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Exactly fillable contact structures without Stein fillings

JONATHAN BOWDEN

We give examples of contact structures which admit exact symplectic fillings, but no
Stein fillings, answering a question of Ghiggini.

57R17, 53D10; 32Q28

1 Introduction

It is a fundamental problem is contact topology to determine which contact 3–manifolds
admit symplectic fillings. There are many varieties of symplectic fillings. In addition
to weak and strong fillings it is natural to consider contact manifolds that are exactly
fillable and if the filling has a complex structure, then the natural class of symplectic
fillings are those that are Stein. The relationship between these various notions is
depicted in following sequence of inclusions:

fStein fillableg�fExactly fillableg¨fStrongly fillableg¨fWeakly fillableg¨fTightg:

Let us emphasise that a symplectic filling is always required to have connected boundary.
Examples of strongly fillable contact structures that are not exactly fillable were found
by Ghiggini [8]. Examples of weakly fillable contact structures that admit no strong
fillings were first discovered by Eliashberg [4]. Finally, Etnyre and Honda [5] showed
that there exist tight contact structures that are not weakly fillable. So all these inclusions
are strict except possibly for the first. The main result of this paper is that the first
inclusion is also strict.

Theorem 1.1 There exist exactly fillable contact structures that admit no Stein fillings.

This answers a question raised by Ghiggini whilst studying the relationship between
strong and Stein fillability [8, page 1686]. The contact structures of Theorem 1.1 are
obtained by using the fact that the Brieskorn spheres †.2; 3; 6nC 5/ considered in [8]
can be realised as coverings of Seifert fibred manifolds that are compact quotients of
PSL.2;R/. One then constructs an exactly fillable contact structure on the connected
sum x†.2; 3; 6nC5/#†.2; 3; 6nC5/ using the PSL.2;R/–structure in an explicit way.
By a result of Eliashberg a connected sum of contact manifolds is Stein fillable if
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and only if each of the summands is Stein fillable. However, the contact structure on
x†.2; 3; 6nC 5/ is Ghiggini’s non-Stein fillable contact structure, which is in fact not
even exactly fillable.

This then exhibits the failure of Eliashberg’s result for exactly fillable contact structures
and also implies that the notion of exact fillability is strictly weaker than that of exact
semi-fillability, where one allows fillings with disconnected boundary. This latter fact
is perhaps surprising since the notions of strong and weak fillability do not depend on
whether one requires the boundaries of the fillings to be connected or not. Moreover,
since the contact structures in question are perturbations of taut foliations, we further
deduce that perturbations of taut foliations on homology spheres are not necessarily
Stein fillable.
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Conventions All manifolds are smooth, oriented and connected and all contact struc-
tures will be assumed to be oriented and positive.

2 Stein fillings of non-prime manifolds

In [3], Eliashberg states a result about decomposing symplectic fillings of non-prime
manifolds. For our purposes we will be content with the case of Stein fillings, for
which a detailed proof can now be found in the book by Cieliebak and Eliashberg [1].

Theorem 2.1 (Eliashberg [3, Section 8], Cieliebak–Eliashberg [1, Theorem 16.7])
Let X be a Stein filling with boundary M D .M1; �1/#.M2; �2/ that decomposes as
a non-trivial connected sum of contact manifolds. Then X decomposes as a bound-
ary connected sum X D X1#@X2 , where X1;X2 are Stein fillings of .M1; �1/ and
.M2; �2/ respectively.

The connected sum operation is well-defined on tight contact manifolds by Colin [2].
Moreover, if both .M1; �1/ and .M2; �2/ are Stein fillable, then attaching a Stein
1–handle yields a Stein filling of the contact connected sum. In this way Theorem 2.1
implies the following as a corollary.

Corollary 2.2 A connected sum of contact manifolds .M1; �1/#.M2; �2/ is Stein
fillable if and only if .M1; �1/ and .M2; �2/ are Stein fillable.
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3 Non-Stein exact symplectic fillings

We use a construction which goes back to McDuff [14] to construct many examples
of exact symplectic fillings .X; d�/ with H3.X / ¤ 0. Since the third homology is
non-trivial, these fillings, although exact, cannot be Stein. The starting point for the
construction is an exact symplectic filling of the form .M � Œ0; 1�; d�/ both of whose
ends are convex, which can, for example, be obtained by considering compact quotients
of PSL.2;R/. This was first observed by Geiges and independently by Mitsumatsu.

Example 3.1 (Geiges [7], Mitsumatsu [15]) Let psl2 denote the lie algebra of
PSL.2;R/ and choose the basis

hD
1

2

�
1 0

0 �1

�
; l D

1

2

�
0 1

1 0

�
; k D

1

2

�
0 �1

1 0

�
:

We identify psl�2 with the space of left-invariant 1–forms on PSL.2;R/ and define a
linking pairing by

LK.˛; ˇ/D ˛^ dˇ:

With respect to this pairing the ordered basis fh�; l�; k�g is orthogonal and

LK.h�; h�/DLK.l�; l�/D�1 and LK.k�; k�/D 1:

Any non-zero 1–form ˛ 2 psl�2 then defines a positive resp. negative contact structure
or a taut foliation, depending on whether LK.˛; ˛/ is positive resp. negative or zero.
We let � be a co-compact lattice in PSL.2;R/ and consider M D PSL.2;R/=� . If
we set

�D tk�C .1� t/h�

on M � Œ0; 1�, then the pair .M � Œ0; 1�; d�/ is a symplectic filling with convex ends.

Other examples of symplectic structures on M � Œ0; 1� with convex ends are given
by T 2 –bundles over S1 with Anosov monodromy or by smooth volume preserving
Anosov flows (see Mitsumatsu [15]). It is now easy to construct examples of non-Stein
exact fillings: one simply attaches a symplectic 1–handle to .M � Œ0; 1�; d�/ with ends
in each component of the boundary.

Proposition 3.2 (McDuff [14]) There exist exact, non-Stein symplectic fillings.

Proof Let .M � Œ0; 1�; d�/D .X; !/ be an exact symplectic filling with convex ends.
Attach a symplectic 1–handle to obtain a filling of the connected sum . SM ; �0/#.M; �1/.
We denote this new filling by zX DX [ e1 , where e1 denotes a topological 1–handle.
The symplectic form on zX restricts to ! on X . Thus by the long exact sequence in
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cohomology of the pair . zX ;X / we see that zX is an exact filling and the hypersurface
M � 1

2
� zX is non-separating, whence H3. zX /¤ 0 and zX cannot be Stein.

The manifolds .N; �/D . SM ; �0/#.M; �1/ in Proposition 3.2 are always exactly fillable,
but their natural fillings are not Stein. This raises the question of whether they are
always Stein fillable or not. Or equivalently whether . SM ; �0/ and .M; �1/ are always
Stein fillable. We will answer this question, by considering various Brieskorn spheres,
which can be realised as finite covers of compact quotients of PSL.2;R/.

Note that it is not sufficient to take McDuff’s original examples where M D ST�† is
the unit cotangent bundle of a surface of genus at least 2. For in this case the contact
structures one obtains on M resp. SM are isotopic to the canonical contact structure
�can on M and a horizontal contact structure �LC given by the Levi–Civita connection
of a hyperbolic metric on †. The canonical contact structure always admits Weinstein,
and hence Stein, fillings (see Cieliebak and Eliashberg [1, Example 11.12]) and by the
classification of contact structures on S1 –bundles (see Giroux [10] and Honda [11])
the same is true of �LC . Thus the resulting contact structure on the connected sum is
also Stein fillable.

4 Brieskorn spheres and PSL.2 ; R/–structures

We consider the Brieskorn spheres x†.2; 3; 6nC5/ taken with the opposite orientation to
that given by their description as the link of the complex singularity z2

1
Cz3

2
Cz6nC5

3
D0.

These are Seifert fibred homology spheres, whose quotient orbifolds are hyperbolic for
any natural number n greater than one.

The manifold x†.2; 3; 6nC 5/ admits a contact structure �tan that is tangential to the
Seifert fibration (see Massot [13, page 1764]). This contact structure has the property
that it is isotopic to its conjugate x�tan , which denotes the same contact structure taken
with the opposite orientation, and we note this in the following proposition.

Proposition 4.1 For any natural number n� 1 the manifold x†.2; 3; 6nC5/ admits a
tangential contact structure �tan . Moreover, any tangential contact structure is isotopic
to its conjugate and is universally tight.

Proof We let B denote the quotient orbifold of x†.2; 3; 6nC 5/ given by the Seifert
fibration. A tangential contact structure �tan induces a fibrewise cover x†.2; 3; 6nC5/!

ST�B to the unit cotangent bundle of the orbifold B so that �tan is the pullback of
the canonical contact structure �can on ST�B by Massot [13, Proposition 8.9]. By
assumption B is a hyperbolic orbifold and hence ST�B is a compact quotient of
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PSL.2;R/ by a discrete lattice. Furthermore �can comes from a left-invariant contact
structure on PSL.2;R/, which is the kernel of some left-invariant 1–form, where
we have identified PSL.2;R/ with ST�H2 using the action of PSL.2;R/ on H2 via
Möbius transformations.

Using the notation of Example 3.1, any left-invariant 1–form that is tangential lies in
the span of h� and l� , since k generates the circle action. Moreover, since the linking
form is negative definite on the span of h� and l� , any non-zero form that is tangential
determines a contact structure. Hence the space of tangential PSL.2;R/–invariant
contact structures is connected, so in particular �can is isotopic to its conjugate and
the same then holds for �tan by taking pullbacks. In general any tangential contact
structure can be perturbed to a horizontal contact structure, which is then universally
tight by Massot [13, Theorem A].

Ghiggini has shown [8, Theorem 1.5] that x†.2; 3; 6nC 5/ admits a contact structure
which is strongly fillable, but admits no Stein fillings, when n is even. The only
properties of the contact structures used in Ghiggini’s proof of non-Stein fillability is
that they are isotopic to their conjugates and that their d3 –invariant is �3

2
. However,

it follows from the classification of Ghiggini and Van Horn-Morris [9] that all tight
contact structures on x†.2; 3; 6nC 5/ satisfy this latter constraint, thus in view of
Proposition 4.1 we deduce the following.

Theorem 4.2 (Ghiggini [8]) If n is even, then a tangential contact structure �tan on
x†.2; 3; 6nC 5/ does not admit any Stein fillings.

Remark 4.3 It is possible to deduce the fact that d3.�tan/D �
3
2

without using the
full force of the classification given by Ghiggini and Van Horn-Morris [9]. One only
needs the classification of contact structures with twisting number �5, for which the
Heegaard Floer computations used by Ghiggini [8] suffice, and the fact that at least
one of these must be horizontal (see Massot [13, page 1764]).

One can further show that the contact structure �tan corresponds to �n�1;0 in terms of
the classification of tight contact structures on x†.2; 3; 6nC 5/ given by Ghiggini and
Van Horn-Morris [9]. In this way, Theorem 4.2 also holds for n odd and at least 2 by
Lisca and Stipsicz [12, Theorem 1.8].

With these preliminaries we may now construct examples of exactly fillable contact
structures that admit no Stein fillings.

Theorem 4.4 There exist infinitely many exactly fillable contact manifolds that do not
admit Stein fillings.
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Proof We consider the fibrewise covering x†.2; 3; 6nC 5/ ! ST�B given in the
proof of Proposition 4.1. Since ST�B admits a PSL.2;R/–structure, the product
ST�B � Œ0; 1� can be made into an exact symplectic filling with convex ends as in
Example 3.1 and by taking pullbacks the same is true of x†.2; 3; 6nC 5/� Œ0; 1�.

We let � D �0#�1 be the contact structure on x†.2; 3; 6nC 5/#†.2; 3; 6nC 5/ given
by attaching a symplectic 1–handle as in Proposition 3.2 and note that �0 is tangential
by construction. Then by Corollary 2.2 we have that � is Stein fillable if and only if �0
and �1 are Stein fillable. However, if n is even the contact structure �0 is not Stein
fillable by Theorem 4.2 and it follows that � is exactly fillable, but not Stein fillable.

In fact, the argument used to show that �tan is not Stein fillable actually shows that it is
not even exactly fillable (see Ghiggini [8, page 1685]). In view of the examples used in
Theorem 4.4 this then exhibits the failure of the analogue of Corollary 2.2 for exactly
fillable contact structures.

Corollary 4.5 There exist infinitely many contact manifolds .M1; �1/; .M2; �2/ such
that the contact connected sum .M1#M2; �1#�2/ is exactly fillable but .M1; �1/ is not.

Furthermore, as pointed out to us by C Wendl, the fact that .x†.2; 3; 6nC 5/; �tan/ can
be realised as a boundary component of an exact filling with disconnected boundary
shows that the notion of exact semi-fillability is strictly weaker than that of exact
fillability, unlike for its weak and strong counterparts.

Corollary 4.6 There exist infinitely many contact manifolds that are exactly semi-
fillable but admit no exact fillings.

Since the contact structure �tan is isotopic to a deformation of a taut foliation, we
further deduce the following.

Corollary 4.7 There exist infinitely many contact structures that are deformations of
taut foliations on homology spheres, which are not Stein fillable.

The non-Stein fillable contact structure �tan is defined as the pullback of a tangential
contact structure. This is completely analogous to the examples of Eliashberg in [4],
who showed that the pullbacks of the standard contact structure on T 3D ST�T 2 under
suitable coverings admit weak, but not strong, symplectic fillings. This leads to the
following question, a negative answer of which would provide a very large class of
symplectically fillable contact structures without exact or Stein fillings.
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Question 4.8 Let M be a non-trivial fibrewise cover of ST�†, where † is a closed,
hyperbolic surface. Is the pullback of the canonical contact structure exactly or even
Stein fillable?

One may also formulate this question for the cotangent bundle of any hyperbolic
orbifold. However, here the situation appears to be more subtle, since for example
x†.2; 3; 11/ carries a unique tight contact structure, which is both Stein fillable and a
fibrewise pullback of the canonical contact structure under a non-trivial covering map.
A natural way of excluding this example would be to assume that the twisting number of
the contact structure on the finite cover is not minimal amongst those contact structures
that are isotopic to horizontal ones. This would also fit in with similar phenomena
that occur in the classification of horizontal contact structures on S1 –bundles (see
Giroux [10] and Honda [11]).

We finally remark that in the case of coverings of ST�T 2 the obstruction to the existence
of a strong filling can be seen as given by the Giroux torsion of the contact structure
(see Gay [6]). Thus one might hope that there is some similar type of obstruction for
covers of the unit cotangent bundle of a higher genus surface or even on more general
Seifert fibred spaces.
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