X is. There are no nontrivial directed loops in X — these need to have L-length 0!

Example 5.2 (1) Consider atorus 7 = dA! x 9A! as a pre-cubical set consisting of
nine 2—cubes. The length cover 7" can then be modeled as an infinite strip of width 3
with identifications (x, 3) ~ (x + 3, 0); see Figure 4.

The subcomplex in Figure 4 between an initial vertex 0 and a second final vertex 1 at
length distance 3n,n > 0, has exactly one branch vertex e (3 to the left ~ below the
final vertex). The algorithm deriving the homotopy type of all d-paths of length 3n
between these two vertices (consisting of n + 1 contractible components corresponding
to pairs (k,/) of nonnegative integers with k +/ = »n) runs through many higher order
branch points and removes only few cells at a time.
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Figure 4: Length cover of a torus

(2) Now consider the space T arising from removing a (middle) cell in 7'. The length
cover of T arises from T by removing every third cell (marked X) in the middle strip;
cf Figure 5. The lower corner vertices of the removed cells are all branch vertices.

Figure 5: Length cover of torus with removed cell
For this space, no higher order branch points arise; the 2" contractible components

of the trace space correspond to the sequences of length n on the letters r, u — right
and up.

5.2 A decomposition of the trace space

For a general pre-cubical complex X with length cover X we obtain:

Proposition 5.3 For every pair of points Xo,X; € X, trace space i“(X )(Xg,X1) is
homeomorphic to the disjoint union | |, T (X) (xg, x|).
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Proof An inverse to the projection map II: L, ez f’(f)(xo x]) — f’(X)(xo, X1)
induced by the covering projection 7: X | X is given by unique lifts of the directed
paths representing traces. Remark that many of the spaces T(X ) (x ,X) may be empty
for specific n € Z. a

Since the covering X has only trivial loops, Proposition 5.3 allows us to apply the meth-
ods from Section 4 in order to describe the homotopy type of trace spaces T(X )(Xo,X1)
in an arbitrary pre-cubical complex X . It is of course desirable to exploit periodicity
properties in the comparison of spaces T (X~ ) (xg, x|) for different values of n.

Remark 5.4 Simple semaphore models with loops can be constructed from spaces of
the form X = 7"\ F with T = (S')” an n—torus and F a collection of forbidden
hyperrectangles. For such a space, one may consider the (sub)covering

X~(ﬁ. R"

l lexp

X——=T"

of the universal covering of X — a far bigger gadget. It has the property that (d-)paths,
that are not homotopic in the torus 7", lift to (d-)paths with different end points. The
methods from [18] can be applied to X immediately. It is probably easier to get hold
on periodicity properties in this setting. This line is currently being investigated by
several colleagues; see Fajstrup [7] and Fajstrup et al [8].

6 Implementation issues

6.1 A directed graph associated with a cubical complex

To a cubical complex X', one may associate — forgetting dimensions and the pre-cubical
relations — a directed graph f‘(X ): the vertices are the cubes in X : V(f‘ X))=U, Xu;
to every vertex = cube ¢ € X}, we associate arcs from ¢ to 81c and from 80 toc. The
past ¢ C X is then the union of all predecessors of ¢ regarded as a vertex in F(X );
likewise, its future P¢ C X is the union of all successors of ¢. Both can be determined
recursively. Moreover, for a set C of cells, |C =, ¢c {c.

6.2 Steps in the determination of a trace complex

In this section, we collect a few ideas on how to start the design of an algorithm
determining the complex T(X')(xg, X1) associated to a nonlooping finite pre-cubical
complex X and two vertices X, X; € Xp:
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The lower corner L(c) € Xy of an n—cell ¢ € X, can be determined as
L(c) = (88)"(c). Altogether, this recipe defines amap L: X — Xj.

A maximal cell ¢ € X has no coface under 32 ; maximal is to be understood with
respect to a lower vertex. The set M (X)) of maximal cells is thus of the form
MX) =, Xu \Uo<i<n 3?(Xn+1). The restriction of the map L to M (X)
denoted by Ljps: M(X) — X, associates to a maximal cell ¢ its lower corner
vertex in Xj.

A branch point v € X is characterized by |L]T/[1 (v)|> 1. Giventhe map Lys, the
set of branch points BP C X corresponds to vertices with more than one inverse
image, and the set of branch cells BC = L™!(BP) C M(X) C X corresponds
to the union of these inverse images.

Using the directed graph f‘(X ) from Section 6.1, one can determine consecutively

the pasts | ¢; for all branch cells ¢; € BC,

the unions [ J L(c;)=L(c;) V¢j for every branch point ¢; € BC and their comple-
ments C(UL(cj)=L(c,-) lej) = ﬂL(cj)=L(c,~) C(lcj); such a complement is a
pre-cubical complex since the cells ¢; are maximal,

the pre-cubical complex X; = |¢; UC(J L(¢;)=L(ci) lcj) for every branch
cell ¢;.

The next step is the investigation of higher order branch points and branch cells:

A section s: BP 1 BC fixes one maximal branch cell cJ’: for every branch point
b; € BP. Form the intersection subcomplexes Xy C X via intersections of
subgraphs of f‘(X ).

For each of these subcomplexes as point of departure, iterate to determine
second order branch points and branches and associated subcomplexes. Iterate
to determine higher order ones.

By recursion, we arrive at the set of all — ie, including higher order — branch points
and branch cubes and thus to the objects of the category M (X)(Xg, X;); moreover, for
every such object (S, C) the associated nonbranching (!) subcomplex X(g c) C X.

To find out whether (S, C) is an object of C(X')(xg, X1),we have to investigate whether
there is a d-path from x¢ to x; in X(g ). Since this space is nonbranching, the future
1Tx¢ of x¢ within it has a unique maximal element by Lemma 3.2. It is therefore
enough to find out whether x; is the only maximal vertex in X (g c) or whether there
is at least one other maximal vertex v. Such a “deadlock” vertex v has no arrow with
tail v in f‘(X (s,c)) in that subcomplex.
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6.3 Final comments

Although each single of the steps to be taken is quite easy to implement, the number of
steps can be enormous. In particular, if higher order branch points arise, the categories
C(X)(x9,X1) € M(X)(xg,x1) may be huge, even fora HDA X of moderate size. As
in the semaphore case in Raussen [18; 19], it is enough to determine the minimal “dead”
objects (S, C) with deadlocks in X(g c). Still, the determination of the category
C(X)(x9,x1) describing the homotopy type of the trace space of a pre-cubical complex
may need a lot of time and memory.
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