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Moduli spaces of Klein surfaces and related operads

CHRISTOPHER BRAUN

We consider the extension of classical 2—dimensional topological quantum field
theories to Klein topological quantum field theories which allow unorientable surfaces.
We approach this using the theory of modular operads by introducing a new operad
governing associative algebras with involution. This operad is Koszul and we identify
the dual dg operad governing A ,—algebras with involution in terms of Mobius graphs
which are a generalisation of ribbon graphs. We then generalise open topological
conformal field theories to open Klein topological conformal field theories and give
a generators and relations description of the open KTCFT operad. We deduce an
analogue of the ribbon graph decomposition of the moduli spaces of Riemann surfaces:
a Mobius graph decomposition of the moduli spaces of Klein surfaces (real algebraic
curves). The Mobius graph complex then computes the homology of these moduli
spaces. We also obtain a different graph complex computing the homology of the
moduli spaces of admissible stable symmetric Riemann surfaces which are partial
compactifications of the moduli spaces of Klein surfaces.

32G15, 30F50; 57R56, 18D50, 81T40

Introduction

One property of the original axiomatic definition by Atiyah [3] of a topological quantum
field theory (TFT) is that all the manifolds considered are oriented. Alexeevski and
Natanzon [1] considered a generalisation to manifolds that are not oriented (or even
necessarily orientable) in dimension 2. An unoriented TFT in this sense is then called
a Klein topological quantum field theory (KTFT).

It is well known that 2—dimensional closed TFTs are equivalent to commutative
Frobenius algebras and open TFTs are equivalent to symmetric (but not necessarily
commutative) Frobenius algebras, for example see Moore [18] and Segal [21]. Theorems
of this flavour identifying the algebraic structures of KTFTs have also been shown. In
the language of modular operads, developed by Getzler and Kapranov [9], these results
for oriented TFTs say that the modular operads governing closed and open TFTs are
Com and Ass which are the modular closures (the smallest modular operad containing
a cyclic operad) of Com and Ass, which govern commutative and associative algebras.
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It is also possible to generalise TFTs by adding extra structure to our manifolds such
as a complex structure which gives the notion of a topological conformal field theory
(TCFT). We can also find topological modular operads governing TCFTs constructed
from moduli spaces of Riemann surfaces.

The ribbon graph decomposition of moduli space is an orbi-cell complex homeomorphic
to Mg n X R’;O with cells labelled by ribbon graphs, introduced in Harer [11] and
Penner [20]. Ribbon graphs arise from the modular closure of the Ao, operad (cf
Kontsevich [13]). Indeed the cellular chain complex of the operad given by gluing
stable holomorphic discs with marked points on the boundary is equivalent to the Ao
operad and can be thought of as the genus 0 part of the operad governing open TCFTs.
It was shown by Kevin Costello [7; 8] that this gives a dual point of view on the ribbon
graph decomposition of moduli space: The operad governing open TCFTs is homotopy
equivalent to the modular closure of the suboperad of conformal discs and so this
gives a quasi-isomorphism on the chain complex level to the modular closure of the
A operad. The moduli spaces underlying the open TCFT operad are those of stable
Riemann surfaces with boundary and marked points on the boundary. In particular this
yields new proofs of ribbon graph complexes computing the homology of these moduli
spaces.

We wish to consider the corresponding theory for KTFTs. Alexeevski and Natanzon [1]
considered open—closed KTFTs and Turaev and Turner [23] considered just closed
KTFTs. We will concentrate mainly on the open version in order to parallel the theory
outlined above. We begin by recasting the definitions for KTFTs in terms of modular
operads. We show that the open KTFT operad is given by the modular closure of the
cyclic operad M. Ass which is the operad governing associative algebras with involution.
The corresponding notion of a ribbon graph, a Mobius graph, is also developed to
identify M.Ass and the various operads obtained from it. On the other hand the closed
KTFT operad is not the modular closure of a cyclic operad.

We then generalise to the Klein analogue of open TCFTs (open KTCFTs). The correct
notion here of an ‘unoriented Riemann surface’ is a Klein surface, where we allow
transition functions between charts to be anti-analytic. Alling and Greenleaf [2]
developed some of the classical theory of Klein surfaces and showed that Klein surfaces
are equivalent to smooth projective real algebraic curves. We find appropriate partial
compactifications of moduli spaces of Klein surfaces which form the modular operad
governing open KTCFTs. We also consider other different (although more common)
partial compactifications giving rise to a quite different modular operad. The underlying
moduli spaces of this latter operad are spaces of ‘admissible’ stable symmetric Riemann
surfaces (which are open subspaces of the usual compactifications containing all stable
symmetric surfaces).
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By following the methods of Costello [7; 8] we can obtain graph decompositions of these
moduli spaces. Precisely this means we find orbi-cell complexes homotopy equivalent
to these spaces with each orbi-cell labelled by a type of graph. As a consequence we
see that open KTCFTs are governed by the modular closure of the operad governing
Aso—algebras with involution and we obtain a Mobius graph complex computing the
homology of the moduli spaces of smooth Klein surfaces. We also obtain a different
graph complex computing the homology of the other partial compactifications.

This work was done as part of a PhD at the University of Leicester under the supervision
of Andrey Lazarev.

Notation Throughout this paper k will denote a field which, for simplicity and
convenience, we will normally assume to be Q unless stated otherwise. Many of the
definitions and results should of course work over more general fields.

Outline and main results

The first two sections provide the necessary background and notation. In the first section
definitions of topological quantum field theories and their Klein analogues are briefly
introduced in terms of symmetric monoidal categories of cobordisms. The known
results concerning the structure of KTFTs are stated and we provide some pictures that
hopefully shed light on how these results arise. In the second section the definitions
from the theory of modular operads that we use is recalled and the cobar construction
is outlined. We include a slight generalisation of modular operads: extended modular
operads (which is very similar to the generalisation of Chuang and Lazarev [5]). For
the reader familiar with modular operads this section will likely be of little interest
apart from making clear the notation used here.

The third section introduces the open KTFT modular operad denoted OKTFT. Mobius
trees and graphs are discussed in detail and the operad M Ass is defined in terms of
Mbobius trees. This is the operad governing associative algebras with an involutive
anti-automorphism. We then show OKTFT = M.Ass thereby providing a generators
and relations description of OKTFT in terms of M&bius graphs. We show MAss is
its own quadratic dual, is Koszul and identify the dual dg operad DM.Ass (governing
Aoso—algebras with an involution) and its modular closure. Finally we generalise our
construction and discuss the closed KTFT operad, showing that only part of the closed
KTFT operad is the modular closure of an operad MCom .

In the fourth section we generalise to open KTCFTs. We discuss the necessary defini-
tions and theory of Klein surfaces and nodal Klein surfaces. A subtlety arises when
considering nodal surfaces and we find there are two different natural notions of a
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node. We provide some clarity on this difference by establishing some equivalences
of categories: we show that one sort of nodal Klein surface is equivalent to a certain
sort of symmetric nodal Riemann surface with boundary and the other is equivalent
to a certain sort of symmetric nodal Riemann surface without boundary. We obtain
moduli spaces Eg,u,h,,, of stable nodal Klein surfaces with g handles, u crosscaps, %
boundary components and 7 oriented marked points using one definition of a node.
We also obtain quite different moduli spaces MR g,n of ‘admissible’ stable symmetric
Riemann surfaces without boundary of genus g and » fixed marked points using the
other definition. The spaces I?g,u’ h,n are homotopy equivalent to their interiors which
are the spaces Ky , 4., of smooth Klein surfaces with oriented marked points. The
spaces MR .n are partial compactifications of the spaces MRn of smooth symmetric
Riemann surfaces which are the same as the spaces of smooth Klein surfaces with
unoriented marked points. Let Dg , 5 , C ICg u,h,n be the locus of surfaces such that
each irreducible part is a disc. Let D]R be the corresponding subspace of MR g

We obtain topological modular operads IC and MR by gluing at marked points. The
operad K gives the correct generalisation governing open KTCFTs. We then show the
inclusions of the suboperads arising from the spaces Dy , 4 , and D?in are homotopy
equivalences.

Theorem

e The inclusion D — K is a homotopy equivalence of extended topological
modular operads.

e The inclusion DR < MR js a homotopy equivalence of extended topological
modular operads.

Applying an appropriate chain complex functor Cy from topological spaces to dg
vector spaces over Q we obtain dg modular operads and the above result translates to
the following.

Theorem There are quasi-isomorphisms of extended dg modular operads over Q
Ci(D)~Cy(K) and  Ciu(D)/(a=1)~ Cr(MR)

where a € C«(D)((0,2)) = Q[Z,] is the involution.

The spaces Dy 4 4.n decompose into orbi-cells labelled by Mobius graphs and so we

can identify the cellular chain complexes Cx(D) in terms of the operad M.Ass so

that Cyx(D) = DM Ass. Therefore we see that an open KTCFT is a Frobenius A4co—
algebra with involution and we also obtain Mobius graph complexes computing the
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homology of the moduli spaces of smooth Klein surfaces as well as different graph
complexes (arising from DMAss/(a = 1)) computing the homology of the partial
compactifications given by MR Unlike H, (K), the genus 0 part of H, (m) has
non-trivial components in higher degrees. The gluings for the operad MR can be
thought of as ‘closed string’ gluings similar to those for the Deligne—Mumford operad.

We finish by unwrapping our main theorems to give concrete and elementary descrip-
tions of the different graph complexes and explain the isomorphisms of homology
without reference to operads.

1 Topological quantum field theories

Since we will be working in dimension 2 we restrict our definitions to dimension 2. It
is possible to give definitions in arbitrary dimension easily for closed field theories, but
for open field theories it is necessary to mention manifolds with faces in order to glue
cobordisms properly. This is a technical concern not of interest to us here. We will
first briefly recall the details of oriented topological quantum field theories and then
define a Klein topological quantum field theory and recall well known results about
dimension 2 topological field theories and their unoriented analogues.

1.1 Oriented topological field theories

We begin by recalling the classical definitions.

Definition 1.1 We define the category 2Cob as follows:

¢ Objects of 2Cob are compact oriented 1—manifolds (disjoint unions of circles
and intervals).

e Morphisms between a pair of objects Xy and X, are oriented cobordisms from
3o to X up to diffeomorphism. That is a compact, oriented 2—manifold M
together with orientation preserving diffeomorphisms ¢ ~ dM;, C dM and
1 > OM oy C OM (where M oy means dMoy with the opposite orientation)
with dMinNOM oy = @. We call My, 0M oy and 0Mfree = OM \ (OMin U0 M oyt)
the in boundary, the out boundary and the free boundary respectively. We say two
cobordisms M and M’ are diffeomorphic if there is an orientation preserving
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diffeomorphism yr: M 5 M’ where the following commutes:

M

1N

Yo V| X

N

M/
Composition is given by gluing cobordisms together. As mentioned above, care
must be taken to ensure that gluing is well defined up to diffeomorphism. In
dimension 2 we know that smooth structure depends only on the topological
structure of our manifold so we will avoid discussing the technical issues. Gluing

is associative and the identity morphism from 3 to itself is given by the cylinder
YxI.

It can be shown that the category 2Cob is a symmetric monoidal category with the
tensor product operation given by disjoint union of manifolds.

Definition 1.2 An open—closed topological field theory is a symmetric monoidal
functor 2Cob — Vect; , where Vect;, is the category of vector spaces over the field & .

We can now consider open and closed theories separately by restricting to the appropriate
subcategory.

Definition 1.3

The category 2Cob®! is the (symmetric monoidal) subcategory of 2Cob with
objects closed oriented 1-manifolds (disjoint unions of circles) and morphisms
with empty free boundary. A closed topological field theory is a symmetric
monoidal functor to Vect;, .

The category 2Cob° is the full (symmetric monoidal) subcategory of 2Cob with
those objects which are not in 2Cob¢! (disjoint unions of intervals). An open
topological field theory is a symmetric monoidal functor to Vecty .

We then have the following classical results:

Proposition 1.4 Closed topological field theories of dimension 2 are equivalent to
commutative Frobenius algebras (see for example the book by Kock [12]).
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Proposition 1.5 Open topological field theories of dimension 2 are equivalent to
symmetric Frobenius algebras (in other words not necessarily commutative but the
bilinear form is symmetric, see Moore [18], Segal [21] or Chuang and Lazarev [5]).

Proposition 1.6 Open—closed topological field theories of dimension 2 are equivalent
to ‘knowledgeable Frobenius algebras’ (see Lauda and Pfeiffer [14] for definitions and
proof or also Lazaroiu [15] and Moore [17]).

1.2 Klein topological field theories

To extend to the unorientable case we suppress all mentions of orientations. This leads
to the following definition:

Definition 1.7 We define the category 2KCob as follows:

e Objects of 2KCob are compact 1-manifolds (disjoint unions of circles and
intervals).

¢ Morphisms between a pair of objects 2o and X, are (not necessarily orientable)
cobordisms from X to X; up to diffeomorphism. That is a compact 2—manifold
M together with diffeomorphisms X¢ ~ dMi, C IM and ¥; >~ 0Myy C OM
with OM;, N OM oy = . We say two cobordisms M and M’ are diffeomorphic

if there is a diffeomorphism : M 5 M’ where the following commutes:

M

1N

20 V| 2

N

M/
¢ Composition is given by gluing cobordisms together. The identity morphism
from X to itself is given by the cylinder X x 1.

As in the orientable case 2KCob is a symmetric monoidal category by disjoint union
of manifolds.

It is convenient to identify 2Cob and 2KCob with their skeletons. Recall that since all
oriented circles are isomorphic (since S! is diffeomorphic to itself with the opposite
orientation) the skeleton of 2Cob is the full subcategory with objects disjoint unions of
copies of a single oriented S! (so the set of objects can be identified with the natural
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numbers). Similarly the skeleton of 2KCob is the full subcategory with objects disjoint
unions of copies of a single unoriented S (so again the set of objects can be identified
with the natural numbers). In this way we can think of 2Cob as a subcategory of
2KCob by forgetting orientations. Note that even if the underlying manifold M of
a cobordism in 2KCob is orientable the cobordism itself is not necessarily in 2Cob,
since it may not be possible to choose an orientation of M such that the embeddings
3o <> dM <« X; are orientation preserving. Consider for example:

3y # 0 3

The cobordisms above are both morphisms from S to itself (where the arrows denote
the directions of the embeddings of S!). However while the cobordism on the left is
the identity morphism, the cobordism on the right is in 2KCob but not in 2Cob.

Definition 1.8 An open—closed Klein topological field theory is a symmetric monoidal
functor 2KCob — Vect, .

Definition 1.9

e The category 2KCob! is the (symmetric monoidal) subcategory of 2KCob with
objects closed 1-manifolds without boundary (disjoint unions of unoriented
circles) and morphisms with empty free boundary. A closed Klein topological
field theory is a symmetric monoidal functor to Vecty .

e The category 2KCob® is the full (symmetric monoidal) subcategory of 2KCob
with those objects which are not in 2KCob® (disjoint unions of intervals). An
open Klein topological field theory is a symmetric monoidal functor to Vect, .

We then have analogues of Proposition 1.4, Proposition 1.5 and Proposition 1.6.
Proposition 1.10 Open—closed Klein topological field theories of dimension 2 are
equivalent to ‘structure algebras’ (see Alexeevski and Natanzon [1] for a definition and
a proof).

In particular we can immediately deduce from the above result proved in [1], by setting
the open part of a structure algebra to 0, the result for closed KTFTs. It is also proved

separately by Turaev and Turner [23].

Proposition 1.11 Closed Klein topological field theories of dimension 2 are equivalent
to the following structures.
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e A commutative Frobenius algebra A with an involutive anti-automorphism'
X +— x* preserving the pairing. That is, (x*)* = x, (xy)* = y*x* and
(X, p%) = (x. »).

o There is an element U € A such that (aU)* = aU forany a € A and U? =
> o; B}, where the copairing A: k — A ® A is given by A(1) = a; @ fi.

We will not reproduce a proof of Proposition 1.11, however we will now briefly recall
with pictures where each part of the structure comes from. In pictures of cobordisms we
denote a crosscap attached to a surface by a dotted circle with a cross. So for example
the following is an unorientable cobordism with an underlying surface made with 1
handle, 1 crosscap and 5 holes:

Figure 1.1 shows the generators of the orientable part of 2KCob®.

=

g

Figure 1.1: Generators of 2Cob® (considered as a subcategory of 2KCob*')

By moving crosscaps and flipping orientations of boundaries we can decompose any
cobordism into an orientable cobordism composed with copies of the two cobordisms

ISince A is commutative an anti-automorphism is of course just an automorphism. Here however it is
best thought of as an anti-automorphism on an algebra that just happens to be commutative for comparison
with open KTFTs.
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v E

Figure 1.2: Additional generators of 2KCob® not in 2Cob*!

in Figure 1.2. For example we can decompose our previous example as:

This shows us that the cobordisms in Figure 1.1 and Figure 1.2 together generate
2KCob*®!. In particular we see that a closed KTFT is given by a commutative Frobenius
algebra A together with a linear map corresponding to the cobordism on the left in
Figure 1.2 which is clearly an involution and an element U € A given by the image of
1 € k under the map corresponding to the cobordism on the right. That the involution
is an anti-automorphism corresponds to the relation

o

which can be seen by reflecting the cobordism in a suitable horizontal plane.

The relation U? =) a; B} arises from the fact that 2 crosscaps are diffeomorphic to
a Klein bottle with a hole which can be decomposed into orientable surfaces:

¥ )

Il
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Finally the relation (aU)* = aU can be seen by considering a Mobius strip (which is
equivalent to a crosscap) with a hole:

lle
Q

:

Here the second diffeomorphism can be seen by pushing the left hole once around the
Mobius strip (so its orientation changes when it passes through the twist).

It is not too difficult to convince oneself that these relations generate all relations and
hence give a sufficient set of relations.

Open KTFTs are however our main object of study. We will prove the following result
for open KTFTs later as a corollary of our approach using operads.

Proposition 1.12 Open Klein topological field theories of dimension 2 are equivalent
to symmetric Frobenius algebras together with an involutive anti-automorphism x +> x*
preserving the pairing.

Examples 1.13
e Any matrix algebra over a field is a symmetric Frobenius algebra with (A4, B) =
tr AB. With an involution given by the transpose we obtain an open KTFT.

e Let G be a finite group. Then the group algebra C[G] is a symmetric Frobenius
algebra with bilinear form (a, b) given by the coefficient of the identity element
in ab. Define an involution as the linear extension of g —> g~!. This is an open
KTFT.

e If G is abelian, then C[G] forms a closed KTFT with U = ﬁ S g%,

2 Preliminaries on operads

We wish to reinterpret KTFTs in the language of modular operads. To make clear our
notation we recall here some of the relevant notions from the theory of operads.
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2.1 Graphs, trees, operads and modular operads

In this section we will outline the notation we will use and recall for convenience the
definitions of (modular) operads with some minor modifications. For full details see
Ginzburg and Kapranov [10] and Getzler and Kapranov [9].

We need the notions of graphs and trees. A graph is what we expect but we allow
graphs with external half edges (legs). Precisely a graph can be defined as follows:

Definition 2.1 A graph G consists of the following data:

¢ Finite sets Vert(G) and Half(G) with a map A: Half(G) — Vert(G)
¢ An involution ¢: Half(G) — Half(G)

The set Vert(G) is the set of vertices of G and Half(G) is the set of half edges of
G . A half edge a is connected to a vertex v if A(a) = v. We denote the set of half
edges connected to v by Flag(v) and we write n(v) for the cardinality of Flag(v) (the
valence of v). Two half edges a # b form an edge if 6(a) = b. The set Edge(G) is
the set of unordered pairs of half edges forming an edge. We call half edges that are
fixed by o the legs of G and denote the set of legs as Leg(G).

Definition 2.2 An isomorphism of graphs f: G — G’ consists of bijections
fi: Vert(G) — Vert(G')  and  f: Half(G) — Half(G")
satisfying Ao f, = fioAand oo f, = f,o00.

Given a graph G we can associate a finite 1-dimensional cell complex |G| in the
obvious way with 0—cells corresponding to vertices and the ends of legs and 1—cells
corresponding to edges and legs. We say G is connected if |G| is connected.

Definition 2.3 By a free we mean a connected graph 7" with at least 2 legs such that
dim H{(|T'|) = 0 (equivalently |7'| is contractible).

Definition 2.4 A labelled graph is a connected non-empty graph G together with a
labelling of the n legs of G by the set {1,...,n} and a map g: Vert(G) — Z>(. We
call the value g(v) the genus of v. The genus of a labelled graph G is defined by the
formula
g(G)=dmH((IG)+ > g).
veVert(G)

Clearly this is the number of loops in the graph obtained by gluing g(v) loops to
each vertex v of the underlying graph and contracting all internal edges that are not
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loops. A vertex of a labelled graph is called stable if 2g(v) 4+ n(v) > 2. A labelled
graph is called stable if all its vertices are stable. An extended stable graph is defined
in the same way except a vertex is called extended stable if 2g(v) 4+ n(v) > 2. An
isomorphism of labelled graphs is an isomorphism of graphs preserving the label of
each leg and the genus of each vertex.

Definition 2.5 By a labelled tree we mean a tree 7' with n+1 > 2 legs with a labelling
of the legs by the set {1,...,n+ 1}. Given such a labelled tree we call the leg labelled
by n + 1 the output or root of 7" and the other legs the inputs of 7", denoted In(7).
This induces a direction on the tree where each half edge is directed towards the output
and given a vertex v we write In(v) C Flag(v) for the set of n(v) — 1 incoming half
edges at v. Note that n(v) > 2 for all vertices v. We call v reduced if n(v) > 2. We
call a labelled tree reduced if all its vertices are reduced. An isomorphism of labelled
trees is an isomorphism of trees that preserves the labelling.

We denote by Edge™ (T') = Edge(T) UIn(T) the set of internal edges together with
the inputs of 7.

Remark 2.6 Note that a labelled tree is equivalent to an extended stable graph of
genus 0 (by assigning a genus of 0 to each vertex). Reduced trees can then be thought
of as stable graphs of genus 0. We use the term ‘reduced’ as opposed to ‘stable’ here
to emphasise the fact that we do not consider the vertices as having a genus.

Given a labelled graph G we denote by G/e the labelled graph obtained by contracting
the internal edge e. The genus of each of the vertices of G/e is defined in the natural
way, so that the overall genus of the graph remains constant. More precisely, if we
contract an edge e connected to two different vertices v; and v, into a single vertex
v then we set g(v) = g(vy) + g(v2). If we contract an edge e connected to a single
vertex v (so e is a loop) then the genus of v increases by one.

Observe that if we contract multiple edges it does not matter (up to isomorphism) in
which order we contract them. We write I'((g, 7)) for the category of extended stable
graphs of genus g with n legs with morphisms generated by isomorphisms of labelled
graphs and edge contractions. For a labelled tree T we define T'/e similarly. We
denote by 7'((n)) the category of trees with n legs. By an n—tree we mean a tree with
n inputs (equivalently n + 1 legs). We denote by 7'(n) the category of n—trees. Note
that 7'(n) is isomorphic to T'((n 4+ 1)) and I'((0,n + 1)).

We can glue graphs with legs. If G’ has n > 0 legs and G has m > 0 legs then we
write G o; G’ for the graph obtained by gluing the leg of G’ labelled by # to the leg
of G labelled by i. For trees this corresponds to gluing the output of one tree to the
i th input of the other.
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Definition 2.7 Let k be a field.

¢ The symmetric monoidal category Vecty is the category of vector spaces over
k with the tensor product.

¢ The symmetric monoidal category dgVect;, is the category of differential graded
vector spaces over k with morphisms given by chain maps and with symmetry
s VW > WYV givenby s(v®w) = (—1)*w ®v. Here v and w are
the degrees of the homogeneous elements v and w.

e The symmetric monoidal category Top is the category of topological spaces
with the usual product.

Fix C to be one of the symmetric monoidal categories Vecty, dgVect; or Top.

Definition 2.8

e An S-module is a collection V = {V(n) : n > 1} with V(n) € Ob(C equipped
with a left action of S, (the symmetric group on n elements) on V(n).

e A cyclic S—module is a collection U = {U((n)) : n = 2} with U((n)) € ObC
equipped with a left action of S, on U((n)).

* An extended stable S—module? is a collection W = {W((g.n)) :n, g > 0} with
W((g,n)) € ObC equipped with a left action of S, on W((g,n)) and where
W((g,n)) =0 whenever 2g +n < 1. We call an extended stable .S—module a
stable S—module if W((g,n)) =0 whenever 2g +n < 2.

A morphism of (cyclic/extended stable) S—modules is given by a collection of S, —
equivariant morphisms.

Remark 2.9 Note that a cyclic S—module can also be defined as an S-module V'
with an action of S, extending the action of S, on V(n). This can be seen by
setting V((n)) = V(n —1). Similarly given a cyclic S—module U, by restricting to
the action of S, C S,4+1 on U(n) = U((n+ 1)) we see that a cyclic S—module has
an underlying S—module.

Given an S —module V' and a finite set / with n elements we define

vin= @ vm
felso([n],I) S
2This differs slightly from the definition in [5] since we also allow the pair (g, #) = (1,0). This makes

very little difference in practice however.
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the coinvariants with respect to the simultaneous action of S, on Iso([n], I) and V(n)
(where [n] = {1,...,n}). Similarly given a cyclic S—module U we define

un=| @ v

Sfelso([n],1) Sh

and given an extended stable S—module W we define:

Wig. )= @ Wign)

felso([n],I) Sn

Remark 2.10 For simplicity we have used direct sums above since we shall normally
be working in the category of (differential graded) vector spaces. More generally one
should use coproducts so, for example, in the case that V' is an S—module in Top
direct sums in the above definitions are replaced by disjoint unions.

If T is alabelled tree and V' is an S —module then we define the space of V' —decorations
on T as

V(= @ V().
veVert(T)
Similarly for U a cyclic S—module the space of U —decorations on 7 is

U(T)= @ U((Flag(v))
veVert(T)

and for W an extended stable module and G an extended stable graph we define the
space of W —decorations on G as

W((G) = & W((g).Flag®))).
veVert(G)

Given an isomorphism of labelled graphs G — G’ or labelled trees T — T there are
induced isomorphisms on the corresponding spaces of decorations.

Note that if W is a stable S—module, then W((G)) = 0 unless G is also stable.
Definition 2.11 We define an endofunctor @ on the category of .S —modules by the
formula:

@V(l’l) = colimy¢pgo T (n) V(T)

We define an endofunctor C on the category of cyclic .S —modules by the formula:

CU((n)) = colimyerso 7((ny) UUT))
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We define an endofunctor M on the category of extended stable .S —modules by the
formula:

MW ((g.n)) = colimgerso ' ((g,1)) W((G))

Each of these endofunctors can be given the structure of a monad (triple) in the natural
way as shown by Getzler and Kapranov [9]. We call an algebra over these monads
an operad, a cyclic operad and an extended modular operad respectively. A modular
operad is an extended modular operad whose underlying S—module is stable.

We use the term ‘extended modular operad’ to bring our definitions closer to those
of Getzler and Kapranov [9] and Chuang and Lazarev [5]. However we are not
concerned with the distinction between a modular operad and an extended modular
operad. Therefore we will from now on use the term ‘modular operad’ to mean extended
modular operad unless explicitly stated otherwise.

Remark 2.12 We can unpack these somewhat technical definitions to gain more
concrete descriptions closer to the classical definition of operads.

e An operad is an S—module P together with composition maps
0j: P(n) @ P(m) - P(n+m—1)
for n,m > 1, 1 <i <n. These maps must satisfy equivariance and associativity
conditions.
e A cyclic operad is a cyclic S—module Q together with composition maps
oi: Q((n)) ® Q((m)) — Q((n +m —2))
for n,m > 2, 1 <i <n. These maps must satisfy equivariance and associativity
conditions.
¢ A modular operad is an extended stable S —module O together with composition
maps
oi: O((g.m) @ O((g',m) — O((g + &' +m—2))

forn,m>1, 1 <i <n and contraction maps &;;: O((g,n)) - O((g+1,n-2))
forn>2,1<i## j <n. These maps must satisfy equivariance and associativity
conditions.

We can understand the associativity and equivariance conditions in Remark 2.12 in a
simple way using trees and graphs as in the work of Getzler, Ginzburg and Kapranov [9;
10]. Given a tree 7" with a vertex v with n(v) =#n and an S-module V we observe that
choosing a particular direct summand representing V(In(v)) is equivalent to choosing
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a labelling of In(v) by the set [z — 1]. Similarly given a cyclic S—module U choosing
a particular direct summand representing U ((Flag(v))) is equivalent to choosing a
labelling of Flag(v) by [n]. Given an extended stable graph G with a vertex v and
an extended stable module W choosing a particular direct summand representing
W((g(v),Flag(v))) is equivalent to choosing a labelling of Flag(v) by [n].

By choosing appropriate labellings of In(v) or Flag(v) at two vertices connected by
the edge e in a tree 7' we can use the composition maps of an operad P or a cyclic
operad Q to define a map P(T) — P(T/e) or Q((T)) — Q((T/e)) in the obvious
way by considering o; as gluing the output (labelled by n(v) in the cyclic case) at one
vertex to the 7 th input/leg (the leg labelled by i) at the other vertex. The equivariance
condition simply says that this is well defined regardless of the particular labellings
(choice of direct summands) we choose. The associativity condition corresponds to
these maps assembling to a well defined functor on 7'(n) or T((n)). Precisely this
simply means that no matter in which order we contract the edges of a tree T, the
induced map on P(T) or Q((T)) is the same.

In the case of modular operads the same applies but since we are using graphs the edge
e could be a loop at a vertex v and then we must use the contraction maps, considering
&;; as gluing together the half edges making up e labelled by i and j to define a map
0((G)) = O((G/e)).

Definition 2.13 A unital operad is an operad P with an element 1 € P(1) such that
loja=a=ao;l forany a € P(n) withn>1and 1 <i <n.

For completeness we note the following lemma/alternative definition which follows
from considering Remark 2.9. This allows us to ask whether an operad can be given
the additional structure of a cyclic operad.

Lemma 2.14 A cyclic operad is a cyclic S —module Q whose underlying S —module
has the structure of an operad such that (ac,, b)* =b*oya* forany a € Q(m), b € Q(n)
where ¢* is the result of applying the cycle (12 ... n+1) € Sy to ¢ € Q(n) =
Q(n+1)

There is clearly a functor from cyclic operads to operads. Given a modular operad O,
the genus 0 part consisting of the spaces O((0, 7)) forms a cyclic operad. This gives
a functor from modular operads to cyclic operads. If Q is a cyclic operad then the
modular closure3 Q is the left adjoint functor to this functor and the naive closure Q
is the right adjoint.

3This is also sometimes called the modular envelope and denoted Mod(Q) as in Costello [7].
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The modular closure is obtained from Q by freely adjoining the contraction maps and
imposing only those relations necessary for associativity and equivariance to still hold.
The naive closure is obtained by setting all contraction maps to zero.

Definition 2.15 Given A, B € Vect, by Hom(4, B) € Vect; we mean the space of
linear maps from A4 to B. Given A’, B’ € dgVect; , by Hom(4’, B’)" we mean the
vector space of homogeneous linear maps of degree n € Z (maps of vector spaces
f+ A" — B’ such that f(4}) C B;_,). By Hom(4', B') € dgVect; we mean the
space of graded linear maps €, Hom(A’, B’)" equipped with differential given by
dm = dy om — (—1)"m o d, where d; and d, are the differentials on B’ and A’

respectively and m is a homogeneous map of degree 1.

Definition 2.16 Let C be one of Vect; or dgVect; and let V € ObC. The endomor-
phism operad of V, denoted End[V], is defined as having underlying S —module given
by setting End[V](n) = Hom(V ®", V) with the natural action of S,,. Composition
maps are given by composing morphisms in the obvious way.

Now assume we have a symmetric non-degenerate bilinear form (—,—): V@V — k.
We define the endomorphism cyclic operad of V as having underlying cyclic S—
module E[V]((n)) = V®" with the natural action of Sy,. If a € V®" and b € V®™"
then a o; b € V®"+m=2) is defined by contracting @ ® b with the bilinear form,
applied to the ith factor of a and the mth factor of 4. Using the isomorphism
e+ ~ Hom(V®", V) we see the underlying operad of the endomorphism cyclic
operad is just the endomorphism operad. We define the endomorphism modular
operad as having underlying S-module £[V]((g,n)) = V" with composition maps
defined as for the endomorphism cyclic operad and for a € £[V]((g,n)) we define
&ij(a) € E[V]((g + 1,n —2)) by contracting the i th factor and the jth factor of a
using the bilinear form.

Definition 2.17 Given an operad P in Vect; or dgVect; an algebra over P is a
vector space/differential graded vector space V' together with a morphism of oper-
ads P — End[V]. Similarly an algebra over a cyclic/modular operad O is a vector
space/differential graded vector space V' with a symmetric non-degenerate bilinear
form B, together with a morphism of cyclic/modular operads O — E[V].

Clearly algebras over various types of operads can be given by a collection of maps in
Hom(V ®", V) satisfying certain conditions.

Remark 2.18 We will refer to operads in the category dgVect; as dg operads and
operads in the category Top as topological operads. Obviously by considering a vector
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space as concentrated in degree 0 with the zero differential we can consider Vecty as
a subcategory of dgVect; and hence an operad in Vect; can be considered as a dg
operad.

2.2 Quadratic operads and Koszul duality

We now restrict ourselves to operads and recall the theory of Koszul duality from
Ginzburg and Kapranov [10]. Let k be a field and let K be an associative unital
k—algebra. All our operads in this section are required to be unital.

Definition 2.19 A K-collection is a collection E = {E(n) : n = 2} of k—vector
spaces equipped with the following structures:

e A left S, action on E(n) for each n > 2
e A (K, K®")—bimodule structure on E(n) that is compatible with the S, action.
This means for any o € S, u,A; € K and a € E(n) we have o(na) = puo(a)
and
0(@A®...0An) =0(@)(Ae(1) ® ... @ As@m))

By setting E£(1) = K, a K—collection should be thought of as an S —module E together
with composition maps o;: E(n) ® E(1) - E(n) and oy: E(1) ® E(n) — E(n)
satisfying associativity and equivariance conditions. A morphism of K —collections is
then a morphism of the underlying S —modules that preserve these composition maps.

Given a reduced tree 7" and a K—collection E we define

ET)= (X E(dn(v))

veVert(T)

where the tensor product is taken over K using the (K, K ®In(v)) _pimodule structure
on each E(In(v)). Given an isomorphism of trees 7 — T’ we have an induced
isomorphism E(T) — E(T').

Clearly if P is an operad with P(1) = K then {P(n):n > 2} is a K—collection. Given
a K—collection E we can form the free operad F(E) consisting of E—decorated
reduced trees with composition given by gluing trees. More precisely, denoting the
category of reduced n—trees by T\(n), we set

F(E)(n) = colim E(T)

T elso ?(n)

and compositions are induced by the natural maps

oi: E(T)® E(T) — E(T)®k E(T") = E(T o; T')
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where the tensor product over K is using the right K-module structure on E(T')
corresponding to the 7 th input.

Let K be semisimple and let £ be a finite dimensional K —collection with E(n) =0
for n > 2. We will denote the (K, K®2)—bimodule also by E. Let R C F(E)(3) be
an S3—stable (K, K®3)—sub-bimodule. Let (R) be the ideal in F(E) generated by
R. We define an operad P(K, E, R) = F(E)/(R). An operad of type P(K, E, R)
is called a quadratic operad.

Definition 2.20 Given a (K, K®")-bimodule E with a compatible S,, action we
denote by E* = Homg (E, K) the space of (left) K-linear maps. This has the natural
structure of a (K°P, (K°P)®")_bimodule with the transposed action of S,. We can
also equip it with the transposed action of S, twisted by the sign representation in
which case we denote it EY = Homg (E, K) ® sgn,, .

Definition 2.21 Given a quadratic operad P(K, E, R) we can form a K°P—collection
from EV. Observe that F(EV)(3) = F(E(3))V. Let R+ C F(EY)(3) be the orthog-
onal complement of R, which is an S3—stable (K, K®3)—sub-bimodule. We define
the dual quadratic operad P' to be

P'=P(K® EY,RY)

We next briefly recall the definitions and results on the cobar construction and the
dual dg operad, full details of which can be found in Ginzburg and Kapranov [10].
Recall that for a dg operad P the cobar construction is the operad F(P*[—1]) with
differential coming from the internal differential and the unique differential dual to the
composition of P. Here we give the construction explicitly.

Let V be a finite dimensional vector space. We denote by Det(V) the top exterior power
of V. Given a tree T we set det(T") = Det(kE%(T)) and Det(T) = Det(kEdee" (D).
We denote by |7'| the number of internal edges of T .

Let P be a dg operad with P(n) finite dimensional and K = P(1) a semisimple unital
k —algebra concentrated in degree 0. We call such a dg operad admissible and denote
the category of admissible dg operads by dgOp(K). For n > 2 we construct complexes
C’'(P)(n)S =0 for s <0 and

C'P)n)= @ PT)* @de(T)

n—trees T
|T|=s—1

where the direct sums are over isomorphism classes of reduced trees and P(T) is
defined by considering the underlying dg K —collection of P (and so tensor products
are taken over K).
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To define the differential § recall if 7, = T /e is obtained by contracting an internal
edge e, we have a composition map yr,.1,: P(T1) — P(T2). We define § on the
direct summands by maps

S P(T)* ®@det(T) > P P(I)* @ det(T)
n-trees T
|T|=i+1
for T’ an n—tree with |T’| =i, with
Srr= P rr)* el
(T.e)
T'=T]/e

and /,: det(T’) — det(T) is defined by
L(fin...ANfi)=eANfin...A [i.

Since P is a dg operad each term of the complex just defined has an internal differential
d. This is compatible with § and we write C(P)(n)® for the total complex of the
double complex. These complexes together form a dg K°P—collection C(P).

Definition 2.22 It can be shown (by comparing to the operad F(P*[—1])) that C(P)
has a natural structure of a dg operad. We call this operad the cobar construction of P.

Let 7 and T’ be n—trees and m—trees respectively with |T| = p and |T'| = ¢q.
Composition can be obtained explicitly using the maps o;: (P(T)®det(T))R(P(T")®
det(T")) — P(T o; T') @ det(T o; T’) given by

(a1®...®ap+1)®(el/\.../\ep)o,-(bl®...®bq+1)(f1/\.../\fq)z
(a1®...®ap+1®b1®...®bq+1)®(el/\.../\ep/\fl/\.../\fq/\e)

where e is the new internal edge formed from gluing the root of 7" to the i th input of
T.

Definition 2.23 The dual dg operad DP is defined as
DP=C(P)®A

where A is the determinant operad with A (n) = k concentrated in degree 1—n carrying
the sign representation of .Sy, .

Further, from the definitions, it follows that 7P — D’P extends to a contravariant functor
D: dgOp(K) — dgOp(K°P) which takes quasi-isomorphisms to quasi-isomorphisms.
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Remark 2.24 DP can also be obtained from the cobar construction by shifting the
grading by 1—n, twisting by the sign representation and introducing a sign (— 1)fm—1i-1
to the composition o;: DP(n) ® DP(m) — DP(n+m —1). If P is an admissible dg
operad concentrated in degree 0 then the highest non-zero term of DP is in degree 0
and is given by
DPn)’= @ P(T)* @Det(T).
n—trees T

|T|=n—-2

To justify the notion of duality we have the following shown by Ginzburg and Kapra-
nov [10]:

Theorem 2.25 Let P be an admissible dg operad. Then there is a canonical quasi-
isomorphism DDP — P.

Finally we briefly recall the definition of a Koszul operad. Let P = P(K, E, R) be a
quadratic operad. As in Remark 2.24 for every n we have

DP(n)° = P E*(T)®De(T) = F(E)n)" = F(EY)(n)

binary
n-trees T

and so we have a morphism of dg operads yp: DP — P' given in degree 0 by taking
the quotient of DP(1)° by the relations in R . In fact this induces an isomorphism
HO(DP(n)) — P(n).

Definition 2.26 We call P Koszul if yp is a quasi-isomorphism. In other words each
DP(n) is exact everywhere but the right end.

Definition 2.27 If P is Koszul then a homotopy P—algebra? is an algebra over D(P").

3 The open KTFT modular operad
We will now reinterpret KTFTs in the language of operads.

Definition 3.1 We define the k—linear extended modular operad OKTFT (open Klein
topological field theory) as follows:

4More generally, a homotopy P—algebra is an algebra over a cofibrant replacement for 7. That P is
Koszul means that D(P!) is such a cofibrant replacement. For simplicity we take this to be the definition,
so as to avoid the need to discuss in any detail the model category structure on dgOp(K).
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e Forn,g >0 and 2g +n > 2 the vector space OKTFT((g, n)) is generated by
diffeomorphism classes of surfaces with m handles, u crosscaps and /i boundary
components with 2m + h + u — 1 = g and with n disjoint copies of the unit
interval embedded in the boundary labelled by {1, ..., n}, with an action of S,
permuting the labels.

¢ Composition and contraction is given by gluing along intervals.

Remark 3.2 Since the connected sum of 3 crosscaps is diffeomorphic to the connected
sum of 1 handle and 1 crosscap, the value of 2m +h+u —1 is well defined regardless
of how we choose to represent the topological type of the surface. We note that all
classes of surfaces feature in OKTFT except the disc with no marked points and the
disc with one marked point due to the condition 2g +n > 2.

3.1 Mbobius trees and the operad M. Ass

We wish to give a simple algebraic description of the modular operad OKTFT. In
order to do this we begin by defining planar trees and Mobius trees.

Definition 3.3 A planar tree is a labelled tree with a cyclic ordering of the half edges
at each vertex. An isomorphism of planar trees is an isomorphism of labelled trees that
preserves the cyclic ordering at each vertex.

Definition 3.4 A Mobius tree is a planar tree 7' with a colouring of the half edges
by two colours. Here a ‘colouring by two colours’ means a map c¢: Half(T) — {0, 1}.
An isomorphism of Mdbius trees is an isomorphism of labelled trees such that at each
vertex v either

(1) the map preserves the cyclic ordering at v and the colouring of the half edges
connected to v

(2) the map reverses the cyclic ordering at v and reverses the colouring of the half
edges connected to v (we refer to this as reflection at v).

Remark 3.5 A planar tree can be drawn in the plane with the cyclic ordering at each
vertex given by the clockwise ordering. When drawing labelled trees we shall place the
output leg unlabelled at the bottom (so the induced direction on the tree is downwards).
For example the following two trees are isomorphic as labelled trees, but not as planar
trees:

1 \./2 2 \./ 1
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When drawing Mobius trees, we shall draw the half edges coloured by 0 as straight
lines and the half edges coloured by 1 as dotted lines. For example:

N N N\,

If T is a planar tree then we can define edge contraction by equipping the vertex in
T /e that the edge e contracts to with the obvious cyclic ordering coming from the two
cyclic orderings at the vertices either end of e, for example:

1 2

. B
\/3 ~J

If T is a Mobius tree and e is an internal edge where both the half edges of e are
coloured the same then we define the tree 7'/e as for planar trees, with the obvious
colouring on T'/e. If f: T' — T is an isomorphism with f(e) also an edge where
both half edges are coloured the same we note that 7'/e =~ T’/ f (). Therefore this is
a well defined operation on isomorphism classes of Mobius trees. Furthermore for any
internal edge of 7" we can find a tree in the same isomorphism class of 7" such that
this edge is made up of two similarly coloured half edges (by considering, if necessary,
a tree with one of the vertices adjacent to the edge reflected). Therefore we have an
edge contraction operation on isomorphism classes of Mdébius trees defined for any
edge. For example:
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Finally we observe that (7'/e)/e’ = (T /e’)/e so it does not matter in which order we
contract edges.

Now recall that the associative operad .Ass can be defined as consisting of the vector
spaces generated by planar corollas (isomorphism classes of planar trees with 1 vertex)
where composition is given by gluing such corollas and contracting internal edges.
This leads us to the following definition:

Definition 3.6 The operad M.Ass is defined as follows:

e MAss(n) is the vector space generated by Mobius corollas (isomorphism classes
of Mobius trees with 1 vertex) with » inputs, where S, acts by relabelling the
inputs.

¢ Composition maps are given by gluing corollas and contracting the internal
edges. These maps satisfy associativity since, as mentioned previously, it does
not matter in which order we contract internal edges.

Remark 3.7 It is easy to see that as for Ass the operad M.Ass can be given the
structure of a cyclic operad in the obvious way.

It is important to note that with these definitions planar trees are .Ass—decorated trees
and Mobius trees are M. Ass—decorated trees (where we are considering decorations by
the underlying S —modules), since at each vertex v decorated by a Mdbius corolla (an
element of M.Ass) one obtains a cyclic ordering at v from the ordering of the inputs
of the Mobius corolla and a colouring of the half edges of v from the colouring of the
corolla. Therefore given a labelled tree T, the space of M.Ass—decorations on 7 is
generated by the set of Mobius trees up to isomorphism whose underlying labelled tree
is T'.

Remark 3.8 Ass is a suboperad of M Ass . In fact M Ass is obtained from the operad

generated by adjoining an involutive operation to Ass by taking the quotient by the
ideal generated by the reflection relation for the binary operation:

1\./2

2 1

",
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Proposition 3.9 M.Ass is the operad governing (non-unital) associative algebras with
an involutive anti-automorphism.

Proof This follows immediately from Remark 3.8. |

3.2 Mobius graphs and OKTFT as the modular closure of M Ass

We recall that in the case of oriented topological field theories the corresponding modular
operads are the modular closures of their genus 0 part which in turn are identified
with the commutative and associative operads: TFT 2 Com and OTFT = Ass (this
formulation in terms of modular operads can be seen in Chuang and Lazarev [5,
Theorem 2.7]). In particular the genus 0 cyclic part contains all the relations. These
results are modular operad versions of Proposition 1.4 and Proposition 1.5 identifying
2—dimensional TFTs as Frobenius algebras.

The same is true for OKTFT, giving us the desired simple algebraic description of
OKTFT.

Theorem 3.10 OKTFT =~ MAss.

Before proving Theorem 3.10 we will identify the operad M.Ass in terms of graphs.
Therefore we need to extend our definitions of Mobius trees to graphs.

Definition 3.11 A ribbon graph is a graph with all vertices having valence at least 2
equipped with a cyclic ordering of the half edges at each vertex and a labelling of the
legs. An isomorphism of ribbon graphs is an isomorphism of graphs that preserves the
cyclic ordering at each vertex and the labelling of the legs.

Definition 3.12 A Mobius graph is a ribbon graph with a colouring of the half edges
by two colours. An isomorphism of Mbius graphs is an isomorphism of graphs
preserving the labelling of the legs such that at each vertex v either

(1) the map preserves the cyclic ordering at v and the colouring of the half edges at
v

(2) the map reverses the cyclic ordering at v and reverses the colouring of the half
edges connected to v (again we refer to this as reflection at v).

Remark 3.13 Obviously our notions of planar and Mobius trees correspond to ribbon
and Mobius graphs with no loops. Once again we can draw these graphs in the plane
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(although possibly with some edges intersecting of course) with the cyclic ordering at
each vertex given by the clockwise ordering:

”/\TC ~

Remark 3.14 Ribbon and Mdobius graphs are 4ss—decorated graphs and M. Ass—
decorated graphs respectively.

If G is aribbon graph and e is an internal edge of G which is not a loop we can define
edge contraction by equipping G/e with the obvious cyclic ordering coming from G
as for trees.

If G is a Mobius graph and e is an internal edge of G that is not a loop, where both
the half edges of e are the same colour then we define G/e as we did for trees. Further
we observe that as for Mobius trees this is well defined on isomorphism classes and
can be extended to all internal edges except loops regardless of colour.

Let G be a Mobius or ribbon graph. Given two internal edges e and ¢’ of G that are
not loops we have (G/e)/e’ = (G/e’)/e provided both sides are defined. However if
e and ¢’ are connected to the same vertices contracting one will make the other into a
loop. As a result we do not obtain a well defined operation on graphs by repeatedly
contracting edges until we have only one vertex, which we did for trees. See Figure 3.1
for an example.

o’<—\o
G/é/ w G/ey
o/‘\- °
OO <9

Figure 3.1: Contracting all edges that are not loops is not well defined for
ribbon graphs
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Consequently we define a relation &~ on (isomorphism classes of) M&bius or ribbon
graphs where G ~ G’ whenever one is obtained from the other by an edge contraction
so that G = G'/e or G’ = G/e. The transitive closure of this is then an equivalence
relation we will also denote by ~. All elements of an equivalence class have the same
genus and the same number of legs. There is also at least one graph with one vertex
in each class. Observe that the space of corollas is obtained from the space of trees
modulo this relation. As a result Ass and M.Ass could be defined as the operads of
planar and Mobius trees modulo &~ with composition given by gluing trees.

We can now describe the operad MAss . Recall that Ass is the modular operad given
by ribbon graphs up to the relation &~ with composition and contraction given by the
gluing legs of graphs. This is true since the modular closure of Ass is generated by
freely adding contractions and applying just those relations necessary to ensure that
associativity and equivariance holds. More explicitly, we can first identify the space of
planar corollas with contractions added in freely as ribbon graphs with 1 vertex with
loops directed and ordered. The equivariance condition means that we must forget the
directions and order of the loops. Composition is given by gluing such objects and
contracting internal edges that are not loops. The associativity condition requires that
it does not matter in what order we contract internal edges. The relation ~~ (induced
on ribbon graphs with 1 vertex) is precisely the minimal relation required to ensure
this is true. For example the bottom two graphs in Figure 3.1 are equivalent under ~
but not isomorphic. It is clear that the same argument holds true for M. Ass.

Lemma 3.15 The extended modular operad M. Ass can be described as follows:

o If2g+n=>2 then MAss((g,n)) is the vector space generated by isomorphism
classes of Mobius graphs with n legs and genus g modulo the relation ~.

e Composition and contraction are given by gluing legs of graphs. a

We next describe the main construction arising in the proof of Theorem 3.10. Let G be
a ribbon graph. The ribbon structure of G allows one to replace each edge with a thin
oriented strip and each vertex with an oriented disc using the cyclic ordering to glue
the strips to discs in an orientation preserving manner. As such we obtain an oriented
surface with boundary well defined up to diffeomorphism. Further we can identify
the legs as labelled copies of the interval embedded in the boundary in an orientation
preserving manner.

We can generalise this to a similar construction for Mobius graphs. We replace each
vertex v with an oriented disc and we replace each edge e with an oriented strip. We
then use the cyclic ordering to glue the strips to discs. If the edge e is connected to
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the vertex v by a half edge coloured by 0 we glue the strip corresponding to e to the
disc corresponding to v such that their orientations are compatible. However if the
half edge is coloured by 1 we glue such that the orientations are not compatible. We
identify the legs as labelled copies of the interval embedded compatibly with the disc’s
orientation if the leg is coloured by 0 and incompatibly otherwise. We finally forget all
the orientations on each part of our surface. This yields a surface that is not necessarily
orientable. These constructions coincide for those Mobius graphs that are just ribbon
graphs (that is, graphs all of the same colour).

We should verify this construction is well defined up to diffeomorphism. However this
is clear since applying the reflection relation at a vertex v corresponds to constructing
a surface identical everywhere except at the disc corresponding to v which has been
reflected (see Figure 3.2). Reflection of the disc is a smooth (orientation reversing)
map so the construction yields a diffeomorphic surface.

reflect

- -
T
I

Figure 3.2: The reflection relation at a vertex v corresponds to reflection of
the disc associated to v

Since contracting an edge corresponds to contracting a strip this construction is in
fact well defined on equivalence classes of &~. Figure 3.3 shows the basic graphs
corresponding to a handle, a crosscap and a boundary component (annulus). From this
we can see that if a Mobius graph has genus g and the corresponding surface consists
of m handles, u crosscaps and /4 boundary components then 2m +h+u—1=g.
This means that by this construction we obtain maps of the underlying vector spaces
MAss((g,n)) — OKTFT((g,n)).

It is also clear that these constructions are compatible with operadic gluings so we obtain
maps Ass — OTFT and MAss — OKTFT. As shown by Chuang and Lazarev [5] the
former is an isomorphism. We can now prove Theorem 3.10 by showing the latter is
too.
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(a) Handle (genus 1 ori-
entable surface with 1
boundary component and
1 embedded interval)

7

(b) Crosscap (projec-
tive plane with 1
boundary component
and 1 embedded in-
terval)

Christopher Braun

O
N

(c) Annulus (sphere
with 2 boundary com-
ponents and 1 embed-
ded interval)

Figure 3.3: Mdbius graphs corresponding to basic surfaces

Proof of Theorem 3.10 It is sufficient to show the map M.Ass — OKTFT described
above is an isomorphism of the underlying S —modules. The surjectivity of this map
follows from the classification of unoriented topological surfaces with boundary and
Figure 3.3, which shows how to build a surface of any topological type. To see that it
is injective it is necessary to show that any two graphs with the same topological type

are equivalent® under the relation
shown by the following diagram:

1

(G-

Il
(V]

N

~ . We first note two graphs that are equivalent as

Using this we can prove the relation corresponding to the fact that the connected sum
of 3 crosscaps corresponds to the connected sum of a handle and a crosscap:

/\
L\

62 - R

SThis is analogous to proving the sufficiency of a set of relations on the generators of 2KCob if we
were proving Proposition 1.12 without mention of operads.
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This can be shown by drawing graphs and repeatedly applying relation (3-1). We leave
this to the reader.

Given a graph we can contract all internal edges that are not loops. Then we can ensure
that all loops which are composed of half edges of the same colour (which we will call
untwisted loops) are all coloured by 0 since a loop coloured by 1 is equivalent to a loop
coloured by 0 (by expanding the loop into 2 edges of different colours and contracting
the edge of colour 1). We then apply relation (3-1) repeatedly to ensure that all the
twisted loops are adjacent and have no half edges or legs on their inside. Finally we use
relation (3-2) repeatedly until there are at most 2 twisted loops remaining. Therefore
any graph is equivalent to a ‘normal form’ consisting of either a ribbon graph with
1 vertex or the connected sum (by which we mean vertices connected by a single
untwisted edge) of a ribbon graph with 1 vertex and a Mdbius graph with 1 vertex
and at most 2 twisted loops. If two graphs have the same topological type then in this
normal form the Mobius graph components must be isomorphic. But the ribbon graph
components must therefore be of the same topological type and we know that they are
equivalent under the relation ~ since Ass — OTFT is an isomorphism. |

Corollary 3.16 Algebras over the modular operad OKTFT are (non-unital) symmetric
Frobenius algebras together with an involution preserving the inner product.

Proof Since OKTFT is the modular closure of its genus 0 cyclic operad then algebras
over OKTFT are simply algebras over M.Ass considered as a cyclic operad (this is
immediate as in Chuang and Lazarev [5, Proposition 2.4]). Cyclic M.Ass—algebras
are just M. Ass —algebras with an invariant inner product which are precisely Frobenius
algebras with an involution. O

In the formulation of topological field theories as a symmetric monoidal functor from
some cobordism category the only difference is that we have a unit and counit (see
Remark 3.2). Therefore we have now fulfilled our earlier promise and shown:

Corollary 3.17 (Proposition 1.12) Open Klein topological field theories of dimension
2 are equivalent to symmetric Frobenius algebras together with an involutive anti-
automorphism preserving the pairing. |

3.3 Cobar duality for M Ass

We will now consider the operad M. Ass in more detail.

Recall that the free operad generated by the vector space .Ass(2) over k is the operad
of binary planar trees and that Ass is the quotient of this by the associativity relation.
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It is therefore a quadratic operad since the associativity relation is a quadratic relation.
Further Ass' >~ Ass.

MAss is also quadratic: let K be the semisimple algebra MAss(1) = (1,a)/(a® =
1) = k[Z,]. By taking the quotient of the free operad generated by the (K, K®2)—
bimodule M.Ass(2) by the associativity relation we obtain M.Ass. In fact, as we shall
see, all the usual duality properties of Ass hold for M.Ass .

Proposition 3.18 (M.Ass)' =~ MAss.

Proof As in the case of Ass we can simply give an explicit isomorphism. The only po-
tential difficulty arises from the quadratic dual being twisted by the sign representation,
however this turns out not to be an issue. Let K =MAss(1) = (1, a)/(a*> =1) = k[Z,]
and £ = MAss(2).

Let ¢1: K — K° = K be the isomorphism with 1 (¢) = —a. We define a map
Yy E — EV of k-linear S,-representations as follows. Let o € S, denote the
transposition and denote by m the corolla:

) 1\./2

m

Let B={m,om(@a®1),om(l1 ®a), m(a ®a)}. Observe that B is a K-linear basis
for the left K—module E. For each ¢ € B we denote by e* € Homg (E, K) the
element of the dual basis for £V . By this we mean e* is defined on each ¢’ € B by
e*(e’) =1 if ¢/ = e and e*(¢’) = 0 otherwise. For ¢ € B set ¥,(e) = e*. Now
observe that B also freely generates E as a k-linear S;-module, so ¥, extends to an
isomorphism E — EV of k-linear S,-modules. Explicitly this sends an element f’
of the K-linear basis 6B = {om,m(a® 1),m(l ® a),om(a ® a)} to — f* (where
f* denotes the element of the dual basis of o B).

We claim the map ¥ = (Y1, 5,0, ...) gives an isomorphism of K—collections. By
definition it is an isomorphism of S-modules. Some straightforward calculations
verify that it is also a map of K—collections. For example, for ¢ € B we have
Va(ae) = Yr(0e(a®a)) = o(Y2(ela ®a))) = —ay(e) = Yi(a)ya(e).

Therefore F(E) =~ F(EV) with ¥ extending to an isomorphism of operads. Let
R C F(E)(3) be the S;—stable sub-bimodule generated by the associativity relation
for m. It remains to show that RT = W(R). Since dim(R) = dim(F(E)(3))/2 it is
sufficient to check the associativity relation for m is in RL. This is a simple check,
which we omit. m
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We now describe the cobar construction for M. Ass. To do this we will need to identify
the space of decorations on a tree 7' by the underlying K —collection of M. Ass (recall
that in general this is different from the space of decorations on a tree 7' by the
underlying S'—module). We therefore define the notion of reduced Mébius and planar
trees.

Definition 3.19 Given a planar or Mobius tree with at least one vertex of valence at
least 3 we can associate (possibly several) reduced trees by repeatedly contracting an
edge attached to a vertex of valence 2 until the tree is reduced. We say two reduced
Mobius or planar trees are equivalent if they are obtained from the same tree in this
manner. When we refer to a reduced Mobius or planar tree we will mean an isomorphism
class of reduced Mdbius or planar trees up to this equivalence.

Remark 3.20 This has no effect for planar trees but for Mdbius trees we have that
the following reduced Mdbius trees are the same for example:

1 2 1 2

L N\

Also note that edge contraction is still well defined on reduced Mobius trees.

Thus defined, the space of decorations on a reduced tree 7' by the k —collection Ass is
generated by the set of reduced planar trees whose underlying tree is 7. The space of
decorations on 7' by the K —collection M.Ass is spanned by the set of reduced Mobius
trees whose underlying tree is 7.

Definition 3.21 The space of oriented planar (or Mobius) trees is generated by planar
(or Mobius) trees equipped with an ordering of the internal edges subject to the relations
arising by requiring that swapping the order of two edges is the same as multiplying
by —1 so that, for example, the space Ass(T) @ det(T') (see Section 2.2) can then be
identified with the space of reduced oriented planar trees whose underlying tree is 7.

Now recall the operad Ass is Koszul, Ass(n) =~ Ass(n)* and D.Ass is the operad of

reduced oriented planar trees (where S, acts by the sign representation) which governs
Aso—algebras.
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By sending a corolla m in MAss(n) to the map ¥ (m)(m) = 1, ¥y(m)(am) =
a, Yy(m)(m’) = 0 for the other corollas m’ (similar to the map in the proof of
Proposition 3.18 but without the different signs since MAss(n)* is not twisted by the
sign representation) we obtain an S, —equivariant map MAss(n) — MAss(n)* that is
also a map of (K, K®")—bimodules. Therefore the underlying spaces C(M.Ass)(n)
are spanned by reduced oriented Mobius trees with » inputs, graded appropriately by
the number of internal edges. Composition corresponds to gluing oriented trees. The
differential corresponds to expanding vertices of valence greater than 3, for example:

2

1/ SN2

\/ /

When drawing oriented Mobius trees like the above we give them the orientation on
the edges by ordering the internal edges from left to right, from bottom to top.

Remark 3.22 Observe as in Remark 3.8 that C(Ass) is a suboperad of C(M.Ass),
since planar trees are Mobius trees with straight edges. Indeed once again C(M.Ass)
is generated by adjoining an involution of degree 0 to C(Ass), this time modulo the
reflection relation on all corollas.

Lemma 3.23 As dg vector spaces C(MAss)(n) = @2,1 C(Ass)(n).

Proof Given a reduced Mobius tree T we will find a unique reduced tree 7" iso-
morphic to it with the root and all internal edges coloured by 0 (in other words all
straight lines). This is then a tree in C(Ass) with coloured inputs of which there are
2™ possibilities. The differentials clearly coincide as K is concentrated in degree 0.

To find such a tree we apply a sequence of transformations to 7 that result in an isomor-
phic tree at each stage. The basic transformations are either using the reflection relation
at a vertex or swapping the colourings of an edge (as in, for example, Remark 3.20)
in a reduced tree. The process is as follows: we first apply the reflection relation if
necessary to ensure the root is coloured by 0. We then apply the edge relations to all
the inputs of the bottom vertex to ensure all the half edges connected to the bottom
vertex are coloured by 0. We then repeat this inductively at each of the vertices at the
next level until we have transformed the whole tree. The resulting tree 7" is unique
since there is no choice in this process. a
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Corollary 3.24 MAss is Koszul.

Proof MAss is Koszul if and only if the complexes C(M.Ass)(n) are exact every-
where but the right end. This is true by Lemma 3.23 since Ass is Koszul. a

We now consider homotopy M.Ass—algebras. That is to say, algebras over DM Ass .
From Remark 3.22 we have that DM.Ass is generated by the operations m; € DAss
for i > 2, together with an involution of degree 0, which by convention we will say
corresponds to —a € K. The differential on DM.Ass is the same as that on D Ass for
the operations m; so it yields the usual A, conditions. The reflection relation on the
m; however introduces an extra sign since we have now twisted C(M.4ss) by the sign
representation. The sign of the permutation reversing » labels is (—1)”(”_1)/ 2. So we
have shown the following:

Proposition 3.25 Algebras over DM Ass are Ao, —algebras with an involution such
that

Mu(X1, .., x0)* = (=D (=DM OTD 27 (% xT)

where e =Y 7_, )_ci(Z}’:iH )_Cj) arises from permuting the x; with degrees x;. O

Remark 3.26 DM.Ass can be given the structure of a cyclic operad in the obvious
way (permuting the labellings of Mobius trees).

An important operad for us (which we shall see later controls open Klein topological
conformal field theory) is the modular operad DM.Ass which we shall now describe
explicitly by identifying it as the operad of reduced oriented Mo6bius graphs with the
expanding differential. This is the analogue of the fact that DAss is the operad of
reduced oriented ribbon graphs with the expanding differential. We need to define these
terms of course, which are analogues of Definition 3.19 and Definition 3.21.

Definition 3.27 A reduced Mobius or ribbon graph® is a graph where each vertex
has valence at least 3. Given a graph with at least one vertex of valence at least 3 we
can associate (possibly several) reduced graphs to it by repeatedly contracting an edge
attached to a vertex of valence 2 until the graph is reduced. We say two reduced graphs
are equivalent if they are obtained from the same graph in this manner. When we refer
to a reduced graph we will mean an isomorphism class of reduced graphs up to this
equivalence.

6 As for trees we use the word ‘reduced’ as opposed to ‘stable’ to emphasise that the vertices of these
graphs are not equipped with a genus.
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Remark 3.28 As for trees this equivalence on reduced graphs has no effect for ribbon
graphs. However for stable Mobius graphs we have an additional relation changing
the colours on half edges belonging to the same edge as in Remark 3.20. If two half
edges in an edge are coloured by 0 then we can replace them by half edges coloured
by 1 and get an equivalent reduced graph. If they are different colours we can swap
the colours and get an equivalent reduced graph. It is clear relations of this form are
the only ones arising from this equivalence relation.

Let G be a stable graph of genus g with n legs and e edges, such that det(G) =
Det(kEdee(0)) @ Det(H; (|G])) is concentrated in degree e+3—3g—n.

Proposition 3.29 There are isomorphisms of chain complexes

DMAss((g.m) = P MAss((G) ®det(G)
GelsoI'((g,n))
where here MAss((G)) = @, MAss((g(v), Flag(v))) is defined by taking the tensor
product over K using the (K, K®™€W)) _pimodule structures. The action of S, on
the right permutes labels of G twisted by the sign. The differential is the natural
differential expanding vertices of valence greater than 3.

Proof It is easy to convince oneself this is true since both sides are related to the free
modular operad generated by M.Ass. We just need to explain how the det(G) term
arises. First we observe that as in Remark 3.14 the space M.Ass((G)) can be identified
with the space generated by reduced Mobius graphs. Given a reduced oriented Mobius
tree 7' with w € det(T") representing the orientation of 7" and a contraction &;; with
i < j we can glue the i th and j th legs of 7' to obtain a reduced Mobius graph G with
newly formed edge e. We direct the edge e such that the 7 th leg is outgoing and the
Jj th leg incoming. This gives an oriented cycle ¢ in H;(|G|), by using the canonical
direction on the tree 7T'. Therefore we map &;;(7") to G ® w Ae ® c. We then extend
this map inductively by mapping &;(G) with k </ to the graph G’ obtained by gluing
the k th and /th legs of G, orienting the new edge as before, which gives a new oriented
cycle ¢’ so we take the element o’ A ¢’ € Det(H;(|G’])) given o’ € Det(H;(|G]). We
must check of course that this is a well defined map. In particular we must check it
is well defined for the various associativity and equivariance relations. We omit the
details, however the main point to observe is that the minus sign arising when we apply
the transposition (ij) € Sy, to a reduced oriented Mobius tree and then contract the i th
and jth legs is reflected in the fact that the direction of the edge formed by gluing legs
i and j is then reversed so the orientation of the cycle ¢ is reversed and also when we
carry out contractions in a different order, we swap the ordering of the cycles, but we
also swap the ordering of the new edges.
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It is completely clear that the gradings and the differentials coincide. To see this map
is an isomorphism note it is clearly surjective then compare dimensions by observing
that both sides are closely related to the free modular operad generated by M. Ass. O

The compositions are of course simply gluing graphs and ordering the edges in the
same way as we do for oriented trees (cf Section 2.2). Contractions are also obvious
and induce the orientation as detailed in the above proof.

We can talk about oriented graphs as we did for trees in Definition 3.21.

Definition 3.30 The space of oriented ribbon/Mobius graphs is generated by rib-
bon/Mébius graphs G equipped with an ordering of the internal edges and an ordering
of abasis of cycles in H;(|G|) subject to the relations arising by requiring that swapping
the order of two edges or of two cycles is the same as multiplying by —1. In particular
the space MAss((G)) ® det(G) from above can be identified as the space of reduced
oriented Mobius graphs whose underlying graph is G .

Remark 3.31 When &k = Q or £ =R an orientation on a graph is equivalent to an
ordering of its vertices and directing its edges, up to an even permutation. For example
see Conant and Vogtmann [6] and Getzler and Kapranov [9].

3.4 Mobiusisation of operads and closed KTFTs

We briefly outline the general construction for operads that follows from considering
the above arguments and we also briefly consider closed KTFTs. As usual we let & be
a field and K be the unital associative algebra over k generated by an involution a so
K =(1,a)/(a* =1) = k[Z,].

Definition 3.32 Let P € dgOp(k) be an admissible dg operad so P(1) = k is
concentrated in degree 0. The Mobiusisation of P is an operad MP € dgOp(K)
obtained by freely adjoining an element « to P(1) in degree 0 and imposing the
relations da =0, a*> =1 and am = t,,(m)a®" (the reflection relation) for all m € P(n)
where 7, = (1 n)(2 n—1)(3 n—=2) ... € S, is the permutation reversing » labels. This
construction extends to a functor M: dgOp(k) — dgOp(K).

Given a unital extended modular operad O with O((0, 2)) = k we define MO in a

similar way.

Note that P is a suboperad of MP. Clearly MAss as defined above is indeed the
Mobiusisation of Ass. We have the following properties that generalise those shown
for MAss in the previous section:
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Theorem 3.33 Let P € dgOp(k).

(1) If P is quadratic then so is MP and (MP)' = M(P")
(2) As dg vector spaces C(MP)(n) = @zn C(P)(n)

3) C(MP)=MC(P)

4) If'P is Koszul then MP is Koszul

(5) IfP is cyclic then MP = MP

Sketch proof

(1) This is a general version of ideas in Proposition 3.18. Let P = P(k, E, R).
Let E/ = K @ E ®; K®2 and ME = E'/I where I is generated by the
reflection relations c @M 1 ® 1 =1 ® o (m) ®a ® a. Then MR is generated
by R C F(E)(3) C FIME)(3) and MP = MP(K,ME,MR). Given ¥ €
Homy (E, k) we define ¢/ € Homg (E’, K) by ¥/ (1@m Q@ 1 ® 1) = ¥ (m),
Y'a@mell)=ay(m), Y1 @ma®a) =ay(o(m)) and ¥ (1 ®
maR®l)=yvy(1dm1®a) =0 forme E and 0 = (1 2). This in
turn gives a well defined element of Homg (M E, K). This map extends to an
isomorphism of K—collections W: M(EY) — (ME)Y and the result follows
since W(M(RY)) = (MR)™.

(2) This is a general version of Lemma 3.23. The same simple inductive proof
works in the general case. Let T be a tree with n inputs. It’s enough to
show that MP(T)* = P(T)* ®; K®". Write T as T = T" o; T' for T’
a corolla with n” inputs. Then by induction on the number of internal edges
MP(T)* = (P(T")* @k K2 " T @k (P(T')* @1 K& ) = P(T)* @1 K®".

(3) This follows from the above result together with a similar inductive argument
showing that the reflection relation does indeed hold for any m € C(P)(n) C
CMP)(n).

(4) This follows from the above results (cf Corollary 3.24).

(5) We observe that both operads are generated by their genus 0 parts, which
coincide. |

Finally we briefly consider the situation of closed KTFTs.

Definition 3.34 We define the k —linear extended modular operad pKTFT (partial
closed Klein topological field theory) as follows:
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e For n,g > 0 and 2g + n > 2 the vector space pKTFT((g,n)) is generated
by diffeomorphism classes of surfaces with 7 handles and u crosscaps and n
boundary components with m + u/2 = g with n copies of the circle embedded
into the boundary, labelled by {1,...,n} with an action of S, permuting the
labels.

¢ Composition and contraction is given by gluing boundary components.

Remark 3.35 This is ‘partial’ closed Klein topological field theory in the sense that
u must be divisible by 2. Therefore this operad features just those surfaces obtained
as the connected sum of tori and Klein bottles. Since the connected sum of 2 Klein
bottles is diffeomorphic to the sum of 1 handle and 1 Klein bottle we see that m +u/2
is well defined regardless of how we represent the topological type.

Note that a Klein bottle (with boundary) must have genus 1 in the modular operad
sense since it is obtained from self gluing a genus 0 surface. Therefore in full closed
KTFT a crosscap would necessarily have genus %

Theorem 3.36 pKTFT = MCom.

Idea of proof The operad MCom can be described in terms of graphs by forgetting
mention of cyclic orderings of half edges at the vertices in our definition of Mdbius
graphs. By replacing vertices with spheres with holes and edges by cylinders we obtain
surfaces corresponding to such graphs. Then the above proposition follows by a similar
argument to the proof of Theorem 3.10. |

It should not be at all surprising that MCom does not describe full closed KTFT since
Proposition 1.11 tells us closed KTFTs are not just commutative Frobenius algebras
with involution but rather have additional structure and additional relations that do not
arise from relations in genus 0, unlike in the open case.

4 Graph complexes and moduli spaces of Klein surfaces

In this section we will obtain results that are analogues of results concerning the ribbon
graph decomposition of moduli spaces of Riemann surfaces with boundary. In particular
we will be following methods of Costello [7; 8] which relate the operad D.Ass to certain
moduli spaces and show D.Ass governs open topological conformal field theory. For
us the unoriented analogue of a Riemann surface is a Klein surface and Mdébius graphs
serve the same role as ribbon graphs.
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Klein surfaces are ‘unoriented Riemann surfaces’ (or more correctly Riemann surfaces
are oriented Klein surfaces) in the sense that they have a dianalytic structure instead
of an analytic structure. Klein surfaces are equivalent to symmetric Riemann surfaces
(Riemann surfaces with an antiholomorphic involution) without boundary. In fact it
follows Klein surfaces are equivalent to projective real algebraic curves (see Alling
and Greenleaf [2] or Natanzon [19]). Since we wish to use techniques from hyperbolic
geometry we will be concerned with the analytic theory.

4.1 Outline and informal discussion

We will first provide an informal discussion outlining the content of this section since
there are some (slightly tedious) technical issues arising from the need to consider
nodal surfaces, which are more subtle for Klein surfaces than for Riemann surfaces
and which can hide the more important general picture.

A Klein surface is the natural extension of a Riemann surface allowing unorientable
surfaces. Klein surfaces have a dianalytic structure instead of an analytic structure.
However, given a Klein surface we can construct a double cover (the complex double)
for the surface which is a Riemann surface so that we can use much of the theory of
Riemann surfaces to study Klein surfaces. Indeed it is actually the case that Klein
surfaces are equivalent to symmetric Riemann surfaces (Riemann surfaces with an
antiholomorphic involution) identifying the Klein surface with the quotient. This is the
standard way of approaching Klein surfaces, where a Klein surface is then simply a
pair (X, o) with X a Riemann surface and ¢ and antiholomorphic involution.

However we will want to consider surfaces with nodes. With our previous comment
in mind the obvious way to approach this is to define a nodal Klein surface as a
pair (X, o) where X is now a nodal Riemann surface and ¢ is an antiholomorphic
involution. This is the standard approach used for example by Seppéld [22] to construct
a compactification of the moduli space of Klein surfaces/symmetric Riemann surfaces.

There is also another natural way to define a nodal Klein surface without passing to the
complex double. A nodal Klein surface is then a surface with some nodal singularities
and a dianalytic structure, including at the nodes.

Although one might expect these two notions to coincide they do not. The reason
for this is that it is no longer possible to form a unique complex double of a nodal
Klein surface in the latter sense. This can be understood by considering a ‘strangulated’
Mbobius strip (see Figure 4.1). In the second definition the dianalytic structure about
the node encodes the twist in the Mobius strip. If we pass to the complex double of a
Mobbius strip, which is a torus, then a node on a strangulated torus does not encode any
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form of twisting. Indeed if we take the quotient of such a torus by an antiholomorphic
involution then there is not a well defined way of giving a dianalytic structure at the
node in the quotient.

Figure 4.1: A strangulated Mobius strip, obtained by contracting the dotted
line to a node

With this in mind it is natural to ask if there is another double cover that we can
construct for this second type of nodal surface. The solution is given by the orienting
double which is a Riemann surface but possibly with a boundary.

The important difference between the complex double and the orienting double is
that the complex double takes the boundary of a Klein surface to the fixed points in
the interior of a symmetric Riemann surface and, as mentioned above, if we take the
quotient of a symmetric Riemann surface with an interior node fixed by the symmetry
then there is not a well defined way of giving a dianalytic structure at the corresponding
boundary node in the quotient. However the orienting double takes the boundary of a
Klein surface to the boundary of a symmetric Riemann surface and so boundary nodes
now correspond to boundary nodes. For example, the quotient of a strangulated torus
(with an antiholomorphic involution such that the node in the quotient is a boundary
node) could be given the dianalytic structure of either a strangulated Mdbius strip or
a strangulated annulus. However the orienting doubles of these are respectively an
annulus with two strangulated points (the covering map wraps such an annulus twice
around the Mobius strip) and a disjoint union of two strangulated annuli.

It is also natural to ask if there is another notion of a boundary node on a Klein surface
that is equivalent to an interior node fixed by the symmetry on a symmetric Riemann
surface. The answer to this is a naive node, which is simply a singularity without a
dianalytic structure at the node.

So we can still obtain equivalences for each of these types of nodal surface, although
they are different. It is perhaps not entirely necessary to consider these equivalences of
categories in too much detail in order to obtain our main results but we give a fairly
detailed overview in order to make the subtlety arising from the different types of nodes
clearer.
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The conclusion of all this is that we obtain two different partial compactifications of
the moduli space of Klein surfaces by allowing nodes on the boundary. It turns out
the second type of nodal surface is the natural notion for defining Klein topological
conformal field theory since it generalises the gluing of intervals discussed in the
previous sections. We obtain a topological modular operad which we will denote iC,
the operad of Klein surfaces with boundary nodes. This notation reflects the notation A/
used by Costello [7; 8] for the operad of Riemann surfaces with boundary and boundary
nodes. The first type of nodal surface gives rise to an operad that is closer in spirit to
the Deligne-Mumford operad since we are gluing symmetric Riemann surfaces without
boundary at interior marked points. We obtain an operad which we will denote MR,
the operad of ‘admissible’ symmetric nodal Riemann surfaces without boundary. This
notation reflects the common notation for the space of symmetric Riemann surfaces and
the fact that symmetric Riemann surfaces are equivalent to real algebraic curves. Note
however that for us MR is not the full space of nodal symmetric Riemann surfaces
(stable real algebraic curves) and should not be confused with the full compactification
obtained by taking all ways of forming nodes (it is an open subspace of this).

We wish to apply the methods of Costello [7; 8] to find a graph decomposition of both
of these operads. The operad K, being the operad of Klein topological conformal
field theory, is similar to A/ and most of the results concerning the latter have a
corresponding version for the former. In particular DM Ass (over Q) is a chain model
for the homology of K (which is homotopy equivalent to the moduli space of smooth
Klein surfaces) just as D.Ass is for A/. It is from this that we obtain a Mobius graph
decomposition of moduli spaces of Klein surfaces which is a direct analogue to the
ribbon graph decomposition of moduli spaces of Riemann surfaces.

In the second case we find that DMAss/(a = 1) (where a € DM Ass(1) = Q[Z,] is the
involution) is a chain model for the homology of MR_.This gives a ‘dianalytic ribbon
graph’ decomposition of the partial compactification MR . This partial compactification
is quite different from the other. For example unlike DM.Ass the quotient has non-trivial
homology in genus 0.

Later we give a concrete explanation of the graph complexes obtained for each of these
spaces and the corresponding isomorphisms on homology without using the language
of operads.

We will finish this outline with a few words about the proof of these results. It is
important to note that the proof of the results by Costello [8] transfers easily to our
situation and as such we reference [8] heavily. This is not that surprising since we have
already mentioned that we can form the orienting double, which is a Riemann surface
without boundary, which are the objects considered in [7; 8]. In addition hyperbolic
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geometry features heavily in the proof and the same methods apply directly to Klein
surfaces (which again can be seen by considering an appropriate double).

We begin by reviewing the necessary definitions and theory of Klein surfaces following
Alling and Greenleaf [2] and Liu [16], with some modifications.

4.2 Klein surfaces and symmetric Riemann surfaces

Let D be a non-empty open subset of C and f: D — C be a smooth map. Recall f
is analytic on D if % = 0 and anti-analytic if % = 0. We say [ is dianalytic if its
restriction to each component of D is either analytic or anti-analytic. If A and B are
any non-empty subsets of CT (the upper half plane) we say a function g: 4 — B is
analytic (or anti-analytic) on A if it extends to an analytic (respectively anti-analytic)
function g’: U — C where U is an open neighbourhood of A. Once again we call g
dianalytic if its restriction to each component of A is either analytic or anti-analytic.

For us a surface is a compact and connected (unless otherwise stated) topological
manifold of dimension 2. Our surfaces can have a boundary. Recall that a smooth
structure on a surface is determined by a smooth atlas (an atlas A such that all the
transition functions of A are smooth) and similarly an analytic structure is given
by an atlas such that all transition functions are analytic. A Riemann surface’ is a
surface with an analytic structure and morphisms of Riemann surfaces are non-constant
analytic maps (maps that are analytic on coordinate charts) that restrict to maps on
the boundary. In order to bring our definitions closer to those of Liu [16] we refer to
Riemann surfaces with non-empty boundary as bordered Riemann surfaces. A Riemann
surface is canonically oriented by its analytic structure.

Definition 4.1 An atlas A on a surface K is dianalytic if all the transition functions
of A are dianalytic. A dianalytic structure on K is a maximal dianalytic atlas. A Klein
surface is a surface equipped with a dianalytic structure.

An analytic structure can be extended to a dianalytic structure and so a Riemann surface
can be viewed as a Klein surface. In doing so we no longer have a canonical orientation.
Klein surfaces in general need not be orientable. It is shown by Alling and Greenleaf [2]
that every compact surface can carry a dianalytic structure.

Definition 4.2 A morphism between Klein surfaces K and K’ is a non-constant
continuous map f: (K, dK)— (K’, dK") such that for all x € K there are charts (U, ¢)

7When we use the term Riemann surface we are allowing surfaces possibly with non-empty boundary.
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and (V, ) around x and f(x) respectively and an analytic function F: ¢(U) — C
such that the following diagram commutes:

S
U |4

| )

p(U) L~ —2=c+

Here ®(x +iy) = x +i|y| and is called the folding map. We call [ a dianalytic
morphism if we can choose charts so that @ o F' in the above diagram is dianalytic.

Remark 4.3 Note that when we consider Riemann surfaces as Klein surfaces mor-
phisms of Riemann surfaces can be thought of as morphisms of Klein surfaces. Note
also that morphisms of Klein surfaces are not always dianalytic since we are allowing
maps which ‘fold” along the boundary of K’. This is useful since, for example, it means
that the category of Klein surfaces is the correct domain for the complex double (see
Alling and Greenleaf [2]) and other quotients and that the category of Klein surfaces is
equivalent to the category of symmetric Riemann surfaces without boundary (and then
Klein surfaces are real algebraic curves, again see [2]). If K, K’ have no boundary
then morphisms between them are dianalytic.

A morphism £ is dianalytic if and only if f~!(dK’) = 0K . The composition of two
dianalytic morphisms is dianalytic.

Definition 4.4 A symmetric Riemann surface® (X, o) is a Riemann surface with an
antiholomorphic involution o: X — X (which of course restricts to the boundary if our
surface is bordered). A morphism f: (X,0) — (X’,0’) is a morphism of Riemann
surfaces such that foo =0’o f. By convention we allow symmetric Riemann surfaces
to be disconnected provided the quotient surface X /o is connected.

Given a symmetric Riemann surface (X, o) the quotient surface X' /o = K has a unique
dianalytic structure such that the quotient map ¢ is a morphism of Klein surfaces,
see [2]. Again ¢~!(dK) = 0X if and only if ¢ is a dianalytic morphism of Klein
surfaces. In this case we call (X, o) a dianalytic symmetric Riemann surface.
Definition 4.5

e The category Klein has objects Klein surfaces with morphisms as defined above.

8 Note again that this is a slightly different definition to that which is normally found elsewhere since
we are allowing our Riemann surfaces to have a boundary unless otherwise stated.
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e The category dKlein has objects Klein surfaces with just the dianalytic mor-
phisms.

e The category SymRiem has objects symmetric Riemann surfaces without bound-
ary and morphisms analytic maps as defined above.

¢ The category dSymRiem has objects dianalytic symmetric Riemann surfaces
(possibly with boundary) and morphisms analytic maps as defined above.

To understand the category of Klein surfaces better we recall the existence of the
orienting double of a Klein surface.

Lemma 4.6

e Let K be a Klein surface. Then there exists a Riemann surface Ko and a
morphism f: Ko — K such that f~1(0K) = 0K¢o (so f is dianalytic) and
Ko is universal with respect to this property. This means if X is a Riemann
surface and h: X — K is a morphism with h~'(0K) = 0X then there is a unique
analytic morphism g: X — Ko such that h = f o g (more succinctly Ko is
the universal Riemann surface over K in the category dKlein). In particular this
means K is unique up to unique isomorphism. We call it the orienting double
of K.

e Themap f: Ko — K is a double cover.
e Ko has an antiholomorphic involution ¢ such that f oo = f.

e Any double cover h: X — K admitting such an involution and satistying the
property h~1(0K) = dX is universal with respect to this property (and hence is
uniquely isomorphic to Ko as a double cover).

e The map f is unramified, o is unique and K¢ is disconnected if and only if K
is orientable.

Proof This is just a slight rewording of Alling and Greenleaf [2, Theorem 1.6.7]. O

If K is a Klein surface then (Kq,0) is a dianalytic symmetric Riemann surface,
bordered if and only if 0K # &. Given a dianalytic morphism of Klein surfaces it lifts
to a morphism of dianalytic symmetric Riemann surfaces. This defines a functor from
Klein surfaces with dianalytic morphisms to dianalytic symmetric Riemann surfaces.
Given a dianalytic symmetric Riemann surface (X,0’) then (X, q) = ((X/0))o., f).
Since f is unramified then maps of dianalytic symmetric Riemann surfaces give
dianalytic maps of the underlying Klein surfaces. In particular we can deduce:
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Proposition 4.7 There is an equivalence of categories dKlein — dSymRiem given
by taking the orienting double. |

Given a Klein surface K we can also construct the complex double K¢ of a Klein
surface K. The complex double K¢ is a symmetric Riemann surface without boundary
that is disconnected if and only if K is orientable and has empty boundary. In particular
for an orientable surface of genus g with & boundary components it is obtained by taking
two copies of the surface with opposite orientations and gluing along the boundary in an
orientation preserving manner to give a symmetric Riemann surface without boundary
of genus 2g + h — 1, with the antiholomorphic involution switching the two copies. For
an unorientable surface with g handles, u crosscaps and /2 boundary components the
complex double is a connected symmetric Riemann surface without boundary of genus
2g 4+ h 4+ u — 1 although the construction in this case is less simple to describe and we
refer to Alling and Greenleaf [2, Theorem 1.6.1] for full details. In particular, similar
to the orienting double, the complex double can in fact be realised as the universal
Riemann surface without boundary over K in the category Klein. It is then not hard
to follow the same process as above and show the well known result:

Proposition 4.8 There is an equivalence of categories Klein — SymRiem given by
taking the complex double. O

Remark 4.9 The categories Klein and dKlein have the same objects and will also
have the same moduli spaces (which can be identified with those of symmetric Riemann
surfaces without boundary by Proposition 4.8). As mentioned in the outline of this
section the difference becomes much more noticeable when we consider nodal Klein
surfaces, which are then no longer equivalent to nodal symmetric Riemann surfaces
without boundary. However nodal Klein surfaces (with just dianalytic morphisms) are
still equivalent to nodal symmetric Riemann surfaces possibly with boundary. Therefore
we will actually obtain two different partial compactifications of moduli spaces.

Given a Klein or Riemann surface whose underlying surface has g handles, 0 <u <2
crosscaps and /# boundary components we define the topological type to be (g, u, h).

4.3 Klein surfaces and hyperbolic geometry

Recall that a connected hyperbolic Riemann surface without boundary admits a unique
complete hyperbolic metric. If X is a bordered Riemann surface whose complex double
Xc (which is connected without boundary) is hyperbolic, then the antiholomorphic
involution on X¢ is an isometry with respect to the unique hyperbolic metric on X¢
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and so we can construct a unique (up to conformal isometry) hyperbolic metric on X,
compatible with the analytic structure, such that the boundary (which corresponds to
the fixed points of the involution) is geodesic.

If K is a Klein surface whose complex double is hyperbolic then we can repeat this
construction by taking the unique complete hyperbolic metric on K¢. Therefore K has
a unique (up to isometry) hyperbolic metric, compatible with the dianalytic structure,
such that the boundary is geodesic. Dianalytic morphisms of Klein surfaces correspond
to conformal maps on hyperbolic surfaces. Since our surfaces are now unoriented by
conformal maps we mean maps which preserve angles (as opposed to oriented angles).

The only Klein surfaces with a non-hyperbolic complex double are those of topological
type (g,u, h) with 2g +h+u —2 <0, since the complex double has topological type
(2g+h+u—1,0,0). The only such surfaces with & > 0 are the disc, the annulus and
the Mobius strip.

Let K be a Klein surface. Then since Ko covers K we can pull back the hyperbolic
metric on K such that the involution on K¢ is an isometry. Analytic maps between ori-
enting double covers correspond to conformal maps of double covers and the boundary
of Kg is geodesic and this is the same metric inherited from (Kg)c.

Using the hyperbolic metric on a Klein surface K we can adapt the methods outlined
by Costello in [7] and elaborated upon in [8] to construct a deformation retract on the
moduli space of Klein surfaces which we will do below.

4.4 Nodal Klein surfaces with oriented marked points

We will need to allow Riemann surfaces and Klein surfaces with certain nodes and
marked points.

A singular topological surface (X, N) is a Hausdorff space X with a discrete set
N C X (the set of singularities) such that X \ NV is a topological surface. As usual
such surfaces will be compact (so N will be finite) and connected and may have
boundary unless otherwise stated. The boundary of a singular surface is defined to be
the boundary of X \ N.

Definition 4.10 Let (X, N) be a singular surface. A boundary node is a singularity
z € N with a neighbourhood homeomorphic to a neighbourhood of (0, 0) € {(x, y) €
(C*)2:xy =0} such that z — (0,0). Similarly an interior node is a singularity with
a neighbourhood homeomorphic to (0,0) € {(x, y) € C?: xy = 0}. We set N; to be
the set of interior nodes and N, to be the set of boundary nodes. If X has only nodal
singularities then an atlas on X is given by charts on X' \ N together with charts at
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the nodes as described. We call a singular surface with only nodal singularities a nodal
surface.

Let B={(x,y)e(Ct)2:xy=0}and B* = B\(0,0). Let  ={(x, y) €eC2:xy =0}
and I* =1\ (0,0). Regarding the smooth curves B* and I* as Riemann surfaces
with boundary we have a notion of analytic and anti-analytic maps to or from subsets
of B* and I'*. We say a map to or from a neighbourhood U of (0,0) € B or U’ of
(0,0) e I is analytic or anti-analytic if it is analytic or anti-analytic when restricted
to U N B* or U' N I'*. Dianalytic maps are again maps which restrict to analytic
or anti-analytic maps on each connected component. Note in particular that if U or
U’ is connected then dianalytic maps on U or U’ are either analytic or anti-analytic
everywhere (even though U N B* and U N I'* are disconnected). We therefore have a
notion of a transition function between two charts on a nodal surface being analytic or
dianalytic.

Definition 4.11 A nodal Riemann surface is a nodal surface (X, V) together with a
maximal analytic atlas. A nodal Klein surface is a nodal surface (K, N) together with
a maximal dianalytic atlas. By an irreducible component of a nodal surface we mean a
connected component of the surface obtained by pulling apart all the nodes. Note that
this is different from a connected component of K \ N since an irreducible component
will include points that were formerly nodes.

We will mostly be concerned with Klein surfaces having only boundary nodes. We will
also need a second different notion of a boundary node on a Klein surface.

Definition 4.12 A naive nodal Klein surface is a nodal surface (K, N) with only
boundary nodes together with a maximal dianalytic atlas on each irreducible component.

Note that this does differ from the previous notion in the sense that we no longer have
a dianalytic structure around the boundary nodes. Indeed, on a neighbourhood of a
boundary node there are charts on the intersection with each irreducible component,
but not a chart on the whole neighbourhood.

A morphism of nodal Riemann surfaces is a non-constant continuous map that is
analytic on the charts (including at nodes). We can also define morphisms easily for
naive nodal Klein surfaces: a morphism is given by a non-constant continuous map
which takes irreducible components to irreducible components and such that the map
induced on each irreducible component is a morphism of smooth Klein surfaces.

Definition 4.13 A nodal symmetric Riemann surface (X,o) is a nodal Riemann
surface with an antiholomorphic involution o: X — X .
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We will now discuss quotients of nodal Riemann surfaces informally. Given a nodal
symmetric Riemann surface (X, o) we can form the quotient g: X — X /o . Thisis a
topological nodal surface and each irreducible component has a canonical non-singular
dianalytic structure. Let n € Ny be an interior node. Since o must take nodes to
nodes, if o(n) # n then g(n) will be an interior node and we can extend the dianalytic
structure about ¢(n) in a unique way such that ¢ is dianalytic on the charts about n
and ¢g(n). If n is fixed by o then ¢(n) will be either an interior point or a boundary
node. In the second case there is not a canonical way of choosing a dianalytic structure
about ¢(n) and so ¢(n) is a naive boundary node. Let n’ € N, be a boundary node.
Similarly ¢(n’) will be either a boundary node or, if n’ is fixed by o, a boundary point.
In either case we can choose a dianalytic structure about ¢(n’) in a canonical way.

Since we are interested mainly in Klein surfaces with only boundary nodes we make
the following definition:

Definition 4.14 An admissible symmetric Riemann surface (X, o) is a nodal sym-
metric Riemann surface (X, N) such that g(n) is a boundary node (a naive boundary
node if 7 is an interior node) for all nodes n € N .

It is now not too difficult to work out what a morphism of nodal Klein surfaces should
be, allowing folding maps along nodes as just described. Then the above informal
discussion can be made precise by saying that there is a unique structure of a nodal
Klein surface (possibly with some naive nodes) on the quotient of a nodal Riemann
surface such that the quotient map is a morphism of Klein surfaces. We will not give
the details however since we only really need to consider dianalytic morphisms here.

A dianalytic morphism f: K — K’ of nodal Klein surfaces is a non-constant continuous
map that is dianalytic on all the charts (including at nodes). In particular such a map
induces dianalytic maps on the irreducible components. A dianalytic nodal symmetric
Riemann surface is an admissible symmetric Riemann surface such that the quotient
map is dianalytic. In particular such surfaces have only boundary nodes.

From now on all our surfaces may be nodal unless otherwise stated. We need nodal
surfaces with marked points.

Definition 4.15 A Klein/Riemann surface with n marked points (X, p) is a nodal
Klein/Riemann surface (X, N) equipped with an ordered n—tuple p = (p1,..., pn)
of distinct points on X \ N. A morphism f: (X,p) — (X’,p’) of surfaces with n
marked points is a morphism of the underlying surface such that f(p;) = p;.
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Definition 4.16

e A symmetric Riemann surface X with (m,n) marked points (X,o,p,p’) is
a nodal symmetric Riemann surface (X,o) with an ordered 2m—tuple p =
(p1,..., pam) of distinct points on X \ N such that o(p;) = pm+i for i =
1,....m and an ordered n—tuple p’ = (p]...., py) of distinct points on X \ N
such that G(p]’.) = p} for j=1,...,n.

e A morphism f: (X,0,p,p’) — (Y,7,r,r) is a morphism of the underlying
symmetric Riemann surfaces such that f(p;) = r; and f( p}) = r]f.

* We say a marked symmetric Riemann surface is admissible if the underlying
symmetric Riemann surface is and the points ¢(p;) and ¢( p]’.) all lie in the
boundary of the quotient. In this case all the p; must be on the boundary.

Once again we can discuss quotients of marked symmetric Riemann surfaces. The
quotient Klein surface is in a natural way a Klein surface with m + n marked points
(and if the surface is admissible all the marked points of the Klein surface lie on
the boundary). In fact it has more structure: if p; is a marked point of a symmetric
Riemann surface with o (p;) = pm+i 7# pi then this gives locally an orientation about
q(pi) induced from the chart about p;. This motivates the following definition:

Definition 4.17 A Klein surface with n oriented marked points is a Klein surface with
marked points (K, p) equipped with a choice of orientation locally about each marked
point (more precisely, a choice of one of the two germs of orientations on orientable
neighbourhoods at each marked point).

Note finally that dianalytic marked symmetric Riemann surfaces (which are by definition
admissible) can only have marked points on the boundary.

We are now ready to define our categories of interest. In particular we are interested in
Klein surfaces with nodes and marked points all on the boundary. Equivalently this
means we are also interested in admissible symmetric Riemann surfaces.

Definition 4.18

e The category nKlein has objects Klein surfaces with only naive boundary nodes
and marked points (not oriented) on the boundary with morphisms as defined
above for naive nodal surfaces.

e The category dnKlein has objects Klein surfaces with only boundary nodes (but
not naive nodes) and oriented marked points on the boundary with dianalytic
morphisms as defined above.
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e The category nSymRiem has objects admissible symmetric Riemann surfaces
with marked points and without boundary. Morphisms are analytic maps as
defined above.

¢ The category dnSymRiem has objects dianalytic symmetric Riemann surfaces
(possibly with boundary) with marked points. Morphisms are analytic maps as
defined above.

We can extend the notion of an orienting double to objects (K, p) in dnKlein by first
constructing the orienting double on each irreducible component and gluing in the
canonical way induced by the dianalytic structure at the nodes to obtain a dianalytic
symmetric Riemann surface Kq. If f: Ko — K is the covering map then f~!(p;)
gives two points in Kg. To make Ko a marked surface we need to order these two
points for each i. But we can do this using the local orientation about p; which
allows us to canonically choose an n—tuple q = (¢1,...,qn) of distinct points on
the boundary of K¢ such that f(g;) = p; and f preserves the local orientations
about ¢g; and p;. Then the orienting double of K is defined as (Ko, o, p’,0) where
p=(1,....9n.0(q1)....,0(qn)) and o is the antiholomorphic involution on Kgq.
This is an object in dnSymRiem.

Given a Klein surface with marked (but not necessarily oriented) points choosing such
an n—tuple q of points in Kg is clearly equivalent to providing local orientations at
each p;. Since this data can sometimes be easier to work with we will therefore also
denote a Klein surface with n oriented marked points by (K, p, q).

Remark 4.19 A Riemann surface with marked points can be thought of as a Klein
surface with oriented marked points using the canonical orientation. If it is in dnKlein
then its orienting double is a disjoint union of two copies of itself and so the canonical
orientation means we choose points ¢; in the component that maps analytically under
the quotient map.

By showing nodal versions of the properties in Lemma 4.6 it is not too difficult to
obtain the following marked nodal analogue of Proposition 4.7:

Proposition 4.20 There is an equivalence of categories dnKlein — dnSymRiem
given by taking the orienting double. |

Similarly given an object in nKlein we can construct the complex double by first
constructing the complex double on each irreducible component and then gluing to
obtain an admissible symmetric Riemann surface K¢ without boundary. If /: K¢ — K
is the covering map then f~1(p;) is a single point in K¢ so we obtain an object in
nSymRiem. Once again we can show the marked nodal analogue of Proposition 4.8:
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Proposition 4.21 There is an equivalence of categories nKlein — nSymRiem given
by taking the complex double. |

Remark 4.22 We can still define the complex double for surfaces in dnKlein however
two Klein surfaces that are not isomorphic may have isomorphic complex doubles.

Given a boundary node on a Riemann surface X" we can replace the node with a narrow
oriented strip. We can also replace interior nodes with a narrow oriented cylinder. In
this way we can obtain from X a non-singular oriented topological surface.

We define the topological type of a Riemann surface X with » marked points as
(g,0,h,n) where (g,0, ) is the topological type of the non-singular oriented surface
obtained by the above process.

Given a Klein surface K in dnKlein with » marked points we consider Ko as a
Riemann surface by forgetting the symmetry and let (g, 0, h, 2n) be its topological type.
Then if K¢ is disconnected the topological type of K is defined as the topological type
of one of the connected components of Kqg. If K¢ is connected then the topological
type of K is defined as (g, u, i, n) where h = % and g and u are the unique solutions
tog+1=2g+uwith0O<u=<2.

For admissible symmetric Riemann surfaces without boundary in nSymRiem we define
their topological type as that of the underlying marked Riemann surface obtained by
forgetting the symmetry.

The topological type of a symmetric Riemann surface in dnSymRiem is defined as the
topological type of its quotient Klein surface in dnKlein and the topological type of a
naive nodal Klein surface in nKlein is defined as the topological type of its complex
double in nSymRiem.

Definition 4.23 A Klein or Riemann surface with n (possibly oriented) marked points
is stable if it has only finitely many automorphisms.

A non-singular Klein surface with n (possibly oriented) marked points on the boundary
(which we will assume is non-empty) is unstable precisely if it has the topological type
of a disc and n < 2 or if it is an annulus with 7 = 0 or a Mobius strip with n = 0
(since the orienting double of a Mbius strip is an annulus). If the Klein surface has
singularities (and so is in either nKlein or dnKlein) then it is stable if and only if each
connected component of its normalisation is. The normalisation is given by pulling
apart all the nodes where each node gives two extra boundary marked points. It does
not matter how we order these extra marked points.
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4.5 Moduli spaces of Klein surfaces

In this section we discuss various moduli spaces and their relationships.

Let IEg,u,h,n be the moduli space of stable Klein surfaces in dnKlein with topological
type (g.u,h,n) and h > 1. Let Kg ,, p.n C Eg,u,h,n be the subspace of non-singular
Klein surfaces.

Due to Proposition 4.20 this can be identified with the moduli space of stable dianalytic
symmetric Riemann surfaces in dnSymRiem. These moduli spaces are non-empty
except for the cases when

(g,u,h,n) €4(0,0,1,0),(0,0,1,1),(0,0,1,2),(0,0,2,0), (0, 1, 1, 0)}.

There is an action of the group ZJ" on Eg,u, n.n given by flipping the orientations of
marked points.

Let MR g,n be the moduli space of stable admissible symmetric Riemann surfaces in
nSymRiem with topological type (g,0,0,n). Let M?n C MRz, be the subspace
of non-singular Riemann surfaces.

Due to Proposition 4.21 this can be identified with the moduli space of stable Klein
surfaces in nKlein. These moduli spaces are non-empty except for the cases when
(g,n) €{(0,0),(0,1),(0,2),(1,0)}. We observe that

Xn ~ R
]_[ Ke.uhn /Zz = Mgr,n-

2g+h+u—1=%

Remark 4.24 The slight abuse of notation here is potentially misleading. The full
compactification of stable symmetric Riemann surfaces (the space of stable real al-
gebraic curves) allowing all nodal Riemann surfaces without boundary, is very often
denoted by MR (for example as in Seppili [22] and Liu [16]). For us however it is an
open subspace of this: the subspace of admissible surfaces. Here neither MR g.n OF
K u,hn are compact in general.

Let N, ¢,h,n be the moduli space of stable bordered Riemann surfaces with only boundary
nodes and marked points on the boundary with topological type (g,0,/4,n). Let
Ng.hn C Ng.pn be the subspace of non-singular bordered Riemann surfaces.

These are the moduli spaces considered by Costello [7; 8]. These spaces are non-empty
except for the cases when

(g.h,n)€{(0,1,0),(0,1,1),(0,1,2),(0,2,0)}.
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By Remark 4.19 we have a map /\_/g,h,n — /?g,o,,,,,,, injective for n > 0.

We now outline the construction of these spaces and their topology. We will follow
Liu [16] closely and more details may be found there. The basic idea is to use the
symmetric pants decomposition of the complex double to obtain Fenchel-Nielsen
coordinates. In fact this will give an orbifold structure.

Recall that any stable Riemann surface X of topological type (g,0,0,7) admits a
pants decomposition. More precisely there are 3g — 3 + n disjoint curves «; on the
surface which is obtained from puncturing X at each marked point, with each curve
being either a closed geodesic (in the hyperbolic metric) or a node, decomposing X
into a disjoint union of 2g —2 +n pairs of pants whose boundary components are either
one of the ¢; or a puncture corresponding to a marked point. Furthermore if (X, o) is
a stable symmetric Riemann surface then there exists a symmetric pants decomposition
that is invariant with respect to o (see Buser and Seppild [4]). By this we mean that o
induces a permutation on decomposing pairs of pants.

We call a pants decomposition oriented if the pairs of pants are ordered and the boundary
components of each pair of pants are ordered and each have a basepoint and each
decomposing curve is oriented. This induces an ordering on the decomposing curves
and so defines Fenchel-Nielsen coordinates

(l], ey l3§_3+n, 01, ey 93?—34-}1)

where the /; are the lengths (in the hyperbolic metric) of the decomposing curves,
and the 6; are the angles between the basepoints of the two boundary components
corresponding to the 7 th decomposing curve. More precisely the ordering of the pairs
of pants determines an ordering of the two basepoints on each decomposing curve
and we set 0; = 271}—1’_' where 7; is the distance one travels from the first basepoint to
the second basepoint on the i th decomposing curve in the direction that the curve is
oriented. Note that we have /; >0 and 0 < 6; < 27.

In the case that the pants decomposition is symmetric we may assume that the orientation
of the pants decomposition has been chosen so that the symmetry permutes basepoints
and reverses the orientation of decomposing curves which are not completely fixed
by the symmetry. Note that in this case not all the coordinates are independent. In
particular if a decomposing curve «; is mapped to itself by the symmetry, then 6; =0 or
0; = . Similarly if the decomposing curves «; and «; are permuted by the symmetry
then /; =/; and 6; =2 —6;.

Definition 4.25 A strong deformation from a stable symmetric Riemann surface
(X', N',0”) to a stable symmetric Riemann surface (X, N, o) both of topological type
(£,0, h,n) is a continuous map «: (X', N',0’) — (X, N, o) such that
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¢ i takes boundary components to boundary components, interior nodes to interior
nodes, boundary nodes to boundary nodes, preserves marked points and k oo’ =
ook,

e for each interior node n we have that x~!(n) is either an interior node or an
embedded circle in a connected component of X'\ N’,

o for each boundary node n we have that x~!(n) is either a boundary node or an
embedded arc in a connected component of X’ \ N with ends in dX”,

e K restricts to a diffeomorphism «x: k1 (X \ N) = X\ N.

Given X and X’ stable symmetric Riemann surfaces without boundary with oriented
symmetric pants decompositions having decomposing curves «; and «; respectively
and a strong deformation k: X’ — X we say that « is compatible with the oriented
pants decompositions if K(Oll/. ) =«; and all the orientation data (the ordering of the pants,
the ordering of the boundary components, the basepoints of the boundary components
and the orientation of each «; ) is preserved under « .

Given an oriented symmetric pants decomposition of X with decomposing curves
«; and any strong deformation k: X’ — X, by choosing as decomposing curves the
closed geodesics homotopic to each of the ¥ ~!(a;) we can obtain a symmetric pants
decomposition of X’ with decomposing curves ¢ . Further there exists another strong
deformation «” such that ’(c}) = o; and also an orientation of the pants decomposition
of X’ so that it is pulled back from the oriented pants decomposition of X under «’.
In particular «” is compatible with the oriented pants decompositions.

Recall that the complex structure on a pair of pants is determined, up to equivalence,
by the lengths of the three boundary curves in the unique hyperbolic metric where the
boundary curves are geodesic. Recall also that gluing pairs of pants along boundary
components of common length is determined completely by the angle between two
basepoints on the boundary components. Therefore if X and X’ have the same Fenchel—-
Nielsen coordinates with respect to the pants decompositions preserved by «’ then they
are in fact biholomorphic.

Definition 4.26 A strong deformation from a stable Klein surface (K’, N') in dnKlein
to a stable Klein surface (K, N') of topological type (g, u, /1, n) is a strong deformation
between the orienting doubles.

Note that a strong deformation of stable Klein surfaces induces a strong deformation

on the complex doubles of the underlying naive nodal Klein surfaces. Of course the
converse is not true.
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We are now ready to describe the topology on MR g.n and Eg,,,,h,n.

Given a surface X € MR z,» and an oriented symmetric pants decomposition of X’
with coordinates /;, 6; denote by U(X, ¢, §) the set of surfaces X’ with an oriented
symmetric pants decomposition having coordinates //, 9} and admitting a strong defor-
mation k: X’ — X compatible with the pants decompositions such that |//—/;| <€ and
|6]f —0;] < §. The collection {U(X,€,8): X € MRg’n, € > 0,8 > 0} then generates

the topology on MRz .

Set z; = [; ¢'% and let U be the fixed locus under the symmetry of X', which, up to
permutation of coordinates, consists of points of the form

(21721722722""’Edli‘xl""’xdz)

where 2d; +dy =3g—3+n, zi € C and x; € R. This is an open subset of RY where
d = 3% — 3+ n. In particular the open sets U(X, €, §) are homeomorphic to U/ T for
an appropriate open subset U of R? and T the automorphism group of X . Therefore
the space MRz, is an orbifold.

Similarly given a surface K € Eg,u, h,n and an oriented symmetric pants decomposition
of K¢ with coordinates /;, 6; denote by U(K, €, §) the set of surfaces K’ with an
oriented symmetric pants decomposition of K¢, having coordinates /;, 9]4 and admitting
a strong deformation k: K¢ — Ko compatible with the pants decompositions on the
complex doubles such that |/ —/;| < € and |(9]f — 6| <§. The collection {U(K,¢,§):

K e Eg,u,h,,,, € > 0,8 > 0} then generates the topology on /Eg,u,,,,,,.

In this case the open sets are now homeomorphic to U / T for some open neighbourhood
U of R’;’OXR”’_’” and T" the automorphism group of K, where d =6g+3h+3u+n—6
and m is the number of nodes of K. The value of d is obtained by noting that the
complex double of K has topological type (2g +/h+u—1,0,0,n), so that the number
of Fenchel-Nielsen coordinates of the double is 6(2g + /4 +u — 1) — 6 + 2n and again
only half of these are independent. However, as discussed previously, the interior nodes
of the complex double do not encode the dianalytic structure of the boundary nodes in
the quotient, nor are the marked points oriented. As a result there is only one way to
smooth a node in K given the dianalytic structure so the coordinates corresponding to
(smoothings of) the m nodes lie in ]R’go. In terms of the coordinates on the complex
double this corresponds to the fact that a node in the complex double is fixed by the
symmetry so as we smooth it the Fenchel-Nielsen coordinate corresponding to the
gluing angle is either 0 or w. However only one choice is possible if the quotient is to
have the correct topological type and orientation of marked points. Therefore the space
K ¢.u,h,n 18 an orbifold with corners. Furthermore an orbifold with corners is homotopy
equivalent to its interior which in this case is Kg , p5-
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We can also carry out a similar construction for the spaces N, g,hn- See also Liu [16]
and Costello [7].

Our discussion can be summarised in the following lemma:

Lemma 4.27

* Ny hn is an orbifold with corners of dimension 6g —6 + 3h + n. The interior is

N h,n and the inclusion Ny p , — _g,h,n is then a homotopy equivalence.

*  Kg,u,hn is an orbifold with corners of dimension 6g + 3h + 3u +n—6. The
interior is Kg , p , and the inclusion Kg , p » <> Kg 4 p.n is then a homotopy
equivalence.

. mg,n is an orbifold of dimension 3¢ —3 4 n.

Remark 4.19 can be taken further. Given a Riemann surface with » marked points
together with a colouring of the marked points by {0, 1} we can map it to a Klein
surface with n oriented marked points in dnKlein by choosing the canonical orientation
about points coloured by 0 and the opposite orientation otherwise. Equivalently we
choose ¢; in the component of the orienting double that maps analytically under the
quotient map when i is such that p; is coloured by 0 and in the component which
maps anti-analytically otherwise.

Two isomorphism classes of Riemann surfaces with n coloured marked points map
to the same class of Klein surface precisely when there is an antiholomorphic map
between them that reverses the colourings of all the marked points and this map is
therefore 2—to—1 for n > 0. For n = 0 this map is then 2—to—1 on isomorphism
classes except when a Klein surface has isomorphic underlying analytic structures (or
equivalently when considering a Riemann surface as a Klein surface its automorphism
group is no larger, or equivalently the Riemann surface admits an antiholomorphic
automorphism).

In particular for n > 0 if we restrict to Riemann surfaces where the first marked point
is coloured by 0 then this map is injective.

The following lemma follows from this discussion.

Lemma 4.28 There is an isomorphism

2]1
@Ng,h,n /"’ > ICg,O,h,n
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where ~ identifies Riemann surfaces with coloured markings that give rise to the same
Klein surfaces with oriented markings. For n > 0 the left hand side is isomorphic to

211—1
@ Ng,h,n-

Let Dgypn C Kg,u,h,n be the subspace consisting of those Klein surfaces whose
irreducible components are all discs. Let Dg p, C /\_fg h,n be the corresponding
subspace of bordered Riemann surfaces. Let D;R Cc MR ,n be the subspace consisting
of those admissible Riemann surfaces whose irreducible components are all spheres.
Note that when we consider MRz g,n as amoduli space of naive nodal Klein surfaces then
Dgn is the subspace consisting of those Klein surfaces whose irreducible components
are all discs.

4.6 The open KTCFT operad and related operads

We recall (see Costello [7]) that the spaces N, ¢,h,n form a modular operad N controlling
open topological conformal field theory (TCFT). The spaces Dy j , form a suboperad.
Further it was shown by Costello [7; 8] that these spaces are compact orbispaces and
admit a decomposition into orbi-cells and if n > 0 then Dy 5, is an ordinary space
instead of an orbispace so we obtain a cell decomposition. Further these orbi-cells are
labelled by reduced ribbon graphs.

The collection of spaces Kg,u,h,n form a topological modular operad K by gluing Klein
surfaces with oriented marked points such that the orientations are compatible. We
can describe the gluing explicitly via the orienting double. Given dianalytic symmetric
Riemann surfaces (X, o, p) and (X', 0’,p’) with n and m marked points respectively
we can define an operation gluing along marked points p; and ¢; as follows: we glue
the underlying Riemann surfaces at these points and we also glue the points o (p;)
and o”(g;). Clearly we can use o and ¢’ to define an antiholomorphic involution on
the resulting surface which will clearly be dianalytic and will have n + m — 2 marked
points. We also note that the topological type of the resulting surface is the sum of
the topological types of X and X’. Similarly we can define contractions/self gluings
of dianalytic symmetric Riemann surfaces in this way, in which case the resulting
topological type either increases the number of boundary components or the number of
crosscaps by 1.

Therefore the space K((Z,n)) is the disjoint union of the spaces /Eg,u,h,,, with g =
2¢ + h 4+ u—1. The group S, acts by reordering the n—tuple of marked points.
Composition and contraction is given by gluing the marked point as described above.
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This gives us the modular operad controlling open Klein topological conformal® field
theory (KTCFT). The spaces Dg 4 p., form a suboperad which we denote D.

We will think of these two operads as extended modular operads by setting D((0,2)) =
K((0,2)) to be the discrete group Z, which acts on Klein surfaces by switching the
orientation of marked points.

Similarly by gluing admissible symmetric Riemann surfaces without boundary at
marked points in the natural way the spaces MR g,n form a modular operad MR and
the spaces Dgn form a suboperad which we denote DX,

Remark 4.29 The gluings of the operad MR when thought of as gluings of admissible
symmetric Riemann surfaces are ‘closed string’ gluings. In this way the operad MR
is closer in spirit to the Deligne—Mumford operad (see, for example, Getzler and
Kapranov [9)).

Proposition 4.30 The spaces Dy , p., admit a decomposition into orbi-cells labelled
by reduced Mébius graphs.

Proof This is not hard. It is intuitively obvious how we can label a surface by a
Mobius graph but in order to specify the colouring of the edges we need to understand
the dianalytic structure about the nodes. It is easiest (although unenlightening) to do
this via the orienting double. Let MI'g , 5 , denote the set of reduced Mobius graphs of
topological type (g,u,h) with n legs. Let (K, p,q) € Dg , s, We associate a graph
Y(K) €MI'g , p.n to K as follows: There is one vertex for each irreducible component
of K, an edge for each node and a leg for each marked point. This yields a graph.
We need to specify a ribbon structure and a colouring of the half edges and verify we
can do this in a well defined manner. We consider the orienting double (Kq, f,0)
and for each irreducible component A of K we choose an irreducible component A
of f71(4) C Ko. Since A is an oriented disc this gives a natural cyclic order on
the half edges of y(K). We colour the leg corresponding to p; by 0 if ¢g; € A and
by 1 otherwise. A node x of K lies on the boundary of either 1 or 2 irreducible
components. If it lies on only 1 component, B say, then we colour the edge associated
to it by 0 if a preimage of x in K¢ lies only on B, else we colour the half edges by
different colours (by Remark 3.28 it does not matter how we do this). If x lies on the
boundary of both B and C, then we colour the edge associated to it by 0 if Band C
intersect at a preimage of x and by different colours otherwise.

9The use of the word ‘conformal’ here is potentially confusing since dianalytic maps correspond to

maps preserving angles but not necessarily oriented angles. A conformal map in the presence of the word
‘Klein’ should therefore be understood in this sense.
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This yields a reduced Mobius graph. We must show it is well defined since we made a
choice of irreducible components in K. Given an irreducible component 4 of K, if
we had chosen the other preimage of A then the cyclic ordering at the corresponding
vertex would be reversed and the colouring also reversed. Thus the resulting Mobius
graphs would be isomorphic.

We now show that for any graph G € MI'g ,, 1, ,, the space of surfaces K € Dg y, p »
with y(K) = G is an orbi-cell. This follows from the topology of the moduli space
of discs: let D be a disc with an analytic structure. Then D is holomorphic to the
unit disc in the complex plane which has automorphism group PSL,(R) and so the
space of n > 3 marked points on the unit disc is the configuration space of marked
points on S! modulo PSL,(R). Further, automorphisms of the unit disc preserve the
cyclic ordering of marked points and so this space decomposes into cells labelled by
ribbon corollas. As noted in Lemma 4.28 the moduli space of marked Klein discs can
be identified with the moduli space of coloured marked unit discs modulo the action of
the anti-analytic map reversing the cyclic ordering of the marked points. The space of
coloured marked unit discs decomposes into cells and the action reversing the cyclic
ordering freely maps cells to cells and so we have a cell decomposition of the moduli
space of marked Klein discs. Clearly each cell is labelled by a different Mdbius corolla.
Therefore to each vertex v of a Mobius graph we associate a cell X' (v). Then we can
let X(G) =[], X(v). We can identify the orbispace of surfaces with y(K) = G as
X(G)/ Aut(G), which is an orbi-cell. |

Remark 4.31 The orbi-cell labelled by a graph G is attached to the cells labelled by
the graphs given by all ways of expanding the vertices of G of valence greater than 3,
since two marked points meeting corresponds to bubbling off a disc. This should of
course remind us of the differential of the operad DM.Ass.

Lemma 4.32 A stable Klein surface with n > 0 oriented marked points has no non-
trivial automorphismes.

Proof We must show that the orienting double has no non-trivial automorphisms. If
the orienting double is disconnected then an automorphism would necessarily restrict
to an automorphism of one of the connected components. The result is true for stable
bordered Riemann surfaces (see Costello [8, Lemma 3.0.11]) so the orienting double
has no non-trivial automorphisms. |

Corollary 4.33 If n > 0 then Dy , 5 » is an ordinary space and decomposes into a
cell complex. O
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Proposition 4.34 The spaces DX Fn admit a decomposition into orbi-cells labelled by
a certain type of reduced graph ( Wh1ch we call a dianalytic ribbon graph).

Proof Each orbi-cell will be labelled by a (reduced) ribbon graph where two ribbon
graphs are considered equivalent if there is an isomorphism of the underlying graphs that
at each vertex either preserves or reverses the cyclic ordering (note that this definition
can be thought of as Mdbius graphs without a colouring). We will call such graphs
up to this equivalence dianalytic ribbon graphs. Given a surface K € D?n we first
choose an orientation for each irreducible disc. We can then associate a ribbon graph
to it where there is a vertex for each irreducible component of K, an edge for each
node and a leg for each marked point. Again this is well defined since choosing a
different orientation of an irreducible component reverses the cyclic ordering at the
vertex associated to that component.

It remains to show that the space of surfaces corresponding to a given graph G is an
orbi-cell. This follows from the fact that the moduli space of stable dianalytic discs
with n marked points can be identified with the moduli space of marked oriented discs
modulo the action of the map reversing the orientation. This action freely maps cells
to cells (since there are at least 3 marked points on a disc so reversing the orientation
gives a different cell) so we get a cell decomposition of the moduli space of stable
dianalytic discs with cells labelled by dianalytic ribbon corollas. We can associate to
each vertex v of G a cell X (v) and once again the orbi-cell of surfaces corresponding
to the graph is X (G)/ Aut(G) where X (G) =[], X(v). |

Remark 4.35 Note that although each orbi-cell of D?n is the quotient of orbi-cells
in [[Dg ,n, (Where the disjoint union is as usual taken over surfaces such that
2¢ +u+h—1=g) by the action of a finite group switching the colourings of half
edges, this does not extend to a global action and so the space D?n is not obtained as
a quotient of [ [ D, , p.» by some group action, unlike the space of smooth surfaces
/\/l]if , Which, as mentioned, is obtained as the quotient of [ Kq.,u,nn by an action of
ZXV[

We now come to our main result concerning the moduli space of Klein surface with
oriented marked points. We have the following main result by Costello [7; 8]:

Proposition 4.36 The inclusion Dg j , < Ng j , is a homotopy equivalence.

Our main result concerning the moduli space of Klein surfaces will follow from the
Klein analogue of this:
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Proposition 4.37 The inclusion Dg , j n <> ’Eg,u,h,n is a homotopy equivalence.

Proof By Lemma 4.28 with Proposition 4.36 this is clear if # = 0. We therefore will
restrict our attention to u # 0. Fortunately for us the proof of Proposition 4.36 carries
over easily to a proof of this. As in that case, to prove Proposition 4.37 we first show
the following:

Lemma 4.38 The inclusion a/Eg,,,,,,,o — /?g,u,h,o is a homotopy equivalence of
orbispaces.

Proof The key idea of the proof is to construct a deformation retract of K g,u,h,0 ONto
its boundary a;Eg,u,,,,O. This is done by using the hyperbolic metric on a Klein surface
K to flow the boundary 0K inwards until K becomes singular. Some of the work
involved can be avoided by passing to the orienting double and using the facts for
Riemann surfaces proved by Costello [8].

Let K € Kg 0,0 be a Klein surface. Since we are assuming « > 1 and (g, u, h) #
(0,1,1) (since /Eo,u,o is empty) then the complex double of K is a hyperbolic surface
and so there is a unique hyperbolic metric on K such that the boundary is geodesic.
By taking the unit inward pointing normal vector field on dK and using the geodesic
flow on K we can flow dK inwards. Let K; be the surface with boundary obtained
by flowing in dK a distance ¢. Note that this process lifts to the orienting double Ko
which is connected and corresponds to the process obtained using the hyperbolic metric
on Ko. In Costello [8, Lemma 3.0.8] it is shown that this process applied to a Riemann
surface eventually yields a singular surface and further that all the singularities are
nodes. So by considering the orienting double we see the same is true for the Klein
surface K. More precisely, for some 7" we have K1 € 8I€g’u,h,0.

Let S € R>¢ be the smallest number such that Kg € aﬁg,u,h,o so that K; is in
the interior Kg ;, p0 for all £ < S. We have a map ®: KCq , 40 X [0, 1] — Eg,u,h,o
defined by ®(K, x) = K. We extend this to a map @’ Kg,u,h,o x[0,1] — }Eg,u,h,o
by setting ®'(K’,t) = K’ for K’ € aEg,u,h,O- To see this extends ® continuously
we take a sequence K; of surfaces converging to K € ai?g,u,,,,o and let x; be any
sequence. We must show ®'(K;,x;) — K. Observing that, after forgetting the
symmetry, (K;)o — Ko and comparing to the proof of [8, Lemma 3.0.9] this is clear.
Then @’ is a deformation retract of the inclusion as required. a

Lemma 4.39 The inclusion aIEg,u,h,n — Eg,u,h,n is a homotopy equivalence.
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Proof Since the moduli space of a Mobius strip with an oriented marked point is
the same as that of an annulus with a marked point then if (g,u, #,n) = (0,1,1,1)
Lemma 4.39 can be seen directly.

There is a map Eg,u’h’,,ﬂ — Eg,u,,,,,, forgetting the last marked point and contracting
any resulting unstable components which is a locally trivial fibration (in the orbispace
sense). This follows by considering for some K € IEg,u,h,n the space of ways of adding
an oriented marked point to dK. This is the same as the space of ways of adding a
single marked point to dKg. Then by the same argument as [8, Lemma 3.0.5] it is
clear that this map is a locally trivial fibration. Therefore if 81Cg whn < ng,u hon
is a homotopy equivalence then so is 8/Cg whntl < /Cg uh,n+1 and Lemma 4.39
follows. O

We can now see that Proposition 4.37 follows from Lemma 4.39 by an inductive
argument like that in [8, Lemma 3.0.12]. O

We can also obtain such a result for the operad MR . We consider K € MR as a naive
nodal Klein surface and then consider the space of ways of adding a marked point to
0K by an identical argument to [8, Lemma 3.0.9] to see the map MR, , | — MR, ,
forgetting the last marked point and stabilising is a locally trivial fibration in the
orbispace sense.

Since m~ ,0 can be obtained from ]_[Eg u,h,0 by identifying only points in ]_[Blzg u,h,0
(by forgettmg the dianalytic structure at nodes), it follows immediately from Lemma 4.38
that there is a deformation retract of the map MR 0\ MR — MR ,0- Therefore
by the same argument as above we can deduce the followmg

Proposition 4.40 The inclusion DEn < MR g.n 1s a homotopy equivalence. a
We now obtain our main theorem immediately from Propositions 4.37 and 4.40.

Theorem 4.41

o The inclusion D < K is a homotopy equivalence of extended topological
modular operads.

e The inclusion DR < MR js a homotopy equivalence of extended topological
modular operads. a

Given an appropriate chain complex C, (we take coefficients in Q) with a Kiinneth

map Cx(X) ® Cx(Y) — Cx(X x Y) then Cx(K) is an extended dg modular operad.
An algebra over this is called an open KTCFT. Since the space of dianalytic ribbon
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graphs is obtained from the space of Mobius graphs by forgetting the colouring we see
that Cx(D®) = C4(D)/(a = 1) where a € C+(D)((0,2)) = Q[Z,] is the involution.
The above then translates into:

Theorem 4.42 There are quasi-isomorphism of extended dg modular operads over Q
Ci(D)~Cy(K) and  Cx(D)/(a=1) ~ Cyx(MR)
where a € C«(D)((0,2)) = Q[Z,] is the involution. |

Since the spaces Dy, p , are orbi-cell complexes we can give a simple description for
the operad C«(D) over Q using the cellular chain complex. We now identify this dg
operad Cy (D) and so relate our results to the previous sections.

Proposition 4.43 There is an isomorphism
C«(D) = DMAss

(up to homological/cohomological grading).

Remark 4.44 By ‘up to homological/cohomological grading’ we mean that Cy (D)
is graded homologically whereas DM.Ass is graded cohomologically. Given a coho-
mologically graded complex V = Vi we set V_; = V' to obtain an equivalent
homologically graded complex. We can swap the grading of operads in this way.

Proof This follows from considering Proposition 4.30 and Remark 4.31 together with
Proposition 3.29. The space C«x(Dg , 5,,) is generated by oriented orbi-cells so a basis
is given by reduced Mobius graphs G of topological type (g, u, h, n) together with an
orientation of the corresponding orbi-cell. An orientation can be given by an ordering
of the vertices of G and at each vertex an ordering of the set of half edges attached
to it. It is clear by considering Remark 3.31 that orientations of the corresponding
orbi-cell are equivalent to orientations on G as defined earlier. Noting then that Cy (D)
is the modular closure of its genus 0 part, it is not too difficult to check that the operad
structures coincide. |

This is the Klein version of the fact by Costello [7] that D.Ass gives a chain model for
the homology of A/ which gives the well known ribbon graph complexes computing
the homology of the spaces Ng pn =~ Ng i n-

In our case this means we obtain Mdobius graph complexes computing the rational
homology of the spaces Kg , 4.n > Kg u n,n» generated by oriented reduced Mobius
graphs with the differential expanding vertices of valence greater than 3. When n > 0
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this computes the integral homology since Dy , 4 » is then an ordinary cell complex.
When # = 0 and n > 0 this complex is a sum of ribbon graph complexes as expected.
For u = n = 0 this complex is the ribbon graph complex quotiented by the action
of Z, reversing the cyclic ordering at every vertex of a graph. For u # (0 we obtain
combinatorially distinct complexes.

We can also obtain graph complexes for the rational homology of the spaces /\/(]R =
(LI Kg,u,n,n)/Z5" by forgetting the colours of the legs of Mobius graphs. Addltlonally
by forgetting the colours of all the half edges of Mobius graphs we obtain graph com-
plexes for the spaces MR g,n- We will describe all these graph complexes concretely,
without reference to operads, in the next section.

We finish this section with some observations. As already stated we have found two
different ways of approaching the problem of allowing nodes on Klein surfaces. In
the case of surfaces with oriented marked points we obtain a partial compactification
that is homotopy equivalent to the space of smooth surfaces. We should note that
Hy(K) = MAss. In the second case the partial compactification is quite different.

Since the spaces M? , (which are in general not connected) are obtained from the
disjoint union of the spaces Ky, 5, modulo the action of the finite group Z3" then
the non-zero degree rational homology of /\/l](l)g , 1s trivial (as MAss is Koszul).

There is a map of operads given by the composition

q: DAss — DMAss — DMAss/(a = 1)

and this map is surjective. Geometrically this corresponds to the fact that the spaces
of DR are subspaces of the loci of admissible Riemann surfaces in MR having an
orientable quotient (and so up to homotopy we do not need to worry about unorientable
surfaces in MR) Tt is easy to see that Hy(MR) = Hy(DR) 2 Com and so the spaces
MRz, are connected.

More interestingly the spaces MR, have non-trivial rational homology in higher
degrees. To see this we first note that if 7 e DMAss/(a=1) isacycleand d(T') =T
for some 7 then there is a G € D.Ass such that ¢(G) =T’ so T = ¢q(d G) and so the
cycle T lifts to a cycle dG in D Ass. Therefore if we find a cycle in DMAss/(a = 1)
that does not lift to another cycle we know it gives a non-trivial homology class. It is
easy to write down an example, see Figure 4.2. This fact also justifies Remark 4.35.

4.7 Summary of the associated graph complexes

In order to make our results explicit we will finish by unwrapping Theorem 4.42 and
Proposition 4.43 and defining the graph complexes in a more explicit and straightforward
manner, without reference to operads.
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Figure 4.2: A non-trivial homology class in H; (m 0,5). When the differ-
ential is applied to the first two terms of 7 two of the resulting trees cancel
as elements of DM Ass/(a = 1) but not as elements of D.4ss no matter how
we lift T'.

Recall an orientation of a graph G is a choice of orientation of the vector space
QFdee(@) g H, (|G|, Q). Denote by [g p,n the vector space over Q generated by
oriented reduced ribbon graphs of topological type (g, 1, n). Thatis, equivalence classes
of pairs (G, or) with G areduced ribbon graph of genus g with /2 boundary components
and n legs and or an orientation of G, subject to the relations (G, —or) = —(G, or).

Denote by MI'g ;, ., the vector space over Q generated by oriented reduced Mdbius
graphs of topological type (g, u, h,n).

Denote by I'z ,, the space

F?m:: 6}9 F@hm

2g+h—1=g
and denote by MI'z ,, the space
MI'z, = @ MT¢ uhn-
2g+ut+h—1=g

The finite group Z3" acts on MI'z , by switching the colours of legs.
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Denote by FglR ,, the space of oriented reduced dianalytic ribbon graphs (see the proof
of Proposition 4.34) of topological type (g, 7). Observe that

Tan=Tza/l =MTg,/J

where I is the subspace generated by relations of the form (G, or) = (H, or’) whenever
(G, or) is isomorphic to (H,or’) after reversing the cyclic ordering at some of the
vertices of G if necessary and J is the subspace generated by relations of the form
(G,or) = (H,or') whenever (G,or) is isomorphic to (H,or’) after changing the
colours of any of the half edges of G if necessary. What this means is that FR
obtained from I'g ;, by identifying cyclic orderings at vertices of ribbon graphs Wlth the
reverse cyclic orderings or that it is obtained from MI'z ,, by forgetting the colourings
of Mobius graphs.

These spaces are finite dimensional and cohomologically graded by the number of
internal edges in a graph. We define a differential on these spaces by

d(G,or) = Z(G', or’)

where the sum is taken over classes (G, or’) arising from all ways of expanding one
vertex of G into two vertices each of valence at least 3 so that G’ /e = G where e is
the new edge joining the two new vertices. The orientation or’ is the product of the
natural orientations on QF4e(G") 5 QEdee(G)\e and H\ (|G'|) = H;(|G'/e]).

We can then unwrap the main theorems.

Theorem 4.45

e There are isomorphisms
HO(Ng,h,n’ Q) = HO(/\_/g,h,na Q) = H6g+3h+n_6_.(rg,h,n)-

Further for n > 1 such isomorphisms also hold for integral homology. This is
the well known ribbon graph decomposition.

e There are isomorphisms
HO(ICg,u,h,n’ Q) = HO(Eg,u,h,n’ Q) = H6g+3u+3h+n_6_.(Mrg,u,h,n)-

Further for n > 1 such isomorphisms also hold for integral homology.

e There are isomorphisms
Ho (M5, Q) = H3¥" 37 (MTg ) /25",
e There are isomorphisms

Ho(MRg,, Q) = H¥+1737(R ),
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