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Universal Lefschetz fibrations over bounded surfaces

DANIELE ZUDDAS

In analogy with the vector bundle theory we define universal and strongly universal
Lefschetz fibrations over bounded surfaces. After giving a characterization of these
fibrations we construct very special strongly universal Lefschetz fibrations when the
fiber is the torus or an orientable surface with connected boundary and the base surface
is the disk. As a by-product we also get some immersion results for 4–dimensional
2–handlebodies.

55R55; 57N13

1 Introduction

Consider a smooth 4–manifold V and a surface S . Let f W V ! S be a (possibly
achiral) smooth Lefschetz fibration with singular values set Af � S and regular fiber
F Š Fg;b , the compact connected orientable surface of genus g with b boundary
components. Let G be another surface. We assume that V , S and G are compact,
connected and oriented with (possibly empty) boundary.

Definition 1.1 We say that a smooth map qW G! S with regular values set Rq � S

is f –regular if q.@G/\Af D∅ and Af �Rq .

In other words, q is f –regular if and only if q and qj@G are transverse to f .

If q is f –regular then zV D f.g; v/ 2G �V j q.g/D f .v/g is a 4–manifold and the
map zf W zV !G given by zf .g; v/D g is a Lefschetz fibration. Moreover zqW zV ! V ,
zq.g; v/D v , is a fiber preserving map which sends each fiber of zf diffeomorphically
onto a fiber of f , so the regular fiber of zf can be identified with F . We get the
following commutative diagram

G S:
q

//

zV

G

zf

��

zV V
zq // V

S:

f

��
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We say that zf W zV ! G is the pullback of f by q and we make use of the notation
zf D q�.f /.

Two Lefschetz fibrations f1W V1! S1 and f2W V2! S2 are said equivalent if there
are orientation-preserving diffeomorphisms �W S1! S2 and z�W V1! V2 such that
� ıf1 D f2 ı

z� . The equivalence class of f will be indicated by Œf �.

We say that a Lefschetz fibration f is allowable if the vanishing cycles of f with
respect to a (and hence to any) Hurwitz system for Af are homologically essential in
F . We consider only allowable Lefschetz fibrations, if not differently stated.

Given f we define the set L.f /D fŒq�.f /�g where q runs over the f –regular maps
qW G! S and G runs over the compact, connected, oriented surfaces. Analogously,
we define the set SL.f / D fŒq�.f /�g � L.f / where q runs over the f –regular
orientation-preserving immersions qW G! S , with G as above.

Definition 1.2 A Lefschetz fibration uW U ! S with regular fiber F is said universal
(resp. strongly universal) if every Lefschetz fibration over a surface with non-empty
boundary and with regular fiber diffeomorphic to F belongs to a class of L.u/ (resp.
SL.u//.

In other words u is universal (resp. strongly universal) if and only if any Lefschetz
fibration over a bounded surface and with the same fiber can be obtained as the pullback
of u by a u–regular map (resp. immersion). Note that this notion of universality is
analogous to that in the theory of vector bundles (see Milnor and Stasheff [8]).

We denote by Mg;b the mapping class group of Fg;b whose elements are the isotopy
classes of orientation-preserving diffeomorphisms of Fg;b which keep the boundary
fixed pointwise (assuming isotopy through such diffeomorphisms).

It is well-known that for a Lefschetz fibration f W V ! S with regular fiber Fg;b the
monodromy of a meridian1 of Af is a Dehn twist  2Mg;b .

If S is not simply connected, the monodromy of an element of �1.S �Af / which is
not a product of meridians is not necessarily the identity on @Fg;b , and so it induces a
permutation on the set of boundary components of Fg;b . We will denote by ˙b the
permutation group of this set.

These considerations allow us to define three kind of monodromies. Let HfC�1.S�Af /

be the smallest normal subgroup of �1.S �Af / which contains all the meridians of

1A meridian of a finite subset A � Int S is an element of �1.S � A/ which can be represented
by the oriented boundary of an embedded disk in S which intersects A in a single interior point, cf.
Definition 3.2.
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Af . The Lefschetz monodromy of f is the group homomorphism !f W Hf !Mg;b

which sends a meridian of Af to the corresponding Dehn twist in the standard way
(see Gompf and Stipsicz [3]).

Let �Mg;b be the extended mapping class group of Fg;b , namely the group of all
isotopy classes of orientation-preserving self-diffeomorphisms of Fg;b . The bundle
monodromy y!f W �1.S �Af /! �Mg;b is the monodromy of the locally trivial bundle
fjW V �f

�1.Af /! S �Af .

We consider also the natural homomorphism � W �Mg;b!˙b which sends an isotopy
class to the permutation induced on the set of boundary components. The composition
� ı y!f passes to the quotient �1.S �Af /=Hf Š �1.S/ and gives a homomorphism
!�
f
W �1.S/!˙b which we call the permutation monodromy of f .

Let Cg;b be the set of equivalence classes of homologically essential simple closed
curves in Int Fg;b up to orientation-preserving homeomorphisms of Fg;b . It is well-
known that Cg;b is finite. Moreover # Cg;bD1 for g >1 and b2f0; 1g (see Lickorish [6,
Chapter 12]).

Now we state the main results of the paper. In the following proposition we characterize
the universal and strongly universal Lefschetz fibrations.

Proposition 1.3 A Lefschetz fibration uW U ! S with regular fiber Fg;b is universal
(resp. strongly universal) if and only if the following two conditions .1/ and .2/ (resp.
.1/ and .20// are satisfied:
.1/ !u and !�u are surjective;
.2/ any class of Cg;b can be represented by a vanishing cycle of u;
.20/ any class of Cg;b contains at least two vanishing cycles of u which correspond

to singular points of opposite signs.

In particular, if b 2 f0; 1g and !u is surjective then u is universal. If in addition u

admits a pair of opposite singular points, then u is strongly universal.

As a remarkable simple consequence we have that (strongly) universal Lefschetz
fibrations actually exist for any regular fiber Fg;b . Moreover, the surjectivity of !�u
implies b1.S/ > .the minimum number of generators of ˙b/, and this inequality is
sharp. So we can assume that the base surface S of a universal Lefschetz fibration is
the disk for b 6 1, the annulus for b D 2, and such that b1.S/D 2 for b > 3.

Consider a knot K � S3 and let M.K; n/ be the oriented 4–manifold obtained from
B4 by the addition of a 2–handle along K with framing n.

In the following theorem we construct very special strongly universal Lefschetz fibra-
tions when the fiber is the torus or Fg;1 with g > 1.
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Theorem 1.4 There is a strongly universal Lefschetz fibration ug;bW Ug;b! B2 with
fiber Fg;b and with

U1;1 Š B4 ,
Ug;1 ŠM.O; 1/ for g > 2, and
U1;0 ŠM.E; 0/,

where O and E denote respectively the trivial and the figure eight knots in S3 .

Corollary 1.5 Let f W V ! B2 be a Lefschetz fibration with fiber of genus one.
Suppose that no vanishing cycle of f disconnects the regular fiber with respect to some
(and hence to any) Hurwitz system. Then V immerses in R4 and so is parallelizable.

By means of Theorem 1.4 we are able to give a new elementary proof of the following
corollary. This was known since the work of Phillips [9] about submersions of open
manifolds because there exists a bundle monomorphism T V ! T CP2 for any
oriented 4–manifold V which is homotopy equivalent to a CW-complex of dimension
two (obtained by means of the classifying map to the complex universal vector bundle,
see Milnor and Stasheff [8]).

Corollary 1.6 Any compact oriented 4–dimensional 2–handlebody2 admits an orien-
tation-preserving immersion in CP2 .

Universal maps in the context of Lefschetz fibrations over closed surfaces can be
constructed in a different way. This generalization will be done in a forthcoming paper.

The paper consists of three other sections. In the next one we review some basic
material on Lefschetz fibrations needed in the paper. Section 3 is dedicated to the
proofs of our results, and in Section 4 we give some final remarks and a comment on
positive Lefschetz fibrations on Stein compact domains of dimension four.

Throughout the paper we assume manifolds (with boundary) to be compact, oriented
and connected if not differently stated. We will work in the C1 category.

Acknowledgements I would like to thanks Andrea Loi for helpful conversations and
suggestions about the manuscript. Thanks to Regione Autonoma della Sardegna for
support with funds from PO Sardegna FSE 2007–2013 and L.R. 7/2007 “Promotion of
scientific research and technological innovation in Sardinia”. Also thanks to ESF for
short visit grants within the program “Contact and Symplectic Topology".

2Recall that an n–dimensional k –handlebody is a smooth n–manifold built up with handles of index
6 k .
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2 Preliminaries

Let V be a 4–manifold (possibly with boundary and corners) and let S be a surface.

Definition 2.1 A Lefschetz fibration f W V ! S is a smooth map which satisfies the
following three conditions:

(1) the singular set zAf � Int V is finite and is mapped injectively onto the singular
values set Af D f . zAf /� Int S ;

(2) the restriction fjW V �f �1.Af /! S �Af is a locally trivial bundle with fiber
a surface F (the regular fiber of f );

(3) around each singular point za 2 zAf , f can be locally expressed as the complex
map f .z1; z2/D z2

1
C z2

2
for suitable chosen smooth local complex coordinates.

If such local coordinates are orientation-preserving (resp. reversing), then za is said
a positive (resp. negative) singular point, and aD f .za/ 2Af is said a positive (resp.
negative) singular value. Observe that this positivity (resp. negativity) notion does not
depend on the orientation of S . Obviously, around a negative singular point there are
orientation-preserving local complex coordinates such that f .z1; z2/D z2

1
Cxz2

2
.

Most authors add the adjective ‘achiral’ in presence of negative singular points. We
prefer to simplify the terminology and so we do not follow this convention.

The orientations of V and of S induce an orientation on F such that the locally trivial
bundle associated to f is oriented. We will always consider F with this canonical
orientation.

Let Fg;b be the orientable surface of genus g > 0 with b > 0 boundary components.
A Lefschetz fibration f W V ! S with regular fiber F D Fg;b is characterized by the
Lefschetz monodromy homomorphism !f W Hf !Mg;b , which sends meridians of Af
to Dehn twists, and by the bundle monodromy homomorphism y!f W �1.S�Af /! �Mg;b

which is the monodromy of the bundle associated to f . Sometimes we use the term
‘monodromy’ by leaving the precise meaning of it to the context.

It is well-known that the monodromy of a counterclockwise meridian of a positive
(resp. negative) singular value is a right-handed (resp. left-handed) Dehn twist around
a curve in F (see Gompf and Stipsicz [3]). Such a curve is said to be a vanishing cycle
for f . We recall the following definition.

Definition 2.2 A Hurwitz system for a cardinality n subset A� Int S is a sequence
.�1; : : : ; �n/ of meridians of A which freely generate �1.D �A/ and such that the
product �1 : : : �n is the homotopy class of the oriented boundary of D , where D � S

is a disk such that A� Int D and � 2 @D .
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If a Hurwitz system .�1; : : : ; �n/ for Af � S is given, the set Af D fa1; : : : ; ang can
be numbered accordingly so that �i is a meridian of ai . It is determined a sequence
of signed vanishing cycles .c˙

1
; : : : ; c˙n / (the monodromy sequence of f ), where

ci � Fg;b corresponds to the Dehn twist !f .�i/ 2Mg;b and the sign of ci equals that
of ai as a singular value of f . Clearly, ci is defined up to isotopy for all i . Sometimes
the plus signs are understood.

The fact that the ci s are all homologically (or homotopically) essential in F does not
depend on the actual Hurwitz system, so this is a property of the Lefschetz fibration f .

The monodromy sequence of f W V ! B2 determines a handlebody decomposition of
the total space as V D .B2 �F /[H 2

1
[ : : :[H 2

n where B2 �F is a trivialization
of the bundle associated to f over a subdisk contained in B2�Af and the 2–handle
H 2

i is attached to B2�F along the vanishing cycle f�ig� ci � S1�F � @.B2�F /

for a suitable subset f�1; : : : ;�ng � S1 cyclically ordered in the counterclockwise
direction (see Gompf and Stipsicz [3]). The framing of H 2

i with respect to the fiber
f�ig �F � @.B2 �F / is ��i where �i D˙1 is the sign of the singular point ai .

Note that B2�F can be decomposed as the union of a 0–handle, some 1–handles, and
also a 2–handle in case @F D∅ starting from a handlebody decomposition of F and
making the product with the 2–dimensional 0–handle B2 .

In this paper we consider only the so called relatively minimal Lefschetz fibrations,
namely those without homotopically trivial vanishing cycles. Then in our situa-
tion the monodromy sequence can be expressed also by a sequence of Dehn twists
.
�1

1
; : : : ; 

�n
n /, where i D .!f .�i//

�i is assumed to be right-handed.

Let �WMg;b! �Mg;b be the homomorphism such that �.Œ��/D Œ�� for all Œ��2Mg;b .
We have the exact sequence

Mg;b

�
�! �Mg;b

�
�!˙b �! 0

where � is the boundary permutation homomorphism defined in the Introduction.
The monodromy homomorphisms !f and y!f of a Lefschetz fibration f satisfy
y!f jHf

D � ı!f .

For a finite subset A � Int S we indicate by H.S;A/ C �1.S � A/ the normal
subgroup generated by the meridians of A. Given S , A and two homomorphisms
!W H.S;A/!Mg;b and y!W �1.S �A/! �Mg;b such that ! sends meridians to
Dehn twists and � ı! D y!jH .S;A/ , there exists a Lefschetz fibration f W V ! S with
regular fiber Fg;b such that Af D A, !f D ! and y!f D y! . Moreover, such f is
unique up to equivalence by our relative minimality assumption, unless S is closed
and the fiber is a sphere or a torus (because in such cases the diffeomorphisms group
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of the fiber is not simply connected, see Gramain [4]). In particular, if S has boundary
the 4–manifold V is determined up to orientation-preserving diffeomorphisms. In [1],
Apostolakis, Piergallini and the author give a very explicit construction of f starting
from the monodromy sequence.

If qW G ! S is f –regular with respect to a Lefschetz fibration f W V ! S then
the pullback zf D q�.f / satisfies A zf D q�1.Af /, ! zf D !f ı q� and y! zf D y!f ı q� ,
where q�W �1.G�A zf /!�1.S�Af / is the homomorphism induced by the restriction
qjW G�A zf !S�Af . The base points are understood and are chosen so that q.�0/D�

with �0 in the domain and � in the codomain.

Remark The f –regularity of q implies that q�.H zf /�Hf .

Let a 2 Af and a0 2 q�1.a/. Then q is a local diffeomorphism around a0 . It is
immediate that the sign of a0 as a singular value of zf is given by that of a multiplied
by the local degree of q at a0 , in other words sign.a0/D dega0.q/ � sign.a/.

In order to prove Theorem 1.4 we recall the definition of stabilizations (the reader
is referred to Gompf and Stipsicz [3] or Apostolakis, Piergallini and Zuddas [1] for
details).

Given a Lefschetz fibration f W V !B2 whose regular fiber F has non-empty boundary,
we can construct a new Lefschetz fibration f 0W V 0 ! B2 by an operation called
stabilization which is depicted in Figure 1. The new regular fiber F 0 D F [H 1 is
obtained by attaching an orientable 1–handle H 1 to F , and the new monodromy
sequence is given by the addition to the old one of a signed vanishing cycle c˙ which
crosses H 1 geometrically once.

The inverse operation is called destabilization and can be applied if there is a properly
embedded arc s in the regular fiber F 0 of f 0 which meets a single vanishing cycle c ,
and it does so geometrically once. The arc s is the cocore of a 1–handle of F 0 . Let F

be F 0 cut open along s , and let the new monodromy sequence be that of f 0 with c˙

removed (no matter whichever is the sign).

In terms of handlebody decompositions, stabilizations (resp. destabilizations) corre-
spond to the addition (resp. deletion) of a canceling pair of 1– and 2–handles, hence
V Š V 0 .

We end this section with the following straightforward propositions, needed in the
proof of our main results.

Proposition 2.3 Let f W V ! S be a Lefschetz fibration and let G be a surface. If
qt W G! S , t 2 Œ0; 1�, is a homotopy through f –regular maps then q�

0
.f /Š q�

1
.f /.
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BdF

F

H 1

F 0
c˙

s

Figure 1: The (de)stabilization operation

Proposition 2.4 If qW G! S is an orientation-preserving immersion (resp. embed-
ding) then the fibered map zqW zV ! V associated to the pullback q�.f /W zV ! G is
also an orientation-preserving immersion (resp. embedding).

3 Proofs of main results

We first prove the following Lemma.

Lemma 3.1 Suppose that uW U ! S satisfies conditions .1/ and .2/ (resp. .1/ and
.20// of Proposition 1.3. Then each class of Cg;b can be represented by a vanishing
cycle (resp. a vanishing cycle of prescribed sign) in any monodromy sequence of u.

Proof Let .�1; : : : ; �n/ be a Hurwitz system for Au � S and let c 2 Cg;b . There is a
meridian � of Au such that !u.�/ is a Dehn twist (resp. a Dehn twist of prescribed
sign) around a curve c 2 c. It is well-known that � is conjugate to some �i , hence
� D ��i�

�1 for some � 2 �1.S �Au/. Let ci be the vanishing cycle of i .

Put � D y!u.�/,  D y!u.�/ and i D y!u.�i/. We get  D ��1 ı i ı � (because the
standard right to left composition rule of maps differs from that in the fundamental
group). There are two cases depending on whether i is or not the identity.

If i is the identity then  is also the identity. It follows that c and ci are boundary
parallel (by the relatively minimal assumption they cannot be homotopically trivial),
hence ci 2 c. If i is not the identity then ci D �.c/ 2 c (see Wajnryb [10]).

We need also the following definition which gives a generalization of the notion of
meridian.

Definition 3.2 An immersed meridian for a finite subset A� Int S is an element of
�1.S �A/ which can be represented by the oriented boundary of an immersed disk
B � S such that #.B \A/D 1.

Algebraic & Geometric Topology, Volume 12 (2012)
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The immersed meridians of A are precisely the conjugates in �1.S � A/ of the
meridians.

Proof of Proposition 1.3 We consider first the case of universal Lefschetz fibrations.

First we prove the ‘if’ part of the proposition. Suppose that u satisfies conditions .1/
and .2/ of the statement. Consider a Lefschetz fibration f W V !G with regular fiber
Fg;b , where G is an oriented surface with non-empty boundary. We are going to show
that f Š q�.u/ for some u–regular map qW G! S . Without loss of generality we
can assume @S ¤∅.

There is a handlebody decomposition of G with only one 0–handle G0 and l > 0

1–handles G1
i , so G DG0[G1

1
[ : : :[G1

l
. We can assume that Af �G0 .

Fix base points � 2 @S and �0 2 @G and let f�1; : : : ; �ng be a Hurwitz system for
Au D fa1; : : : ; ang � S . Fix also a set of free generators f�1; : : : ; �k ; �1; : : : ; �lg for
�1.G �Af / with .�1; : : : ; �k/ a Hurwitz system for Af � G . We assume that the
�i s are represented by meridians contained in G0 and that �i is represented by an
embedded loop (still denoted by �i ) which meets the 1–handle G1

i geometrically once
and does not meet any other G1

j for j ¤ i as in Figure 2. In this figure the 1–handles
G1

i s are contained in the white lower box. We assume also that �i \ �j D f�
0g for

i ¤ j .
�0

G0 D0

�1 �k �i

D1 Dk

G1
i

Figure 2: The generators �i s and �i s

There are disks D1; : : : ;Dk �G as those depicted in dark grey in the same Figure 2
such that @Di �G�Af represents �i as a loop and Di\Dj Df�

0g for all i¤ j . There
is also a disk D0 �G �Af which is a neighborhood of �0 such that D0\Di Š B2

and D0\�i Š Œ0; 1� for all i . Then D DD0[D1[ : : :[Dk is diffeomorphic to B2

(up to smoothing the corners).

It follows that G is diffeomorphic to the surface G0 obtained from D by the addition
of orientable 1–handles G0

1
; : : : ;G0

l
where G0i has attaching sphere the endpoints of

the arc �i \D0 for any i D 1; : : : ; l .
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Consider the Dehn twists  �i

i D !u.�i/ and ı�i

i D !f .�i/ around respectively the
vanishing cycles ci (for u) and di (for f ), where �i ; �i D˙1 (i and ıi are assumed
to be right-handed).

By Lemma 3.1 di is equivalent in Cg;b to some cji
. It follows that ıiD��1

i ıji
ı�i for

some �i 2 �Mg;b which sends di to cji
(see Wajnryb [10]). Note that this composition

is well-defined in Mg;b as the isotopy class of x��1
i ı xji

ı x�i where x�i and xji
are

representatives of �i and ji
respectively.

Since !u and !�u are surjective, y!u is also surjective and so there is ˛i 2 �1.S �Au/

such that �i D y!u.˛i/. It follows that ıi D !u.ˇ
�ji

i / where ˇi D ˛i�ji
˛�1

i is an
immersed meridian of aji

.

So ˇi can be represented by the oriented boundary of an immersed disk Bi � S which
intersects Au only at aji

. The Bi s can be chosen so that for a suitable embedded
disk B0 � S � Au which is a neighborhood of �, we have B0 \ Bi Š B2 and
B0\Bi \Bj D f�g for all i ¤ j > 1.

Now take �0i 2�1.S�Au/ such that y!u.�
0
i/D y!f .�i/ for iD1; : : : ; l . We represent �0i

by a transversely immersed loop (still denoted by �0i ) in S�Au such that B0\�
0
iŠ Œ0; 1�

and B0\ �
0
i \ �

0
j D f�g for i ¤ j .

Consider the moves t , t 0 and t 00 of Figure 3, where t acts on pairs .Bi ;Bj /, t 0 on
pairs .Bi ; �

0
j /, and t 00 on pairs .�0i ; �

0
j /. These moves allow us to make the Bi s and

the loops �0i s intersect B0 in the same order as the Di s and the �i s do with D0 .

Take a map xqW G0 ! S which sends D0 to B0 diffeomorphically, immerses Di

onto Bi by preserving the orientation, and immerses the 1–handle G0i onto a regular
neighborhood of �0i � S � Au for all i . Assume also that xq.Af / D Au and that
xq.�0/D�. Then it follows that xq is a u–regular immersion and that the homomorphism
xq�W �1.G

0 �Af /! �1.S �Au/ induced by the restriction xqjW G0 �Af ! S �Au

satisfies xq�.�i/D ˇi and q�.�i/D �
0
i for all i > 1.

Now fix identifications D0i D Cl.Di �D0/Š Œ�1; 1�� Œ�1; 1� for i > 1, such that the
ordinate is 1 along the arc D0 \D0i and such that the singular value Di \Af has
coordinates

�
0;�1

2

�
. Let ri W G

0! G0 be defined by the identity outside D0i and by
the map of D0i to itself given by ri.t1; t2/D .t1t2; t2/ up to the above identification.
So ri shrinks a proper arc of D0i to a point, preserves the orientation above this arc
and reverses the orientation below it, as depicted in Figure 4. Moreover, ri.Af /DAf
and the homomorphism induced by the restriction ri�W �1.G

0�Af /! �1.G
0�Af /

satisfies ri�.�i/D �
�1
i , ri�.�j /D �j for j ¤ i , and ri�.�j /D �j for all j .

Let I D fi1; : : : ; img � f1; : : : ; kg be the set of those i such that �ji
�i D�1 and put

q D xq ı ri1
ı � � � ı rim

W G ŠG0! S (with q D xq if I is empty). Then q is u–regular,
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� �

� �

� �

t

t 0

t 00

Figure 3: The permuting moves

�0 �0

id id
D0 D0

ri

id id
�1 �i �k �1 ��1

i
�k

D1 Di Dk D1 Di Dk

Figure 4: The twisting map ri on D

q�1.Au/DAf , !f D!uıq� and y!f D y!uıq� where q�W �1.G�Af /!�1.S�Au/

is induced by the restriction of q . It follows that f Š q�.u/.

Now we prove the ‘only if’ part of the proposition. Let uW U ! S be universal
with regular fiber Fg;b . Consider a Lefschetz fibration f W V ! G with the same
regular fiber and which satisfies the conditions .1/ and .2/. There is a u–regular map
qW G! S such that q�.u/D zf Š f . Then zf satisfies the conditions .1/ and .2/ of
the statement. Since ! zf D !u ı q� and !�

zf
D !�u ı q� we obtain that !u and !�u are

surjective.
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Consider now a class c 2 Cg;b . We can find a meridian � 2 �1.G �A zf / such that
! zf .�/ is a Dehn twist around a curve c 2 c. Since q is u–regular, q�.�/2�1.S�Au/

is an immersed meridian of Au , hence q�.�/D ˛�˛
�1 for a meridian � of Au and

for some ˛ 2 �1.S �Au/.

It follows that �D y!u.˛/ satisfies ��1 ı!u.�/ ı�D ! zf .�/ and so !u.�/ is a Dehn
twist around �.c/ 2 c. Then c can be represented by a vanishing cycle of u.

The case of strongly Lefschetz fibrations can be handled similarly by tracing the same
line of the previous proof. We just give an idea of the ‘if’ part: if conditions .1/ and
.20/ are satisfied then the cji

s in the proof of the first part can be chosen so that �ji
D�i .

Then the set I defined above is empty and so q is an orientation-preserving u–regular
immersion such that f D q�.u/.

Finally, the last part of the proposition follows since # Cg;b D 1 for b 2 f0; 1g.

Proof of Theorem 1.4 We consider three cases, depending on the values of g and b .

Case 1 (g > 2 and b D 1) Consider the Lefschetz fibration ug;1W Ug;1! B2 with
regular fiber Fg;1 and with monodromy sequence given by the 2gC1 signed vanishing
cycles .b�

1
, b2 , a1; : : : ; ag; c

�
1
; c2; : : : ; cg�1/ depicted in Figure 5, where a Hurwitz

system is understood. In this figure the surface Fg;1 is embedded in R3 as part of the
boundary of a standard genus g handlebody.

a1 a2 ag�1 ag

b�
1 b2

c�
1

c2 cg�2 cg�1

Figure 5: The Lefschetz fibration ug;1 for g > 2

By a theorem of Wajnryb [10] Mg;1 is generated by the 2gC 1 Dehn twists ˛i , ˇi

and i around the curves ai , bi and ci respectively. It follows that !ug;1
is surjective

and so ug;1 is strongly universal by Proposition 1.3.

Now we analyze the 4–manifold Ug;1 . In Figure 6 we pass from ui;1 to ui�1;1 in a
two step destabilization process (first destabilize ai by the arc si and then destabilize
ci�1 by the arc s0

i�1
). This operation can be done whenever i > 2, and so by induction

we can assume that g D 2. In other words Ug;1 Š U2;1 for g > 2.

In Figure 7 we give some more destabilizations (first of a2 along s2 and then of a1

along s ), and finally we get the Lefschetz fibration depicted in the left lower part of
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a1 a2 ai�1 ai

b�
1 b2

c�
1

c2 ci�2 ci�1 si

Destabilize ai along si

a1 a2 ai�1

b�
1 b2

c�
1

c2 ci�2 ci�1

s0
i�1

Destabilize ci�1 along s0
i�1

a1 a2 ai�1

b�
1 b2

c1 c2 ci�2

Figure 6: Simplifying ui;1 for i > 2

the same figure. This has fiber F0;3 and three boundary parallel vanishing cycles (two
negative and one positive).

So a Kirby diagram for Ug;1 is that depicted in Figure 8, which by a straightforward
Kirby calculus argument can be recognized to be M.O; 1/ (slide the outermost 2–
handle over that with framing �1 so that the latter cancels and by another simple
sliding and deletion we get the picture for M.O; 1/ in the right side of Figure 8).

Case 2 (g D b D 1) Consider the Lefschetz fibration u1;1W U1;1! B2 with regular
fiber F1;1 and with monodromy sequence .a; b�/ depicted in Figure 9. By Wajn-
ryb [10] M1;1 is generated by the two Dehn twists ˛ and ˇ around the curves a and
b respectively and so Proposition 1.3 implies that u1;1 is strongly universal.

By a double destabilization we get a Lefschetz fibration with regular fiber B2 and
without singular values, hence U1;1 is diffeomorphic to B2 �B2 Š B4 .
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a1 a2

b�
1 b2

c�
1

s2

Destabilize

a2 along s2 a1

b�
1

b2

c�
1

Equivalence
a1

b�
1 b2

c�
1s

Destabilize
a1 along s

b�
1 b2

c�1

Equivalence

c�
1

b�
1 b2

Figure 7: Simplifications of u2;1

1 �1

1

1

M.O; 1/

Figure 8: The manifold Ug;1 ŠM.O; 1/ for g > 2

a
b�

Figure 9: The Lefschetz fibration u1;1

Case 3 (gD 1 and bD 0) Let u1;0W U1;0!B2 be the Lefschetz fibration with fiber
F1;0 D T 2 and with monodromy sequence .a; b�/ depicted in Figure 10. Then !u1;0

is surjective and so u1;0 is strongly universal by Proposition 1.3.

Consider F1;1 � @U1;1 Š S3 as the fiber of u1;1 over a point of S1 D @B2 . So
K D @F1;1 is a knot in S3 . Moreover, by pushing off K along F1;1 we get the
framing zero (in terms of linking number), since F1;1 is a Seifert surface for K .
Therefore the addition of a 2–handle to B4 along K with framing zero produces U1;0

(see Gompf and Stipsicz [3]). In Figure 11 is depicted a Kirby diagram for U1;0 . This
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a

b�

Figure 10: The Lefschetz fibration u1;0

and the next three figures are referred to the blackboard framing, namely that given by
a push off along the blackboard plus the extra full twists specified by the number near
the knot. Note that in Figure 11 the blackboard framing coincides with that of the fiber
F1;1 .

�1
1

0

Figure 11: The manifold U1;0

Now we apply the moves tC and t� of Figures 12 and 13 respectively, where the thick
arcs with framing zero belong to the same knot (which is assumed to be unlinked with
the thin one) with the orientations indicated in these figures. Such moves are proved
by Kirby calculus in the same figures.

We get Figure 14 where the two kinks in the second stage are opposite and so do not
affect the framing. The last stage, which gives the figure eight knot, is obtained by
framed isotopy.

Since the writhe of the figure eight knot is zero, the blackboard framing zero is the
same as linking number zero, and this concludes the proof.

Proof of Corollary 1.6 By a theorem of Harer [5] any 4–dimensional 2–handlebody
V admits a Lefschetz fibration f W V ! B2 with regular fiber Fg;1 for some g > 1

(see also Loi and Piergallini [7] or Etnyre and Fuller [2] for different proofs). Up to
stabilizations we can assume g > 2.

Theorem 1.4 implies that f Š q�.ug;1/ for some orientation-preserving ug;1 –regular
immersion qW B2! B2 . Then we get a fibered immersion zqW V ! Ug;1 ŠM.O; 1/.

Algebraic & Geometric Topology, Volume 12 (2012)



1826 Daniele Zuddas

tC

0

0

1

1

1

1

0

Figure 12: The move tC

t�
0

�1

0

�1

�1

�1

0

Figure 13: The move t�

0

1

0 0

Figure 14: Kirby diagrams for U1;0
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It is well-known that M.O; 1/ is orientation-preserving diffeomorphic to a tubular
neighborhood of a projective line in CP2 . Then we can consider M.O; 1/ � CP2 ,
and this concludes the proof.

Proof of Corollary 1.5 Let F1;b be the regular fiber of f . If b D 1 the corollary
follows immediately from Theorem 1.4 since V admits a fibered immersion in U1;1 Š

B4 �R4 and hence is parallelizable.

If b > 2 we consider the 4–manifold V 0 obtained from V by the addition of 2–handles
along all but one boundary components of the regular fiber F1;b � @V with framing
zero with respect to F1;b . Then V � V 0 . Moreover, f extends to a Lefschetz fibration
f 0W V 0 ! B2 with regular fiber F1;1 whose monodromy is obtained from !f by
composition with the homomorphism from M1;b to M1;1 induced by capping off by
disks all but one boundaries components of F1;b .

The non-separating assumption on the vanishing cycles of f implies that f 0 is allow-
able, and so V 0 immerses in R4 by the first case.

If b D 0, V fibered immerses in the manifold U1;0 ŠM.E; 0/ of Theorem 1.4. We
conclude by observing that M.E; 0/ immerses in R4 as a tubular neighborhood of
B4[D where D �R4� Int B4 is a self-transverse immersed disk with boundary the
knot E .

4 Final remarks

Remark It is not difficult to see that for b > 1

# Cg;b D

(�
b
2

˘
; if g D 0�gb�gCb
2

˘
C 1; if g > 1

which is a lower bound for the number of singular points of a universal Lefschetz
fibration with fiber Fg;b .bxc denotes the integer part of x 2R/.

Remark In order to include also the not allowable Lefschetz fibrations it suffices
to replace, in Proposition 1.3, Cg;b with the set of �Mg;b –equivalence classes of
homotopically essential curves. The proof is very similar.

In [7] Loi and Piergallini characterized compact Stein domains of dimension four, up
to orientation-preserving diffeomorphisms, as the total spaces of positive Lefschetz
fibrations (meaning with only positive singular points) over B2 with bounded fiber.
We can express this theorem in terms of universal positive Lefschetz fibrations.
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Following the notations of the proof of Theorem 1.4, let pgW Pg!B2 be the Lefschetz
fibration with fiber Fg;1 and with monodromy sequence given by .a; b/ for gD 1 and
.b1 , b2 , a1; : : : ; ag; c1; c2; : : : ; cg�1/ for g > 2 as shown in Figure 15.

a
b

a1 a2 ag�1 ag

b1 b2

c1 c2 cg�2 cg�1

Figure 15: The positive universal Lefschetz fibrations pg

Then pg is universal (but not strongly universal) by Proposition 1.3. Moreover P1ŠB4

and Pg has the Kirby diagram depicted in Figure 16 for g > 2. That Pg ŠM.O;�3/

follows by the same argument used in the proof of Theorem 1.4.

�1 �1

�1

�3

Figure 16: The 4–manifold Pg for g > 2

However, SL.pg/ is the set of equivalence classes of all positive Lefschetz fibrations
with fiber Fg;1 . The proof is exactly the same of Proposition 1.3 with �ji

D �i D 1.

Of course any Lefschetz fibration with bounded fiber can be positively stabilized so
that the fiber has connected boundary.

It follows that compact 4–dimensional Stein domains with strictly pseudoconvex bound-
ary coincide, up to orientation-preserving diffeomorphisms, with the total spaces of
Lefschetz fibrations that belong in SL.pg/ for some g > 1.
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