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T 2–cobordism of quasitoric 4–manifolds

SOUMEN SARKAR

We show the T 2 –cobordism group of the category of 4–dimensional quasitoric
manifolds is generated by the T 2 –cobordism classes of CP 2 . We construct nice
oriented T 2 manifolds with boundary whose boundaries are the Hirzebruch surfaces.
The main tool is the theory of quasitoric manifolds.

55N22; 57R90

1 Introduction

Cobordism was explicitly introduced by Pontryagin in geometric work on manifolds. In
the early 1950’s Thom [7] showed cobordism groups could be computed by results of
homotopy theory using the Thom complex construction. The nonoriented, oriented and
complex cobordism rings are completely determined. Since the Thom transversality
theorem does not hold in the equivariant category, the results (like the nonequivariant
case) can not be reduced to homotopy theory. The equivariant cobordism has many
developments, but the equivariant cobordism ring is not determined for any group. We
consider the following category: the objects are all quasitoric manifolds and morphisms
are torus equivariant maps between quasitoric manifolds. Here by torus we mean
compact torus Tn WD U.1/n D .Zn ˝ R/=Zn of dimension n. We compute the
T2 –cobordism group of 4–dimensional manifolds in this category. We show that
the T2 –cobordism group of the category of 4–dimensional quasitoric manifolds is
generated by the T2 –cobordism classes of CP2 . The main tool is the theory of
quasitoric manifolds.

Quasitoric manifolds and small covers were introduced by Davis and Januskiewicz
in [3]. A manifold with quasitoric (small cover) boundary is a manifold with boundary
where the boundary is a disjoint union of some quasitoric manifolds (respectively small
covers).

Following Orlik and Raymond [6] we discuss the definition of quasitoric manifolds and
the classification of 4–dimensional quasitoric manifolds in Section 2. This classification
is needed to prove Lemma 6.3. In Section 3 we introduce edge-simple polytopes and
study their properties. We give the brief definition of some manifolds with quasitoric
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and small cover boundary in a constructive way in Section 4. There is a natural
torus action on these manifolds with quasitoric boundary having a simple convex
polytope as the orbit space. The fixed point set of the torus action on the manifold with
quasitoric boundary corresponds to the disjoint union of closed intervals of positive
length. Interestingly, we show that such a manifold with quasitoric boundary could be
viewed as the quotient space of a quasitoric manifold corresponding to a certain circle
action on it. This is done in Section 4.3.

In Section 5 we show these manifolds with quasitoric boundary are orientable and
compute their Euler characteristic. In Section 6 we show the T2 –cobordism group of
4–dimensional quasitoric manifolds is generated by the T2 –cobordism classes of the
complex projective space CP2 ; see Lemma 6.3. We construct nice oriented T2 mani-
folds with boundary whose boundaries are the Hirzebruch surfaces. In particular, the
T2 –cobordism class of a Hirzebruch surface is trivial; see Lemma 6.1. In Theorem 6.6
we compute a set of generators of the T2 –cobordism group of 4–dimensional quasitoric
manifolds.

2 Quasitoric manifolds

An n–dimensional simple polytope in Rn is a convex polytope where exactly n

bounding hyperplanes meet at each vertex. The codimension one faces of a convex
polytope are called facets. Let F.P / be the set of facets of an n–dimensional simple
polytope P . Following Buchstaber and Panov [1] we give definitions of quasitoric
manifold, characteristic function and classification.

Definition 2.1 A smooth action of Tn on a 2n–dimensional smooth manifold M is
said to be locally standard if every point y 2M has a Tn –stable open neighborhood Uy

and a diffeomorphism  W Uy!V , where V is a Tn –stable open subset of Cn , and an
isomorphism ıy W Tn!Tn such that  .t �x/D ıy.t/ � .x/ for all .t;x/ 2Tn�Uy .

Definition 2.2 A closed smooth 2n–dimensional Tn –manifold M is called a qua-
sitoric manifold over P if the following conditions are satisfied:

(1) The Tn action is locally standard.

(2) There is a projection map qW M ! P constant on Tn orbits which maps every
l –dimensional orbit to a point in the interior of a codimension-l face of P .

All complex projective spaces CPn and their equivariant connected sums and products
are quasitoric manifolds.
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Lemma 2.1 [3, Lemma 1.4] Let qW M ! P be a 2n–dimensional quasitoric mani-
fold over P . There is a projection map f W Tn �P !M so that for each q 2 P , f
maps Tn � q onto q�1.q/.

Define an equivalence relation �2 on Zn by x �2 y if and only if y D˙x . Denote
the equivalence class of x in the quotient space Zn=Z2 by Œx�.

Definition 2.3 A function �W F.P /!Zn=Z2 is called a characteristic function if the
submodule generated by f�.Fj1

/; : : : ; �.Fjl
/g is an l –dimensional direct summand

of Zn whenever the intersection of the facets Fj1
; : : : ;Fjl

is nonempty.

The vectors �.Fj / are called characteristic vectors and the pair .P; �/ is called a
characteristic pair.

In [3] the authors show we can construct a quasitoric manifold from the pair .P; �/.
Also, given a quasitoric manifold we can associate a characteristic pair to it up to choice
of signs of characteristic vectors. For simplicity of notation we may write the images of
characteristic and isotropy functions by their class representative. The isotropy function
is defined in Section 4.

Definition 2.4 Two actions of Tn on 2n–dimensional quasitoric manifolds M1

and M2 are called equivalent if there is a homeomorphism f W M1!M2 such that
f .t �x/D t �f .x/ for all .t;x/ 2 Tn �M1 .

Definition 2.5 Let ıW Tn ! Tn be an automorphism. Two quasitoric manifolds
M1 and M2 over the same polytope P are called ı–equivariantly homeomorphic
if there is a homeomorphism f W M1!M2 such that f .t � x/ D ı.t/ � f .x/ for all
.t;x/ 2 Tn �M1 .

When ı is the identity automorphism, f is called an equivariant homeomorphism.

Lemma 2.2 [3, Proposition 1.8] Let qW M ! P be a 2n–dimensional quasitoric
manifold over P and �W F.P /! Zn=Z2 be its associated characteristic function. Let
qM W M.P; �/! P be the quasitoric manifold constructed from the pair .P; �/. Then
the map f W Tn �P !M of Lemma 2.1 descends to an equivariant homeomorphism
M.P; �/!M covering the identity on P .

The automorphism ı of Definition 2.5 induces an automorphism ı� of the poset of
subtori of Tn or equivalently, an automorphism ı� of the poset of submodules of Zn .
This automorphism descends to a ı–translation of characteristic pairs, in which the
two characteristic functions differ by ı� . Using Lemmas 2.1 and 2.2 we can prove the
following proposition.
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Proposition 2.3 [1, Proposition 5.14] There is a bijection between ı–equivariant
homeomorphism classes of quasitoric manifolds and ı–translations of characteristic
pairs .P; �/.

Remark 2.4 Suppose ı is the identity automorphism of Tn . From Proposition 2.3
we have two quasitoric manifolds are equivariantly homeomorphic if and only if their
characteristic functions are the same.

Remark 2.5 A quasitoric manifold M over P is simply connected. So M is ori-
entable. A choice of orientation on Tn and P gives an orientation on M . In this
article we fix the positive orientation on Tn . The orientation on the circle subgroup
determined by the vectors �.Fj / is the induced orientation of Tn . So an orientation
of P determines an orientation of the corresponding quasitoric manifolds.

Connected sum 1 Equivariant connected sum of oriented quasitoric manifolds is
discussed explicitly by Buchstaber and Ray [2, Section 6]. We discuss the equivariant
connected sum of quasitoric manifolds briefly following [3; 2]. Let q1W M1! P1 and
q2W M2! P2 be two 2n–dimensional oriented quasitoric manifolds over P1 and P2

respectively. Let x1 2M1 and x2 2M2 be two fixed points. Changing the action (if
necessary) of Tn on M2 by an automorphism of Tn , we can assume that Tn actions
on a Tn invariant neighborhood U1 of x1 and U2 of x2 are equivalent. Let B1 � U1

and B2�U2 be two invariant open ball around x1 and x2 respectively. Identifying the
boundary spheres of M1�B1 and M2�B2 via an orientation reversing (with respect
to the induced orientation) equivariant diffeomorphism we get a smooth manifold,
denoted by M1 # M2 , with a natural locally standard Tn action. The orbit space
P1 # P2 of this action can be described as follows. Let q1.x1/D v1 and q2.x2/D v2

be the corresponding vertices in P1 and P2 respectively. Delete a neighborhood 4v1

of v1 in P1 such that the closer of 4v1
in P1 is diffeomorphic to the n–simplex.

Let P 0
1

be the resulting polytope. Then P 0
1

has a new facet 4n�1.v1/ which is an
.n�1/–simplex. Similarly we construct the polytope P 0

2
from P2 . Let F i

1
;F i

2
; : : : ;F i

n

be the facets meeting at vi of Pi . Since the actions of Tn in a neighborhood of x1

and x2 are equivalent, we may assume that the characteristic vector of F1
j and F2

j are
same for j D 1; 2; : : : ; n. We can obtain the space P1 #P2 by gluing the polytopes P 0

1

and P 0
2

along 4n�1.v1/ and 4n�1.v2/ so that F1
j and F2

j make a new facet for
j D 1; : : : ; n. Then M1 # M2 is an oriented quasitoric manifold over P1 # P2 . The
manifold M1 # M2 is called the equivariant connected sum of M1 and M2 .

Example 2.6 Let Q be a triangle 42 in R2 . The possible characteristic functions are
indicated by Figure 1. The quasitoric manifold corresponding to the first characteristic
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.1; 0/

(1,1)

.1; 0/

.0; 1/
.1;�1/.0; 1/

A1

B1 C1

A2

B2 C2

Figure 1: The characteristic functions corresponding to a triangle

pair is CP2 with the usual T2 action and standard orientation, denoted CP2
s . The

second correspond to the same T2 action with the reverse orientation on CP2 , we
denote this quasitoric manifold by CP2

s .

Note that there are many nonequivariant T2 –actions on CP2 . We discuss this classifi-
cation in Section 6.

Example 2.7 Suppose that Q is combinatorially a square in R2 . In this case there
are many possible characteristic functions. Some examples are given by Figure 2.

.1; 0/

.0; 1/
.0; 1/

.1; 0/

.0; 1/
.�1; 1/

.1;�2/.1; k/
A

B C

D A

B C

D

Figure 2: Some characteristic functions corresponding to a square

The first characteristic pairs may construct an infinite family of 4–dimensional quasitoric
manifolds, denoted M 4

k
for each k 2Z. The manifolds fM 4

k
W k 2Zg are equivariantly

distinct. Let L.k/ be the complex line bundle over CP1 with the first Chern class k .
The complex manifold CP .L.k/˚C/ is the Hirzebruch surface for the integer k ,
where CP . � / denotes the projectivisation of a complex bundle. So each Hirzebruch
surface is the total space of the bundle CP .L.k/˚C/!CP1 with fiber CP1 . It is
well-known that with the natural action of T2 on CP .L.k/˚C/ it is equivariantly
homeomorphic to M 4

k
for each k ; see Oda [5]. That is, with respect to the T2 –action,
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Hirzebruch surfaces are quasitoric manifolds where the orbit space is a combinatorial
square and the corresponding characteristic map is described in Figure 2.

On the other hand the second combinatorial model gives the quasitoric manifold
CP2 # CP2 , the equivariant connected sum of CP2 .

The following remark classifies all 4–dimensional quasitoric manifolds.

Remark 2.8 Orlik and Raymond [6, Page 553] show that any 4–dimensional quasitoric
manifold M 4 over 2–dimensional simple polytope is an equivariant connected sum of
several copies of CP2 , CP2 and M 4

k
for some k 2 Z.

3 Edge-simple polytopes

In this section we introduce a particular type of polytope, which we call an edge-simple
polytope. This polytopes are generalization of simple polytopes.

Definition 3.1 An n–dimensional convex polytope P is called an n–dimensional
edge-simple polytope if each edge of P is the intersection of exactly .n� 1/ facets
of P .

Example 3.1 (1) An n–dimensional simple convex polytope is an n–dimensional
edge-simple polytope.

(2) The following convex polytopes are edge-simple polytopes of dimension 3.

(3) The dual polytope of a 3–dimensional simple convex polytope is a 3–dimensional
edge-simple polytope. This result is not true for higher dimensional polytopes,
that is if P is a simple convex polytope of dimension n�4 the dual polytope of P

may not be an edge-simple polytope. For example the dual of the 4–dimensional
standard cube in R4 is not an edge-simple polytope.

Proposition 3.2 (a) If P is a 2–dimensional simple convex polytope then the
suspension SP on P is an edge-simple polytope and SP is not a simple convex
polytope.

Algebraic & Geometric Topology, Volume 12 (2012)
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(b) If P is an n–dimensional simple convex polytope then the cone CP on P is an
.nC 1/–dimensional edge-simple polytope.

Proof (a) Let P be a 2–dimensional simple polytope with m edges fei W i 2 Ig

and m vertices fvi W i 2 I D f1; 2; : : : ;mgg. Let a and b be the other two vertices
of SP. Then facets of SP are the cone .Cei/x on ei at x D a; b . Edges of SP are
fxvi W x D a; b and i 2 Ig[ fei W i 2 Ig. The edge xvi is the intersection of .Cei1

/x
and .Cei2

/x if vi D ei1
\ ei2

for x D a; b and ei D .Cei/a\ .Cei/b . Hence SP is an
edge-simple polytope. If v is a vertex of the polytope P , v is the intersection of 4

facets of SP. So SP is not a simple convex polytope.

(b) Let P be an n–dimensional simple convex polytope in Rn � 0 � RnC1 with
m facets fFi W i 2 I D f1; 2; : : : ;mgg and k vertices fv1; v2; : : : ; vkg. Assume
that the cones are taken at a fixed point a in RnC1 �Rn lying above the centroid
of P . Then facets of CP are f.CFi/ W i D 1; 2; : : : ;mg [ fPg. Edges of CP are
favi D C.fvig/ W i D 1; 2; : : : ; kg [ fel W el is an edge of Pg. Since P is a simple
convex polytope, each vertex vi of P is the intersection of exactly n facets of P ,
namely fvig D

Tn
jD1 Fij and each edge el is the intersection of unique collection

of .n � 1/ facets fFl1
; : : : ;Fln�1

g. Then we have that C fvig D
Tn

jD1 CFij and
el D P \CFl1

\CFl2
\ � � � \CFln�1

. That is C fvig and felg are the intersection of
exactly n facets of CP. Hence CP is an .nC1/–dimensional edge-simple polytope.

Cut off a neighborhood of each vertex vi ; i D 1; 2; : : : ; k of an n–dimensional edge-
simple polytope P �Rn by an affine hyperplane Hi ; i D 1; 2; : : : ; k in Rn such that
Hi \Hj \ P are empty sets for i ¤ j . Then the remaining subset of the convex
polytope P is a simple convex polytope of dimension n, denote it by QP . Suppose
PHi
D P \Hi DHi \QP for i D 1; 2; : : : ; k . Then PHi

is a facet of QP called the
facet corresponding to the vertex vi for each i D 1; : : : ; k . Since each vertex of PHi

is an interior point of an edge of P and P is an edge-simple polytope, PHi
is an

.n� 1/–dimensional simple convex polytope for each i D 1; 2; : : : ; k .

Lemma 3.3 Let F be a codimension l < n face of P . Then F is the intersection of a
unique set of l facets of P .

Proof The intersection F \QP is a codimension l face of QP not contained inSk
iD0fPHi

g. Since QP is a simple convex polytope, F \QP D
Tl

jD1Fij
0 for some

facets fF 0i1
; : : : ;F 0il

g of QP . Let Fij be the unique facet of P such that F 0ij � Fij .
Then F D

Tl
1Fij . Hence each face of P of codimension l < n is the intersection of

unique set of l facets of P .

Remark 3.4 If vi is the intersection of facets fFi1
; : : : ;Fil

g of P for some positive
integer l , the facets of PHi

are fPHi
\Fi1

; : : : ;PHi
\Fil

g.
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4 Construction of manifolds with boundary

Let P be an edge-simple polytope of dimension n with m facets F1; : : : ;Fm and k

vertices v1; : : : ; vk . Let e be an edge of P . Then e is the intersection of a unique
collection of .n� 1/ facets fFij W j D 1; : : : ; .n� 1/g. Let F.P / D fF1; : : : ;Fmg

and Fn�1
2

be the .n � 1/–dimensional vector space over F2 , the field of integers
modulo 2.

Definition 4.1 The functions �W F.P / ! Zn�1=Z2 and �sW F.P / ! Fn�1
2

are
called the isotropy function and F2 –isotropy function respectively of the edge-simple
polytope P if the set of vectors f�.Fi1

/; : : : ; �.Fin�1
/g and f�s.Fi1

/; : : : ; �s.Fin�1
/g

form a basis of Zn�1 and Fn�1
2

respectively whenever the intersection of the facets
fFi1

; : : : ;Fin�1
g is an edge of P .

The vectors �i WD �.Fi/ and �s
i WD �

s.Fi/ are called isotropy vectors and F2 –isotropy
vectors respectively.

We define some isotropy functions of the edge-simple polytopes I3 and P0 in Fig-
ures 4.3 and 4.4 respectively.

Remark 4.1 It may not be possible to define an isotropy function on the set of facets
of all edge-simple polytopes. For example there does not exist an isotropy function of
the standard n–simplex 4n for each n� 3.

4.1 Manifolds with quasitoric boundary

Let F be a face of P of codimension l < n. Then F is the intersection of a unique
collection of l facets Fi1

;Fi2
; : : : ;Fil

of P . Let TF be the torus subgroup of Tn�1

corresponding to the submodule generated by �i1
; �i2

; : : : ; �il
in Zn�1 . Assume

Tv D Tn�1 for each vertex v of P . We define an equivalence relation � on the
product Tn�1 �P as follows:

(4-1) .t;p/� .u; q/ if and only if p D q and tu�1
2 TF ;

where F � P is the unique face containing p in its relative interior. We denote the
quotient space .Tn�1 � P /= � by X.P; �/. The space X.P; �/ is not a manifold
except when P is a 2–dimensional polytope. If P is 2–dimensional polytope the
space X.P; �/ is homeomorphic to the 3–dimensional sphere.

But whenever n>2 we can construct a manifold with boundary from the space X.P; �/.
We restrict the equivalence relation � on the product .Tn�1 �QP / where QP � P

Algebraic & Geometric Topology, Volume 12 (2012)
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is a simple polytope as constructed in Section 3 corresponding to the edge-simple
polytope P . Let W .QP ; �/ D .T

n�1 �QP /= � � X.P; �/ be the quotient space.
The natural action of Tn�1 on W .QP ; �/ is induced by the group operation in Tn�1 .

Theorem 4.2 The space W .QP ; �/ is a manifold with boundary. The boundary is a
disjoint union of quasitoric manifolds.

For each edge e of P , e0 D e \QP is an edge of the simple convex polytope QP .
Let Ue0 be the open subset of QP obtained by deleting all facets of QP not contain-
ing e0 as an edge. Then Ue0 is diffeomorphic to I0 �Rn�1

>0
where I0 is the open

interval .0; 1/ in R. The facets of I0�Rn�1
>0

are I0�fx1D 0g; : : : ; I0�fxn�1D 0g

where we have that fxj D 0; j D 1; 2; : : : ; n� 1g are the coordinate hyperplanes
in Rn�1 . Let F 0i1

; : : : ;F 0in�1
be the facets of QP such that

Tn�1
jD1F 0ij D e0 . Suppose

the diffeomorphism �W Ue0 ! I0 �Rn�1
>0

sends F 0ij \Ue0 to I0 � fxj D 0g for all
j D 1; 2; : : : ; n�1. Define an isotropy function �e on the set of all facets of I0�Rn�1

>0

by �e.I
0 � fxj D 0g/ D �ij for all j D 1; 2; : : : ; n� 1. We define an equivalence

relation �e on .Tn�1 � I0 �Rn�1
>0

/ as follows:

(4-2) .t; b;x/�e .u; c;y/ if and only if .b;x/D .c;y/ and tu�1
2 T�.F /;

where �.F / is the unique face of I0 �Rn�1
>0

containing .b;x/ in its relative interior,
for a unique face F of Ue0 and T�.F / D TF . So for each a 2 I0 the restriction
of �e on f.fag� fxj D 0g/ W j D 1; 2; : : : ; n� 1g defines a characteristic function (see
Definition 2.3) on the set of facets of fag �Rn�1

>0
. From the constructive definition

of quasitoric manifold given in [3], the quotient space fag � .Tn�1 �Rn�1
>0

/= �e is
diffeomorphic to fag �R2.n�1/ . Hence

.Tn�1
� I0

�Rn�1
>0 /=�eD I0

� .Tn�1
�Rn�1

>0 /=�eŠ I0
�R2.n�1/:

Since the maps � W .Tn�1�Ue0/! .Tn�1�Ue0/=� and �eW .Tn�1�I0�Rn�1
>0

/!

.Tn�1� I0�Rn�1
>0

/=�e are quotient maps and � is a diffeomorphism, the following
commutative diagram ensures that the lower horizontal map �e is a homeomorphism:

(4-3)

.Tn�1 �Ue0/

�

��

Id��
// .Tn�1 � I0 �Rn�1

>0
/

�e

��

.Tn�1 �Ue0/=�
�e
// .Tn�1 � I0 �Rn�1

>0
/=�e

Š
// I0 �R2.n�1/:

Let v0
1

and v0
2

be the vertices of the edge e0 of QP . Suppose H1 \ e0 D fv0
1
g and

H2\ e0 D fv0
2
g, where H1 and H2 are affine hyperplanes as considered in Section 3

corresponding to the vertices v1 and v2 of e respectively. Let Uv0
1

and Uv0
2

be

Algebraic & Geometric Topology, Volume 12 (2012)
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the open subset of QP obtained by deleting all facets of QP not containing v0
1

and v0
2

respectively. Hence there are diffeomorphisms �1W Uv0
1
! Œ0; 1/�Rn�1

>0
and

�2W Uv0
2
! Œ0; 1/�Rn�1

>0
which satisfy the same property as the map � . We get the

following commutative diagram and homeomorphisms �j
e for j D 1; 2:

(4-4)

.Tn�1 �Uv0
j
/

�
��

Id��j

// .Tn�1 � Œ0; 1/�Rn�1
>0

/

�e

��

.Tn�1 �Uv0
j
/=�

�
j
e
// .Tn�1 � Œ0; 1/�Rn�1

>0
/=�e

Š
// Œ0; 1/�R2.n�1/:

Hence each point of .Tn�1 �QP /=� has a neighborhood homeomorphic to an open
subset of Œ0; 1/�R2.n�1/ . So W .QP ; �/ is a manifold with boundary. From the above
discussion the interior of W .QP ; �/ is

[
e0

.Tn�1
�Ue0/=�DW .QP ; �/X f.T

n�1
�

kG
iD1

PHi
/=�g

and the boundary is
Fk

iD1f.T
n�1�PHi

/=�g. Let F.H /ij be a facet of PHi
. So there

exists a unique facet Fj of P such that F.H /ij DFj\QP\Hi . The restriction of the
function � on the set of all facets of PHi

(namely �.F.H /ij /D�j ) give a characteristic
function of a quasitoric manifold over PHi

. Hence restricting the equivalence relation �
on .Tn�1�PHi

/ we get that the quotient space Wi D .Tn�1�PHi
/=� is a quasitoric

manifold over PHi
. Hence the boundary @W .QP ; �/ is the disjoint union

Fk
iD1Wi ,

where Wi is a quasitoric manifold. So W .QP ; �/ is a manifold with quasitoric
boundary.

In Section 5 we show that these manifolds with quasitoric boundary are orientable.

Example 4.3 An isotropy function of the standard cube I3 is described in Figure 3.
Here simple convex polytopes PH1

; : : : ;PH8
are triangles. The restriction of the

isotropy function on PHi
gives that the space .T2�PHi

/=� is the complex projective
space CP2 or CP2 . Since the antipodal map in R3 is an orientation reversing
map we can show the disjoint union

�F4
iD1CP2

�
t
�F4

iD1CP2
�

is the boundary of
.T2 �QI 3/=�.

Example 4.4 In Figure 4 we define an isotropy function of the edge-simple poly-
tope P0 . Here simple convex polytopes PH1

;PH2
;PH3

;PH4
are triangles and the

simple convex polytope PH5
is a rectangle. The restriction of the isotropy function

on PHi
gives that the space .T2�PHi

/=� is CP2 or CP2 for each i 2f1; 2; 3; 4g and
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.1; 1/

.1; 0/ .0; 1/

.1; 1/

.1; 0/

.0; 1/

.I3; �/
.1; 0/

.0; 1/

.1; 1/
v1 v2

v3v4

v5 v6

v7

v8

.1; 1/

.0; 1/
.1; 0/

.QI3 ; �/

PH1

PH2
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Figure 3: An isotropy function � of the edge-simple polytope I3

.T2�PH5
/=� is CP1

�CP1 . Hence
�F2

iD1CP2
�
t
�F2

iD1CP2
�
t .CP1

�CP1/

is the boundary of W .QP0
; �/ WD .T2 �QP0

/=�; see Section 6.

v1 v2

v3
v4

v5

.1; 1/
.1; 0/

.0; 1/

.0; 1/
.1; 0/ PH5

PH4

PH1
PH2

PH3

.P0; �/

.QP0
; �/

.0; 1/

.1; 0/
.1; 1/

.0; 1/

.1; 0/

Figure 4: An isotropy function � of the edge-simple polytope P0

4.2 Manifolds with small cover boundary

We assign each face F to the subgroup GF of Fn�1
2

determined by the vectors
�s

i1
; : : : ; �s

il
where F is the intersection of the facets Fi1

; : : : ;Fil
. Let �s be an

equivalence relation on .Fn�1
2
�P / defined by

(4-5) .t;p/�s .u; q/ if and only if p D q and t �u 2GF ;
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where F � P is the unique face containing p in its relative interior. The quotient
space .Fn�1

2
�QP /= �s � .Fn�1

2
�P /= �s , denoted by S.QP ; �

s/, is a manifold
with boundary. This can be shown by the same arguments given in Section 4.1. The
boundary of this manifold is f.Fn�1

2
�
Fk

iD1PHi
/=�sg D

Fk
iD1f.F

n�1
2
�PHi

/=�sg.
Clearly the restriction of the F2 –isotropy function �s on the set of all facets of PHi

gives the characteristic function of a small cover over PHi
. So .Fn�1

2
�PHi

/=�s is a
small cover for each i D 0; : : : ; k . Hence S.QP ; �

s/ is a manifold with small cover
boundary.

4.3 Some observations

The set of all facets of the simple convex polytope QP is given by F.QP /D fPHj
W

j D 1; 2; : : : ; kg [ fF 0i W i D 1; 2; : : : ;mg, where F 0i D Fi \QP for unique facets Fi

of P . We define the function �W F.QP /! Zn=Z2 as follows:

(4-6) �.F /D

(
Œ.0; : : : ; 0; 1/� 2 Zn=Z2 if F D PHj

; j 2 f1; : : : ; kg;

Œ�i ; 0� 2 Zn�1=Z2 � f0g � Zn=Z2 if F D Fi ; i 2 f1; 2; : : : ;mg:

So the function � satisfies the condition for the characteristic function (see Definition 2.3)
of a quasitoric manifold over the n–dimensional simple convex polytope QP . Hence
from the characteristic pair .QP ; �/ we can construct the quasitoric manifold M.QP ; �/

over QP . There is a natural Tn action on M.QP ; �/. Let TH be the circle sub-
group of Tn determined by the submodule f0g � f0g � � � � � f0g �Z of Zn . Hence
W .QP ; �/ is the orbit space of the circle TH action on M.QP ; �/. The quotient map
�H W M.QP ; �/!W .QP ; �/ is not a fiber bundle map.

Remark 4.5 The manifold S.Qp; �s/ with small cover boundary constructed in
Section 4.2 is the orbit space of Z2 action on a small cover.

5 Orientability of W.QP ; �/

Suppose W DW .QP ; �/. The boundary @W has a collar neighborhood in W . Hence
by Hatcher [4, Proposition 2.22] we get Hi.W; @W /D zHi.W =@W / for all i . We show
the space W =@W has a C W –structure. Actually we show that corresponding to each
edge of P there exists an odd-dimensional cell of W =@W . Realize QP as a simple
convex polytope in Rn and choose a linear functional �W Rn!R which distinguishes
the vertices of QP , as in the proof of Theorem 3:1 in [3]. The vertices are linearly
ordered according to ascending value of � . We make the 1–skeleton of QP into a
directed graph by orienting each edge such that � increases along edges. For each
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vertex v of QP define its index, ind.v/, as the number of incident edges that point
towards v . Suppose V.QP / is the set of all vertices and E.QP / is the set of edges
of QP . For each j 2 f1; 2; : : : ; ng, let

Ij D f.v; ev/ 2 V.QP /� E.QP / W ind.v/D j and ev is the incident edge that points

towards v such that ev D e\QP for an edge e of Pg:

Suppose .v; ev/2Ij . Let Fev
�QP denote the smallest face which contains the inward

pointing edges incident to v . Then Fev
is a unique face not contained in any PHi

.
Let Uev

be the open subset of Fev
obtained by deleting all faces of Fev

not containing
the edge ev . The restriction of the equivalence relation � on .Tn�1 �Uev

/ gives that
the quotient space .Tn�1�Uev

/=� is homeomorphic to the open disk B2j�1 . Hence
the quotient space .W =@W / has a C W –complex structure with odd dimensional cells
and one zero dimensional cell only. The number of .2j � 1/–dimensional cell is jIj j,
the cardinality of Ij for j D 1; 2; : : : ; n. So we get the following theorem.

Theorem 5.1 Hi.W; @W /D

8̂<̂
:
L
jIj j

Z if i D 2j � 1 and j 2 f1; : : : ; ng;

Z if i D 0;

0 otherwise:

When j D n the cardinality of Ij is one. So H2n�1.W; @W /D Z. Hence W is an
orientable manifold with boundary.

Example 5.2 We adhere to the notation of Example 4.4. Observe I3 D f.v14; ev14
/g,

I2D f.v8; ev8
/; .v13; ev13

/; .v15; ev15
/g and I1D f.v3; ev3

/; .v6; ev6
/; .v9; ev9

/g. The
face Fev13

corresponding to the point .v13; ev13
/ is v0v3v5v13v12v1 . Thus we can

give a C W –structure of W .QP0
; �/=@W .QP0

; �/ with one 0–cell, two 1–cells, three
3–cells and one 5–cell.

In [3] the authors showed that the odd dimensional homology of quasitoric manifolds
are zero. So H2i�1.@W /D 0 for all i . Hence we get the following exact sequences
for the collared pair .W; @W /.

(5-1)

0 // H2n�1.W /
j�
// H2n�1.W; @W /

@
// H2n�2.@W /

i�
// H2n�2.W / // 0

:::
:::

:::
:::

0 // H3.W /
j�
// H3.W; @W /

@
// H2.@W /

i�
// H2.W / // 0

0 // H1.W /
j�
// H1.W; @W /

@
// H0.@W /

i�
// H0.W / // // Z;
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Figure 5: The index function of QP0

where ZŠH0.W; @W /. Let .hi0
; : : : ;hin�1

/ be the h–vector of PHi
for iD1;2; : : : ;k .

The definition of h–vector of a simple convex polytope is given in [3]. Hence we
have that the Euler characteristic of the manifold W with quasitoric boundary isPk

iD1

Pn�1
jD0hij �

Pn�1
jD1jIj j.

Fix the standard orientation on Tn�1 . Let In D f.v
0; ev0/g. Then the .2n � 1/–

dimensional cell .Tn�1 �Uev0
/= ��W represents a fundamental class of W =@W

with coefficient in Z. Thus an orientation of Uev0
(hence of QP ) determines an

orientation of W . Note that an orientation of QP is induced by orienting the ambient
space Rn .

So the boundary orientation on PHi
induced from the orientation of QP gives the

orientation on the quasitoric manifold Wi � @W . In the next section we consider the
orientation of Q’s and QP ’s induced from the standard orientation of their ambient
spaces.

6 Torus cobordism of quasitoric manifolds

Let C be the following category: the objects are all quasitoric manifolds and morphisms
are torus equivariant maps between quasitoric manifolds. We are considering torus
cobordism in this category only.
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Definition 6.1 Two 2n–dimensional quasitoric manifolds M1 and M2 are said to be
Tn –cobordant if there exists an oriented Tn manifold W with boundary @W such
that @W is Tn equivariantly diffeomorphic to M1 t .�M2/ under an orientation
preserving diffeomorphism. Here �M2 represents the reverse orientation of M2 .

We denote the Tn –cobordism class of quasitoric 2n–manifold M by ŒM �.

Definition 6.2 The n–th torus cobordism group is the group of all cobordism classes
of 2n–dimensional quasitoric manifolds with the operation of disjoint union. We
denote this group by CGn .

Let M ! Q be a 4–dimensional quasitoric manifold over the square Q with the
characteristic function �W F.Q/ ! Z2=Z2 . We construct an oriented T2 mani-
fold W with boundary @W , where @W is equivariantly homeomorphic to either
�M t

�F
k1

CP2
�
t
�F

k2
CP2

�
or M t

�F
k1

CP2
�
t
�F

k2
CP2

�
for some inte-

gers k1; k2 . In order to show this we construct a 3–dimensional edge-simple poly-
tope PE such that PE has exactly one vertex O which is the intersection of 4 facets
with PE \HO DQ and other vertices of PE are intersection of 3 facets. We define
an isotropy function �, extending the characteristic function � of M , from the set of
facets of PE to Z2=Z2 . Then W .QPE ; �/ is the required oriented T2 manifold with
quasitoric boundary. We have done an explicit calculation in the following.

Let QDABCD be a rectangle which belongs to f.x;y; z/ 2R3
�0
W xCyC z D 1g;

see Figure 6. Let �W fAB;BC;CD;DAg ! Z2=Z2 be the characteristic function for
a quasitoric manifold M over ABCD such that the characteristic vectors are

�.AB/D �1; �.BC /D �2; �.CD/D �3; �.DA/D �4:

We may assume that �1 D .0; 1/ and �2 D .1; 0/. From the classification results given
in Section 2, it is enough to consider only the following cases:

�3 D .0; 1/ and �4 D .1; 0/;(6-1)

�3 D .0; 1/ and �4 D .1; k/; k D 1 or � 1;(6-2)

�3 D .0; 1/ and �4 D .1; k/; k 2 Z�f�1; 0; 1g;(6-3)

�3 D .�1; 1/ and �4 D .1;�2/:(6-4)

Case (6-1) In this case the edge-simple polytope zP1 , given in Figure 6, is the required
edge-simple polytope. The isotropy vectors of zP1 are given by

�.OGH /D �1; �.OHI/D �2; �.OIJ /D �3;

�.OGJ /D �4; �.GHIJ /D �1C �2:

Algebraic & Geometric Topology, Volume 12 (2012)



2018 S Sarkar

So we get an oriented T2 manifold W .Q zP1
; �/ with quasitoric boundary where

the boundary is the quasitoric manifold �M t
F

k1
CP2

t
F

k2
CP2 for some inte-

gers k1; k2 . Note that orientation on zP1 �R3
�0

comes from the standard orientation
of R3 . Let A0 and B0 be the midpoints of GJ and HI respectively. Let H be the
plane passing through O;A0 and B0 in R3 . Since a reflection in R3 is an orientation
reversing homeomorphism, it is easy to observe that the reflection on H induces the
following orientation reversing equivariant homeomorphisms:

(6-5)
.T2
� zP1I

/=�! .T2
� zP1H

/=�;

.T2
� zP1J

/=�! .T2
� zP1G

/=� :

So k1 D k2 , since ŒCP2�D�ŒCP2�, ŒM �D 0ŒCP2�. Identifying the corresponding
boundaries of W .Q zP1

; �/ via the equivariant homeomorphisms of Equation (6-5) we
get that M is the boundary of a nice oriented T2 manifold. By “nice manifold” we
mean it has good C W –complex structures.

Case (6-2) In this case jdet.�2; �4/j D 1. Let O be the origin of R3 . Let CQ

be the open cone on rectangle ABCD at the origin O . Let G;H; I;J be points
on extended OA;OB;OC;OD respectively. Let E and F be two points in the
interior of the open cones on AB and CD at O respectively such that jOGj< jOEj,
jOH j< jOEj and jOI j< jOF j, jOJ j< jOF j. We may assume OHDOI , OGDOJ ,
HE DEG and IF D FJ . Then the convex polytope P1 � CQ on the set of vertices
fO;G;E;H; I;F;J g is an edge-simple polytope (see Figure 6) of dimension 3. Define
a function, denote by �, on the set of facets of P1 by

(6-6)
�.OGEH /D �1; �.OHI/D �2; �.OJFI/D �3;

�.OJG/D �4; �.HIFE/D �4; �.GJFE/D �2:

Hence � is an isotropy function on the edge-simple polytope P1 . The boundary of
the oriented T2 manifold W .QP1

; �/ is the quasitoric manifold �M t
F

k1
CP2

tF
k2

CP2 for some integers k1; k2 . Similarly to the previous case we can show that
suitable reflections induce the following orientation reversing equivariant homeomor-
phisms:

(6-7)

.T2
�P1H

/=�! .T2
�P1I

/=�;

.T2
�P1E

/=�! .T2
�P1F

/=�;

.T2
�P1G

/=�! .T2
�P1J

/=� :

So k1 D k2 . Hence ŒM � D 0ŒCP2�. Identifying the corresponding boundaries of
W .QP1

; �/ via the equivariant homeomorphisms of Equation (6-7) we get that M is
the boundary of a nice oriented T2 manifold.
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Case (6-3) Suppose det.�2; �4/D k > 1. Define a function �.1/ on the set of facets
of P1 except GEFJ by

(6-8)
�.1/.OGEH /D �1; �.1/.OHI/D �2; �.1/.OIFJ /D �3;

�.1/.OGJ /D �4; �.1/.EHIF /D �2C �1:

So the function �.1/ satisfies the condition of an isotropy function of the edge-simple
polytope P1 along each edge except the edges of the rectangle GEFJ . The restriction
of the function �.1/ on the edges GE;EF;FJ;GJ of the rectangle GEFJ gives the
following equations:

(6-9)

jdetŒ�.1/.GE/; �.1/.EF /�j D 1; jdetŒ�.1/.EF /; �.1/.FJ /�j D 1;

jdetŒ�.1/.FJ /; �.1/.GJ /�j D 1; jdetŒ�.1/.GJ /; �.1/.GE/�j D 1;

detŒ�.1/.EF /; �.1/.GJ /�D k � 1< k:

Let P 0
1

be a 3–dimensional convex polytope as in Figure 6. Identifying the facet GEFJ

of P1 and A1B1C1D1 of P 0
1

through a suitable diffeomorphism of manifold with
corners such that the vertices G;E;F;J maps to the vertices A1;B1;C1;D1 respec-
tively, we can form a new convex polytope P2 ; see Figure 7. After the identification
the following holds.

(1) The facet of P1 containing GE and the facet of P 0
1

containing A1B1 make the
facet OHH1E1G1 of P2 .

(2) The facet of P1 containing EF and the facet of P 0
1

containing B1C1 make the
facet HH1I1I of P2 .

(3) The facet of P1 containing FJ and the facet of P 0
1

containing C1D1 make the
facet OII1F1J1 of P2 .

(4) The facet of P1 containing JG and the facet of P 0
1

containing D1A1 make the
facet OJ1G1 of P2 .

The polytope P2 is an edge-simple polytope. We define a function �.2/ on the set of
facets of P2 except G1E1F1J1 by

(6-10)

�.2/.OHH1E1G1/D �1; �.2/.OJ1G1/D �4;

�.2/.OIH /D �2; �.2/.HH1I1I/D �2C �1;

�.2/.OII1F1J1/D �3; �.2/.H1I1F1E1/D �2C 2�1:

So the function �.2/ satisfies the condition of an isotropy function of the edge-simple
polytope P2 along each edge except the edges of the rectangle G1E1F1J1 . The
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restriction of the function �.2/ on the edges namely G1E1;E1F1;F1J1;G1J1 of the
rectangle G1E1F1J1 gives the following equations:

(6-11)

jdetŒ�2.G1E1/; �
2.E1F1/�jD1; jdetŒ�2.G1J1/; �

2.G1E1/�jD1;

jdetŒ�2.F1J1/; �
2.G1J1/�jD1; detŒ�2.E1F1/; �

2.G1J1/�Dk�2<k�1:

jdetŒ�2.E1F1/; �
2.F1J1/�jD1;

Proceeding in this way, at the k –th step we construct an edge-simple polytope Pk with
the function �.k/ , extending the function �.k�1/ , on the set of facets of Pk such that

(6-12)

�.k/.Hk�2Hk�1Ik�1Ik�2/D �2C .k � 1/�1

D �.k�1/.Hk�2Ik�2Fk�2Ek�2/;

�.k/.OGk�1Jk�1/D �4

D �.k�1/.OGk�2Jk�2/;

�.k/.Hk�1Ik�1Fk�1Ek�1/D �4;

�.k/.Gk�1Ek�1Fk�1Jk�1/D �2C .k � 1/�1:

We observe that the function � WD �.k/ is an isotropy function of the edge-simple
polytope Pk . So we get an oriented T2 –manifold with boundary W .QPk

; �/ where
the boundary is the quasitoric manifold �M t

F
k1

CP2
t
F

k2
CP2 for some inte-

gers k1; k2 . Similarly to the previous cases we can construct the following orientation
reversing equivariant homeomorphisms:

(6-13)

.T2
�PkH

/=�! .T2
�PkI

/=�;

.T2
�P1Gk�1

/=�! .T2
�P1Jk�1

/=�;

.T2
�PkEk�1

/=�! .T2
�PkFk�1

/=�;

.T2
�PkHi

/=�! .T2
�PkIi

/=�;

for i D 1; : : : ; k�1. So k1Dk2 . Hence ŒM �D 0ŒCP2�. Identifying the corresponding
boundaries of W .QPk

; �/ via the equivariant homeomorphisms of Equation (6-13) we
get that M is the boundary of a nice oriented T2 manifold.

If k < �1, similarly we can show ŒM �D 0ŒCP2� and we can construct nice oriented
T2 manifold with boundary W where the boundary is M .

Hence given a Hirzebruch surface M with natural T2 action we construct a nice
5–dimensional oriented T2 manifold with boundary where the boundary is M . Thus
we get the following interesting lemma.
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Lemma 6.1 The T2 –cobordism class of a Hirzebruch surface is trivial. In particular,
the oriented cobordism class of a Hirzebruch surface is also trivial.

O

G

H I

J

E F

P 00

A B

C
D

�1

�3

�4

�1

�3

�2

Figure 8: The edge-simple polytope P 00 and an isotropy function � associ-
ated to case (6-4)

Case (6-4) In this case jdetŒ�1; �3�j D 1. Following case (6-2), we can construct an
edge simple polytope P 00 and an isotropy function � over this edge-simple polytope;
see Figure 8. Hence we can construct an oriented T2 manifold with quasitoric boundary
W .QP 00 ; �/ where the boundary is �M t

F
k1

CP2
t
F

k2
CP2 for some integers

k1; k2 . We may assume that “the angles between the planes OHI and HIFE” and
“the angles between the planes EFJG and HIFE” are equal. Clearly a suitable
reflection induces the following orientation reversing equivariant homeomorphisms:

(6-14)
.T2
�P 00H /=�! .T2

�P 00E/=�;

.T2
�P 00I /=�! .T2

�P 00F /=� :

Let CP2
J D .T

2�P 00
J
/=� and CP2

G D .T
2�P 00

G
/=�. Observe that the characteristic

functions of the triangles P 00
J

and P 00
G

differ by a nontrivial automorphism of T2 (or Z2 ).
So CP2

J and CP2
G are complex projective space CP2 with two nonequivariant T2 –

actions. Hence ŒM �D ŒCP2
J �C ŒCP2

G �.

To compute the group CG2 we use induction on the number of facets of 2–dimensional
simple convex polytope in R2 . We rewrite the proof of the following well-known
lemma, briefly.

Lemma 6.2 The equivariant connected sum of two quasitoric manifolds is equivari-
antly cobordant to the disjoint union of these two quasitoric manifolds.
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Proof Let M1 and M2 be two quasitoric manifolds of dimension 2n. Then W1 WD

Œ0; 1��M1 and W2 WD Œ0; 1��M2 are oriented Tn –manifolds with boundary such that

@W1 D 0� .�M1/t 1�M1 and @W2 D 0� .�M2/t 1�M2:

Let x1 2 M1 and x2 2 M2 be two fixed points. Let U1 � W1 and U2 � W2 be
two Tn invariant open neighborhoods of 1�x1 and 1�x2 respectively. Identifying
@U1� .W1�U1/ and @U2� .W2�U2/ via a suitable orientation preserving equivariant
homeomorphism we get the lemma.

Now consider the case of a quasitoric manifold M over a convex 2–polytope Q with m

facets, where m> 4. By the classification result of 4–dimensional quasitoric manifold
discussed in Remark 2.8, M is one of the following equivariant connected sums:

M DN1 # CP2;

M DN2 # CP2;

M DN3 # M 4
k :

The quasitoric manifolds N1;N2 and N3 are associated to the 2–polytopes Q1;Q2

and Q3 respectively. The number of facets of Q1;Q2 and Q3 are m� 1; m� 1

and m � 2 respectively. The quasitoric manifold M 4
k

is defined in Section 2. In
previous calculations we have shown ŒM 4

k
�D 0ŒCP2�. So by Lemma 6.2 we get either

ŒM �D ŒN1�C ŒCP2� or ŒM �D ŒN2�� ŒCP2� or ŒM �D ŒN3�. Thus using the induction
on m, the number of facets of Q, we can prove the following.

Lemma 6.3 Any 4–dimensional quasitoric manifold is equivariantly cobordant to
some T2 –cobordism classes of CP2 .

We classify the equivariant cobordism classes of all T2 –actions on CP2 . Let Q be a
triangle and fF1;F2;F3g be the edges (facets) of Q. Let �W fF1;F2;F3g ! Z2=Z2

be a characteristic function such that �.F1/D Œ.a1; b1/� and �.F2/D Œ.a2; b2/�. We
may assume that

det.�.F1/; �.F2//D j.a1; b1I a2; b2/j D 1;

where .a1; b1I a2; b2/ is the 2�2 matrix in SL.2;Z/ with row vectors �.F1/ and �.F2/.
We also denote this matrix by �. Then we have that either �.F3/D Œ.a1Ca2; b1Cb2/�

or �.F3/D Œ.a1�a2; b1� b2/�. Let �0 and �00 be two characteristic functions defined
respectively by

�0.F1/D Œ.a1; b1/�; �
0.F2/D Œ.a2; b2/�; �

0.F3/D Œ.a1C a2; b1C b2/�;

�00.F1/D Œ.a1; b1/�; �
00.F2/D Œ.a2; b2/�; �

00.F3/D Œ.a1� a2; b1� b2/�:
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Denote the quasitoric manifolds associated to the pairs .Q; �0/ and .Q; �00/ by CP2
�0

and CP2
�00 respectively. Define an equivalence relation �eq on SL.2;Z/ by

.a1; b1I a2; b2/�eq .�a1;�b1I �a2;�b2/:

Denote the equivalence class of � 2 SL.2;Z/ by Œ��eq . Observe that if Œ�1�eq ¤ Œ�2�eq

then the corresponding characteristic functions are differ by ı� , for some nontrivial
automorphism ıW T2! T2 . Using Lemma 2.2 we get the following classification.

Lemma 6.4 A T2 –actions on CP2 is equivariantly homeomorphic to either CP2
�0

or CP2
�00 for a unique Œ��eq 2 SL.2;Z/=�eq .

Note that the natural T2 –actions on CP2
�0 and CP2

�00 are the same. Consider the
linear map L�W Z2! Z2 , defined by L�.1; 0/ D .a1; b1/ and L�.0; 1/ D .a2; b2/.
The map L� induces orientation preserving homeomorphisms CP2

s ! CP2
�0 and

CP2
s !CP2

�00 . Thus, we have the following lemma.

Lemma 6.5 The oriented T2 –cobordism class of a T2 –action on CP2 is ŒCP2
�0 � for

a unique Œ��eq 2 SL.2;Z/=�eq .

Since the order of oriented cobordism class of CP2 is infinite, we get the following
theorem.

Theorem 6.6 The oriented torus cobordism group CG2 is an infinite abelian group
with a set of generators fŒCP2

�0 � W Œ��eq 2 SL.2;Z/=�eqg.

We do not know whether these are the free generators.

Question 6.7 Describe all the relations among the generators given in Theorem 6.6.

We discuss the actions of Tn on .2nC 1/–dimensional manifolds (possibly with
boundary) where the actions are similar to the locally standard actions. We again call
these actions locally standard actions. We discuss some properties of these actions
explicitly in our next article, “Odd dimensional torus manifolds.” Let �s be the
standard action of Tn on Cn . Consider the action � of Tn on Cn �R defined by
�.t; .z; r//D .�s.t; z/; r/.

Definition 6.3 A smooth action of Tn on a .2nC 1/–dimensional smooth manifold
(possibly with boundary) W is said to be locally standard if every point a 2W has
a Tn –stable open neighborhood Wa and a diffeomorphism �aW Wa! Va , where Va

is a Tn –stable open subset of Cn �R�0 under the action � , and an isomorphism
ıaW Tn! Tn such that �a.t �x/D �.ıa.t/; �a.x// for all .t;x/ 2 Tn �Wa .
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Example 6.8 Consider S2nC1 D f.z1; : : : ; znC1/ 2 CnC1 W †i jzi j
2 D 1g. The

torus Tn acts on S2nC1 by .t1; : : : ; tn/ � .z1; : : : ; zn; znC1/D .t1z1; : : : ; tnzn; znC1/.
This action is a locally standard action in the sense of Definition 6.3. When nD 1, the
orbit space of this action is a closed 2–dimensional disk.

Remark 6.9 If W is a .2nC 1/–dimensional smooth manifold with boundary with
a locally standard action of Tn , the fixed point set W Tn

is a disjoint union of some
circles and closed intervals.
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