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T 2—cobordism of quasitoric 4-manifolds

SOUMEN SARKAR

We show the T?—cobordism group of the category of 4—dimensional quasitoric
manifolds is generated by the T2—cobordism classes of CIP?. We construct nice
oriented T2 manifolds with boundary whose boundaries are the Hirzebruch surfaces.
The main tool is the theory of quasitoric manifolds.

55N22; 57R90

1 Introduction

Cobordism was explicitly introduced by Pontryagin in geometric work on manifolds. In
the early 1950’s Thom [7] showed cobordism groups could be computed by results of
homotopy theory using the Thom complex construction. The nonoriented, oriented and
complex cobordism rings are completely determined. Since the Thom transversality
theorem does not hold in the equivariant category, the results (like the nonequivariant
case) can not be reduced to homotopy theory. The equivariant cobordism has many
developments, but the equivariant cobordism ring is not determined for any group. We
consider the following category: the objects are all quasitoric manifolds and morphisms
are torus equivariant maps between quasitoric manifolds. Here by torus we mean
compact torus T” := U(1)" = (Z" ® R)/Z" of dimension n. We compute the
T?2—cobordism group of 4—dimensional manifolds in this category. We show that
the T2 —cobordism group of the category of 4—dimensional quasitoric manifolds is
generated by the T2—cobordism classes of CP2. The main tool is the theory of
quasitoric manifolds.

Quasitoric manifolds and small covers were introduced by Davis and Januskiewicz
in [3]. A manifold with quasitoric (small cover) boundary is a manifold with boundary
where the boundary is a disjoint union of some quasitoric manifolds (respectively small
covers).

Following Orlik and Raymond [6] we discuss the definition of quasitoric manifolds and
the classification of 4—dimensional quasitoric manifolds in Section 2. This classification
is needed to prove Lemma 6.3. In Section 3 we introduce edge-simple polytopes and
study their properties. We give the brief definition of some manifolds with quasitoric
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and small cover boundary in a constructive way in Section 4. There is a natural
torus action on these manifolds with quasitoric boundary having a simple convex
polytope as the orbit space. The fixed point set of the torus action on the manifold with
quasitoric boundary corresponds to the disjoint union of closed intervals of positive
length. Interestingly, we show that such a manifold with quasitoric boundary could be
viewed as the quotient space of a quasitoric manifold corresponding to a certain circle
action on it. This is done in Section 4.3.

In Section 5 we show these manifolds with quasitoric boundary are orientable and
compute their Euler characteristic. In Section 6 we show the T ?—cobordism group of
4—dimensional quasitoric manifolds is generated by the T ?—cobordism classes of the
complex projective space CIP?; see Lemma 6.3. We construct nice oriented T2 mani-
folds with boundary whose boundaries are the Hirzebruch surfaces. In particular, the
T 2—cobordism class of a Hirzebruch surface is trivial; see Lemma 6.1. In Theorem 6.6
we compute a set of generators of the T 2—cobordism group of 4—dimensional quasitoric
manifolds.

2 Quasitoric manifolds

An n—dimensional simple polytope in R” is a convex polytope where exactly n
bounding hyperplanes meet at each vertex. The codimension one faces of a convex
polytope are called facets. Let F(P) be the set of facets of an n—dimensional simple
polytope P. Following Buchstaber and Panov [1] we give definitions of quasitoric
manifold, characteristic function and classification.

Definition 2.1 A smooth action of T" on a 2n—dimensional smooth manifold M is
said to be locally standard if every point y € M has a T"—stable open neighborhood Uy,
and a diffeomorphism vy: U, — V', where V is a T"—stable open subset of C", and an
isomorphism d,: T” — T" such that ¥ (¢-x) =6,(¢)- ¥ (x) forall (r,x) € T" xU,,.

Definition 2.2 A closed smooth 2n—dimensional T”-manifold M is called a qua-
sitoric manifold over P if the following conditions are satisfied:

(1) The T"™ action is locally standard.

(2) There is a projection map q: M — P constant on T” orbits which maps every
/—dimensional orbit to a point in the interior of a codimension-/ face of P.

All complex projective spaces CIP” and their equivariant connected sums and products
are quasitoric manifolds.
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Lemma 2.1 [3, Lemma 1.4] Let q: M — P be a 2n—dimensional quasitoric mani-
fold over P. There is a projection map f: T" x P — M so that foreachq € P, f
maps T" x ¢ onto q~'(q).

Define an equivalence relation ~, on Z" by x ~, y if and only if y = 4+x. Denote
the equivalence class of x in the quotient space Z"/Z, by [x].

Definition 2.3 A function n: F(P) — Z"/Z, is called a characteristic function if the
submodule generated by {n(Fj,)....,n(Fj,)} is an /—dimensional direct summand
of Z" whenever the intersection of the facets Fj,, ..., Fj, is nonempty.

The vectors n(Fj) are called characteristic vectors and the pair (P, n) is called a
characteristic pair.

In [3] the authors show we can construct a quasitoric manifold from the pair (P, 7).
Also, given a quasitoric manifold we can associate a characteristic pair to it up to choice
of signs of characteristic vectors. For simplicity of notation we may write the images of
characteristic and isotropy functions by their class representative. The isotropy function
is defined in Section 4.

Definition 2.4 Two actions of T” on 2n-dimensional quasitoric manifolds M
and M, are called equivalent if there is a homeomorphism f: M; — M, such that
f(@-x)=t-f(x) forall (¢, x) € T" x M.

Definition 2.5 TLet §: T" — T” be an automorphism. Two quasitoric manifolds
M, and M, over the same polytope P are called §—equivariantly homeomorphic
if there is a homeomorphism f: M; — M, such that f(z-x) = 6(¢) - f(x) for all
(t,x)eT" x M.

When § is the identity automorphism, f is called an equivariant homeomorphism.

Lemma 2.2 [3, Proposition 1.8] Let q: M — P be a 2n—dimensional quasitoric
manifold over P and n: F(P) — 7" /7, be its associated characteristic function. Let
qm: M(P,n) — P be the quasitoric manifold constructed from the pair (P, n). Then
the map f: T" x P — M of Lemma 2.1 descends to an equivariant homeomorphism
M (P,n) — M covering the identity on P.

The automorphism § of Definition 2.5 induces an automorphism &, of the poset of
subtori of T” or equivalently, an automorphism 8, of the poset of submodules of Z”".
This automorphism descends to a §—translation of characteristic pairs, in which the
two characteristic functions differ by .. Using Lemmas 2.1 and 2.2 we can prove the
following proposition.
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Proposition 2.3 [1, Proposition 5.14] There is a bijection between §—equivariant
homeomorphism classes of quasitoric manifolds and § —translations of characteristic

pairs (P, n).

Remark 2.4 Suppose § is the identity automorphism of T”. From Proposition 2.3
we have two quasitoric manifolds are equivariantly homeomorphic if and only if their
characteristic functions are the same.

Remark 2.5 A quasitoric manifold M over P is simply connected. So M is ori-
entable. A choice of orientation on T” and P gives an orientation on M . In this
article we fix the positive orientation on T”. The orientation on the circle subgroup
determined by the vectors n(F;) is the induced orientation of T". So an orientation
of P determines an orientation of the corresponding quasitoric manifolds.

Connected sum 1 Equivariant connected sum of oriented quasitoric manifolds is
discussed explicitly by Buchstaber and Ray [2, Section 6]. We discuss the equivariant
connected sum of quasitoric manifolds briefly following [3; 2]. Let q1: M — P; and
q2: M, — P, be two 2n—dimensional oriented quasitoric manifolds over P; and P,
respectively. Let x; € My and x, € M, be two fixed points. Changing the action (if
necessary) of T” on M, by an automorphism of T”, we can assume that T” actions
on a T" invariant neighborhood U; of x; and U, of x, are equivalent. Let B; € U,
and B, € U, be two invariant open ball around x; and x, respectively. Identifying the
boundary spheres of M| — By and M, — B, via an orientation reversing (with respect
to the induced orientation) equivariant diffeomorphism we get a smooth manifold,
denoted by M; # M,, with a natural locally standard T" action. The orbit space
Py # P, of this action can be described as follows. Let q1(x1) = v and q3(x3) = v,
be the corresponding vertices in P; and P, respectively. Delete a neighborhood A,
of vy in P; such that the closer of Ay, in P is diffeomorphic to the n—simplex.
Let P be the resulting polytope. Then P| has a new facet A" 1(v;) which is an
(n—1)-simplex. Similarly we construct the polytope P, from P,. Let F { , Fé, cees F,’1
be the facets meeting at v; of P;. Since the actions of T” in a neighborhood of x
and x, are equivalent, we may assume that the characteristic vector of F jl and F j2 are
same for j =1,2,...,n. We can obtain the space Py # P, by gluing the polytopes P|
and P; along A" 1(v;) and A" 1(vy) so that Fj1 and sz make a new facet for
j=1,...,n. Then My # M, is an oriented quasitoric manifold over P; # P,. The
manifold M # M, is called the equivariant connected sum of M; and M,.

Example 2.6 Let O be atriangle A2 in R2. The possible characteristic functions are
indicated by Figure 1. The quasitoric manifold corresponding to the first characteristic
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A1 A2
©.1) C (L) (0, 1) D (1)
B (1,0) o B (1,0 G

Figure 1: The characteristic functions corresponding to a triangle

pair is CPP? with the usual T? action and standard orientation, denoted CPP2. The
second correspond to the same T2 action with the reverse orientation on CPP?, we
denote this quasitoric manifold by CP2.

Note that there are many nonequivariant T 2—actions on CIP%. We discuss this classifi-
cation in Section 6.

Example 2.7 Suppose that Q is combinatorially a square in R?. In this case there
are many possible characteristic functions. Some examples are given by Figure 2.

1.k 1,—2
(1,k) b P ( ) D
—11
©.1) C 0.1 ©,1) C LD
B 1.0 ¢ B (1,0 C

Figure 2: Some characteristic functions corresponding to a square

The first characteristic pairs may construct an infinite family of 4—dimensional quasitoric
manifolds, denoted M I? for each k € Z. The manifolds { M ,? :k € 7} are equivariantly
distinct. Let L (k) be the complex line bundle over CIP! with the first Chern class k.
The complex manifold CP(L(k) @ C) is the Hirzebruch surface for the integer &,
where CIP(-) denotes the projectivisation of a complex bundle. So each Hirzebruch
surface is the total space of the bundle CP(L(k) & C) — CP! with fiber CP!. It is
well-known that with the natural action of T2 on CP(L(k) @ C) it is equivariantly
homeomorphic to M ,? for each k; see Oda [5]. That is, with respect to the T2 —action,
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Hirzebruch surfaces are quasitoric manifolds where the orbit space is a combinatorial
square and the corresponding characteristic map is described in Figure 2.

On the other hand the second combinatorial model gives the quasitoric manifold
CP? # CP?, the equivariant connected sum of CIP2.

The following remark classifies all 4—dimensional quasitoric manifolds.

Remark 2.8 Orlik and Raymond [6, Page 553] show that any 4—dimensional quasitoric
manifold M* over 2—dimensional simple polytope is an equivariant connected sum of
several copies of CP2, CP? and M ,f for some k € Z.

3 Edge-simple polytopes

In this section we introduce a particular type of polytope, which we call an edge-simple
polytope. This polytopes are generalization of simple polytopes.

Definition 3.1 An n-dimensional convex polytope P is called an n—dimensional
edge-simple polytope if each edge of P is the intersection of exactly (n — 1) facets
of P.

Example 3.1 (1) An n—-dimensional simple convex polytope is an n—dimensional
edge-simple polytope.

(2) The following convex polytopes are edge-simple polytopes of dimension 3.

(3) The dual polytope of a 3—dimensional simple convex polytope is a 3—dimensional
edge-simple polytope. This result is not true for higher dimensional polytopes,
thatis if P is a simple convex polytope of dimension #n >4 the dual polytope of P
may not be an edge-simple polytope. For example the dual of the 4—dimensional
standard cube in R* is not an edge-simple polytope.

Proposition 3.2 (a) If P is a 2—dimensional simple convex polytope then the
suspension SP on P is an edge-simple polytope and SP is not a simple convex

polytope.
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(b) If P is an n—dimensional simple convex polytope then the cone CP on P is an
(n 4+ 1)—dimensional edge-simple polytope.

Proof (a) Let P be a 2—dimensional simple polytope with m edges {e; :i € I}
and m vertices {v; :i € I ={1,2,...,m}}. Let a and b be the other two vertices
of SP. Then facets of SP are the cone (Ce;)x on e; at x = a,b. Edges of SP are
{xvi:x=a,bandi €l}U{e;:i €I}. The edge xv; is the intersection of (Ce;,)x
and (Ce;,)x if v; =¢;, Nej, for x =a,b and ¢; = (Ce;)a N (Ce;)p. Hence SP is an
edge-simple polytope. If v is a vertex of the polytope P, v is the intersection of 4
facets of SP. So SP is not a simple convex polytope.

(b) Let P be an n—dimensional simple convex polytope in R” x 0 € R”*! with
m facets {F; :i € I = {1,2,...,m}} and k vertices {vy,v,...,V;}. Assume
that the cones are taken at a fixed point @ in R?T! —R” lying above the centroid
of P. Then facets of CP are {(CF;):i =1,2,...,m}U{P}. Edges of CP are
{avi = C{v;i}) i =1,2,...,k} U{e; : e; is an edge of P}. Since P is a simple
convex polytope, each vertex v; of P is the intersection of exactly n facets of P,
namely {v;} = ﬂ7=1 Fi; and each edge ¢; is the intersection of unique collection
of (n—1) facets {Fy,,...,F;,_,}. Then we have that C{v;} = ﬂ;’=1 CFj; and

=PNCF,NCF,N---NCF;,_,. Thatis C{v;} and {e;} are the intersection of
exactly n facets of CP. Hence CP is an (n+ 1)—dimensional edge-simple polytope. O

Cut off a neighborhood of each vertex v;,i = 1,2,...,k of an n—dimensional edge-
simple polytope P C R” by an affine hyperplane H;,i =1,2,...,k in R” such that
H; N Hj N P are empty sets for i # j. Then the remaining subset of the convex
polytope P is a simple convex polytope of dimension 7, denote it by O p. Suppose
Py, =PNH;=HNQpfori=1,2,...,k. Then Pg, is a facet of Qp called the

facet corresponding to the vertex v; foreach i = 1,..., k. Since each vertex of Pp,
is an interior point of an edge of P and P is an edge-simple polytope, Pg; is an
(n — 1)—dimensional simple convex polytope for each i =1,2,... k.

Lemma 3.3 Let F be a codimension | < n face of P. Then F is the intersection of a
unique set of | facets of P.

Proof The intersection F N Qp is a codimension / face of Qp not contained in
Uf ot PH;}. Since Qp is a simple convex polytope, F N Qp = ﬂj_l F; ., for some
facets {F; ..., F; } of Qp. Let Fj; be the unique facet of P such that F [ CFj.

Then F = ﬂl F Hence each face of P of codimension / < n is the intersection of

unique set of / facets of P. |
Remark 3.4 If v; is the intersection of facets {Fj,, ..., Fj,} of P for some positive
integer /, the facets of Py, are { Py, N Fj ..., Py, N Fj,}.
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4 Construction of manifolds with boundary

Let P be an edge-simple polytope of dimension n with m facets Fy,..., Fy, and k
vertices vq,...,V;. Let e be an edge of P. Then e is the intersection of a unique
collection of (n — 1) facets {F;; : j = 1,...,(n—1)}. Let F(P) = {Fy,..., Fin}
and IF;’_I be the (n — 1)—dimensional vector space over IF,, the field of integers
modulo 2.

Definition 4.1 The functions A: F(P) — Z"~'/Z, and A%: F(P) — FJ~! are
called the isotropy function and [, —isotropy function respectively of the edge-simple
polytope P if the set of vectors {A(Fj,), ..., A(Fj,_,)} and {AS(Fi,), ..., A%(F;,_ )}
form a basis of Z”~! and F;’_l respectively whenever the intersection of the facets
{Fi,,....Fi,_, }isanedgeof P.

The vectors A; := A(F;) and A} := A®(F}) are called isotropy vectors and [F;—isotropy
vectors respectively.

We define some isotropy functions of the edge-simple polytopes /3 and P, in Fig-
ures 4.3 and 4.4 respectively.

Remark 4.1 It may not be possible to define an isotropy function on the set of facets
of all edge-simple polytopes. For example there does not exist an isotropy function of
the standard n—simplex A” for each n > 3.

4.1 Manifolds with quasitoric boundary

Let F be a face of P of codimension / < n. Then F is the intersection of a unique
collection of / facets Fj,, Fi,, ..., F;, of P.Let Tr be the torus subgroup of 71
corresponding to the submodule generated by Aj,,Aiy,...,A; in Z"1. Assume
Ty, = T"~! for each vertex v of P. We define an equivalence relation ~ on the
product T"~! x P as follows:

4-1) (t, p) ~ (u,q) if and only if p = ¢ and ru™' € T,

where F C P is the unique face containing p in its relative interior. We denote the
quotient space (T"”~! x P)/ ~ by X(P, ). The space X (P, 1) is not a manifold
except when P is a 2—dimensional polytope. If P is 2—dimensional polytope the
space X (P, A) is homeomorphic to the 3—dimensional sphere.

But whenever n > 2 we can construct a manifold with boundary from the space X (P, A).
We restrict the equivalence relation ~ on the product (T”~! x Qp) where Qp C P

Algebraic & Geometric Topology, Volume 12 (2012)
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is a simple polytope as constructed in Section 3 corresponding to the edge-simple
polytope P. Let W(Qp,A) = (T"" ! x Qp)/ ~ C X(P, 1) be the quotient space.
The natural action of T”~! on W(Qp, A) is induced by the group operation in T”~ !,

Theorem 4.2 The space W(Qp, A) is a manifold with boundary. The boundary is a
disjoint union of quasitoric manifolds.

For each edge ¢ of P, ¢/ =e N Qp is an edge of the simple convex polytope Op.
Let U,/ be the open subset of Q p obtained by deleting all facets of Q p not contain-
ing ¢’ as an edge. Then U, is diffeomorphic to 7° x R’;‘ol where 19 is the open
interval (0, 1) in R. The facets of 7° XR’;OI are 10x {x; =0},...,1%x{x,_; =0}
where we have that {x; =0, j =1,2,...,n—1} are the coordinate hyperplanes
in R" !, Let Fj.....F] _ be the facets of O p such that ﬂ;l_iF/ = ¢’. Suppose
the dlffeomorphlsm ¢ Ue/ —> 1% x R” 01 sends F’j N Uy to 10 x {x] = 0} for all
j=1.2,....n—1. Define an isotropy function A, on the set of all facets of /% xRZ!
by Ae(1° x {Xj =0}) = A;; forall j =1,2,...,n—1. We define an equivalence
relation ~, on (T” 1 x 19 x R’;Ol) as follows:

4-2) (t,b,X) ~e (u,c, y) if and only if (b, x) = (¢, y) and tu"' € Te(F)-

where ¢(F) is the unique face of 79 x ]R{’;Ol containing (b, x) in its relative interior,
for a unique face F of U and TyFy = TFg. So for each a € 1 0 the restriction
of Ao on {({a} x{x; =0}):j=1,2,...,n—1} defines a characteristic function (see
Definition 2.3) on the set of facets of {a} x R”_l From the constructive definition
of quasitoric manifold given in [3], the quotlent space {a} x (T"! x RY, ) / ~e
diffeomorphic to {a} x R2(=1  Hence

(Tn—l Rlol)/ ~e= IOX(Tn 1 R )/~ ~ IO RZ(n—l).
Since the maps 7: (T" ! xUy) — (T" ' xU,)/ ~ and me: (T~ 1xIOX]R )—>

(T x 10 x RL, 1) / ~e are quotient maps and ¢ is a diffeomorphism, the followmg
commutative dlagram ensures that the lower horizontal map ¢, is a homeomorphism:

1d
(T" ' x U,) a9 (T 1 x 1 x R’;)l

4-3) nl n{

(']Tn_lee/)/ G (Tn Ly 0 XR” 1)/ Ne—)IO RZ(n—l)'

Let v} and v} be the vertices of the edge ¢’ of Qp. Suppose H; Ne’ = {v|} and
Hyne' = {1/2}, where H; and H; are affine hyperplanes as considered in Section 3
corresponding to the vertices vy and v, of e respectively. Let Uy, and Uy, be
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the open subset of Qp obtained by deleting all facets of Qp not containing v
and v}, respectively. Hence there are diffeomorphisms ol Uy — [0, 1) x R’;Ol and
2 Uy, — [0, 1) x R';Bl which satisfy the same property as the map ¢. We get the
following commutative diagram and homeomorphisms ¢ for j =1,2:

- Id x¢/
(7" % Uy) =27 (771 [0, 1) x Ry

(4-4) ,,l n{

(T" x Uy)/ ~ 2 i 2 (T X0, 1) X RGN/ ~e = [0, 1) x R2(-D),

Hence each point of (T"~! x Qp)/ ~ has a neighborhood homeomorphic to an open
subset of [0, 1) x R2®*=1 So W(Qp, A) is a manifold with boundary. From the above
discussion the interior of W(Qp, 1) is

k

@™ xUe)/ ~=W(Qp. ) ~{(T" ' x| | Py)/ ~}

e’ i=1
and the boundary is |_|f~€:1 {(T"'x Pg,)/ ~}. Let F(H);; be afacetof Pp;. So there
exists a unique facet Fj of P such that F(H);, = F; N Q p N H;. The restriction of the
function A on the set of all facets of Pp, (namely A(F(H);;) = Aj) give a characteristic
function of a quasitoric manifold over P, . Hence restricting the equivalence relation ~
on (T"~!x Py.) we get that the quotient space W; = (T""! x Py,)/ ~ isa quasuorlc
manifold over Pp; . Hence the boundary dW(Qp,A) is the disjoint union |_|l_1 Wi,
where W; is a quasitoric manifold. So W(Qp,A) is a manifold with quasitoric
boundary.

In Section 5 we show that these manifolds with quasitoric boundary are orientable.

Example 4.3 An isotropy function of the standard cube 73 is described in Figure 3.
Here simple convex polytopes Pg, . ..., Pgy are triangles. The restriction of the
isotropy function on Pp; gives that the space (T 2% Pg,)/ ~ is the complex projective
space CPP? or CP2. Since the antipodal map in R? is an orientation reversing
map we can show the disjoint union (|_|?=1 (C]P’z) U (L]?zlﬁz) is the boundary of

(T?x Qy3)/ ~.

Example 4.4 In Figure 4 we define an isotropy function of the edge-simple poly-
tope Py. Here simple convex polytopes Py, , Py,, Py, Pg, are triangles and the
simple convex polytope Pp; is a rectangle. The restriction of the isotropy function
on Pp; gives that the space (TZXPHi)/N is CP? or CP2 foreach i €{1,2,3,4} and
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v

0,1 - Vs
V4 : V3 (1,0)
SRR :U5 -

(L) [ g v
" e
(1,0) (0. 1)

(I3, %)

Figure 3: An isotropy function A of the edge-simple polytope I3

(T?x Pg,)/ ~ is CP! x CP'. Hence (||7—,CP?)u(LJ;—,CP?)u(CP!xCP")
is the boundary of W(Qp,, ) := (T2 x Op,)/ ~: see Section 6.

Us

(1,0)

(1, 1)
(Qpy. M)

Figure 4: An isotropy function A of the edge-simple polytope Py

4.2 Manifolds with small cover boundary

We assign each face F to the subgroup G of IF;’_I determined by the vectors
)\fl, .. .,kfl where F' is the intersection of the facets Fj,..., F;,. Let ~5 be an
equivalence relation on (F4~! x P) defined by

(4-5) (t, p) ~s (u,q) ifand only if p =q andt —u € Gp,

Algebraic & Geometric Topology, Volume 12 (2012)
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where F' C P is the unique face containing p in its relative interior. The quotient
space (F2~!x Qp)/ ~5s C (F¥~! x P)/ ~y, denoted by S(Qp.A*), is a manifold
with boundary. This can be shown by the same arguments given in Section 4.1. The
boundary of this manifold is {(F2~" x |_|*_, Pg,)/ ~s} = |\ {(F2~1 x Pp,)/ ~s}.
Clearly the restriction of the IF,—isotropy function A* on the set of all facets of Pg,
gives the characteristic function of a small cover over Py, . So (IF;’_1 X Pg,)/ ~sisa
small cover for each i =0,...,k. Hence S(Qp,A*) is a manifold with small cover
boundary.

4.3 Some observations

The set of all facets of the simple convex polytope Qp is given by F(Qp) = {Pp; :
J=12,. . k}U{F:i=1,2,...,m}, where F] = F; N Qp for unique facets F;
of P. We define the function n: F(Qp) — Z"/7Z, as follows:

[0,...,0,1)] € Z"/Z, if F= Py, je{l,.... k),

4-6 F) =
(4-6) n(F) {[ki,O]eZ”_l/ZzX{O}CZH/ZZ if F=F,ie{l,2....m}.

So the function 7 satisfies the condition for the characteristic function (see Definition 2.3)
of a quasitoric manifold over the n—dimensional simple convex polytope Qp. Hence
from the characteristic pair (Q p, 17) we can construct the quasitoric manifold M (Qp, 1)
over Qp. There is a natural T" action on M(Qp,n). Let Ty be the circle sub-
group of T” determined by the submodule {0} x {0} x --- x {0} x Z of Z". Hence
W(Qp,A) is the orbit space of the circle Ty action on M (Qp,n). The quotient map
o M(Qp,n) — W(Qp,A) is not a fiber bundle map.

Remark 4.5 The manifold S(Qp,As) with small cover boundary constructed in
Section 4.2 is the orbit space of Z, action on a small cover.

5 Orientability of W(Qp, L)

Suppose W = W(Q p, ). The boundary W has a collar neighborhood in W. Hence
by Hatcher [4, Proposition 2.22] we get H; (W, dW) = fIl(W/ dW) for all i . We show
the space W /0W has a C W —structure. Actually we show that corresponding to each
edge of P there exists an odd-dimensional cell of W /9dW . Realize Qp as a simple
convex polytope in R” and choose a linear functional ¢: R” — R which distinguishes
the vertices of Qp, as in the proof of Theorem 3.1 in [3]. The vertices are linearly
ordered according to ascending value of ¢. We make the 1-skeleton of Qp into a
directed graph by orienting each edge such that ¢ increases along edges. For each
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vertex v of Qp define its index, ind(v), as the number of incident edges that point
towards v. Suppose V(Qp) is the set of all vertices and £(Q p) is the set of edges
of Qp. Foreach j €{1,2,...,n},let

Ii ={(v,ey) € V(Qp) xE(Qp) :ind(v) = j and e, is the incident edge that points
towards v such that e, = e N Q p for an edge e of P}.

Suppose (v, ey) € I;. Let F,,, C Q p denote the smallest face which contains the inward
pointing edges incident to v. Then F,, is a unique face not contained in any Py, .
Let U,, be the open subset of F,, obtained by deleting all faces of F,, not containing
the edge e, . The restriction of the equivalence relation ~ on (T"~! x U,,) gives that
the quotient space (T”~1 x U,,)/ ~ is homeomorphic to the open disk B%/~1_ Hence
the quotient space (W /0W) has a C W —complex structure with odd dimensional cells
and one zero dimensional cell only. The number of (2 — 1)—dimensional cell is |/;],
the cardinality of /; for j =1,2,...,n. So we get the following theorem.

D, Z ifi=2j—1andje{l,....n}
Theorem 5.1 H;(W,0W) =17 ifi =0,
0 otherwise.

When j = n the cardinality of /; is one. So Hy,—1(W,0W) = Z. Hence W is an
orientable manifold with boundary.

Example 5.2 We adhere to the notation of Example 4.4. Observe I3 = {(v14, €v,,)},

I> = {(vg, evg), (V13 €v3), (V1s, €vy5)} and 11 = {(v3, €v;), (Vs €ug), (V9, €vy)}. The
face Fev13 corresponding to the point (vy3,ey,3) is VoV3VsV13V12v1. Thus we can
give a CW —structure of W(Qp,,A)/dW(Qp,.A) with one 0—cell, two 1—cells, three
3—cells and one 5—cell.

In [3] the authors showed that the odd dimensional homology of quasitoric manifolds
are zero. So H,;_1(0W) = 0 for all i. Hence we get the following exact sequences
for the collared pair (W, 0W).

Jx 9 -
0 — Hon_1(W) 35 Hop ( (W, 0W) % Hyp (W) 25 Hypy o (W) — 0

(5-1)
0 — Hy(W) —2s Hy (W, 0W) —2— Hy(0W) —2s Hy(W) —— 0

0 — Hy (W)~ H{ (W, W) —— Ho(0W) —— Hy(W) —» Z.
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U1s

Op,

Figure 5: The index function of Q p,

where Z = Ho(W,0W). Let (h;, ..., hi,_,) bethe h—vector of Py, fori=1,2,... k.
The definition of A—vector of a simple convex polytope is given in [3]. Hence we
have that the Euler characteristic of the manifold W with quasitoric boundary is

k n—1 n—1
Di=t j=0hij - Zj:l 1]

Fix the standard orientation on T"~!. Let I, = {(v/,ey)}. Then the 2n — 1)—
dimensional cell (T”~1 x Ue,/)/ ~C W represents a fundamental class of W /oW
with coefficient in Z. Thus an orientation of U, , (hence of Qp) determines an
orientation of W . Note that an orientation of Q p is induced by orienting the ambient
space R”.

So the boundary orientation on Py, induced from the orientation of Qp gives the
orientation on the quasitoric manifold W; C dW . In the next section we consider the
orientation of Q’s and Q p’s induced from the standard orientation of their ambient
spaces.

6 Torus cobordism of quasitoric manifolds

Let € be the following category: the objects are all quasitoric manifolds and morphisms
are torus equivariant maps between quasitoric manifolds. We are considering torus
cobordism in this category only.
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Definition 6.1 Two 2n—dimensional quasitoric manifolds M; and M, are said to be
T"—cobordant if there exists an oriented T” manifold W with boundary dW such
that 0W is T" equivariantly diffeomorphic to M; LI (—M,) under an orientation
preserving diffeomorphism. Here —M> represents the reverse orientation of M.

We denote the T"—cobordism class of quasitoric 2n—manifold M by [M].

Definition 6.2 The n—th torus cobordism group is the group of all cobordism classes
of 2n—dimensional quasitoric manifolds with the operation of disjoint union. We
denote this group by CGy,.

Let M — Q be a 4—dimensional quasitoric manifold over the square Q with the
characteristic function n: F(Q) — Z?/Z,. We construct an oriented T2 mani-
fold W with boundary dW, where oW is equivariantly homeomorphic to either
—-M U (|_|k1(CIP’2) U (|_|k2(C_]P’2) or M U (|_|k1(CIP’2) u (|_|k2(C_P2) for some inte-
gers ki, k,. In order to show this we construct a 3—dimensional edge-simple poly-
tope Pg such that Pg has exactly one vertex O which is the intersection of 4 facets
with P¢ N Hp = Q and other vertices of Pg¢ are intersection of 3 facets. We define
an isotropy function A, extending the characteristic function n of M , from the set of
facets of Pg to Z%/7,. Then W(Q Pg,A) is the required oriented T2 manifold with
quasitoric boundary. We have done an explicit calculation in the following.

Let Q = ABCD be a rectangle which belongs to {(x, y,z) € R;O X+ y+z=1};
see Figure 6. Let n: {AB, BC,CD, DA} — Z?*/Z, be the characteristic function for
a quasitoric manifold M over A BCD such that the characteristic vectors are

n(AB)=mn1, n(BC)=mn, n(CD)=n3, n(DA)=n,.

We may assume that n; = (0, 1) and 1, = (1, 0). From the classification results given
in Section 2, it is enough to consider only the following cases:

(6-1) n3=(0,1) and 14 = (1,0),

(6-2) n3 =(0,1) and n4=(1,k), k=1lor —1,
(6-3) n3 =(0,1) and n4=(,k), keZ—-{-1,0,1},
(6-4) ny=(-1,1) and 14 =(1,-2).

Case (6-1) In this case the edge-simple polytope P, given in Figure 6, is the required
edge-simple polytope. The isotropy vectors of P; are given by

AMOGH) =y, AMOHI) =na, A(01J) = ns,
MOGJ) = ng, MGHIJ) =11 + 1.
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So we get an oriented T2 manifold W(Q 3 B, ,A) with quasnorlc boundary where
the boundary is the quasitoric manifold —M U| |, CP2ul | i CP? for some inte-
gers ki, k,. Note that orientation on P1 C R 2o comes from the standard orientation
of R3. Let A’ and B’ be the midpoints of GJ and HI respectively. Let H be the
plane passing through O, A’ and B’ in R3. Since a reflection in R? is an orientation
reversing homeomorphism, it is easy to observe that the reflection on H induces the
following orientation reversing equivariant homeomorphisms:

(T?x Pr)/ ~ = (T2 x Pryy)/ ~,

(6-5) - 5
(T?*x Py,)/ ~— (T*x Pig)/ ~.

So ki = k», since [CP?] = —[CP?], [M] = O[CPP?]. Identifying the corresponding
boundaries of W(Q p,,A) via the equivariant homeomorphisms of Equation (6-5) we
get that M is the boundary of a nice oriented T? manifold. By “nice manifold” we
mean it has good C W —complex structures.

Case (6-2) In this case |det(nz,74)] = 1. Let O be the origin of R®. Let Cg
be the open cone on rectangle A BCD at the origin O. Let G, H,I,J be points
on extended OA, OB, OC, OD respectively. Let E and F be two points in the
interior of the open cones on AB and CD at O respectively such that |OG| < |OE],
|OH|<|OE| and |OI| <|OF|, |OJ|<|OF|. Wemay assume OH =01, OG=0J,
HE = EG and IF = FJ. Then the convex polytope P; C Cg on the set of vertices
{0,G,E, H, I, F,J} is an edge-simple polytope (see Figure 6) of dimension 3. Define
a function, denote by A, on the set of facets of P; by

AMOGEH) =11, AOHI)=n,, AMOJFI)=n;3,

6-6
(6-6) MOJG) =n4, MHIFE)=n4, AMGJFE)=ns.

Hence A is an isotropy function on the edge-simple polytope P;. The boundary of
the oriented T2 manifold W(Qp, . 1) is the quasitoric manifold —M U |, CP? U
L k> CTP? for some integers ki, k». Similarly to the previous case we can show that
suitable reflections induce the following orientation reversing equivariant homeomor-
phisms:

(T?x Py,)/ ~— (T*x Py,)/ ~,
(6-7) (T2 x Py)/ ~—> (T?x Py,)/ ~,

(T2 x Py,)/ ~— (T*x Py,)/ ~.
So ki = ky. Hence [M] = O[CP?]. Identifying the corresponding boundaries of

W(Qp,,A) via the equivariant homeomorphisms of Equation (6-7) we get that M is
the boundary of a nice oriented T2 manifold.
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Figure 6: The edge-simple polytope P, P, and the convex polytope P/, respectively
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Figure 7: The edge-simple polytope P, with the function A
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Case (6-3) Suppose det(1,, n4) = k > 1. Define a function A(!) on the set of facets
of P; except GEFJ by

AD(OGEH) =7, AY(OHI) =n,, AD(OIFT) = n;,

(6-8)
AD0G6I) =n4, VV(EHIF) =ny+1,.

So the function A() satisfies the condition of an isotropy function of the edge-simple
polytope P; along each edge except the edges of the rectangle GEFJ . The restriction
of the function A(Y) on the edges GE, EF, FJ,GJ of the rectangle GEFJ gives the
following equations:

jder W (GE), AV(EF)]| =1, jdeA W (EF), A (FD)] =1,
69 |deAV(FN AV GH] =1, |der M (G, A (GE)] =1,
deth W (EF), A\D(GI) =k —-1<k.
Let P| be a 3—dimensional convex polytope as in Figure 6. Identifying the facet GEF.J
of P and A;B;C; Dy of P{ through a suitable diffeomorphism of manifold with
corners such that the vertices G, E, F, J maps to the vertices 41, By, Cy, D respec-

tively, we can form a new convex polytope P, ; see Figure 7. After the identification
the following holds.

(1) The facet of Py containing GE and the facet of P{ containing A; B1 make the
facet OHH{ E{1G of P,.

(2) The facet of P containing EF and the facet of P{ containing B;C; make the
facet HHIIII of P2.

(3) The facet of P; containing FJ and the facet of P{ containing C; D; make the
facet OI1; F1J; of P;.

(4) The facet of P containing J G and the facet of P{ containing Dy A; make the
facet 0OJ; G of P,.

The polytope P, is an edge-simple polytope. We define a function 1@ on the set of
facets of P, except G E{F;J1 by

AP (OHH,E\Gy) =, AP (0J,Gy) = na,
(6-10) A (O1H) =, ADHH T =13+,
ADor11,FiJy) =3, AD(H I FLE ) =15+ 211

So the function A(?) satisfies the condition of an isotropy function of the edge-simple
polytope P, along each edge except the edges of the rectangle G| E{F;J;. The
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restriction of the function A® on the edges namely G Eq, E1 Fy, F1J1,G1J; of the
rectangle G| Eq F;Jy gives the following equations:

|det[A*(G1 E1). A2 (E1 Fy)ll=1. |det]A*(G1J1), A*(G1Ey)]|=1,
(6-11)  |det\2(FyJp). A2 (G J)]|=1,  det]A?(E  Fy),A*(G1J))]=k—2<k—1.
detA>(E 1 F1), A2 (F1J)][=1,

Proceeding in this way, at the k—th step we construct an edge-simple polytope Pj with
the function k(k), extending the function Ak _1), on the set of facets of Pj such that

2O (Hy_y Hy_y Iy Ix—3) = ma + (k — Dy
=MD (Hy oy I Fe—s Ex—5).
2B (0GK_1Jk—1) =14
=2 8062 Ji—a).
WO (Hy_y Iy Fe—y Ex—y) = na.
MO Gyt Ex—1 Fym1 Je) = 112 + (k= Dy

(6-12)

We observe that the function A := A% is an isotropy function of the edge-simple
polytope Py . So we get an oriented T 2—manifold with boundary W (Q P, A) where
the boundary is the quasitoric manifold —M U| |, CP2ul | i CP? for some inte-
gers kq, k. Similarly to the previous cases we can construct the following orientation
reversing equivariant homeomorphisms:

(T2 X Pry)/ ~— (T2 X Pr,)/ ~,
(T?x Pyg, )/ ~—=>(T?x Py, )/~
(T?x Py, )~ (T2 X Prp )/~

(T%x Pyy )/ ~— (T%x Py, )/ ~,

(6-13)

fori=1,...,k—1.So k; =k,. Hence [M]=0[CP?2]. Identifying the corresponding
boundaries of W(Qp, , ) via the equivariant homeomorphisms of Equation (6-13) we
get that M is the boundary of a nice oriented T2 manifold.

If k < —1, similarly we can show [M] = 0[CIP?] and we can construct nice oriented
T? manifold with boundary W where the boundary is M .

Hence given a Hirzebruch surface M with natural T?2 action we construct a nice
5—dimensional oriented T2 manifold with boundary where the boundary is M . Thus
we get the following interesting lemma.
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Lemma 6.1 The T?—cobordism class of a Hirzebruch surface is trivial. In particular,
the oriented cobordism class of a Hirzebruch surface is also trivial.

Figure 8: The edge-simple polytope P’ and an isotropy function A associ-
ated to case (6-4)

Case (6-4) In this case |det[n;,n3]| = 1. Following case (6-2), we can construct an
edge simple polytope P” and an isotropy function A over this edge-simple polytope;
see Figure 8. Hence we can construct an oriented T2 manifold with quasitoric boundary
W(Qpr, L) where the boundary is —M U| |, C P2 U], R CTP? for some integers
k1, ko. We may assume that “the angles between the planes OH I and HIFE” and
“the angles between the planes EFJG and HIFE” are equal. Clearly a suitable
reflection induces the following orientation reversing equivariant homeomorphisms:

(T2 x P}y)/ ~— (T?x P})/ ~,

(6-14)
(T?x P})/ ~— (T*x P})/ ~.

Let CP2 = (T2 x Py)/ ~ and CPZ% =(T2x Pf})/ ~. Observe that the characteristic
functions of the triangles P} and PZ differ by a nontrivial automorphism of T2 (or Z?2).
So CP% and CPZG are complex projective space CP? with two nonequivariant T 2—
actions. Hence [M] = [C]P’%] + [(CIP’ZG].

To compute the group CG, we use induction on the number of facets of 2—dimensional
simple convex polytope in R%. We rewrite the proof of the following well-known
lemma, briefly.

Lemma 6.2 The equivariant connected sum of two quasitoric manifolds is equivari-
antly cobordant to the disjoint union of these two quasitoric manifolds.

Algebraic & Geometric Topology, Volume 12 (2012)



T?2—cobordism of quasitoric 4—manifolds 2023

Proof Let My and M, be two quasitoric manifolds of dimension 2n. Then W) :=
[0,1]x My and W, :=0, 1]x M, are oriented T ”-manifolds with boundary such that

W =0x(—M))UulxM; and W, =0x(—M,)Ulx M,.

Let x; € My and x, € M, be two fixed points. Let Uy C W; and U, C W, be
two T” invariant open neighborhoods of 1 x x; and 1 x x, respectively. Identifying
aU; C (W =U;) and dU, C (W, —U,) via a suitable orientation preserving equivariant
homeomorphism we get the lemma. |

Now consider the case of a quasitoric manifold M over a convex 2—polytope Q with m
facets, where m > 4. By the classification result of 4—dimensional quasitoric manifold
discussed in Remark 2.8, M is one of the following equivariant connected sums:

M = N, #CP?,
M = N, #CP?,
M = N3 # M}

The quasitoric manifolds N;, N, and N3 are associated to the 2—polytopes Q1, Q2
and Q3 respectively. The number of facets of O, 0, and Q3 are m — 1, m — 1
and m — 2 respectively. The quasitoric manifold M ,? is defined in Section 2. In
previous calculations we have shown [M ]? ] = 0[CP2]. So by Lemma 6.2 we get either
[M]=[N{]+[CP?] or [M]=[N,]—[CP?] or [M]=[N3]. Thus using the induction
on m, the number of facets of 0, we can prove the following.

Lemma 6.3 Any 4—dimensional quasitoric manifold is equivariantly cobordant to
some T ?—cobordism classes of CIP?.

We classify the equivariant cobordism classes of all T 2—actions on CP2. Let Q be a
triangle and {Fy, F,, F3} be the edges (facets) of Q. Let n: {F, Fa, F3} — 727,
be a characteristic function such that n(F;) = [(a1, b1)] and n(F) = [(az, by)]. We
may assume that

det(n(F1),n(F2)) = [(a1,by;a2,b2)| =1,

where (a1, b1;ay, by) is the 2x2 matrix in SL(2, Z) with row vectors n(F7) and n(F>,).
We also denote this matrix by 7. Then we have that either n(F3) =[(a; +az, b1 +b3)]
or N(F3) =[(a; —ay, b1 —by)]. Let n’ and n” be two characteristic functions defined
respectively by

' (F1) = [(a1,b0)],n'(F2) = [(a2,b2)], ' (F3) = [(a1 + a2, by + b)),

" (F1) = [(a1, b)), 0" (F2) = [(a2,b2)], 1" (F3) = [(a1 —az, by — by)].
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Denote the quasitoric manifolds associated to the pairs (Q,n') and (Q,7n"”) by C IP’2
and CPP? ;v respectively. Define an equivalence relation ~¢q on SL(2,Z) by

(ay,by;az,b3) ~eq (—ay, —by;—az, —by).

Denote the equivalence class of n € SL(2, Z) by [n]eq. Observe that if [1]eq # [12]eq
then the corresponding characteristic functions are differ by §«, for some nontrivial
automorphism §: T2 — T?2. Using Lemma 2.2 we get the following classification.

Lemma 6.4 A T?2-actions on CP? is equivariantly homeomorphic to either (C]P)f,,
or CIP’?I// for a unique [n]eq € SL(2,7Z)/ ~eq

Note that the natural T 2-actions on (CIP’%/ and (CIP’?I/, are the same. Consider the
linear map L,: Z? — Z2, defined by L,(1,0) = (a1,by) and L,(0, 1) = (az, by).
The map L, induces orientation preserving homeomorphisms C ]P’2 — (CIPZ, and
CP? — CPZ,, Thus, we have the following lemma.

Lemma 6.5 The oriented T2 —cobordism class of a T2 —action on CP? is [(CIP’%/] for
a unique [N]eq € SL(2,Z)/ ~eq

Since the order of oriented cobordism class of CP? is infinite, we get the following
theorem.

Theorem 6.6 The oriented torus cobordism group CG» is an infinite abelian group
with a set of generators {[C]P’2 1:[nleq € SL(2,Z)/ ~eq} -

We do not know whether these are the free generators.
Question 6.7 Describe all the relations among the generators given in Theorem 6.6.

We discuss the actions of T” on (2n + 1)—dimensional manifolds (possibly with
boundary) where the actions are similar to the locally standard actions. We again call
these actions locally standard actions. We discuss some properties of these actions
explicitly in our next article, “Odd dimensional torus manifolds.” Let ps; be the
standard action of T” on C”. Consider the action p of T” on C" x R defined by

IO(Z7 (Z,V)) = (PS(Z’Z)J’)-

Definition 6.3 A smooth action of T” on a (2n + 1)—dimensional smooth manifold
(possibly with boundary) W is said to be locally standard if every point a € W has
a T"-stable open neighborhood W, and a diffeomorphism &,: W, — V,, where V,
is a T"—stable open subset of C” x R>( under the action p, and an isomorphism
8q: T™ — T" such that &,(¢-x) = p(84(2),E4(x)) forall (¢, x) € T" x W,.
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Example 6.8 Consider S?"T! = {(z1,...,2,41) € C""! : ;|z|?> = 1}. The
torus T” acts on S2"+! by (t1,.--.tn) (21, -+ Zns Zn+1) = ((121, -+ - tnZn, Znt1) -
This action is a locally standard action in the sense of Definition 6.3. When n = 1, the
orbit space of this action is a closed 2—dimensional disk.

Remark 6.9 If W isa (2n 4+ 1)—dimensional smooth manifold with boundary with
a locally standard action of T, the fixed point set WT" is a disjoint union of some
circles and closed intervals.
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