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JSJ decompositions of quadratic Baumslag–Solitar groups

JUAN ALONSO

Generalized Baumslag–Solitar groups are defined as fundamental groups of graphs of
groups with infinite cyclic vertex and edge groups. Forester [6] proved that in most
cases the defining graphs are cyclic JSJ decompositions, in the sense of Rips and Sela.
Here we extend Forester’s results to graphs of groups with vertex groups that can be
either infinite cyclic or quadratically hanging surface groups.

20E06, 20E08, 20F65; 57M60

1 Introduction

To understand a group G , it is often useful to decompose it as an amalgamated free
product or an HNN extension over a subgroup that belongs to a well understood class of
groups, such as trivial groups, finite groups or cyclic groups. More generally, consider
all possible factorizations of G as a graph of groups with edge stabilizers in some
single class of groups.

It is often possible to show the existence of a single graph of groups decomposition, from
which all of these factorizations can be obtained. This is called a JSJ decomposition
of G (over subgroups in the given class), although the notion is imprecise on how the
other factorizations of G are to be obtained from the JSJ decomposition. An example is
Grushko’s theorem, which gives all the maximal decompositions of a finitely generated
group over the class of trivial groups (ie the free factorizations).

The letters JSJ stand for Jaco, Shalen and Johannson. Their results in [11; 12] can
be interpreted as the existence of a JSJ decomposition for 3–manifold groups over
subgroups isomorphic to Z�Z. It was these works that motivated the study of JSJ
decompositions over nontrivial subgroups (ie aside from the Grushko decomposition).
Various existence theorems were obtained by Kropholler [13], Rips and Sela [16; 14],
Bowditch [2], Dunwoody and Sageev [3], Fujiwara and Papasoglu [7], Dunwoody and
Swenson [4] and Scott and Swarup [15]. In [10; 8] Guirardel and Levitt propose a precise
definition of JSJ decomposition, which is verified by the graphs of groups constructed
in most of the mentioned works. The constructions in [4] and [15] constitute other
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notions of JSJ decomposition, as does the compatibility JSJ decomposition introduced
by Guirardel and Levitt [9].

In this paper we will focus on the JSJ decomposition due to Rips and Sela [14] for
finitely presented one-ended groups with infinite cyclic edge stabilizers (stated here as
Theorem 2.14).

It is not always clear how to recognize whether a given graph of groups is a JSJ
decomposition of its fundamental group. In [6], Forester studied the Generalized
Baumslag–Solitar (GBS) groups, which are defined by graphs of groups whose vertex
and edge stabilizers are infinite cyclic. He showed that the defining graph of a GBS
group is a JSJ decomposition, under mild hypotheses.

In this paper we introduce the quadratic Baumslag–Solitar (QBS) groups. They are
defined by graphs of groups whose edge groups are infinite cyclic, and whose vertex
groups can be either infinite cyclic or quadratically hanging (see Definition 2.7) surface
groups. It is clear that the GBS groups are a subclass of the QBS groups. We extend
Forester’s result to the class of QBS groups, ie we show that the defining graph of
a QBS group is a JSJ decomposition, under some conditions. Specifically, the main
theorem in this paper is the following.

Theorem 1.1 Let � be a QBS graph, G D �1.�/. Suppose that � is reduced, has no
leaves, and satisfies the following conditions:

(1) Each edge e of � has labels mCe ;m
�
e > 1.

(2) Each GBS component �i of � is reduced, and T�i
is not a point or a line.

Then � is a Rips–Sela JSJ decomposition for G .

A QBS graph is the defining graph of a QBS group. See Section 2.2 for the definition
of a reduced graph of groups. For the edge labels, see Definition 5.1. The GBS
components and the leaves of a QBS graph are defined at the beginning of Section 6.

The paper is organized as follows: In Section 2 we review the basics of the Rips–Sela
JSJ decomposition. There we discuss universality and unfoldedness, the two main
conditions for a graph of groups (with cyclic edge groups) to be a JSJ decomposition
(in the sense of Rips and Sela). In Section 3 we recall the results of Forester about
GBS groups, which we will need when dealing with QBS groups. In Section 4 we
prove a general criterion for unfoldedness, Theorem 4.2, in the same fashion of the one
by Forester [6, Proposition 2.17]. Section 5 is devoted to Theorem 5.5. This theorem
applies to general graphs of groups with cyclic edge stabilizers, and it allows us to
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show the universality of the whole graph from the universality of certain subgraphs.
Finally, in Section 6 we introduce the QBS groups, and prove they are one-ended with
the exception of Z (see Proposition 6.1). We also give the proof of Theorem 1.1. In
this proof we combine Theorem 5.5 with the results of Forester (outlined in Section 3)
to show universality, and we use Theorem 4.2 to prove unfoldedness.

2 Review of the JSJ decomposition

2.1 Graphs of groups and Bass–Serre theory

Bass–Serre theory is the most fundamental prerequisite for understanding the JSJ
decomposition. This is a very quick review, a comprehensive treatment is given in the
book by Serre [17].

For a graph we understand a pair of sets � D .V;E/, the vertex and edge set of �
respectively, together with two maps s; t W E! V , which give the source and target of
an edge. If e 2E is such an edge, the vertices s.e/, t.e/ will be called the endpoints
of e . Thus our graphs have oriented edges, and admit loops (edges e with s.e/D t.e/)
and multiple edges (different edges having the same endpoints). We will usually drop
the maps s and t from the notation, thus we will say an edge e has endpoints vC , v�

to mean that s.e/D v� and t.e/D vC .

Definition 2.1 A graph of groups consists of the following:

(1) a connected graph � ;

(2) a group Gv for each vertex v of � ;

(3) a group Ge for each edge e of � , and two injective homomorphisms

@Ce W Ge!GvC

@�e W Ge!Gv�

where vC , v� are the endpoints of e .

This is denoted by .�;G; @C; @�/, or simply by � . Note that even if the endpoints of
an edge e agree, ie vC D v� , there are two different maps @Ce and @�e , one for the
source and one for the target of e .

Algebraic & Geometric Topology, Volume 12 (2012)



2030 Juan Alonso

If T is a spanning tree for � , let �1.�;T / be defined by the following presentation.

� Generators: the elements of Gv for the vertices v 2 V .�/, and an element te
for each edge e 2E.�/, e 62 T .

� Relations: the relations in Gv for each vertex v , and

@Ce .g/D @
�
e .g/ for e 2 T; g 2Ge;

te@
C
e .g/t

�1
e D @�e .g/ for e 2E.�/; e 62 T; g 2Ge:

This group is called the fundamental group of � . It does not depend on the spanning
tree T .

Proposition 2.2 If T , S are two spanning trees for � , then �1.�;T /Š �1.�;S/.

Thus we often drop T from the notation. When G is a group and G Š �1.�/ for a
graph of groups � , we say that � is a splitting of G . Note that one-edge splittings
correspond to decompositions of G as an amalgamated product or an HNN extension.

If � is a graph of groups and A� � is a connected subgraph, let �� D �=A be the
graph obtained by collapsing A to a vertex, which we call w . Put Gw D �1.A/ and
leave the same groups in the noncollapsed vertices and edges. This defines a graph of
groups in �� .

Proposition 2.3 If A � � is a connected subgraph and �� D �=A as above, then
�1.�/Š �1.�

�/.

We say that � is a refinement of the splitting �� . Through this proposition, we can
see general splittings as iteration of amalgamated products and HNN extensions.

The following is the main result in Bass–Serre theory. It relates the splittings of a
group with its actions on simplicial trees, and it is crucial for both the theory of JSJ
decompositions and the results on this paper.

Theorem 2.4 (Bass–Serre) Given a group G , there is a correspondence between the
splittings of G as a graph of groups and the actions of G on simplicial trees without
edge inversions. If G Õ X is such an action, then a corresponding splitting can be
constructed as follows:

� The underlying graph is � DX=G .

� If zx 2X is a vertex or edge, and x 2 � is its projection, then Gx is isomorphic
to StabG.zx/.
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Since the action on X is without edge inversions, the edges of � DX=G can be given
an orientation. We omitted the edge maps in the statement, but they are straightfor-
ward. Namely, if we identify Gx with StabG.zx/ for some specific zx , these maps are
subgroup inclusions possibly composed with conjugations. The action corresponding
to a splitting � under this theorem will be denoted by T� , the Bass–Serre tree of � .

Given a simplicial G–tree X , a subgroup H � G acts elliptically on X , or is an
elliptic subgroup with respect to X , if there is a point in X that is fixed by every
element of H . Note that if X D T� is the Bass–Serre tree of a graph of groups � ,
then a subgroup of G D �1.�/ acts elliptically on X if and only if it is conjugate into
one of the vertex groups of � .

Let X , Y be simplicial G–trees. A morphism f W X ! Y is a G–equivariant map,
which can be made simplicial by subdividing the edges of X . The following fact is
widely known, and not hard to prove.

Proposition 2.5 There is a morphism X ! Y if and only if every elliptic subgroup
of X is also elliptic in Y .

2.2 Elementary deformations, foldings

Here we introduce some important transformations on graphs of groups.

Let � be a graph of groups. Let e be an edge of � and vC , v� its endpoints. First
suppose that vC ¤ v� and @�e is an isomorphism. That is, Ge D Gv� D C and
GvC D A with C � A. In this situation, the collapse of the edge e is called an
elementary collapse. Note that vC and v� are identified to a single vertex xv , and
Gxv DA (through the isomorphism A�C C ŠA).

The inverse of an elementary collapse is called an elementary expansion, and these
transformations are the elementary deformations, which were introduced by Forester [5].

Again, let e be an edge with different endpoints. Suppose Ge D C � C1 �ADGvC

and B DGv� . Get �1 from � by redefining Ge DC1 and Gv� DC1 �C B . We have
�1.�/D �1.�1/ by the isomorphism A�C B ŠA�C1

.C1 �C B/. In this case we say
that �1 is a folding of � , and that the folding occurs at the vertex vC .

There is another case of folding when e is a loop, ie vCDv�Dv . Let GeDC , GvDA,
and suppose that @Ce .C /� C1 �A. This time make �1 with Gv DA�C teC1t�1

e and
Ge D C1 . The fundamental group is again preserved, and this transformation is also
called folding. Making some abuse of notation, we say that the folding occurs at vC in
the case just described, and at v� if we use @�e instead.
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Looking at the Bass–Serre trees, when there is a folding we have a map T� ! T�1
,

simplicial and equivariant. If x 2 T� is a lift of vC with stabilizer gAg�1 , then this
map identifies the edges coming from x and projecting to e , by the action of gC1g�1 .
Locally at x it looks like “folding”. In [1], Bestvina and Feighn explain this from the
viewpoint of graphs of groups.

If e is an edge of � , let �e be the graph of groups obtained by collapsing the components
of � � e .

Definition 2.6 A splitting � is unfolded when one of the following holds:

(1) � has only one edge, and there is no folding onto it. That is, there is no �0 such
that � is obtained as a folding of �0 .

(2) � has several edges, and �e is unfolded for all of them.

2.3 Z–Splittings, quadratically hanging subgroups

A Z–splitting of the group G is a splitting whose edge groups are infinite cyclic. That
is, a graph of groups � , with �1.�/ŠG and Ge Š Z for all edges of � .

Definition 2.7 Let � be a graph of groups. A vertex group Gv is quadratically
hanging (QH) if:

(1) GvŠ�1.S/ where S is a 2–orbifold, ie it has one of the following presentations:

ha1; : : : ; ag; b1; : : : ; bg;p1; : : : ;pm; s1; : : : ; sn j s
ki

i D 1;…kpk…isi…j Œaj ; bj �D 1i;

ha1; : : : ; ag;p1; : : : ;pm; s1; : : : ; sn j s
ki

i D 1;…kpk…isi…j a2
j D 1i:

We require S to be different from the disk, the cylinder, and a disk with one
cone-point.

(2) The edges from v are in correspondence with the components of @S . Moreover,
if these edges are e1; : : : ; em , then we have @ei

W Gei
! hpii (where pi is the

boundary loop corresponding to ei ), and Gei
is nontrivial.

Definition 2.8 Let G be a group. Then P � G is a QH subgroup if there is a
Z–splitting �P of G with P occurring as a QH vertex group.

Our definition of QH vertex differs slightly from the one originally used by Rips and
Sela in [14], in which they require the maps @ei

W Gei
!hpii to be onto. This does not

change the QH subgroups, since the additional condition on the QH vertex can be met
by performing elementary expansions on �P .
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Definition 2.9 We say that a Z–splitting is reduced if it does not admit elementary
collapses, except possibly on the edges connecting to QH vertices.

Let �1 , �2 be one-edged Z–splittings of G , with edge groups C1 , C2 respectively.
That is, G is written as an amalgamation or HNN extension over Ci . We say that �1

is elliptic in �2 if the subgroup C1 acts elliptically in T�2
, the Bass–Serre tree of �2 .

Otherwise, we say that �1 is hyperbolic in �2 .

Proposition 2.10 [14, Theorem 2.1] Let G be freely indecomposable, and �1 , �2

be one-edged Z–splittings of G . Then �1 is elliptic in �2 if and only if �2 is elliptic
in �1 .

2.4 The Rips–Sela JSJ decomposition

We will now state the fundamental theorem of Rips and Sela, which proves the existence
of certain Z–splittings that will be called JSJ decompositions. It applies to one-ended
groups, that are defined as follows.

Definition 2.11 A space X is one-ended if there is an increasing sequence of compact
sets Kn , such that X D

S
n Kn and X �Kn is connected for all n.

Definition 2.12 A group G is one-ended if one/all of its Cayley graphs is/are one-
ended. Equivalently, for G finitely generated, if it acts freely and cocompactly on a
one-ended space.

Consider a class of groups A, such as trivial, finite or cyclic groups. We say that a
group G splits over A if it admits a nontrivial graph of groups decomposition with
edge groups in A. For example, G splits over infinite cyclic groups if it admits a
nontrivial Z–splitting.

According to a theorem of Stallings [18], a finitely generated infinite group is one-ended
if and only if it does not split over finite groups. Thus it makes sense to study the
splittings over infinite cyclic groups, Z–splittings, of such a group as a next step.

Definition 2.13 A simple closed curve in a 2–orbifold S is weakly essential if it is
not nullhomotopic, nor boundary parallel, nor the core of a Möbius band embedded
in S , and does not circle around a branching point.

Algebraic & Geometric Topology, Volume 12 (2012)



2034 Juan Alonso

Theorem 2.14 (Rips–Sela) Let G be a finitely presented one-ended group. Then
there is a reduced, unfolded Z–splitting � of G satisfying the following conditions:

(1) (a) A vertex group of � can either be a QH vertex group, or be elliptic in every
Z–splitting of G .

(b) Edge groups are elliptic in every Z–splitting of G .
(c) Every maximal QH subgroup of G is conjugate to a QH vertex group of � .

(2) Let �1 be a one-edged Z–splitting of G , with edge group C . Suppose that �1

is hyperbolic in some other one-edged Z–splitting. Then there is a QH vertex
group Gv D �1.S/ of � , and a weakly essential simple closed curve  � S

such that C is conjugate to the group generated by Œ � 2Gv �G .

(3) If �1 is a one-edged Z–splitting of G that is elliptic in every other one-edged
Z–splitting, then there is a morphism T� ! T�1

.

(4) Let �1 be any Z–splitting of G . Then there is a Z–splitting y� , which is a
refinement of � obtained by splitting some QH vertex groups along weakly
essential simple closed curves, and a morphism Ty� ! T�1

.

A splitting � as in the theorem is called a cyclic JSJ decomposition, or Rips–Sela JSJ
decomposition of G . Here we will consider only this version of JSJ decomposition.
Due to our definition of QH vertices (Definition 2.7), our JSJ decompositions may
differ a bit from the ones in [14], but they agree after elementary expansions at the QH
vertices.

Condition (4) in the theorem is called universality. It says how every Z–splitting of a
group G can be obtained from a JSJ decomposition. Also, it is because of universality
that the splitting in the theorem verifies the general definition of a JSJ decomposition
(over infinite cyclic groups), given by Guirardel and Levitt in [10; 8]. Although we
will not need that definition here.

There is some redundancy in the conditions for a Rips–Sela JSJ decomposition, as the
following proposition shows.

Proposition 2.15 Let G be a one-ended group. Suppose � is a reduced Z–splitting
of G satisfying universality, as in (4) of Theorem 2.14. Then it also satisfies conditions
(1), (2) and (3) of Theorem 2.14.

Proof For (a) and (b) of condition (1), let �1 be any Z–splitting of G . Let y� and
f W Ty� ! T�1

be the refinement and the morphism given by universality. If Gv is a
vertex group of � that is not QH, then it is still elliptic in y� , and so it is elliptic in �1 .
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This proves (a). The edge groups of � are also elliptic in y� , and so they are elliptic
in �1 . This gives (b).

Now we prove (2). Let �1 be a one-edged Z–splitting of G that is hyperbolic in
some other Z–splitting. Let y� be the refinement of � given by condition (4), and
f W Ty�! T�1

the corresponding morphism. Take e an edge in T�1
, let C D StabG.e/

be its stabilizer subgroup and K D f �1.e/ be its preimage under f . There are two
kinds of edges in y� : those that were already present in � , and those that were obtained
by cutting the surfaces of QH vertices along simple closed curves. Since f .K/D e , K

is not a single point and it meets the interior of an edge e1 . Then StabG.e1/ � C .
Moreover, since C is cyclic, the generator of StabG.e1/ is a power of the one of C .
If e1 was of the first kind, then C would be elliptic in every Z–splitting of G , which
is a contradiction against our assumption on �1 . Thus e1 is of the second kind, and K

does not meet the interior of any edges of the first kind. Let KC be the union of the
edges e0 of Ty� so that StabG.e

0/ intersects C in a nontrivial subgroup. Then KC

is connected and contains K . (If C D hci, then KC D
S

n�1 Fix.cn/, which is an
increasing union of connected sets). The same reasoning used for e1 shows that KC

does not contain edges of the first kind. (Recall that an element g is elliptic if and only
if gn is elliptic for any n¤ 0).

Now let v be the QH vertex of � that corresponds to e1 . Let �0 be the splitting of
Gv D �1.S/ obtained by cutting S along the same simple closed curves as in y� . Then
there is a copy of T�0

embedded in Ty� containing e1 . Notice if gW Ty� ! T� is the
map that collapses all edges of the second kind, then g collapses T�0

to a vertex w
in the orbit of v . So StabG.T�0

/ D StabG.w/ and it is conjugate to Gv D �1.S/.
Observe KC must be contained in T�0

, since it cannot cross edges of the first kind.
In particular, any fixed point of C lies in T�0

, and so it is mapped to w by g . Thus
C � StabG.w/ and is conjugate to Gv . And C D StabG.e1/, since a simple closed
curve represents a primitive element of �1.S/. This proves (2).

Now we will prove (3). The setup is the same as in the previous case, but this time �1

is elliptic in every Z–splitting of G . This time, K cannot meet the interior of any edge
of the second kind. To see that, suppose K intersects the interior of an edge e1 of the
second kind. Let Gv D �1.S/ be the QH vertex group of � corresponding to e1 , and
let ˛ be the simple closed curve in S such that StabG.e1/ conjugates to hŒ˛�i. Since K

meets the interior of e1 , we have StabG.e1/�C . Thus, if we write C Dhci, we get cn

is conjugate to Œ˛� for some n. Let ˇ be a simple closed curve in S that intersects ˛
nontrivially and minimally. Then consider the one-edged splitting �2 of G obtained
from Œˇ�. Since Œ˛� acts hyperbolically on T�2

, so does c . Thus �1 is hyperbolic
in �2 (and viceversa, by Proposition 2.10), which goes against our assumption. So K

does not intersect any edges of the second kind. This was shown for K D f �1.e/
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where e was any edge in T�1
, so all the edges of the second kind are collapsed to

points under f . Let gW Ty� ! T� be the map obtained by collapsing the edges of the
second kind. Then f factors through g , and so we obtain the morphism in (3).

Finally, for (a), let H be a QH subgroup of G . Let �1 be a Z–splitting realizing it as a
QH vertex. Write H D �1.S/ as given by �1 . Again, condition (4) gives a morphism
f W Ty� ! T�1

for some refinement y� of � as before.

If c is the class of a boundary component of S , then c acts elliptically on Ty� . To
see that, note that some power of c fixes an edge e of T�1

(the incident edge at v
corresponding to this boundary curve), and f �1.e/ meets the interior of some edge e1 .
We obtain that StabG.e1/� StabG.e/� hci, thus e1 is fixed by a power of c .

Consider the action of H on Ty� by restriction, and let yT be a minimal subtree for
this action. Then we have the boundary classes of S are elliptic in yT , since they are
elliptic in Ty� .

Consider the decomposition �H of H induced by yT . If e is an edge in yT , then we
have StabH .e/ � StabG.e/, so the edge groups of �H are either trivial or infinite
cyclic. Since the boundary classes of S are elliptic in yT , then �H can be extended
to �2 , a splitting of G obtained by refining �1 . And since G is one-ended, all edge
groups of �2 are infinite cyclic. Hence all edge groups of �H are infinite cyclic.

Using Corollary 5.3, �H is obtained by splitting S along some disjoint, weakly
essential simple closed curves. Now, if e is an edge in yT , then StabH .e/ is generated
by a conjugate of one of these curves. So StabH .e/D StabG.e/ since the generator of
StabH .e/ is primitive. And it is also hyperbolic in some Z–splitting of G , so e is of
the second kind.

We conclude as in the proof of (2), obtaining that H is conjugate into Gv , for v a QH
vertex of � .

Corollary 2.16 Let G be a one-ended group. If � is a reduced, unfolded Z–splitting
of G that verifies universality, as in Theorem 2.14(4), then it is a Rips–Sela JSJ
decomposition for G .

3 Generalized Baumslag–Solitar groups

Here we discuss the results in Forester’s paper [6] that are relevant to this paper.

Definition 3.1 A Generalized Baumslag–Solitar (GBS) graph is a graph of groups in
which all vertex and edge groups are infinite cyclic.
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Note this is a special case of Z–splitting. A GBS group is a group obtained as a
fundamental group of a GBS graph, and a GBS tree is the associated Bass–Serre tree.

Lemma 3.2 [6, Lemma 2.6] Let � be a GBS graph, G D �1.�/. Assume G © Z,
and let T D T� be the Bass–Serre tree of � . Then:

(1) G is not free;

(2) G acts freely on T �R;

(3) G is torsion-free, one-ended and has cohomological dimension 2;

(4) T contains an invariant line if and only if G Š ZÌZ (ie either Z2 or the Klein
bottle group).

The following is the most general statement about JSJ decompositions of GBS groups.

Theorem 3.3 [6, Theorem 2.15] Let � be a GBS graph, G D �1.�/. Suppose � is
reduced, unfolded, and T� is not a point or a line (G © Z;ZÌZ). Then � is a JSJ
decomposition of G .

In general, it is hard to check wether a splitting is unfolded or not. The following result
proves unfoldedness for most GBS graphs.

Proposition 3.4 [6, Proposition 2.17] Let � be a GBS graph. If every edge group is
a proper subgroup of its neighboring vertex groups, then � is unfolded.

The combination the two last statements permits us to recognize most GBS graphs as
JSJ decompositions of their fundamental groups.

4 Criterion for unfoldedness

Here we give a criterion for the unfoldedness of a general Z–splitting. It is a general-
ization of Proposition 3.4, due to Forester, and the proof follows the same lines.

Lemma 4.1 Let G be a freely indecomposable group. Suppose that � is a Z–splitting
of G , e is an edge of T� with endpoints v0 , v1 and H �StabG.v1/ contains StabG.e/

properly. If �1 is a nontrivial unfolding of �e at the endpoint v0 of e , then H cannot
be elliptic in �1 .

In the statement of the lemma, we abused notation and still called e , v0 and v1 their
respective projections in � and �e . Recall that �e is the graph obtained from � by
collapsing all edges but the projection of e .
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Proof Let X be the Bass–Serre tree corresponding to �e and Y the one corresponding
to �1 . Notice X can be obtained from T� by collapsing the components of T� �Ge .

Let qW T�!X be the quotient map, and f W Y !X be the folding map. Let e0 be an
edge of Y , with endpoints v0

0
, v0

1
, such that f .e0/D q.e/ and the fold occurs at v0

0
.

Let g be the generator of StabG.e/ and gm the one of StabG.e
0/. We know m¤ 0

since G is freely indecomposable, and so jmj> 1 since the fold is nontrivial (StabG.e
0/

is strictly contained in StabG.e/D StabG.q.e//). We may assume m> 1, the case for
m< �1 being analogous.

Define Y0 , gkY1 for kD0; : : : ;m�1 to be the components of Y minus the edges gke0 ,
containing v0

0
, gkv0

1
respectively. Also let X0 , X1 be the components of X � q.e/

containing q.v0/, q.v1/, and T0 , T1 the ones of T� � e containing v0 , v1 . Observe
that f .Y0/DX0 , f .gkY1/DX1 , q.T0/DX0 and q.T1/DX1 .

Seeking a proof by contradiction, suppose H is elliptic in �1 . Thus H fixes a point x0

in Y . Since g 2H and g fixes no point of gkY1 for any k , we get x0 must belong
to Y0 . Then H fixes the point x D f .x0/ in X0 and stabilizes the subtree q�1.x/

in T0 .

Now, e separates q�1.x/ from v1 , and H stabilizes both. So H must also stabilize e ,
which is a contradiction, since H contained StabG.e/ strictly.

We can obtain Proposition 3.4 from this lemma as follows.

Proof of Proposition 3.4 Suppose that � is a GBS graph in the conditions of
Proposition 3.4. Notice that if � is not a single vertex, then G D �1.�/© Z and so
it is one-ended. If � is not unfolded, then there is an edge e of � and a nontrivial
unfolding �1 of �e . In the Bass–Serre tree T� , let v0 be the endpoint of e at which the
unfolding occurs, and v1 be the other endpoint. Let e0 be the edge of T�1

with stabilizer
contained in StabG.e/. Put H D StabG.v1/. Then StabG.e

0/� StabG.e/�H , where
both inclusions are strict (the first one because the unfolding is nontrivial, the second
one by the hypothesis of Proposition 3.4). These three subgroups are infinite cyclic,
and StabG.e

0/ is elliptic in �1 , so H must also be elliptic in �1 (if gn acts elliptically
on a tree, so acts g ). This contradicts Lemma 4.1.

The following is the main result of this section. It gives an unfoldedness criterion for
universal Z–splittings.

Theorem 4.2 Let G be a one-ended group. Suppose � is a reduced Z–splitting of G

satisfying universality. If every edge group is a proper subgroup of its neighboring
vertex groups, then it is unfolded, and is therefore a cyclic JSJ decomposition for G .
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Proof Again, suppose that � is not unfolded. Let e be an edge of � and �1 a
nontrivial unfolding of �e . Let v0 and v1 be the endpoints of e , when considered
in T� , and assume the unfolding occurs at v0 .

By the universality of � , it has a refinement y� , obtained as in Theorem 2.14(4), that
admits a morphism Ty� ! T�1

. Let w0 , w1 be the vertices of e as an edge of Ty� ,
that correspond to v0 , v1 respectively. Put H D StabG.w1/.

Since H is elliptic in y� and there is a morphism Ty� ! T�1
, then H must also be

elliptic in �1 .

On the other hand, H � StabG.v1/ and it contains StabG.e/. If v1 is not a QH vertex,
then it does not get split in the refinement y� . So H D StabG.v1/, which contains
StabG.e/ strictly by hypothesis. If v1 is a QH vertex with Gv1

D �1.S/, then H is
conjugate to �1.S0/, where S0 is a component of S cut by some weakly essential
simple closed curves. Thus H is not cyclic, and so must contain StabG.e/ strictly.

By the lemma, H cannot be elliptic in �1 , which is a contradiction.

5 Adding surface vertices to universal graphs

In this section we deduce the universality of a Z–splitting, given the universality of
certain subgraphs of it. We start with some preliminaries.

Definition 5.1 Let � be a Z–splitting of a finitely generated group and e an edge
in � . Let vC and v� be the endpoints of e , and a be a generator of Ge . Define mCe
as the supremum of the m such that @Ce .a/D bm for some b 2 GvC . Define m�e in
the same manner.

The number mCe will be called the label of e at the endpoint vC . (With some abuse
of notation, for when e is a loop, it gets two labels, one for each boundary map). We
remark that it is possible to have mCe D C1, although this will not happen in the
cases that concern us. If vC is a QH vertex with GvC D �1.S/, then the element b

in the definition is the class of the boundary component of S corresponding to @Ce .
In particular mCe is finite. Also, in the case when GvC is cyclic, the element b is a
generator of GvC and the label is also finite.

The following theorem, due to Zieschang, will be crucial in the proof of Theorem 5.5.
The proof is referred, and the corollary results from iterated use of the theorem.
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Theorem 5.2 [20, Theorem 4.12.1, page 140] Let S be a 2–orbifold with bound-
ary components 1; : : : ; n . Let � be a one-edged Z–splitting of �1.S/ in which
Œ1�; : : : ; Œn� are elliptic. Then there is a weakly essential simple closed curve c in S

such that � is obtained by cutting S along c (via Van-Kampen’s theorem).

Corollary 5.3 Let S be a 2–orbifold with boundary components 1; : : : ; n . If � is a
general Z–splitting in which Œ1�; : : : ; Œn� are elliptic, then � is obtained by cutting S

along c1; : : : ; cm , disjoint weakly essential simple closed curves.

We also need the following simple lemma about coverings of surfaces and 2–orbifolds.

Lemma 5.4 Let S be a connected 2–orbifold with boundary that is neither a disk nor
a cylinder with cone-points. Then there is a 4–sheeted cover yS of S , such that every
boundary component  of S is covered by two boundary components y0 , y1 of yS ,
and each one is a double cover of  .

Proof Assume S is an orientable surface, the general case is analogous. Write

�1.S/D ha1; : : : ; ag; b1; : : : ; bg;p1; : : : ;pm j…kpk…j Œaj ; bj �D 1i:

Observe if the genus is positive, then the kernel of the map �1.S/! Z2 sending a1

to 1 and all other generators to 0 defines a double cover S0 of S where each boundary
component of S is covered by two homeomorphic copies of itself. On the other hand,
when m is even, the map �1.S/ ! Z2 sending all pi to 1 and aj , bj to 0 is a
well defined homomorphism, and its kernel gives a double cover S1 of S in which
each boundary component of S is covered twice by a single boundary curve of S1 .
Notice S1 always has positive genus, by the Euler characteristic computation for a
finite cover.

Combining these covers produces the desired 4–sheeted cover in the cases when m is
even, or m is odd but S has positive genus. There remains the case of a sphere with
an odd number of punctures. In this case, we have

�1.S/D hp1; : : : ;pm j p1 � � �pm D 1i:

Consider the map �1.S/!Z2�Z2 sending p1; : : : ;pm�2 to .1; 0/, pm�1 to .0; 1/
and pm to .1; 1/. This map is a well defined homomorphism and gives the desired
covering.

The following result is the main point of this section. Under some conditions, it allows
us to recognize the universality of a Z–splitting built from the union of smaller universal
graphs and some extra QH vertices.
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Theorem 5.5 Let � be a Z–splitting of the one-ended group G . Let V Dfv1; : : : ; vmg

be a subset of the QH vertices of � , such that their corresponding 2–orbifolds are
not disks nor cylinders with cone-points. Let �1; : : : ; �k be the components of the
subgraph spanned by the vertices not in V , and put Gi D �1.�i/. Assume

(1) If e is an edge with endpoints in V , then mCe ;m
�
e > 1.

(2) If the vertices vj 2 V and w 2 �i are connected by an edge, then w is not a QH
vertex of �i .

(3) Each Gi is one-ended, and each �i satisfies universality as a Z–splitting of Gi .

Then � satisfies universality.

Proof First we observe that if w is a vertex of �i , then it is QH in � if and only
if it is QH in �i . If w is QH in �i , then it has no more incident edges in � by (2),
and so it is also QH in � . And if w is QH in � , then it cannot be connected by an
edge to vj 2 V , for that would cause Gi to be freely decomposable. (To see that, let
p1; : : : ;pn be the boundary classes in Gw , and suppose that the edge assigned to p1 is
not in �i . Observe that p2; : : : ;pn are part of a free basis for Gw . This induces a free
splitting of Gw that allows us to refine �i to a graph with some trivial edge groups).

Let � 0 be a Z–splitting of G , and T 0 D T� 0 its Bass–Serre tree. Consider the action
of Gi on T 0 by restriction of the action of G . Passing to a minimal invariant subtree, Gi

acts cocompactly and with cyclic edge stabilizers (since Gi is one-ended). So this
action gives rise to a Z–splitting of Gi . By universality of �i , there is a refinement y�i

and a morphism Ty�i
! T 0 so that y�i is obtained from �i by splitting QH vertex

groups along weakly essential simple closed curves. Then all the non-QH vertex groups,
and all the edge groups of �i are elliptic in � 0 .

This proves that all the non-QH vertex groups of � are elliptic in � 0 , since V consists
only of QH vertices.

It also implies if an edge e has an endpoint in some �i , then Ge is elliptic in � 0 : If e

is contained in �i we have already shown it. If e has endpoints vj 2 V and w 2 �i ,
then w is non-QH by (2), and so Gw is elliptic in � 0 . Since Ge �Gw , then Ge must
also be elliptic in � 0 .

Claim All edge groups of � are elliptic in � 0 .

Proof of the claim If e has an endpoint in some �i , we have already proved it.

Now let e be an edge with endpoints v˙ 2 V (which can be the same vertex).
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Let ˙ be the boundary components of the orbifolds S˙ corresponding to Gv˙ , so
that @˙e W Ge! hŒ

˙�i. Let He D hŒ
C�; Œ��i �G be the subgroup generated by the

classes of ˙ . Note that He is a GBS group.

If either mCe > 2 or m�e > 2, then the splitting of He with edge e satisfies the
conditions in Theorem 3.3, that are direct consequences of those over m˙e . So it is a
JSJ decomposition of He , and so Ge is elliptic in T 0 (as we have done for the �i ).

If mCe Dm�e D 2, we proceed by contradiction. Suppose Ge is hyperbolic in � 0 , and
let c be the generator of Ge . Take an edge e0 of � 0 that has a lift to T 0 lying on the
axis of c . Then � 00 D � 0e0 is a one-edged Z–splitting of G in which c is hyperbolic.
Let T 00 D T� 00 be its Bass–Serre tree, and let a be the generator of the edge group
of � 00 .

On one hand, we consider the subgroup He . Note that He D �1.K/ where K is a
Klein bottle. (K is obtained by gluing two Möbius bands by their boundaries. In this
case C and � are the core circles of the Möbius bands, and c is their common
boundary circle). The action of He on T 00 by restriction gives rise to a Z–splitting
of He (for He is freely indecomposable). Note that c is hyperbolic in it, since it is
so in T 00 . So this Z–splitting is nontrivial, and we can take b 2He a generator of an
edge group. Now observe that the edge groups of this decomposition of He are all
conjugate in G into hai. This is so because the only elements that fix an edge of T 00

are the conjugates of a power of a. So we obtain an element b 2He , b ¤ 1, which is
conjugate to a power of a.

On the other hand, we consider the subgroup M constructed as follows.

Take the graph formed by the vertices in V and the edges of � with endpoints in V

and both labels equal to 2. Let � be the component of this graph that contains e . For
each vertex vj 2 � write Gvj

D �1.Sj /, where Sj is the orbifold that corresponds
to vj as a QH vertex of � . Let ySj be the 4–sheeted cover of Sj given by Lemma 5.4.
These covers can be extended to a 4–sheeted cover of the whole graph �, that can
be constructed as follows. Define the graph y� to have the same vertices as �, with
�1. ySj / < �1.Sj / as vertex group at vj . And for each edge f of �, we put in four
edges f0 , f1 , f2 and f3 in y�, with infinite cyclic edge groups. The boundary maps
are described as follows: Suppose vj is an endpoint of f and ı is the boundary
component of Sj corresponding to f . Then let ı0 and ı1 be the boundary components
of ySj that cover ı and assign f0 , f2 to ı0 and f1 , f3 to ı1 . So the generator of Gf0

maps to Œı0� and similarly for the others. This is a 4–sheeted cover, in the sense that
�1.y�/<�1.�/ with index 4. (This is best seen by building a presentation 2–complex
of �1.�/, using Sj for the vertex vj , and tubes for the edges. Then extend the covers
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ySj of Sj to covers of the tubes.) Note that the labels of the edges of y� are all 1. The
local picture at each edge is as in the example on Figure 1.

2 2

1

1

1

1

1

1

1

1

S1 S2
yS1

yS2(a) (b)

Figure 1: Example of the cover y�
(a) Original graph � , with two QH vertices and an edge with m˙e D 2

(b) Its cover y�

Now let M be the subgroup of �1.y�/ generated only by the vertex groups and the
stable letters of the f0 and f1 edges. This is equivalent to saying that M is the
fundamental group of the graph resulting from y� by erasing all f2 and f3 edges
(and keeping the f0 and f1 edges). So M D �1.S/, where S is the orbifold that
results from gluing the ySj along their boundary curves, so that two boundary curves
are identified if they are connected by an edge of y�. Note that in this subgroup, c is
the class of one of the common boundaries of ySC and yS� that corresponds to a lift of
the edge e . (Say, to e0 ). Lets call this curve ˇ , so that Œˇ�D c .

If p is a boundary curve of S , then some power of Œp� is in an edge group Gf of � ,
so that f is not in �. (All boundaries corresponding to edges in � were glued).
Since f is not in �, but connects to a vertex in �, we know that f is one of the
edges for which we have already proved that Gf is elliptic in � 0 . Thus, the classes of
the boundary curves of S are elliptic in � 0 (and so in � 00 ).

Again, restrict to M the action on T 00 . This gives a Z–splitting of M , in which c

is hyperbolic and all the boundary classes of S are elliptic. By Corollary 5.3, this
decomposition of M is obtained by cutting S along disjoint, weakly essential simple
closed curves. Let ˛ be one of these curves, so that it intersects ˇ essentially (ie the
intersection cannot be removed by homotopy). There must be such ˛ , since c D Œˇ� is
hyperbolic in this decomposition.

Now, since Œ˛� is a generator of an edge group in the Z–splitting of M induced by
T 00 , then Œ˛� must be conjugate in G to a power of a. This is by the same argument
we used for the element b .

Since both Œ˛� and b are conjugate to a power of a, then they have the same dynamics
in every action of G on a tree. That is to say, in a given G–tree, they are either both
elliptic or both hyperbolic, depending on the behaviour of a.
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For the contradiction, consider �� , the one-edged splitting of G over Œ��. This
splitting is obtained from �e by folding at vC . In the case of an amalgamation, �e

corresponds to A�hciB and �� to A�hŒ��i.He�hciB/. The case of an HNN extension
is similar.

In both cases He is contained in a vertex group, so b must be elliptic in �� . We will
show Œ˛� is hyperbolic in �� . This will give the contradiction, thus proving the claim.

Consider the action of M on T�� by restriction. It gives a splitting of M D �1.S/ in
which the boundary classes are elliptic, so we may use Corollary 5.3 again. This time
c D Œˇ� stabilizes an edge on T�� , thus ˇ is one of the curves that cut S to form this
decomposition. Since ˛ intersects ˇ essentially, then Œ˛� must be hyperbolic in this
splitting of M , and therefore in �� . ˙

Thus far we know that all non-QH vertex groups and all edge groups of � are elliptic
in � 0 . For each QH vertex v of � , write Gv D �1.Sv/ where Sv is the corresponding
orbifold. Then Gv acts on T 0 by restriction. Since edge groups of � are elliptic in � 0 ,
it follows that the boundary classes of Sv act elliptically on T 0 . Applying Corollary 5.3,
the Z–splitting of Gv induced by its action on T 0 is obtained by cutting Sv along some
disjoint, weakly essential simple closed curves. The vertex groups of this decomposition
correspond to the pieces of Sv after the cutting, and are elliptic in � 0 . Also note that
each boundary curve of Sv lies in exactly one of these pieces. So the splitting of Gv
is compatible with � , giving rise to a refinement of � .

Let y� be the refinement of � that results from splitting all the QH vertex groups Gv
as above. Then all vertex and edge groups of y� are elliptic on � 0 . Equivalently, there
is a morphism Ty� ! T 0 . Since � 0 was an arbitrary Z–splitting of G , this concludes
the proof.

6 Quadratic Baumslag–Solitar graphs

Now we consider graphs of groups � with edge groups infinite cyclic, and vertex
groups either QH surface groups or infinite cyclic. We will call these graphs quadratic
Baumslag–Solitar (QBS) graphs. For simplicity, we restrict the QH vertex groups to
be surface groups instead of general 2–orbifold groups. Notice that in a GBS graph
all labels are finite, and easily computed from the boundary maps as indicated in the
remarks after Definition 5.1.

A group G will be called a QBS group if it can be written as �1.�/, where � is a
QBS graph.
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If � is a QBS graph, let �1; : : : ; �k be the components of the subgraph spanned by the
non-QH vertices. That is, the components that are left after removing all QH vertices
and the edges connecting to them. Note that each �i is then a GBS graph. The �i will
be called the GBS components of � .

A GBS component of � will be called a leaf if it is reduced to a single vertex w , and
is attached to only one edge e with Gw DGe .

Proposition 6.1 Let � be a reduced QBS graph with no leaves, and G D �1.�/.
Assume G © Z. Then G is one ended.

This is a corollary of [19, Theorem 18].

We now turn to the main theorem of the paper. It allows us to recognize the defining
graph of a QBS group as a Rips–Sela JSJ decomposition, in most cases.

Theorem 1.1 Let � be a QBS graph, G D �1.�/. Suppose that � is reduced, has no
leaves, and satisfies the following conditions:

(1) Each edge e of � has labels mCe ;m
�
e > 1.

(2) Each GBS component �i of � is reduced, and T�i
is not a point or a line.

Then � is a Rips–Sela JSJ decomposition for G .

Proof Let V be the set of QH vertices of � . The components of � minus V are
the GBS components �i of � . By condition (1) and Proposition 3.4, each �i is
unfolded. This, together with condition (2), allows us to apply Theorem 3.3 (Forester’s
result). We conclude each �i is a JSJ decomposition of Gi D �1.�i/. By Lemma 3.2,
the Gi are one-ended. By these facts and condition (1), we have verified the hy-
potheses of Theorem 5.5 for � and V . So � satisfies universality. Now we can use
Theorem 4.2 to conclude that � is unfolded. Therefore � is a JSJ decomposition of G ,
by Corollary 2.16.

When some edge label equals 1, then � may fail to be a JSJ decomposition. This was
already true for GBS graphs. In Figure 2 there is an example, in which the edge e with
a label equal to 1 is not in a GBS component. However, if in the same figure we change
the label 1 for some m�e > 1, and make k D 1 instead, we do get a JSJ decomposition
(by Theorem 5.5 and then Theorem 4.2), which is not covered by Theorem 1.1.
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Figure 2: (a) A QBS graph that satisfies universality (for m; n > 1), but
with m�e D 1 . It admits an unfolding at the surface vertex, as shown in (b)
and (c).
(b) The one-edged splitting corresponding to the edge e of the graph in (a)
(c) An unfolding of the splitting in (b)
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