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Todd genera of complex torus manifolds

HIROAKI ISHIDA

MIKIYA MASUDA

We prove that the Todd genus of a compact complex manifold X of complex dimen-
sion n with vanishing odd degree cohomology is one if the automorphism group of
X contains a compact n–dimensional torus T n as a subgroup. This implies that if
a quasitoric manifold admits an invariant complex structure, then it is equivariantly
homeomorphic to a compact smooth toric variety, which gives a negative answer to a
problem posed by Buchstaber and Panov.

57R91; 32M05, 57S25

1 Introduction

A torus manifold is a connected closed oriented smooth manifold of even dimension,
say 2n, endowed with an effective action of an n–dimensional torus T n having a
fixed point. A typical example of a torus manifold is a compact smooth toric variety
which we call a toric manifold in this paper. Every toric manifold is a complex
manifold. However, a torus manifold does not necessarily admit a complex (even an
almost complex) structure. For example, the 4–dimensional sphere S4 with a natural
T 2 –action is a torus manifold but admits no almost complex structure.

On the other hand, there are infinitely many nontoric torus manifolds of dimension
2n which admit T n –invariant almost complex structures when n � 2. For instance,
for any positive integer k , there exists a torus manifold of dimension 4 with an
invariant almost complex structure whose Todd genus is equal to k (see Masuda [10,
Theorem 5.1]) while the Todd genus of a toric manifold is always one. One can produce
higher dimensional examples by taking products of those 4–dimensional examples
with toric manifolds. The cohomology rings of the torus manifolds in these examples
are generated by its degree-two part like toric manifolds.

In this paper, we consider a torus manifold with a T n –invariant (genuine) complex
structure. We will call such a torus manifold a complex torus manifold. The following
is our main theorem.

Theorem 1.1 If a complex torus manifold has vanishing odd degree cohomology, then
its Todd genus is equal to one.
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Remark 1.2 If a closed smooth manifold M has vanishing odd degree cohomology,
then any smooth T n –action on M has a fixed point (see Bredon [2, Corollary 10.11,
page 164]). In particular, a connected closed oriented smooth manifold M of di-
mension 2n with an effective T n –action is a torus manifold if M has vanishing odd
degree cohomology. This implies that Theorem 1.1 is equivalent to the statement in
the abstract.

Other important examples of torus manifolds are quasitoric manifolds1 introduced
by Davis and Januskiewicz in [4]. A quasitoric manifold of dimension 2n is a
closed smooth manifold with a locally standard T n –action, whose orbit space is
an n–dimensional simple polytope. It is unknown whether any toric manifold is a
quasitoric manifold. However, if a toric manifold is projective, then it is a quasitoric
manifold because a projective toric manifold with the restricted compact torus action
admits a moment map which identifies the orbit space with a simple polytope.

Kustarev gives a criterion [9, Theorem 1] of when a quasitoric manifold admits an
invariant almost complex structure. It also follows from his criterion that there are
many nontoric quasitoric manifolds which have invariant almost complex structures.
However, it has been unknown whether there is a quasitoric manifold which admits an
invariant complex structure, and Buchstaber and Panov posed the following problem in
[3, Problem 5.23], which motivated the study in this paper.

Problem 1.3 (Buchstaber–Panov) Find an example of nontoric quasitoric manifold
that admits an invariant complex structure.

As a consequence of Theorem 1.1, we obtain the following, which gives a negative
answer to Problem 1.3.

Theorem 1.4 If a quasitoric manifold admits an invariant complex structure, then it is
equivariantly homeomorphic to a toric manifold.

This paper is organized as follows. In Section 2, we study simply connected compact
complex surfaces with torus actions. In Section 3, we review the notion of multi-fan
and recall a result on Todd genus. In Section 4, we define a map associated with the
multi-fan of a complex torus manifold X and give a criterion of when the Todd genus
of X is one in terms of the map. Theorems 1.1 and 1.4 are proved in Sections 5 and 6,
respectively. Throughout this paper, all cohomology rings and homology groups are
taken with Z–coefficients.

1Davis and Januszkiewicz use the terminology toric manifold [4] but it was already used in algebraic
geometry as the meaning of (compact) smooth toric variety, so Buchstaber and Panov started using the
word quasitoric manifold [3].
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While preparing this paper, the first author and Karshon proved that a complex torus
manifold is equivariantly biholomorphic to a toric manifold [7]. Although Theorem 1.1
is contained in the result, the argument in this paper is completely different from that
in [7] and we believe that this paper is worth publishing.

2 Simply connected complex surfaces with torus actions

We first recall two results on simply connected 4–manifolds.

Theorem 2.1 (Orlik and Raymond [12]) If a simply connected closed smooth mani-
fold of dimension 4 admits an effective smooth action of T 2 , then it is diffeomorphic to
a connected sum of copies of CP2 , CP2 (CP2 with reversed orientation) and S2�S2 .

Theorem 2.2 (Donaldson [5]) If a simply connected projective complex surface is
decomposed into Y1 # Y2 as oriented smooth manifolds, then either Y1 or Y2 has a
negative definite cup-product form.

Let X be a simply connected compact complex surface whose automorphism group
contains T 2 as a subgroup. By Theorem 2.1, we have

(2-1) X Š kCP2 # `CP2 # m.S2
�S2/; k; `;m� 0

as oriented smooth manifolds. Therefore, the Euler characteristic �.X / and the signa-
ture �.X / of X are respectively given by

�.X /D kC `C 2mC 2; �.X /D k � `

and hence the Todd genus Todd.X / of X is given by

(2-2) Todd.X /D
1

4
.�.X /C �.X //D

1

2
.kCmC 1/:

The following proposition is a key step toward Theorem 1.1.

Proposition 2.3 Let X be as above. Then Todd.X /D 1.

Proof Since X is simply connected, the first Betti number of X is 0, and in particular,
even. Thus, X is a deformation of an algebraic surface; see Kodaira [8, Theorem 25].
Since any algebraic surface is projective (see Barth, Peters and Van de Ven [1, Chapter IV,
Corollary 5.6]), we can apply Theorem 2.2 to our X .
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Unless .k;m/D .1; 0/ or .0; 1/, it follows from Equation (2-1) that X can be decom-
posed into Y1 # Y2 as oriented smooth manifolds, where

Y1 DCP2; Y2 D .k � 1/CP2 # `CP2 # m.S2
�S2/ if k � 2;

Y1 D S2
�S2; Y2 D kCP2 # `CP2 # .m� 1/.S2

�S2/ if m� 2;

Y1 DCP2 # `CP2; Y2 D S2
�S2 if .k;m/D .1; 1/:

In any case, neither of Y1 and Y2 has a negative cup product form and this contra-
dicts Theorem 2.2. Therefore, .k;m/D .1; 0/ or .0; 1/ and hence Todd.X /D 1 by
Equation (2-2).

3 Torus manifolds and multi-fans

In this section, we review the notion of multi-fans introduced by Hattori and the second
author in [6] and the second author in [10] and recall a result on Todd genus.

A torus manifold X of dimension 2n is a connected closed oriented manifold endowed
with an effective action of T n having a fixed point. In this paper, we are concerned
with the case when X has a complex structure invariant under the action. We will call
such a torus manifold a complex torus manifold.

Throughout this section, X will denote a complex torus manifold of complex dimen-
sion n unless otherwise stated. We define a combinatorial object �X WD .†X ;CX ; wX /

called the multi-fan of X . A characteristic submanifold of X is a connected complex
codimension 1 holomorphic submanifold of X fixed pointwise by a circle subgroup
of T n . Characteristic submanifolds are T n –invariant and intersect transversally.
Since X is compact, there are only finitely many characteristic submanifolds, denoted
X1; : : : ;Xm . We set

†X WD

�
I 2 f1; 2; : : : ;mg

ˇ̌̌
XI WD

\
i2I

Xi ¤∅
�
;

which is an abstract simplicial complex of dimension n� 1.

Let S1 be the unit circle group of complex numbers and Ti the circle subgroup of T n

which fixes Xi pointwise. We take the isomorphism �i W S
1! Ti � T n such that

(3-1) �i.g/�.�/D g� 8g 2 S1 and 8� 2 TX jXi
=TXi

where �i.g/� denotes the differential of �i.g/ and the right hand side of Equation (3-1)
above is the scalar multiplication with the complex number g on the normal bundle
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TX jXi
=TXi of Xi . We regard �i as an element of the Lie algebra Lie T n of T n

through the differential and assign a cone

(3-2) CX .I/ WD pos.�i j i 2 I/� Lie T n

to each simplex I 2†X , where pos.A/ denotes the positive hull spanned by elements
in the set A. This defines a map CX from †X to the set of cones in Lie T n .

We denote the set of .n�1/–dimensional simplices in †X by †.n/
X

. For I 2†.n/ , XI

is a subset of the T n –fixed point set of X . The weight function wX W †
.n/
X
! Z>0 is

given by
wX .I/ WD #XI ;

where #A denotes the cardinality of the finite set A.

The triple �X WD .†X ;CX ; wX / is called the multi-fan of X . The Todd genus Todd.X /
of X can be read from the multi-fan �X as follows.

Theorem 3.1 [10] Let v be an arbitrary vector in Lie T n which is not contained in
CX .J / for any J 2†X n†

.n/
X

. Then

Todd.X /D
X

wX .I/;

where the summation runs over all I 2†
.n/
X

such that CX .I/ contains v .

The following corollary follows immediately from Theorem 3.1.

Corollary 3.2 Todd.X / D 1 if and only if the pair .†X ;CX / forms an ordinary
complete nonsingular fan and wX .I/D 1 for every I 2†.n/

X
.

Suppose XJ is connected for every J 2†X . Then XJ is a complex codimension #J

holomorphic submanifold of X with a T n –fixed point. Moreover, the induced action
of the quotient torus T n=TJ on XJ is effective and preserves the complex structure
of XJ , where TJ is the #J –dimensional subtorus of T n generated by Tj for j 2 J .
Therefore, XJ is a complex torus manifold of complex dimension n� #J with the
effective action of the quotient torus T n=TJ .

In this case, the multi-fan �XJ
D .†XJ

;CXJ
; wXJ

/ of XJ for J 2† can be obtained
from the multi-fan �X of X as discussed in [6], which we shall review. We note
XJ \Xi is nonempty if and only if J [fig is a simplex in †X and each characteristic
submanifold of XJ can be written as the nonempty intersection XJ \Xi . Hence, the
simplicial complex †XJ

coincides with the link link.J I†X / of J in †X and

CXJ
.I/D pos.�i j i 2 I/
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for I 2 link.J I†X /, where �i denotes the image of �i under the quotient map
Lie T n! Lie T n=TJ . The weight function wXJ

is the constant function 1.

4 Maps associated with multi-fans

Let X be a complex torus manifold of complex dimension n and �X D .†X ;CX ; wX /

the multi-fan of X . Throughout this section, we assume that XJ is connected for every
J 2†X . We will define a continuous map fX from the geometric realization j†X j

of †X to the unit sphere Sn�1 of the vector space Lie T n in which the cones CX .I/

for I 2 †X sit, and give a criterion of when the Todd genus of X is equal to 1 in
terms of the map fX .

We set

�I WD

�X
i2I

ai ei

ˇ̌̌̌ X
i2I

ai D 1; ai � 0

�
�Rm for I 2†X ;

where ei is the i –th vector in the standard basis of Rm . The geometric realization j†X j

of †X is given by
j†X j D

[
I2†X

�I :

Recall that the homomorphisms �i W S
1! T n for i D 1; : : : ;m defined in Section 3

are regarded as elements in Lie T n through the differential. We take an inner product
on Lie T n and denote the length of an element v 2 Lie T n by jvj. We define a map
fX W j†X j ! Sn�1 , where Sn�1 is the unit sphere of Lie T n , by

(4-1) fX j�I

�X
i2I

ai ei

�
D

P
i2I ai�i

j
P

i2I ai�i j
:

Clearly, fX is a closed continuous map.

Lemma 4.1 The map fX W j†X j ! Sn�1 is a homeomorphism if and only if
Todd.X /D 1.

Proof We note that XI is one point for any I 2 †
.n/
X

because XI is connected by
assumption and of codimension n in X . Therefore, wX .I/D 1 for any I 2†

.n/
X

and
this together with Theorem 3.1 tells us that the Todd genus Todd.X / coincides with
the number of cones CX .I/ containing the vector v 2 Lie T n in Theorem 3.1.

The above observation implies that the cones CX .I/ for I 2†X do not overlap and
form an ordinary complete fan in Lie T n if and only if Todd.X / D 1 and this is
equivalent to the map fX being a homeomorphism, proving the lemma.

Algebraic & Geometric Topology, Volume 12 (2012)



Todd genera of complex torus manifolds 1783

For each characteristic submanifold Xi , we can also define a map fXi
W j†Xi

j! Sn�2 ,
where Sn�2 is the unit sphere in Lie T n=Ti Š .Lie Ti/

? , where .Lie Ti/
? denotes

the orthogonal complement of a vector subspace Lie Ti in Lie T n .

Lemma 4.2 If the map fXi
W j†Xi

j ! Sn�2 is a homeomorphism, then the map
fX jstar.figI†X /W star.figI†X / ! Sn�1 is a homeomorphism onto its image, where
star.figI†X / denotes the open star of fig in †X .

Proof It suffices to show the injectivity of fX jstar.figI†X / because fX is closed and
continuous. Let pi W Lie T n! .Lie Ti/

? be the orthogonal projection. Through pi ,
we identify Lie T n=Ti with .Lie Ti/

? . Recall that †Xi
D link.figI†X /. For each

vertex j of link.figI†X /, we express �j as

�j D pi.�j /C ci;j�i ; ci;j 2R:

By the definitions of link.figI†X / and star.figI†X /, we can express an element
x 2 star.figI†X / as

(4-2) x D .1� t/ ei Cty; with y 2 j link.figI†X /j; 0� t < 1:

Suppose y 2 �J � j link.figI†X /j and write

y D
X
j2J

aj ej ;
X
j2J

aj D 1; aj � 0:

Then, it follows from Equation (4-1) that

fX .x/D
.1� t/�i C t

P
j2J aj�j

j.1� t/�i C t
P

j2J aj�j j

D
.1� t/�i C t

P
j2J aj .pi.�j /C ci;j�i/

j.1� t/�i C t
P

j2J aj .pi.�j /C ci;j�i/j

D g.t;y/fXi
.y/C h.t;y/

�i

j�i j
;

(4-3)

where

(4-4) g.t;y/ WD
t j
P

j2J aj pi.�j /j

j.1� t/�i C t
P

j2J aj .pi.�j /C ci;j�i/j
;

h.t;y/ WD
.1� t C t

P
j2J aj ci;j /j�i j

j.1� t/�i C t
P

j2J aj .pi.�j /C ci;j�i/j
:
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Since jfX .x/j D jfXi
.y/j D 1 and fXi

.y/ is perpendicular to �i=j�i j, it follows from
Equation (4-3) that

(4-5) g2.t;y/C h2.t;y/D 1:

Take another point x0 2 star.fig; †X / and write

x0 D .1� t/ ei Ct 0y0 with y0 2 j link.figI†X /j; 0� t 0 < 1;

similarly to Equation (4-2). Since

fX .x
0/D g.t 0;y0/fXi

.y0/C h.t 0;y0/
�i

j�i j
;

we have fX .x/D fX .x
0/ if and only if

(4-6) g.t;y/fXi
.y/D g.t 0;y0/fXi

.y0/; h.t;y/D h.t 0;y0/:

Both g.t;y/ and g.t 0;y0/ are nonnegative by Equation (4-4), so it follows from
Equations (4-5) and (4-6) that if fX .x/D fX .x

0/, then

(4-7) g.t;y/D g.t 0;y0/; fXi
.y/D fXi

.y0/:

The latter identity in Equation (4-7) above implies y D y0 since fXi
is a homeomor-

phism by assumption. Therefore it follows from (4-6) and (4-7) that

g.t;y/D g.t 0;y/; h.t;y/D h.t 0;y/:

This together with (4-3) shows that

.1� t/�i C t
X
j2J

aj�j D .1� t 0/�i C t 0
X
j2J

aj�j :

Here �i and
P

j2J aj�j are linearly independent, so we conclude t D t 0 . It follows
fX jstar.figI†X / is injective, which implies the lemma.

Corollary 4.3 If the map fXi
W j†Xi

j ! Sn�2 is a homeomorphism for all i , then
fX W j†X j ! Sn�1 is a covering map, and hence if j†X j is connected and n� 1 � 2

in addition, then fX is a homeomorphism.

5 Torus manifolds with vanishing odd degree cohomology

In this section, we prove Theorem 1.1 in the Introduction.

The T n –action on a torus manifold X of dimension 2n is said to be locally standard
if the T n –action on X locally looks like a faithful representation of T n , to be more
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precise, any point of X has an invariant open neighborhood equivariantly diffeomorphic
to an invariant open set of a faithful representation space of T n . The orbit space X=T n

is a manifold with corners if the T n –action on X is locally standard. A manifold
with corners Q is called face-acyclic if every face of Q (even Q itself) is acyclic. A
face–acyclic manifold with corners is called a homology polytope if any intersection of
facets of Q is connected unless empty. The combinatorial structure of X=T n and the
topology of X are deeply related as is shown in the following theorem.

Theorem 5.1 (Masuda and Panov [11]) Let X be a torus manifold of dimension 2n.
(1) H odd.X /D 0 if and only if the T n –action on X is locally standard and X=T n

is face-acyclic.

(2) H�.X / is generated by its degree two part as a ring if and only if the T n –action
on X is locally standard and X=T n is a homology polytope.

Suppose that X is a torus manifold of dimension 2n with vanishing odd degree
cohomology. Then X=T n D Q is a manifold with corners and face-acyclic. Let
� W X ! X=T n D Q be the quotient map and let Q1; : : : ;Qm be the facets of Q.
Then ��1.Q1/; : : : ; �

�1.Qm/ are the characteristic submanifolds of X , denoted
X1; : : : ;Xm before. If Q is a homology polytope, ie any intersection of facets of Q

is connected unless empty (this is equivalent to any intersection of characteristic
submanifolds of X being connected unless empty), then the geometric realization j†X j

of the simplicial complex †X is a homology sphere of dimension n � 1 (see [11,
Lemma 8.2]), in particular, connected when n� 2. Unless Q is a homology polytope,
intersections of facets are not necessarily connected. However, we can change Q into
a homology polytope by cutting Q along faces of Q. This operation corresponds to
blowing up along connected components of intersections of characteristic submanifolds
of X equivariantly. We refer the reader to [11] for the details.

The results in Section 2 required the simply connectedness of a complex surface. Here
is a criterion of the simply connectedness of a torus manifold in terms of its orbit space.

Lemma 5.2 Suppose that the T n –action on a torus manifold X is locally standard.
Then X is simply connected if and only if the orbit space X=T n is simply connected.

Proof Since the group T n is connected, the “only if” part in the lemma follows from
[2, Corollary 6.3, page 91].

We shall prove the “if” part. Suppose that X=T n is simply connected. Since each
characteristic submanifold Xi of X is of real codimension two, the homomorphism

(5-1) �1

�
Xn

[
i

Xi

�
! �1.X /
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induced by the inclusion map from Xn
S

i Xi to X is surjective. Here, the T n –action
on Xn

S
i Xi is free since the T n –action on X is locally standard, so that the quotient

map from Xn
S

i Xi to .Xn
S

i Xi/=T n gives a fiber bundle with fiber T n . The
orbit space .Xn

S
i Xi/=T n is simply connected because X=T n is a manifold with

corners, .Xn
S

i Xi/=T n is the interior of X=T n and X=T n is simply connected by
assumption. Therefore the inclusion map from a free T n –orbit to Xn

S
i Xi induces

an isomorphism on their fundamental groups. But any free T n –orbit shrinks to a fixed
point in X , so the epimorphism in Equation (5-1) must be trivial and hence X is
simply connected.

Now, we are in a position to prove the following main theorem stated in the Introduction.

Theorem 5.3 If a complex torus manifold X has vanishing odd degree cohomology,
then the Todd genus of X is 1.

Proof Let n be the complex dimension of X as usual. Since H odd.X /D 0, the orbit
space X=T n is face-acyclic by Theorem 5.1. As remarked after Theorem 5.1, one can
change X into a complex torus manifold whose orbit space is a homology polytope
by blowing up X equivariantly. Since Todd genus is a birational invariant, it remains
unchanged under blowing up. Therefore we may assume that the orbit space of our X

is a homology polytope, so that any intersection of characteristic submanifolds of X is
connected unless empty and j†X j is a homology sphere of dimension n� 1. Since
the orbit space of Xi is a facet of X=T n , it is also a homology polytope so that any
intersection of characteristic submanifolds of Xi (viewed as a complex torus manifold)
is also connected unless empty and j†Xi

j is a homology sphere of dimension n� 2.
Therefore, the results in Section 4 are applicable to X and Xi ’s.

We shall prove the theorem by induction on the complex dimension n of X . If nD 1,
then X is CP1 and hence Todd.X / D 1. When n D 2, the orbit space X=T 2 is
contractible because X=T 2 is acyclic by Theorem 5.1 and the dimension of X=T 2 is 2.
Therefore, X is simply connected by Lemma 5.2 and Todd.X /D 1 by Proposition 2.3.

Assume that n� 3 and the theorem holds when the complex dimension is equal to n�1.
Then, Todd.Xi/D1 for any Xi by induction assumption and hence fXi

W j†Xi
j!Sn�2

is a homeomorphism by Lemma 4.1. Since j†X j is a homology sphere of dimension
n� 1.� 2/, j†X j is connected and hence fX W j†X j ! Sn�1 is a homeomorphism
by Corollary 4.3. It follows from Lemma 4.1 that Todd.X /D 1. This completes the
induction step and the theorem is proved.
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6 Proof of Theorem 1.4

A quasitoric manifold X of dimension 2n is a smooth closed manifold endowed with a
locally standard T n –action, whose orbit space is a simple polytope Q of dimension n.
Clearly, X is a torus manifold. The characteristic submanifolds X1; : : : ;Xm of X

bijectively correspond to the facets Q1; : : : ;Qm of Q through the quotient map
� W X !Q. Therefore, for I � f1; : : : ;mg, XI D\i2I Xi is nonempty if and only if
QI WD \i2I Qi is nonempty; so the simplicial complex

†X D fI � f1; : : : ;mg jXI ¤∅g

introduced in Section 3 is isomorphic to the boundary complex of the simplicial polytope
dual to Q. As before, let Ti be the circle subgroup of T n which fixes Xi pointwise
and let �i W S

1! Ti � T n be an isomorphism. There are two choices of �i for each i .

One can recover X from the data .Q; f�ig
m
iD1

/ up to equivariant homeomorphism as
follows. Any codimension k face F of Q is written as QI for a unique I 2†X with
cardinality k and we denote the subgroup TI by TF . For a point p 2Q, we denote
by F.p/ the face containing p in its relative interior. Set

X.Q; f�ig
m
iD1/ WD T n

�Q=�;

where .t;p/�.s; q/ if and only if pDq and ts�12TF.p/ . Then X and X.Q; f�ig
m
iD1

/

are known to be equivariantly homeomorphic; see [4].

Suppose our quasitoric manifold X admits an invariant complex structure. Then, the iso-
morphism �i is unambiguously determined by requiring the identity Equation (3-1), ie

�i.g/�.�/D g�; 8g 2 S1 and 8� 2 TX jXi
=TXi :

The simplicial complex †X and the elements �i are used to define the multi-fan
of X . But since the Todd genus of X is one by Theorem 5.3, the multi-fan of X is
an ordinary complete nonsingular fan by Corollary 3.2 and hence it is the fan of a
toric manifold. Finally, we note since †X is the boundary complex of the simplicial
polytope dual to the simple polytope Q, it determines Q as a manifold with corners up
to homeomorphism. This implies Theorem 1.4 because the equivariant homeomorphism
type of X is determined by Q and the elements �i as remarked above.
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