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The Atiyah–Segal completion theorem in twisted K–theory

ANSSI LAHTINEN

A basic result in equivariant K–theory, the Atiyah–Segal completion theorem re-
lates the G–equivariant K–theory of a finite G–CW complex to the non-equivariant
K–theory of its Borel construction. We prove the analogous result for twisted equi-
variant K–theory.

55N15; 19L50, 19L47, 55P91

1 Introduction

The aim of this note is to prove the following twisted analogue of the Atiyah–Segal
completion theorem [3].

Theorem 1 Let X be a finite G–CW complex, where G is a compact Lie group. Then
the projection map � W EG �X !X induces an isomorphism

K�C�
G

.X /bIG

�
�!K

��.�/C�
G

.EG �X /

for any twisting � corresponding to an element of H 1
G
.X I Z=2/˚H 3

G
.X I Z/.

Here IG �R.G/ is the augmentation ideal of the representation ring R.G/ and .�/bIG

indicates completion. The classical theorem is the case � D 0. As in the untwisted
case, Theorem 1 implies a comparison between the equivariant K–theory of a finite
G–CW complex X and the non-equivariant K–theory of its Borel construction.

Corollary 2 Let X be a finite G–CW complex. Then there exists an isomorphism

K�C�
G

.X /bIG
�K�C�.EG �G X /

for any twisting � corresponding to an element of

H 1
G.X I Z=2/˚H 3

G.X I Z/DH 1.EG �G X I Z=2/˚H 3.EG �G X I Z/:
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1926 Anssi Lahtinen

Theorem 1 generalizes a result by C Dwyer, who has proved the theorem in the case
where G is finite and the twisting � is given by a cocycle of G [6]. While versions of
the theorem for compact Lie groups have been known to experts (for example, such a
theorem is used in the proof of Freed, Hopkins and Teleman [7, Proposition 3.11]), to
our knowledge no proof of the general theorem appears in the current literature. Our
goal is to fill in this gap.

We shall prove Theorem 1 in two stages. First we prove the theorem in the special case
of a twisting arising from a graded central extension

1! T !G�
!G! 1; �W G! Z=2

of G by the circle group T. For such twistings, twisted G–equivariant K–groups
correspond to certain direct summands of untwisted G�–equivariant K–groups, and the
Adams–Haeberly–Jackowski–May argument contained in [1] goes through with these
summands to prove the theorem in this case. It follows that the theorem holds when X

is a point, and the general theorem then follows by a Mayer–Vietoris argument.

As our definition of twisted K–theory, we use Freed, Hopkins and Teleman’s elabora-
tion [8] of the Atiyah–Segal model developed in [4]. Thus for a G–space X, the notation
K�C�

G
.X / is a shorthand for K�C�.X==G/, where X==G is the quotient groupoid of

X. Of course, the completion theorem should remain true in any reasonable alternative
model for twisted equivariant K–theory as well.

This note is structured as follows. In Section 2 we describe a pro-group valued variant
of K–theory which we shall employ in Section 3 to handle the case of a twisting given
by a central extension. Section 4 then contains a proof of the general theorem.
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2 A convenient cohomology theory

We shall now describe a cohomology theory which will be used in the next section to
prove the completion theorem for twistings arising from a graded central extension. Let

1! C ! zG!G! 1
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be a central extension of a compact Lie group G by a commutative compact Lie group
C, and let X be a finite G–CW complex. Via the map zG! G we can view X as a
zG–space on which C acts trivially. The semigroup Vect zG.X / of isomorphism classes
of zG–equivariant vector bundles over X decomposes as a direct sum

(1) Vect zG.X /D
M
�2 yC

Vect zG.X /.�/

where yC denotes the set of isomorphism classes of irreducible representations of
C, and where Vect zG.X /.�/ is the semigroup of isomorphism classes of those zG–
vector bundles over X whose fibers are �–isotypical as representations of C, that is,
isomorphic to sums of copies of �. The decomposition (1) leads to a decomposition

(2) K�
zG
.X /D

M
�2 yC

K�
zG
.X /.�/

and similarly for reduced K–groups.1 Here K0
zG
.X /.�/ is the Grothendieck group

of Vect zG.X /.�/, and K
q

zG
.X /.�/ for non-zero q is defined by using the suspension

isomorphism and the Bott periodicity map. By inspection and definition, the decom-
position (2) is compatible with G–equivariant maps of spaces, with the suspension
isomorphism, with the Thom isomorphism for G–equivariant vector bundles, and, as
a special case, with the Bott periodicity map. Thus for each � 2 yC, we can view
K�
zG
.�/.�/ as a Z=2–graded cohomology theory defined on finite G–CW complexes

and taking values in graded R.G/–modules.

Although the decomposition (2) fails for infinite X in general, it is possible to extend
each one of the theories K�

zG
.�/.�/ to infinite G–CW complexes by means of suitable

classifying spaces. However, since having the theories available for finite complexes
suffices for most of our purposes, we will not elaborate this point. Instead, we point the
reader to the proof of Freed, Hopkins and Teleman [8, Proposition 3.5] for a description
of the appropriate classifying space when � is the defining representation of the circle
group T, which is the only case where we will need to apply K�

zG
.�/.�/ to an infinite

complex in the sequel.

Our interest in the groups K�
zG
.X /.�/ is explained by the following proposition. Recall

that a graded central extension of a group G is a central extension of G together with
a homomorphism from G to Z=2.

1In fact, tensor product makes K�
zG
.X / into a yC–graded algebra where the modules K�

zG
.X /.�/ are

the homogeneous parts. However, we shall not need this graded algebra structure.
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Proposition 3 (A reformulation of Freed, Hopkins and Teleman [8, Proposition 3.5])
Let G be a compact Lie group, let X be a G–space, and let � be the twisting given by
a graded central extension

1! T !G�
!G! 1; �W G! Z=2

of G by the circle group T. Let S1.�/ denote the one-point compactification of the
1-dimensional representation of G given by .�1/�. Then there is a natural isomorphism

K�Cn
G

.X /� zKnC1
G� .XC ^S1.�//.1/

where “1” refers to the defining representation of T.

The groups K�
zG
.X /.�/ are not what we are going to use in the next section. Instead, we

need pro-group valued versions completed at the augmentation ideal. (For background
material on pro-groups, we refer the reader to Adams, Haeberly, Jackowski and May [2].)
Given an arbitrary G–CW complex X and an irreducible representation � of C, we
let K�

zG
.X /.�/ denote the pro–R.G/–module

K�
zG
.X /.�/D fK�

zG
.X˛/.�/g˛

where X˛ runs over all finite G–CW subcomplexes of X and the structure maps of
the pro-system are those induced by inclusions between subcomplexes. The groups of
our interest are then the pro–R.G/–modules

K�
zG
.X /.�/bIG

D fK�
zG
.X˛/.�/ = In

G �K
�
zG
.X˛/.�/g˛;n;

where X˛ again runs over the finite G–subcomplexes of X, n runs over the natural
numbers, and the structure maps of the pro-system are the evident ones. We think of
K�
zG
.X /.�/bIG

as the completion of K�
zG
.X /.�/ with respect to the augmentation ideal

IG . Reduced variants zK�
zG
.X /.�/ and zK�

zG
.X /.�/bIG

for a based G–CW complex X

are defined in a similar way using the reduced groups zK�
zG
.X˛/.�/, where X˛ now

runs through the finite G–CW subcomplexes of X containing the base point. The
crucial feature of the groups K�

zG
.X /.�/bIG

for us is that they form a cohomology
theory on the category of G–CW complexes (and therefore, by G–CW approximation,
on the category of all G–spaces). Phrased in terms of the reduced groups, this means
that the following axioms hold.

(1) (Homotopy invariance) If X and Y are based G–CW complexes and f;gW X!
Y are homotopic through based G–equivariant maps, then the induced maps

f �;g�W zK�
zG
.Y /.�/bIG

! zK�
zG
.X /.�/bIG

are equal.
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(2) (Exactness) If X is a based G–CW complex and A is a subcomplex of X

containing the base point, then the sequence

zK�
zG
.X=A/.�/bIG

! zK�
zG
.X /.�/bIG

! zK�
zG
.A/.�/bIG

is pro-exact.

(3) (Suspension) For each q, there exists a natural isomorphism

†W zKq

zG
.X /.�/bIG

� zKqC1

zG
.†X /.�/bIG

(4) (Additivity) If X is the wedge sum of a family fXigi2I of based G–CW com-
plexes, the inclusions Xi ,!X induce an isomorphism

zK�
zG
.X /.�/bIG

�
�!

Y
i2I

zK�
zG
.Xi/.�/bIG

The only difficulties in verifying these properties arise from the exactness axiom.

Proposition 4 The functor zK�
zG
.�/.�/bIG

satisfies the exactness axiom.

Sketch of proof As in Adams–Haeberly–Jackowski–May [2], because the ring R.G/

is Noetherian (see Segal [9, Corollary 3.3]), the result follows from the Artin–Rees
lemma once zK�

zG
.Z/.�/ is known to be finitely generated as an R.G/–module for any

finite based G–CW complex Z. We shall prove that zK�
zG
.Z/.�/ is finitely generated

by reduction to successively simpler cases. Filtering Z by skeleta and using the wedge
and suspension axioms, we see that it is enough to consider the case where ZDG=HC
for some closed subgroup H of G. Let zH denote the inverse image of H in zG. Then
zH is a central extension of H by C, and we have zG–equivariant isomorphisms

G=H � . zG=C /=. zH=C /� zG= zH :

The R.G/–module isomorphisms

K�
zG
.G=H /�K�

zG
. zG= zH /�K�

zH
.pt/

preserve the direct sum decomposition (2), whence we obtain an isomorphism

K�
zG
.G=H /.�/�K�

zH
.pt/.�/:

Here the latter group can be identified with the summand R. zH /.�/ of R. zH / generated
by those representations of zH which restrict to �–isotypical representations of C.
The R.G/–module structure on R. zH /.�/ arises from its R.H /–module structure
via the map R.G/ ! R.H /, and since R.H / is finite over R.G/ (see Segal [9,
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Proposition 3.2]), we are reduced to showing that R. zH /.�/ is finite as an R.H /–
module.

Now consider the restriction

(3) R. zH /!
Y
S

R.S/

where the S runs through the conjugacy classes of Cartan subgroups of zH (conjugacy
classes of such subgroups are finite in number and each one of the subgroups is closed,
Abelian and contains the central subgroup C ). This map is injective [9, Proposition 1.2],
whence R. zH /.�/ is a subgroup of

Q
S R.S/.�/. Therefore it is enough to show that

R.S/.�/ is finite as an R.H /–module for each S. The R.H /–module structure on
R.S/.�/ arises from its structure of an R.S=C /–module via the map of representation
rings induced by the inclusion S=C ,!H, and as R.S=C / is finite over R.H /, it is
enough to prove that R.S/.�/ is finite over R.S=C /.

We shall now show that R.S/.�/ is in fact a free R.S=C /–module with one generator.
To prove this, recall that for a compact Abelian Lie group A, tensor product gives the
set yA of irreducible representations the structure of a finitely generated Abelian group,
and that the representation ring of A is given by the group ring ZŒ yA�. Moreover, our
exact sequence of compact Abelian groups

1! C ! S ! S=C ! 1

gives rise to an exact sequence

1!1S=C ! yS ! yC ! 1:

From this it is clear that the summand R.S/.�/ of R.S/ D ZŒ yS � is the subgroup
freely generated by members of the coset of 1S=C in yS mapping to � in yC, with
the R.S=C /–module structure arising from the action of 1S=C on the coset. Thus
any representative of the coset will form an R.S=C /–basis for R.S/.�/, and we are
done.

The next two lemmas point out further useful properties of the theories K�
zG
.�/.�/bIG

.

Lemma 5 Let H be a closed subgroup of G, and let X be a based H–CW complex.
Then there is a natural isomorphism of pro–R.G/–modules

zK�
zG
.GC ^H X /.�/bIG

� zK�
zH
.X /.�/bIH

;

where zH denotes the inverse image of H in zG.
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Proof Observe that the H–CW structure on X gives rise to a G–CW structure on
GC^H X, and that as X˛ runs over the finite H–CW subcomplexes of X, GC^H X˛
runs over the finite G–CW subcomplexes of GC ^H X. Now the lemma follows from
the zG–equivariant isomorphism

zG ^ zH X˛ �G ^H X˛I

from the change of groups isomorphism

zK�
zG

�
zG ^ zH X˛

�
� zK�

zH
.X˛/I

from the compatibility of this isomorphism with the decomposition (2); and from
the fact that the IG–adic and IH –adic topologies on an R.H /–module coincide [9,
Corollary 3.9].

Lemma 6 Let X be a free G–CW complex. Then there is a natural isomorphism
K�
zG
.X /.�/bIG

�K�
zG
.X /.�/.

Proof (Compare with the proof of Atiyah and Segal [3, Proposition 4.3].) Let X˛ be
a finite G–CW subcomplex of X, and let X˛;1; : : : ;X˛;k be the G–CW subcomplexes
of X˛ such that X˛;1=G; : : : ;X˛;k=G are the connected components of X˛=G. Since
the action of G on X is free, for each i D 1; : : : ; k we have an isomorphism

KG.X˛;i/
�
�!K.X˛;i=G/:

Pick a base point for X˛;i=G. Then the diagram

R.G/

��

// KG.X˛;i/
�
// K.X˛;i=G/

��

Z Z

commutes, whence the composite of the maps in the top row sends IG into zK.X˛;i=G/.
However, since X˛;i=G is a connected finite CW-complex, the elements of zK.X˛;i=G/

are nilpotent. Because R.G/ is Noetherian, the ideal IG is finitely generated, and it
follows that for large enough n, the image of In

G
in KG.X˛;i/ vanishes. As this happens

for all i D 1; : : : ; k, the same is true of the image of In
G

in KG.X˛/�
Qk

iD1KG.X˛;i/.
Thus

In
G �K

�
zG
.X˛/.�/D 0
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for large n, and therefore

K�
zG
.X /.�/bIG

D fK�
zG
.X˛/.�/=I

n
G �K

�
zG
.X˛/.�/g˛;n

� fK�
zG
.X˛/.�/g˛

DK�
zG
.X /.�/

as claimed.

Remark 7 The main technical benefit of introducing the pro-group-valued theories
K�
zG
.�/.�/ and K�

zG
.�/.�/bIG

is that they allow us to sidestep problems with exactness
that would otherwise complicate the proof of Theorem 1. The source of these problems
is the failure of inverse limits to preserve exactness, as well as the failure of completion
to be exact for non-finitely generated modules. The idea of using pro-groups to prove
the completion theorem goes back to the original paper of Atiyah and Segal [3].

3 The case of a twisting arising from a graded central exten-
sion

In this section we will prove Theorem 1 in the case where the twisting � arises from a
central extension in the way explained by Freed, Hopkins and Teleman [8]. That is, we
will prove the following.

Theorem 8 Let X be a finite G–CW complex, where G is a compact Lie group. Then
the projection � W EG �X !X induces an isomorphism

K�C�
G

.X /bIG

�
�!K

��.�/C�
G

.EG �X /

for any twisting � arising from a graded central extension

1! T !G�
!G! 1; �W G! Z=2:

Our argument for proving Theorem 8 is closely based on the one Adams, Haeberly,
Jackowski and May present for proving a generalization of the Atiyah–Segal completion
theorem in the untwisted case [1]. Their argument in turn builds on ideas due to
Carlsson [5]. As before, let

1! C ! zG!G! 1

be a central extension of a compact Lie group G by a compact commutative Lie group
C, and let � be an irreducible representation of C. We shall derive Theorem 8 from
the following result.
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Theorem 9 Let X1 and X2 be G–spaces, and let f W X1! X2 be a G–equivariant
map which is a non-equivariant homotopy equivalence. Then the map

f �W K�
zG
.X2/.�/bIG

!K�
zG
.X1/.�/bIG

is an isomorphism.

Before proving Theorem 9, we explain how it implies Theorem 8.

Proof of Theorem 8 assuming Theorem 9 Let Z be a finite G–CW complex. By
Theorem 9, the projection map � W EG �Z!Z induces an isomorphism

(4) K�G� .Z/.1/bIG

��

��!
�

K�G� .EG �Z/.1/bIG
:

Since Z is finite, we have

K�G� .Z/.1/bIG
D fK�G� .Z˛/.1/=I

n
G �K

�
G� .Z˛/.1/g˛;n

D fK�G� .Z/.1/=I
n
G �K

�
G� .Z/.1/gn:

(5)

Fix a model for EG which is a countable ascending union of finite G–CW subcom-
plexes EGk, k � 1; for example, we could take EG to be the iterated join construction
of Milnor and take EGk to be the k–fold join of G with itself. Then Lemma 6 and
the finiteness of Z imply that

K�G� .EG �Z/.1/bIG
DK�G� .EG �Z/.1/

D fK�G� .EGk �Z/.1/gk :
(6)

Thus applying the limit functor taking pro–R.G/–modules to R.G/–modules to the
isomorphism (4) gives us an isomorphism

(7) K�G� .Z/.1/bIG

��

������!
�

lim
 �

k

K�G� .EGk �Z/.1/:

Using (6), (4) and (5), we see that inverse system fK�
G� .EGk �Z/.1/gk is equivalent

to one that satisfies the Mittag–Leffler condition, whence the lim1 error terms vanish
and the codomain in (7) is isomorphic to K�

G� .EG�Z/.1/. Thus for any finite G–CW
complex Z, we have a natural isomorphism

K�G� .Z/.1/bIG

��

������!
�

K�G� .EG �Z/.1/:
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Suppose now Z is a based finite G–CW complex. Then from the diagram

0 // zK�
G� .Z/.1/bIG

//

��

K�
G� .Z/.1/bIG

//

�

��

K�
G� .pt/.1/bIG

//

�

��

0

0 // zK�
G� .EGC ^Z/.1/ // K�

G� .EG �Z/.1/ // K�
G� .EG/.1/ // 0

we see that there is an induced isomorphism

zK�G� .Z/.1/bIG

��

������!
�

zK�G� .EGC ^Z/.1/:

The claim now follows by taking Z to be the space XC ^ S1.�/ and applying
Proposition 3.

The rest of this section is dedicated to the proof of Theorem 9. Let fVigi2I be a set
of representatives for the isomorphism classes of the non-trivial irreducible complex
representations of G. Then I is countable, the fixed-point subspace V G

i is zero for
each i 2 I, and for every proper closed subgroup H of G, there is some i 2 I such that
V H

i ¤ 0. Let U be the direct sum of countably infinite number of copies of
L

i2I Vi ,
and let

Y D colimV�U SV

where the colimit is over all finite-dimensional G–subspaces of U and SV denotes the
one-point compactification of V . Pick a G–invariant inner product on U, and observe
that Y G is S0.

Lemma 10 The space Y is H–equivariantly contractible for any proper closed sub-
group H of G.

Proof Since Y has the structure of an H–CW complex, it is enough to show that the
fixed point set Y K is weakly equivalent to a point for any subgroup K of H. Given any
finite-dimensional G–subspace V � U, we can find a finite-dimensional G–subspace
W �U such that V �W and .W �V /K ¤ 0, where W �V denotes the orthogonal
complement of V in W . But then the inclusion SV ,! SW is K–equivariantly null-
homotopic, whence the map .SV /K ,! .SW /K is null-homotopic. Since Y K is given
by the union

Y K
D colimV�U .S

V /K ;

the claim follows.

Lemma 11 The pro–R.G/–module zK�
zG
.Y /.�/bIG

is pro-zero.
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Proof For a finite-dimensional G–subspace V � U, let

�V 2
zKG.S

V /D zK zG.S
V /.0/� zK zG.S

V /

denote the equivariant Bott class, where “0” refers to the trivial representation of C.
Then by Bott periodicity, each element of zK�

zG
.SV /.�/ is uniquely expressible as a

product x�V , where x 2 zK�
zG
.S0/.�/. Suppose W � V . From the diagram

zK�
zG
.SW �V /.�/ //

^�V�

��

zK�
zG
.S0/.�/

^�V�

��

zK�
zG
.SW /.�/ // zK�

zG
.SV /.�/

it follows that the map
zK�
zG
.SW /.�/! zK�

zG
.SV /.�/

sends the element x�W Dx�W �V �V to x�
W �V

�V , where �
W �V

denotes the image
of �W �V under the map

zKG.S
W �V /! zKG.S

0/

induced by the inclusion S0 ,! SW �V . Since this map is non-equivariantly null-
homotopic, it follows from the diagram

zKG.S
W �V /

��

// zKG.S
0/

��

R.G/

��

zK.SW �V / // zK.S0/ Z

that �
W �V

2 IG . Thus if we choose W � U so that it is the direct sum of V with n

G–invariant subspaces of U, then the map

zK�G.S
W /.�/=In

G �
zK�G.S

W /.�/! zK�G.S
V /.�/=In

G �
zK�G.S

V /.�/

is zero. It follows that for any fixed n the pro–R.G/–module

f zK zG.S
V /=In

G �
zK zG.S

V /gV

is pro-zero, and therefore so is

zK zG.Y /.�/bIG
D f zK zG.S

V /=In
G �
zK zG.S

V /gn;V

D lim
 �

n

f zK zG.S
V /=In

G �
zK zG.S

V /gV

where the inverse limit is taken in the category of pro–R.G/–modules.
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We are now ready to prove Theorem 9.

Proof of Theorem 9 It is enough to prove that zK�
zG
.Z/.�/bIG

is pro-zero when Z is
a non-equivariantly contractible G–space; the claim then follows by taking Z to be the
mapping cone of f . We shall show that zK�

zG
.Z/.�/bIG

D 0 for such Z by induction
on the subgroups of G, making use of the fact that any strictly descending chain of
closed subgroups of a Lie group is of finite length.

To start the induction, we observe that in the case G D feg the claim follows from the
assumption that Z is non-equivariantly contractible. Assume inductively that

zK�
zH
.Z/.�/bIH

D 0

for all proper closed subgroups H of G; here as before zH denotes the inverse image of
H in zG. The inclusion of the fixed-point set Y G DS0 into Y gives a cofiber sequence

S0
! Y ! Y=S0

whence we have a cofiber sequence

Z!Z ^Y !Z ^ .Y=S0/:

Thus to show that zK�
zG
.Z/.�/bIG

D 0, it is enough to show that

zK�
zG
.Z ^Y /.�/bIG

D 0

and
zK�
zG
.Z ^ .Y=S0//.�/bIG

D 0:

Let us first show that zK�
zG
.Z ^Y /.�/bIG

D 0; we claim that in fact

zK�
zG
.W ^Y /.�/bIG

D 0

for any based G–CW complex W . Observing that

zK�
zG
.W ^Y /.�/bIG

D lim
 �
˛

zK�
zG
.W˛ ^Y /.�/bIG

where W˛ runs through all finite G–CW complexes of W , we see that it is enough to
consider the case where W is finite. Filtering W by skeleta and working inductively
reduces us to the case where W is of the form G=HC ^ Sn for some n and some
closed subgroup H of G, and using the suspension axiom further reduces us to the
case W D G=HC . But now in the case H D G the claim follows from Lemma 11;
and in the case H Œ G, it follows from the change of groups isomorphism (Lemma 5)

zK�
zG
.G=HC ^Y /.�/bIG

� zK�
zH
.Y /.�/bIH
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together with Lemma 10.

It remains to show that zK�
zG
.Z ^ .Y=S0//.�/bIG

D 0. We shall show that in fact

zK�
zG
.Z ^W /.�/bIG

D 0

for any based G–CW complex W such that W G is a point. Arguing as above, we see
that it is enough to consider W of the form W DG=HC , where H now has to be a
proper closed subgroup of G. But in this case the claim follows from the change of
groups isomorphism (Lemma 5)

zK�
zG
.Z ^G=HC/.�/bIG

D zK�
zH
.Z/.�/bIH

and the inductive assumption.

4 The general case

In this section we finally prove Theorem 1 in full generality. We shall do so by
considering successively more general spaces, starting with the case X D pt and
proceeding by change of groups and Mayer–Vietoris arguments. Since in general
completion is exact only for finitely generated modules, along the way we check that
the twisted K–groups that enter the Mayer–Vietoris sequences are finitely generated
over R.G/.

Lemma 12 Theorem 1 holds and K�C�
G

.X / is finitely generated over R.G/ when
X D pt.

Proof By Freed, Hopkins and Teleman [8, Example 2.29], any twisting of a point
arises from a graded central extension. Thus Theorem 8 shows that Theorem 1 holds in
this case. The claim about finite generation follows from Proposition 3 and the proof
of Proposition 4.

Lemma 13 Theorem 1 holds and K�C�
G

.X / is finitely generated over R.G/ when
X DG=H, where H is a closed subgroup of G.

Proof Notice that G=H D G �H pt and that EG � G=H D G �H EG. For any
H–space Z, we have a natural local equivalence of topological groupoids

Z==H !G �H Z==G

giving rise to a natural change of groups isomorphism

(8) K�C�
G

.G �H Z/
�

�����!K�C�
H

.Z/:
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Consider the diagram

K�C�
G

.G=H /bIG

��

// K�C�
H

.pt/bIH

��

K
��.�/C�
G

.EG �G=H / // K
��.�/C�
H

.EG/

Here the bottom row is a change of groups isomorphism as in (8); the top row is an
isomorphism because of the isomorphism (8) and the fact that IH –adic and IG–adic
completions of an R.H /–module agree (see Segal [9, Corollary 3.9]); and the vertical
map on the right is an isomorphism by Lemma 12 and the observation that EG is a
model for EH. Thus the map on the left is also an isomorphism, which shows that
Theorem 1 holds in this case. To see that K�C�

G
.G=H / is finitely generated as an

R.G/–module, observe that the isomorphism (8) and Lemma 12 imply that it is finitely
generated over R.H /. The claim now follows from the fact that R.H / is finite over
R.G/ (see Segal [9, Proposition 3.2]).

Lemma 14 Theorem 1 holds and K�C�
G

.X / is finitely generated over R.G/ when X

is of the form X DG=H �Sn, n� 0.

Proof The case where n D 0 follows from Lemma 13 and the axiom of disjoint
unions. For n> 0, the claim follows inductively from the Mayer–Vietoris sequences
arising from the decomposition of Sn into upper and lower hemispheres Sn

C and Sn
� .

Lemma 13 and the inductive assumption imply that all groups in the Mayer–Vietoris
sequence

(9) � � � �!K�C�
G

.G=H �Sn/

�!K�C�
G

.G=H �Sn
C/˚K�C�

G
.G=H �Sn

C/

�!K�C�
G

.G=H � .Sn
C\Sn

�// �! � � �

except K�C�
G

.G=H � Sn/ are finitely generated over R.G/, whence the remaining
group K�C�

G
.G=H �Sn/ must also be finitely generated, as claimed. It follows that

the sequence obtained from (9) by completion with respect to the augmentation ideal
IG is exact. Now the claim that Theorem 1 holds for the space G=H �Sn follows
from Lemma 13 and the inductive assumption by comparing the completed sequence
to the Mayer–Vietoris sequence of the pair

.EG �G=H �Sn
C;EG �G=H �Sn

�/

and applying the five lemma.
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Theorem 1 is now contained in the following theorem.

Theorem 15 Theorem 1 holds and K�C�
G

.X / is finitely generated over R.G/ for any
finite G–CW complex X.

Proof We proceed by induction on the number of cells in X. If X has no cells, that
is, if X is the empty G–space, the claim holds trivially. Assume inductively that the
claim holds for the space X, and consider the space Y DX [f .G=H �Dn/, where
f W G=H �Sn�1!X is an attaching map. Denote

Dn.r/D fx 2Rn
W jxj � rg;

and let
Y1 DX [f .G=H � .D

n
�Dn.1=3///� Y

and
Y2 DDn.2=3/� Y:

By Lemma 13, Lemma 14 and the inductive assumption, in the Mayer–Vietoris sequence

� � � //K�C�
G

.Y / //K�C�
G

.Y1/˚K�C�
G

.Y2/ //K�C�
G

.Y1\Y2/ // � � �

all groups except possibly K�C�
G

.Y / are finitely generated over R.G/. It follows that
K�C�

G
.Y / is also finitely generated, as claimed. We conclude that the top row in the

following diagram of Mayer–Vietoris sequences is exact.

��� // K
�C�
G

.Y /y
IG

//

��

K
�C�
G

.Y1/yIG
˚K

�C�
G

.Y2/yIG
//

�

��

K
�C�
G

.Y1\Y2/yIG

�

��

// ���

��� // K
�C�
G

.EG�Y / // K
�C�
G

.EG�Y1/˚K
�C�
G

.EG�Y2/
// K

�C�
G

.EG�.Y1\Y2//
// ���

In the diagram, the vertical map on the right is an isomorphism by Lemma 14 and
the map in the middle is an isomorphism by Lemma 13 and the inductive assumption.
Thus the map on the left is an isomorphism by the five lemma, showing that Theorem 1
holds for the space Y .
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