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A rank inequality for the knot Floer homology of double
branched covers

KRISTEN HENDRICKS

Given a knot K in S3 , let †.K/ be the double branched cover of S3 over K . We
show there is a spectral sequence whose E1 page is . bHFK .†.K/;K/˝V ˝.n�1//˝

Z2..q// , for V a Z2 –vector space of dimension two, and whose E1 page is isomor-
phic to . bHFK .S3;K/˝V ˝.n�1//˝Z2..q// , as Z2..q//–modules. As a consequence,
we deduce a rank inequality between the knot Floer homologies bHFK .†.K/;K/
and bHFK .S3;K/ .

53D40, 57M25, 57M27, 57R58

1 Introduction

Heegaard Floer knot homology is a powerful invariant of a knot K in a three-manifold
Y introduced in 2003 by Ozsváth and Szabó [20] and independently by Rasmussen [23].
The theory associates to .Y;K/ a bigraded abelian group bHFK .Y;K/ which arises
as the homology of the Floer chain complex of two Lagrangian tori in the symmetric
product of a punctured Heegaard surface for .Y;K/. Amongst other properties, for
a knot K in the three-sphere this theory detects the genus of K (see Ozsváth and
Szabó [19]) and whether K is fibred (see Ghiggini [6] and Ni [16]); its graded Euler
characteristic is the Alexander polynomial of K [20].

If K is a knot in S3 , then we may construct the double branched cover †.K/ of
S3 over K . The preimage of K under the branched cover map � W †.K/! S3 is a
nullhomologous knot in †.K/, also called K . The relationship between the knot Floer
homology groups bHFK .S3;K/ and bHFK .†.K/;K/ has been studied by Grigsby [7]
and Levine [10; 11].

We prove the following theorem, conjectured by Levine [11, Conjecture 4.5] after being
proved in the case of two-bridge knots by Grigsby [7, Theorem 4.3]. Let n be the number
of basepoints on some Heegaard diagram D for .Y;K/ whose underlying surface is
S2 . Let zD be a double branched cover of D which is an n–pointed Heegaard diagram
for .†.K/;K/. (We will introduce this construction more explicitly in Section 3). We
will work with a variant of knot Floer homology, eHFK . zD/, which is dependent on n

and equal to bHFK .Y;K/˝V ˝.n�1/ , for V a dimension 2 vector space over F2 .
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Theorem 1.1 There is a spectral sequence whose E1 page is

. bHFK .†.K/;K/˝V ˝.n�1//˝Z2..q//

and whose E1 page is isomorphic to

. bHFK .S3;K/˝V ˝.n�1//˝Z2..q//

as Z2..q//–modules.

Here Z2..q// denotes the ring Z2JqKŒq�1� of Laurent series in the variable q . In
particular, we have the following rank inequality.

Corollary 1.2 Given K a knot in S3 and †.K/ the double branched cover of .S3;K/

then the following rank inequality holds:

rk. bHFK.S3;K//� rk. bHFK.†.K/;K//:

Knot Floer homology admits two gradings, the Maslov or homological grading and the
Alexander grading. We will see that the spectral sequence of Theorem 1.1 is generated
by a double complex whose two differentials each preserve the Alexander grading
on the basepoint-dependent invariant eHFK .D/, inducing a splitting of the spectral
sequence which the isomorphism of Theorem 1.1 fails to disrupt. Knot Floer homology
also splits along the spinc structures s of Y , such that we have

bHFK .Y;K/D˚s bHFK .Y;K; s/:

The extra factors of V in eHFK .D/ respect this splitting, such that

eHFK .D; s/D bHFK .Y;K; s/˝V ˝.n�1/:

The differentials on the spectral sequence of Corollary 1.2 interchange pairs of conjugate
spinc structures, preserving a single canonical spinc structure s0 on †.K/, which is
moreover the only spinc structure to survive to the E1 page of the spectral sequence.
Therefore we can sharpen Corollary 1.2 to the following.

Corollary 1.3 Given a knot K in S3 and s0 the canonical spinc structure on its
double branched cover †.K/, then we have the rank inequality

rk
� bHFK .†.K/;K; s0/

�
� rk

� bHFK .S3;K/
�
:

Corollary 1.4 Given a knot K in S3 and s0 the canonical spinc structure on its
double branched cover †.K/, then we have the rank inequality

rk
� eHFK . zD; s0; i/

�
� rk

� eHFK .D; i/
�
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for i any Alexander grading. In particular, for g the top Alexander grading such that
bHFK .†.K/;K; s0; i/ is nonzero, this is an inequality of the hat invariant:

rk
� bHFK .†.K/;K; s0;g/

�
� rk

� bHFK .S3;K;g/
�
:

The key technical tool in these proofs is a recent result of Seidel and Smith concerning
equivariant Floer cohomology. Let M be an exact symplectic manifold, convex at
infinity, containing exact Lagrangians L0 and L1 and equipped with an involution
� preserving .M;L0;L1/. Let .M inv;Linv

0
;Linv

1
/ be the submanifolds of each space

fixed by � . Then under certain stringent conditions on the normal bundle N.M inv/

of M inv in M , there is a rank inequality between the Floer cohomology HF.L0;L1/

of the two Lagrangians L0 and L1 in M and the Floer cohomology HF.Linv
0
;Linv

1
/

of Linv
0

and Linv
1

in M inv . More precisely, they consider the normal bundle N.M inv/

to M inv in M and its pullback ‡.M inv/ to M inv � Œ0; 1�. We ask that M satisfy
a K–theoretic condition called stable normal triviality relative to two Lagrangian
subbundles over Linv

0
� f0g and Linv

1
� f1g. Seidel and Smith prove the following.

Theorem 1.5 (Seidel and Smith [26, Section 3f]) If ‡.M inv/ carries a stable normal
trivialization, there is a spectral sequence whose E1 page is HF.L0;L1/˝Z2..q//

and whose E1 page is isomorphic to HF.Linv
0
;Linv

1
/˝Z2..q// as Z2..q// modules.

In particular, there is the following useful corollary.

Corollary 1.6 (Seidel and Smith [26, Theorem 1]) If ‡.M inv/ carries a stable
normal trivialization, the Floer theoretic version of the Smith inequality holds:

rk.HF.L0;L1//� rk.HF.Linv
0 ;Linv

1 //:

This paper is organized as follows: In Section 2 we review the set up for Floer
cohomology as used by Seidel and Smith and state the results that imply Theorem 1.5. In
Section 3 we review the basics of Heegaard Floer knot homology, discuss previous work
concerning the knot Floer homology of branched double covers, and state Theorem 3.11,
which states that a manifold used to compute knot Floer homology carries a stable
normal trivialization, and, together with some symplectic structural data, implies
Theorem 1.1. We also discuss how Corollaries 1.3 and 1.4 follow from Theorem 1.1. In
Section 4 we show that the spaces involved in the computation of knot Floer homology
satisfy the basic symplectic structural requirements of Seidel and Smith’s theory. In
Section 5 we further examine the homotopy type and cohomology of these spaces,
producing results we will need to prove Theorem 3.11. In Section 6 we review some
important concepts from K–theory necessary to the proof of Theorem 3.11, and in
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Section 7 we finally give a proof of this theorem, completing the proof of Theorem 1.1.
We afterward summarize the deduction of Corollaries 1.2, 1.3, and 1.4 from Theorem 1.1,
already touched on earlier, for the reader’s convenience. We finish with some optimistic
remarks concerning possible future work. Section 8 is an appendix containing a proof
on charts that an important inclusion map of symmetric products, (2), is holomorphic.
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2 Spectral sequences for Floer cohomology

Floer cohomology is an invariant for Lagrangian submanifolds in a symplectic manifold
introduced by Floer [3; 4; 5]. Many versions of the theory exist; in this section we
briefly introduce Seidel and Smith’s setting for Floer cohomology before stating the
hypotheses and results of their main theorem for equivariant Floer cohomology. Let
M be a manifold equipped with an exact symplectic form ! D d� and a compatible
almost complex structure J . Let L0 and L1 be two exact Lagrangian submanifolds of
M . For our purposes we can restrict to the case that L0 and L1 intersect transversely.

Definition 2.1 The Floer chain complex CF.L0;L1/ is an abelian group with gener-
ators the finite set of points L0\L1 .

The differential d on CF.L0;L1/ counts holomorphic disks whose boundary lies in
L0[L1 which run from x� to xC . More precisely, we choose JDJt a time-dependent
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perturbation of J and let M.x�;xC/ be the moduli space of Floer trajectories uW R�
Œ0; 1�!M where

u.s; 0/ 2L0; @suCJt .u/@t .u/D 0;

u.s; 1/ 2L1; lim
s!˙1

D x˙:

This moduli space carries a natural action by R corresponding to translation on the
coordinate s ; we let the quotient by this action be cM.x�;xC/D

M.x�;xC/
R the set of

unparametrized holomorphic curves from x� to xC .

Before formally defining the differential on CF.L0;L1/, we need to impose one further
technical condition on M to ensure both that there are only finitely many equivalence
classes of holomorphic curves between any two intersection points xC;x� 2L0\L1

and that the image of any holomorphic curve uW R� Œ0; 1�!M is contained in some
compact set in M . We say �W M!R is exhausting if it is smooth, proper, and bounded
below. We consider the one-form dC.�/D d� ıJ and the two-form !� D�ddC.�/.
We say that � is J –convex or plurisubharmonic if !� is compatible with the complex
structure on M , that is, if !�.Jv;Jw/D!�.v; w/ and !�.v;Jv/> 0 for all v 2TM .
This ensures that !� is a symplectic form on M .(The term plurisubharmonic indicates
that the restriction of � to any holomorphic curve in M is subharmonic, hence satisfies
the maximum modulus principle.) A noncompact symplectic manifold M with this
structure is called convex at infinity. If !� is in fact the symplectic form ! on M ,
then M is said to be strictly convex at infinity.

We use an index condition to determine which strips u count for the differential. Given
any u 2M.x�;xC/, we can associate to u a Fredholm operator DJuW W1

u !W0
u

from W1
u D fX 2W 1;p.u�TM /W X.�; 0/ 2 u�TL0;X.�; 1/ 2 u�TL1g to W 0

u . (Here
p > 2 is a fixed real number.) This operator describes the linearization of Floer’s
equation, @suCJt .u/@t .u/D 0, near u. We say that J is regular if DJu is surjective
for all finite energy holomorphic strips u.

Lemma 2.2 If M is an exact symplectic manifold with a compatible almost convex
structure J which is convex at infinity and L0;L1 are exact Lagrangian submanifolds
also convex at infinity, then a generic choice of J perturbing J is regular.

Floer’s original proof of this result [3, Proposition 2.1] and Oh’s revision [17, Proposi-
tion 3.2] were for compact manifolds, but, as observed by McDuff and Salamon [15,
Section 9.2] and indeed by Sikorav [27] in his review of Floer’s paper [3], the proof
carries through identically for noncompact manifolds which are convex at infinity.
Choose such a generic regular J. We let M1.x�;xC/ be the set of trajectories u in
M.x�;xC/ such that the Fredholm index of DJuD 1.
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Lemma 2.3 (Floer [3, Lemma 3.2]) If J is regular, M1.x�;xC/ is a smooth, com-
pact one-manifold such that # cM1.x�;xC/ D nx�xC is finite. Moreover, for any
x�;xC 2 CF.L0;L1/, the sum X

x2CF.L0;L1/

nx�xnxxC

is zero modulo two.

Therefore we make the following definition.

Definition 2.4 (Floer [3, Definition 3.2]) The Floer cohomology HF.L0;L1/ is the
homology of CF.L0;L1/ with respect to the differential

ı.x�/D
X

xC2CF.L0;L1/

# �M1.x�;xC/xC(1)

with respect to a regular family of almost complex structures J perturbing J .

Now suppose that M carries a symplectic involution � preserving .M;L0;L1/ and the
forms ! and � . Let the submanifold of M fixed by � be M inv , and similarly for Linv

i

for i D 0; 1. We can define the Borel (or equivariant) cohomology of .M;L0;L1/ with
respect to this involution. Seidel and Smith give a geometric description of the cochain
complexes used to produce equivariant Floer cohomology; we’ll content ourselves with
an algebraic description, referring the reader to their paper [26, Section 3] for further
geometric detail. Notice that the usual Floer chain complex CF.L0;L1/ carries an
induced involution �# which takes an intersection point x 2L0\L1 to the intersection
point �.x/ 2 L0 \L1 . This map �# is not a chain map with respect to a generic
family of complex structures on M . However, suppose that we are in the nice case that
we can find a suitable family of complex structures J on M such that �# commutes
with the differential on CF.L0;L1/. (Part of Seidel and Smith’s use of their technical
conditions on the bundle ‡.M inv/ is to establish that such a J exists [26, Lemma 19].)
Then CF.L0;L1/ is a chain complex over F2ŒZ2� D F2Œ�

#�=h.�#/2 D 1i. Indeed,
.1C �#/2 D 0, so there is a chain complex

0! CF.L0;L1/
1C�#

// CF.L0;L1/
1C�#

// CF.L0;L1/ � � �

Definition 2.5 If CF.L0;L1/ is the Floer chain complex and �# is a chain map
with respect to the complex structure on M , HFborel.L0;L1/ is the homology of the
complex CF.L0;L1/˝Z2JqK with respect to the differential ıC .1C �#/q .
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Therefore the double complex

0 CF.L0;L1/// CF.L0;L1/
1C�#

//
��

ı

CF.L0;L1/
1C�#

//
��

ı

� � �
1C�#

//
��

ı

induces a spectral sequence whose first page is HF.L0;L1/ ˝ Z2JqK and which
converges to HFborel.L0;L1/.

There is another more algebraic method of generating this complex. We may begin
by considering the Floer homology complex on L0 and L1 , which is constructed
identically to the cohomology complex except in counting holomorphic strips u of
Maslov index 1 with u.s; 0/ 2 L1 and u.s; 1/ 2 L0 ; that is, it is equal to the Floer
cohomology HF.L1;L0/. Let nx�xC be the number of such Floer trajectories after
quotienting by the translation action on R. Let d be the Floer homology differential
on CF.L1;L0/. If J is a time-dependent perturbation of J which is regular for Floer
cohomology, it is also regular for Floer homology. Moreover, notice that CF.L1;L0/

carries an involution �# D �
# , also not generically a chain map.

The following relationship between the two theories is well-known.

Lemma 2.6 The Floer cohomology complex CF.L0;L1/ is canonically isomorphic
to the complex HomZ2

.CF.L1;L0/;Z2/ with the dual differential d| as chain com-
plexes.

Proof Since the group CF.L0;L1/DCF.L1;L0/ has a canonical set of generators in
the intersection points of L0 and L1 , the group Hom.CF.L1;L0/;Z2/ is canonically
isomorphic to CF.L0;L1/ as abelian groups. (Indeed, in some moral sense the space of
maps ought to be the chain complex for Floer cohomology.) It remains to be shown that
d|D ı . First observe that nx�xC D nxCx� : if uW R� Œ0; 1�!M is a Floer trajectory
of index 1 from x� to xC which counts for the differential ı , then vW R� Œ0; 1�!M

defined by v.s; t/D u.�s; 1� t/ is a Floer trajectory from xC to x� which counts
for the differential ı . Let x be an intersection point of L0 and L1 , and x� its dual in
Hom.CF.L1;L0/;Z2/. Then if y is another intersection point, we have

hd|x�;yi D hx�; dy�i D

�
x�;

X
z2L1\L0

nyzz

�
D nyx D nxy

So y� appears in d|x� with coefficient nxy . Since y appears in ıx with coefficient
nxy , the two chain complexes are isomorphic, as promised.
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A similar argument applies to CF.L1;L0/ and HomZ2
.CF.L0;L1/;Z2/. In particu-

lar, if J is a perturbation of J with respect to which �# is a chain map, there is a chain
map .�#/| on HomZ2

.CF.L0;L1/;Z2/ which is identified with �# with respect to
the isomorphism. Ergo �# is also a chain map with respect to J.

This leads to a more algebraic definition of equivariant Floer cohomology.

Lemma 2.7 The equivariant Floer cohomology HFborel.L0;L1/ is isomorphic to

ExtF2ŒZ2�.CF.L1;L0/;F2/:

Here we regard F2 as the trivial module over F2ŒZ2�.

Proof We will show that the double complex that computes ExtF2ŒZ2�.CF.L1;L0/;F2/

is isomorphic to the double complex from which our spectral sequence arises. Consider
the following free resolution of F2 over F2ŒZ2�.

� � �
1C�#// F2ŒZ2�

1C�# // F2ŒZ2� // 0

We may obtain a free resolution of CF.L1;L0/ by tensoring it with the chain complex
above over F2 . This produces a double complex

� � � CF.L1;L0/˝F2
F2ŒZ2�

1˝.1C�#/ // CF.L1;L0/˝F2
F2ŒZ2�

1˝.1C�#/ // 0//
��

d

��

d

To compute ExtF2ŒZ2�.CF.L0;L1/;F2/, we must take the homology of the double
complex HomF2ŒZ2�.CF.L1;L0/˝Z2

F2ŒZ2�;F2/ with respect to the duals of the
maps d and 1C �# .

However, suppose � 2 HomF2ŒZ2�.CF.L1;L0/˝F2
F2ŒZ2�;F2/. Then since � is

equivariant with respect to the action of �# on CF.L1;L0/˝F2
F2ŒZ2�, we see �.x˝

�#/ D �.�#x ˝ 1/, that is, � is determined by its behavior as a F2 –linear map on
CF.L1;L0/˝f1g. Hence there is a canonical isomorphism

HomF2ŒZ2�.CF.L1;L0/˝F2
F2ŒZ2�;F2/Š HomF2

.CF.L1;L0/;F2/

Since this isomorphism is natural, we can compute ExtF2ŒZ2�.CF.L1;L0/;F2/ from
the double complex

� � � Hom.CF.L1;L0/;F2/d|

.1C�#/
|

// Hom.CF.L1;L0/;F2/d|

.1C�#/
|

// 0:
.1C�#/

|

//
�� ��
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We saw in the proof of Lemma 2.7 that d|D ı ; moreover, since �# and �# are in point
of fact the same map on the generators of CF.L0;L1/, .�#/

| D �# . Therefore this is
precisely the double complex we used to define equivariant Floer cohomology.

Seidel and Smith’s result concerns the existence of a localization map

HFborel.L0;L1/ �! HF.Linv
0 ;Linv

1 /;

where the second space is the Floer cohomology of the two Lagrangians Linv
0

and
Linv

1
in M inv . The main goal is to produce a family of � –invariant complex structures

on M such that, for uW R� Œ0; 1�!M inv , the index of the operator DJu of u with
respect to J in M differs from the index of the operator DJinv of u with respect to Jinv

in M inv by a constant.

Consider the normal bundle N.M inv/ to M inv in M and its Lagrangian subbundles
N.Linv

i / the normal bundles to each Linv
i in Li . The construction requires one ad-

ditional degree of freedom, achieved by pulling back the bundle N.M inv/ along the
projection map M inv � Œ0; 1�!M inv . Call this pullback ‡.M inv/. This bundle is
constant with respect to the interval Œ0; 1�. Its restriction to each M inv � ftg is a
copy of N.M inv/ which will occasionally, by a slight abuse of notation, be called
N.M inv/� ftg; similarly, for i D 0; 1 the copy of N.Linv

i / above Linv
i � ftg will be

referred to as N.Linv
i /� ftg.

We make a note here of the correspondence between our notation and Seidel and
Smith’s original usage. Our bundle ‡.M inv/ is their TM anti ; while our N.Linv

0
/�f0g

is their T Linv
0

and our N.Linv
1
/� f1g is their TLanti

1
. (The name TLanti

1
is also used

for the bundle that we denote N.Linv
1
/� f0g, using the obvious isomorphism between

the bundles.)

We are now ready to introduce the notion of a stable normal trivialization of ‡.M inv/.
We denote the trivial bundle X �Cn!X by Rn , whenever the base space X is clear
from context, and similarly for Rn .

Definition 2.8 (Seidel and Smith [26, Definition 18]) A stable normal trivialization
of the vector bundle ‡.M inv/ over M inv � Œ0; 1� consists of the following data:

� a stable trivialization of unitary vector bundles �W ‡.M inv/˚CK !CkantiCK

for some K ;
� a Lagrangian subbundle ƒ0 � .‡.M

inv//jŒ0;1��Linv
0

such that ƒ0jf0g�Linv
0
D

.N.Linv
0
/� f0g/˚RK and �.ƒ0jf1g�Linv

0
/DRkantiCK ; and

� a Lagrangian subbundle ƒ1 � .‡.M
inv//jŒ0;1��Linv

1
such that ƒ1jf0g�Linv

1
D

.N.Linv
1
/� f0g/˚RK and �.ƒ1jf1g�Linv

1
/D iRkantiCK .
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The crucial theorem of [26], proved through extensive geometric analysis and compari-
son with the Morse theoretic case, is as follows.

Theorem 2.9 (Seidel and Smith [26, Theorem 20]) If ‡.M inv/ carries a stable
normal trivialization, then HFborel.L0;L1/ is well-defined and there are localization
maps

�.m/W HFborel! HF.Linv
0 ;Linv

1 /JqK

defined for m� 0 and satisfying �.mC1/ D q�.m/ . Moreover, after tensoring over
Z2JqK with Z2..q// these maps are isomorphisms.

This implies Theorem 1.5. Because the localization maps are well-behaved with respect
to the Z2..q// module structures, we also deduce Corollary 1.6.

3 Heegaard Floer homology preliminaries

We pause to review the construction of knot Floer homology, first defined by Oszváth
and Szabó [20] and Rasmussen [23], along with some of its interactions with the double
branched cover construction. We work in coefficients modulo two.

Definition 3.1 A multipointed Heegaard diagram DD .S;˛;ˇ;w; z/ consists of the
following data.

� An oriented surface S of genus g

� Two sets of basepoints wD .w1; : : : ; wn/ and zD .z1; : : : ; zn/

� Two sets of closed embedded curves

˛D f˛1; : : : ; ˛gCn�1g and ˇ D fˇ1; : : : ; ˇgCn�1g

such that each of ˛ and ˇ spans a g–dimensional subspace of H1.S/, ˛i\ j̨ D

∅Dˇi\ ǰ for i¤j , each ˛i and ǰ intersect transversely, and each component
of S �[˛i and of S �[ˇi contain exactly one point of w and one point of z.

We use D to obtain an oriented three-manifold Y by attaching two-handles to S � I

along the curves ˛i � f0g and ˇi � f1g and filling in 2n three-balls to close the
resulting manifold. This yields a handlebody decomposition Y DH˛ [S Hˇ of Y .
The Heegaard diagram D furthermore determines a knot or link in Y : connect the z

basepoints to the w basepoints in the complement of the curves ˛i and push these
arcs into the handlebody H˛ , and connect the w basepoints to the z basepoints in
the complement of the curves ˇi and push these arcs into the Hˇ handlebody. In this
paper we will be concerned only with the case that this produces a knot K .
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We impose one further technical requirement on D . A periodic domain is a 2–chain on
Snfw; zg whose boundary may be expressed as a sum of the ˛ and ˇ curves. The set of
periodic domains on S is in bijection with H2.Y /. We say that D is weakly admissible
if every periodic domain on S has both positive and negative local multiplicities, and
require that any Heegaard diagram we use to compute knot Floer homology have this
property.

Given a pair .Y;K/, we may produce a Heegaard diagram D for .Y;K/ via the
following strategy. Let f W .Y;K/! Œ0; 3� be a self-indexing Morse function with n

critical points each of index zero and index three, and gCn� 1 critical points each of
index one and index two. Furthermore, insist that K is a union of flowlines between
critical points of index zero and index three, and passes once through each such critical
point. Then we have S D f �1.3

2
/ is a surface of genus g . Draw ˛ curves at the

intersection of S with the ascending manifolds of the critical points of index one, and
ˇ curves at the intersection of S with the descending manifolds of the critical points
of index two. Finally, let the w basepoints be the intersection of flowlines in K from
index zero critical points to index three critical points, and the z basepoints be the
intersection of flowlines in K from index three critical points to index zero critical
points. This produces a DD .S;˛;ˇ;w; z/ satisfying the conditions of Definition 3.1;
moreover we may choose f such that weak admissibility is also satisfied.

The construction of the knot Floer homology bHFK .Y;K/ uses the symmetric product
SymgCn�1.S/ consisting of all unordered .gC n� 1/–tuples of points in S . This
space is the quotient of .S/gCn�1 by the action of the symmetric group SgCn�1

permuting the factors of .S/gCn�1 , and its holomorphic structure is defined by insisting
that the quotient map .S/gCn�1! SymgCn�1.S/ be holomorphic. In particular, if
j is a complex structure on S , there is a natural complex structure SymgCn�1.j /

on the symmetric product. There are two transversely intersecting submanifolds of
SymgCn�1.S/ of especial interest, namely the two totally real embedded tori T˛ D

˛1�� � ��˛gCn�1 and Tˇ Dˇ1�� � ��ˇgCn�1 . The chain complex bCFK .D/ for knot
Floer homology is generated by the finite set of intersection points of T˛ and Tˇ . More
concretely, a generator of bCFK .D/ is a point xD .x1 � � �xgCn�1/ 2 SymgCn�1.S/

such that each ˛ or ˇ curve contains a single xi .

In its original form, knot Floer homology is computed as follows: let x; y be two inter-
section points in bCFK .D/. Denote by �2.x; y/ the set of Whitney disks �W B1.0/!

SymgCn�1.S/ from the unit disk in the complex plane to our symmetric product such
that �.�i/D x, �.i/D y and � maps the portion of the boundary of the unit disk with
positive real part into T˛ and the portion with negative real part into Tˇ . The most
common method of studying such maps � is to use the following familiar construction
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of Ozsváth and Szabó to associate to any homotopy class of Whitney disks in �2.x;y/

a domain in S . There is a .gC n� 1/–fold branched cover

S �SymgCn�2.S/! SymgCn�1.S/:

The pullback of this branched cover along � is a .gC n� 1/–fold branched cover
of B1.0/ which we shall denote †.B1.0//. Consider the induced map on †.B1.0//

formed by projecting the total space of this fibration to S .

†.B1.0// //

��

S �SymgCn�2.S/ //

��

S

B1.0/
� // SymgCn�1.S/

We associate to � the image of this projection counted with multiplicities; to wit, we
let D D†aiDi where Di are the closures of the components of S �[˛i �[ˇi and
ai is the algebraic multiplicity of the intersection of the holomorphic submanifold
Vxi
D fxig � SymgCn�2.S/ with �.B1.0// for any interior point xi of Di . The

boundary of D consists of ˛ arcs from points of x to points of y and ˇ arcs from
points of y to points of x. If Di contains a basepoint zj , then we introduce some
additional notation by letting ai D nzj .�/ be the algebraic intersection number of
zj �SymgCn�2.S/ with the image of � .

The Maslov index �.�/ can be computed using the associated domain †aiDi in a
formula of Lipshitz’s [12, Proposition 4.2]. For each domain Di , let e.Di/ be the
Euler measure of Di ; in particular, if D is a convex 2k –gon, e.Di/ D 1� k

2
. Let

px.D/ be the sum of the average of the multiplicities of D at the four corners of each
point in x and likewise for py.D/. Then the Maslov index is

�.�/D
X

aie.Di/Cpx.D/Cpy.D/:

The differential @ on bCFK .D/ counts the dimension of the moduli spaces of pseudo-
holomorphic curves of Maslov index one in �2.x; y/.

@.x/D
X

y2T˛\Tˇ

X
�2�2.x;y/W
�.�/D1

nwi
.�/D0

nzj
.�/D0

#
�

M.�/

R

�
y

Ozsváth and Szabó have shown that this is a well-defined differential in [20]. Indeed,
once we show that the homology of bCFK .D/ with respect to @ can be seen as the Floer
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cohomology of a suitable manifold, this will be a special case of the well-definedness
of the differential of Definition 2.4.

The chain complex . bCFK .D/; @/ splits along the spinc structures on Y . A Mayer-
Vietoris argument (plus Poincaré duality) shows that

H 2.Y /ŠH1.Y /Š
H1.SymgCn�1.S//

H1.T˛/˚H1.Tˇ/
Š

H1.S/

fŒ˛1�; : : : ; Œ˛gCn�1�; Œˇ1�; : : : ; ŒˇgCn�1�g

(We will discuss the cohomology rings of certain symmetric products at far greater
length in Section 5.)

Any two intersection points x and y in bCFK .D/ can be connected by a one-cycle
x;y of ˛ arcs from points in x to y and ˇ arcs from points in y to x; there is then a
Whitney disk � between x and y exactly when the image �.x; y/ of x;y is trivial in

H1.S/

fŒ˛1�; : : : ; Œ˛gCn�1�; Œˇ1�; : : : ; ŒˇgCn�1�g
ŠH1.Y /;

or when the Poincaré dual of �.x; y/ is trivial in H 2.Y /. Therefore the chain complex
splits along an affine copy of H 2.Y /, or along the spinc structures of Y . To pin
down the spinc structure corresponding to a generator x, let f be a Morse function
compatible with D and let Nx be the closures of regular neighborhoods of the flowlines
of f through the points x, which connect index 1 critical points to index 2 critical
points and the flowlines through the wi , which connect index 3 critical points to index
0 critical points. Then the gradient vector field rf does not vanish on Y nNx and
defines a spinc structure s on Y .

The complex bCFK .D; s/ also carries a (relative, for our purposes) homological grading
called the Maslov grading and, when K is nullhomologous in Y , an additional grading
known as the Alexander grading. Suppose x and y are connected by a Whitney disk
� . Then the relative gradings are determined by

M.x/�M.y/D �.�/� 2
X

i

nwi
.�/

A.x/�A.y/D
X

i

nzi
.�/�

X
i

nwi
.�/:

The relative Alexander grading may also be computed as the linking number of x;y
with K . If Y is a rational homology sphere, we may pin down this grading precisely
by letting Y0.K/ be the manifold obtained by zero-surgery along K and s be the
spinc structure obtained by extending the spinc structure associated to x over Y0.K/.
Choose F a Seifert surface of K in Y and let bF be the closed surface resulting from
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capping off F in Y0.K/. In this case, A.x/D hc1.s/; ŒbF �i. There is also a formula
for absolute Maslov gradings which is somewhat too complicated to discuss here.

The differential @ lowers the Maslov grading by one and preserves the Alexander
grading. Therefore bCFK .D/ also splits along Alexander grading in each spinc structure.
A further useful technical tool is the ı grading, defined as the difference between the
Maslov and Alexander gradings.

The homology of bCFK .D/ with respect to the differential @ is very nearly the knot
Floer homology of .Y;K/. There is, however, a slight subtlety having to do with the
number of pairs of basepoints zi and wi on D . Let V be a vector space over F2

with generators in gradings .M;A/D .0; 0/ and .M;A/D .�1;�1/, and suppose D
carries n pairs of basepoints.

Definition 3.2 The homology of the complex bCFK .D/ with respect to the differential
@ is

eHFK .D/D bHFK ..Y;K//˝V ˝.n�1/:

To explicate the mysterious appearance of the vector space V , consider that we can
eliminate any pair of basepoints zi and wi (or wi�1 ) by adding to the Heegaard surface
a tube connecting a small neighborhood of one basepoint to a small neighborhood of
the other. The resulting surface D0 with the same ˛ and ˇ curves as previously is
a Heegaard diagram for .Y #.S1 � S2//;K0/, where K0 is a knot running over the
new tube instead of between the two former basepoints and otherwise identical to
K . If t0 is the single torsion spinc structure on #n�1.S1 �S2/, then eHFK .D; s/D
bHFK .Y #.#n�1S1 �S2/;K; s#t0/ (see Ozsváth and Szabó [21, Theorem 4.5]).

Perutz has shown [22, Theorem 1.2] that there is a symplectic form ! on SymgCn�1.S/

which is compatible with the induced complex structure, and with respect to which
the submanifolds T˛ and Tˇ are in fact Lagrangian and the various Heegaard Floer
homology theories are their Lagrangian Floer cohomologies. In particular, the knot
Floer homology is the Floer cohomology of these two tori in the ambient space
SymgCn�1.Snfw; zg/, where the removal of the basepoints accounts for the restriction
that holomorphic curves not be permitted to intersect the submanifolds Vwi

and Vzj

of the symmetric product.

Proposition 3.3 There is a symplectic structure on Symg�n�1.S3nfw; zg/ with re-
spect to which the submanifolds T˛ and Tˇ are Lagrangian and

eHFK .D/Š bHFK .S3;K/˝V ˝.n�1/
Š HF.Tˇ ;T˛/:
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This is essentially [22, Theorem 1.2] adjusted for Heegaard diagrams with multiple
basepoints. From now on we will work with this method of computing knot Floer
homology; in Section 4 we will show that the symplectic form produced by Perutz’s
construction meets the requirements of Seidel and Smith’s theorem.

3.1 Heegaard diagrams of double branched covers

Consider the double branched cover †.K/ of the three-manifold Y over the knot K ;
that is, the unique complex manifold with an involution � W †.K/!†.K/ such that
the quotient of †.K/ by the action of � is S3 , and such that if � W †.K/! Y is the
quotient map, ��1.K/ is exactly the set of fixed points of � . One way of constructing
this manifold is to choose a Seifert surface F of K and remove a bicollar F � Œ�1; 1�

from Y . We then take two copies of Y n.F � Œ�1; 1�/ and identify the positive side of
the bicollar in the one copy with the negative side in the other.

Suppose f W .Y;K/! Œ0; 3� is a self-indexing Morse function with respect to which K

is a collection of flowlines between critical points of index zero and index three. Let
D be the Heegaard surface for .Y;K/ constructed from f . That is, D consists of the
surface SDf �1.3

2
/, curves ˛Df˛1; : : : ; ˛gCn�1g at the intersection of the ascending

manifolds of critical points of index one with S , curves ˇ D fˇ1; : : : ; ˇgCn�1g at
the intersection of the descending manifolds of critical points of index two with S ,
and basepoints w D .w1; : : : ; wn/ (resp. z D .z1; : : : ; zn/) at the negatively (resp.
positively) oriented points of S [K . Now consider the map zf D f ı� , which is also
self-indexing Morse since � is proper. From zf we obtain a Heegaard diagram zD for
.†.K/;K/ which has surface zS D �j�1

S
.S/, the branched double cover of S over the

basepoints fw; zg. Moreover, each ˛i lifts to two closed curves z̨i and �.z̨i/, each of
which is the attaching circle of a one-handle in †.K/, and similarly for the ˇ curves
and two-handles. Let z̨ D fz̨1; �.z̨1/; : : : ; z̨gCn�1; �.z̨gCn�1// and likewise for ž.
This leads us to the following lemma.

Lemma 3.4 If DD .S;˛;ˇ;w; z/ is a weakly admissible Heegaard surface for .Y;K/,
then zDD .†.S/; z̨; ž;w; z/ is a weakly admissible Heegaard surface for .†.K/;K/.

Proof The only thing left to check is admissibility. Yet if there is a two-chain F in
†.S/ with boundary some collection of the curves in z̨ and ž with only positive (or
only negative) local multiplicities, then �.F / is a two-chain in S with boundary some
of the curves in ˛ and ˇ with only positive (or negative) local multiplicities. Hence zD
is weakly admissible if D is.

The generators of bCFK .D/ have been studied by Grigsby [7] and Levine [10]; we give
a quick sketch of their proofs of the following lemmas before proceeding to discuss
the Heegaard diagrams we will use in this paper.
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Lemma 3.5 (Levine [10, Lemma 3.1]) Any generator x of bCFK . zD/ admits a non-
unique decomposition as zx1zx2 where zxi is a lift of a generator xi 2 bCFK .D/ for
i D 1; 2.

Proof Consider the image of x under the natural map Sym2.gCn�1/.†.S// !

Sym2.gCn�1/.S/; this is a collection of 2.g C n � 1/ points in S such that each
˛ circle and each ˇ circle contains precisely two points. We can partition the image
into two subsets each of which is a generator in bCFK .D/. To see this, begin with some
x0 on ˛i1

and ǰ1
in S . Construct an oriented one-cycle on S as follows: moving

along ǰ1
to the second point in the image of x on that curve, which must also lie on

some ˛i2
(where i1 and i2 are not necessarily distinct). Move along ˛i2

to the second
point on that curve, and so on. Eventually this process terminates at x0 , which must be
reached along ˛i1

. Hence there are an even number of edges in the resulting one-cycle
on S , and we have collected an even number of vertices along the way. Put those
vertices sitting at the start of a portion of this one-cycle lying on a ˇ curve in one set
labelled B and those vertices sitting at the start of a portion of this one-cycle lying on
an ˛ curve in another labelled A. Then each ˛ and each ˇ curve which contributes
an arc to the one-cycle contains exactly one point in A and one point in B . Choose
a vertex not yet assigned to A or B and repeat. This choice of partition is not at all
unique.

Of particular interest are the generators of the form zx�.zx/ in bCFK . zD/; that is, the
generators which consist of all lifts of the points of a generator x in bCFK .D/. These
points are exactly the invariant set of the induced involution �# on bCFK . zD/.

Lemma 3.6 (Grigsby [7, Proposition 3.2]) All generators of bCFK . zD/ of the form
zx�.zx/ are in the same spinc structure, hereafter denoted s0 and called the canonical
spinc structure on the double branched cover.

Proof Given two such generators zx�.zx/ and zy�.zy/, let x;y be a one-cycle in S

connecting x and y chosen as previously and zx;y be any lift to †.S/. Then zx;yC

�#.zx;y/ is a suitable one-cycle running from zx�.zx/ to zy�.zy/. Moreover, since �# acts
by multiplication by �1 on

H1.†.Y //Š
H1.†.S//

hŒz̨1�; Œ�.z̨1/�; : : : ; Œ žgCn�1�; Œ�. žgCn�1/�i
;

the image �.zx�.zx/; zy�.zy// of zx;yC �
#.zx;y/ in H 1.†.Y // is trivial.

At this juncture we pause to discuss the action of the induced involution �# on spinc

structures on bHFK .†.K/;K/. The spinc structures on †.K/ are an affine copy of
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H 2.†.K//ŠH1.†.K//; setting s0 D 0 removes the ambiguity of the identification
between the set of spinc structures on †.K/ and H 2.†.K//. Moreover, we shall
see that for suitable choice of Heegaard diagram D , including both the spherical
bridge diagrams used in this paper and the toroidal grid diagrams of Levine [10],
and additionally any D which is nice in the sense of Sarkar and Wang [25], �# is a
chain map. The induced involution �� which on the first homology of †.K/ acts by
multiplication by �1, as does conjugation of spinc structures on H1.†.K//. Ergo
��.s/Dxs. Thus the action of � to zD induces an isomorphism

bHFK .†.K/;K; s/Š bHFK .†.K/;K;xs/:

In particular, the action of � on bCFK . zD/ preserves the canonical spinc structure.

Lemma 3.7 If xD zx1zx2 , the Alexander grading of x is the average of the Alexander
gradings of x1 and x2 .

We refer the reader to Levine [10, Lemma 3.4] for a lovely proof of this lemma.

We are now ready to consider the equivariant knot Floer homology of a double branched
cover of S3 over a knot. Let � W .†.K/;K/! .Y;K/ be the branched double cover
map and � W †.K/! †.K/ be the involution interchanging the two not necessarily
distinct preimages of a point x 2 Y . Assume that for our particular Heegaard diagram
D , the map �# is a chain map on bCFK . zD/.

Definition 3.8 The equivariant knot Floer homology bHFK borel.†.K/;K/ is given by

eHFK borel. zD/D bHFK borel.†.K/;K/˝V ˝.n�1/

where eHFK borel.D/ is the homology of bCFK . zD/˝Z2JqK with respect to the differ-
ential @C .1C �#/q .

The spectral sequence derived from the double complex

0 //

��

bCFKiC1. zD/

@
��

1C�#
// bCFKiC1. zD/

@
��

1C�#
// bCFKiC1. zD/ � � �

@
��

0 //

��

bCFKi. zD/

@
��

1C�#
// bCFKi. zD/

@
��

1C�#
// bCFKi. zD/ � � �

@
��

0 // bCFKi�1. zD/
1C�#

// bCFKi�1. zD/
1C�#

// bCFKi�1. zD/ � � �
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which converges to eHFK borel. zD/ has been a source of interest for some time; a popular
conjecture has been that its E1 page is isomorphic modulo torsion to eHFK .D/˝
Z2JqK. We will show a similar statement, namely Theorem 1.1. The E1 page of
this spectral sequence (after computing the homology of the vertical differentials) is
. eHFK . zD/˝ V ˝.n�1//˝Z2JqK, and an application of Corollary 1.6 will show that
after tensoring with Z..q//, the E1 page of the spectral sequence is isomorphic to
. eHFK .D/˝V ˝.n�1//˝Z..q//.

Notice that since both @ and �# preserve the Alexander grading, the spectral sequence
splits along the Alexander grading; it moreover splits along pairs of conjugate spinc

structures. Ergo it is interesting to consider not only the full spectral sequence but
also its restriction to bCFK .†.K/;K; s0; i/ for any Alexander grading i . Since the
localization maps of Seidel and Smith [26, Section 2c] referenced in Theorem 1.5
are defined by counting holomorphic disks between equivariant and nonequivariant
generators of CF.L0;L1/DCF.Tˇ;T˛/ and by multiplication and division by q , the
Alexander grading on eHFK . zD/ is preserved by the isomorphism of Theorem 1.1.

In order to apply Corollary 1.6 to the case of .S3;K/ and its double branched cover
.†.K/;K/ we will require a Heegaard diagram D for .S3;K/ lying on the sphere S2 .
Choose a bridge presentation of K in S2 ; that is, a diagram of K in S2 DR2[f1g

such that there are a finite number of line segments b1; : : : ; bn in the image of K in
the plane such that at every crossing in K the overcrossing arc is a portion of the bi

and neither of the undercrossing arcs are. Distribute basepoints w D .w1; : : : ; wn/

and zD .z1; : : : ; zn/ along the image of K in the bridge presentation at the endpoints
of the line segments bi such that as one moves along K in the direction of the
orientation starting with the line segment b1 , these basepoints are encountered in the
order w1; z1; w2; z2; : : : ; wn; zn . For 1 � i � n� 1, let ˇi be a closed curve in the
plane encircling whichever bridge bj has endpoints wi and zi , and let ˛i be a closed
curve in the plane encircling the arc of K which contains none of the bridges bj and
has endpoints zi and wiC1 . Both sets of curves will be oriented counterclockwise with
respect to their interiors in the plane S2nfzng.

Choose complex coordinates on S2nfw; zg and use these to induce complex charts
on †.S2/nfw; zg and subsequently on the symmetric products Symn�1.S2nfw; zg/
and Sym2n�2.†.S2/nfw; zg/. (Later on we will want to be a little more precise about
this original choice, but for now we allow ourselves considerable latitude.) If j is the
almost complex structure on S2nfw; zg, then ��j D zj is the almost complex structure
on †.S2/nfw; zg and Symn�1.j / and Sym2n�2.zj / are the almost complex structures
on the two symmetric products.
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z1 w1 w2 z2

α1

β1

Figure 1: A Heegaard diagram on the sphere derived from a two-bridge
presentation of the trefoil.

For xi a point on S2nfw; zg, let zxi denote one of the two preimages of xi on
†.S2/nfw; zg. Consider the map

i W Symn�1.S2
nfw; zg/ ,! Sym2n�2.†.S2/nfw; zg/(2)

.x1x2 : : :xn�1/ 7! .zx1�.zx1/ : : : zxn�1�.zxn�1//

This map is a holomorphic embedding; for a proof of this fact on charts, see Appendix
1. The involution � interchanges the two (not necessarily distinct) preimages of a point
under the restriction of the double branched cover map � W †.K/! S3 .

We make the following suggestive choices of notation: let L0 D T ž , let L1 D T z̨ ,

and let M D Sym2n�2.†.S2/nfz;wg/. In Section 4 we will show that M is convex
at infinity and can be equipped with an exact � –invariant symplectic form with respect
to which T˛ and Tˇ are exact Lagrangian submanifolds.

The following is immediate from the definitions.
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Lemma 3.9 With respect to the induced involution on M (also called � ), we have the
following invariant sets.

M inv
D Sym2n�2.†.S2/nfz;wg/inv

D i.Symn�1.S2
nfz;wg//

Linv
0 D T inv

ž
D i.Tˇ/

Linv
1 D T inv

z̨
D i.T˛/:

Corollary 3.10 With respect to our choice of symplectic manifold M and Lagrangians
L0 and L1 , we have the following Floer homology groups.

HF.L0;L1/D HF
�
T ž;T z̨

�
D eHFK. zD/

D bHFK..†.K/;K//˝V ˝.n�1/

HF.Linv
0 ;Linv

1 /D HF
�
T inv
ž
;T inv
z̨

�
D HF.Tˇ ;T˛/

D eHFK.D/

D bHFK.S3;K/˝V ˝.n�1/:

As before, let ‡.M inv/!M inv � Œ0; 1� be the pullback of the normal bundle to M inv

in M along the projection map M inv � Œ0; 1�!M inv . Let N.Linv
i /� ftg for i D 0; 1

be the copy of the Lagrangian normal bundle to Linv
i in Li sitting above the subspace

Linv
i � ftg �M inv � Œ0; 1�.

Our goal will be to prove the following.

Theorem 3.11 The bundle ‡.M inv/ carries a stable normal trivialization with respect
to the involution � .

The proof is given in Section 7.

Theorem 3.11, combined with convexity at infinity of M and the existence of an exact
� –invariant form on M with respect to which T˛ and Tˇ are exact Lagrangians,
implies Theorem 1.1. We deduce a rank inequality between eHFK .†.K/;K; s0/

and eHFK .S3;K/. But since each of these Heegaard diagrams contains n pairs of
basepoints, we obtain the rank inequality in Corollary 1.2. Moreover, our previous
remarks concerning the splitting of the spectral sequence along spinc structures and
Alexander gradings will then imply Corollaries 1.3 and 1.4.

Algebraic & Geometric Topology, Volume 12 (2012)



A rank inequality for the knot Floer homology of double branched covers 2147

4 Symplectic geometry of M and M inv

Thus far we have not shown that the complex manifold M D Sym2n�2.†.S2/nfz;wg/
and its totally real submanifolds L0 D T ž and L1 D T z̨ satisfy the basic symplectic
structural requirements imposed by Seidel and Smith’s theory. Before we move to the
more complex task of demonstrating that ‡.M inv/ carries a stable normal trivialization,
we pause to show that .M;L0;L1/ can be equipped with a symplectic form such that
M is exact and convex at infinity and L0 , L1 are exact Lagrangian submanifolds of
M .

Regard the punctured sphere S2nfw; zg as a .2n� 1/–punctured plane

Cnfw; z1; : : : ; zn�1g:

We can insist that our original choice of complex coordinates on S2 , which we used to
induce complex coordinates on †.S2/ and subsequently all of the relevant symmetric
products, was compatible with this embedding. Let x D uC iv be a point on C , and
let �0 be a smooth function on S2nfw; zg defined as follows.

�0W Cnfw; z1; : : : ; zn�1g !R

x 7! jxj2C

nX
iD1

1

jx�wi j
2
C

n�1X
iD1

1

jx� zi j
2

We claim this map is j –convex, where j is as before the complex structure on the
punctured sphere. The corresponding symplectic form is

!�0
D�ddC.�/D

�
4C

nX
iD1

4

jx�wi j
4
C

n�1X
iD1

4

jx� zi j
4

�
du^ dv:

This is compatible with the almost complex structure on the punctured plane, so �0 is
a j –convex function on S2nfw; zg.

The smooth map �0 will not quite be our final choice of j –convex function on the
punctured plane, since we would like each ˛ and ˇ circle on S2nfw; zg to be an exact
Lagrangian with respect to the our choice of symplectic form on S2nfw; zg. We will
replace �0 with a closely related j –convex function �1 and slightly isotope the ˛ and
ˇ circles with the result that

R
˛i
�dC�1 D

R
ǰ
�dC�1 D 0. Then the restriction of

the form �dC�1 to either an ˛ or ˇ curve will be exact as desired.

We begin by observing that since the curves ˛i and ˇi were all chosen to be oriented
counterclockwise in the plane formed by deleting zn , if  .z/D jzj2 then the integral
of �dC. /D 2xdy � 2ydx around one of the attaching circles is four times the area
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enclosed by that circle in the plane, and in particular is strictly positive. Therefore there
is some large constant C such that if we replace the function �0 with �1 as below,
each of

R
˛i
�dC.�1/ and

R
ǰ
�dC.�1/ is nonnegative. Let

�1W Cnfw; z1; : : : ; zn�1g !R

x 7! C jxj2C

nX
iD1

1

jx�wi j
2
C

n�1X
iD1

1

jx� zi j
2
:

This is still a j –convex function by the same argument as for �0 . Now for each
attaching circle, a look at the construction shows there is a straight line segment from
the circle to one of the punctures it encircles which intersects no other attaching circles.
We can isotope any of the attaching circles inward along these arcs without changing
the intersection points of the ˛ and ˇ curves or altering any of our computations
concerning the cohomology of this space and its symmetric product. Since !�1

is an
area form on the punctured plane, by Stokes’ theorem changing one of the attaching
circles in this fashion subtracts the area of the small counterclockwise-oriented region
removed from the interior of the attaching circle from the integral of �dC�1 around
the curve. Since �1 goes to infinity along the arc connecting the attaching circle to
the puncture, we can make this area arbitrarily large, and in fact choose it precisely so
that the integral of �dC.�1/ along our isotoped attaching circle is zero. From now
on we will assume we have performed such an isotopy and that each ˛ and ˇ curve
is an exact Lagrangian with respect to !�1

. We take !�1
to be our choice of exact

symplectic form on the punctured sphere.

Now let � W †.S2/nfw; zg ! S2nfw; zg be the restriction of the double branched
covering map, and consider the map �1 ı � . We claim that this map is zj –convex:
it is clearly smooth and bounded below, and since � is a branched covering map,
hence proper, �1 ı � is also proper. Moreover, as � is holomorphic by definition,
dC.�1 ı �/ D ��.dC.�1//. Therefore !�1ı� D ��.!�1

/ is compatible with the
complex structure on †.S2/nfw; zg and is zj –convex. We let z�1 D �1 ı� and take
!z�1

to be our choice of symplectic form on †.S/nfw; zg. Notice that the lifts of the

˛ and ˇ curves in the punctured sphere to the ˛ and ˇ curves in †.S2/nfw; zg are
necessarily exact Lagrangian with respect to this !z�1

.

On the product space .†.S2/nfw; zg/2n�2 there is a corresponding Sym2n�2.zj /–
convex function: if pk is the projection of the product space to its k th factor, then let
z�W .†.S2/nfw; zg/2n�2 be given by z� D z�1 ıp1C � � � C

z�1 ıp2n�2 . This is proper
and bounded below; moreover,

!z� D�ddC.z�/D !z�1
˝ 1˝ � � �˝ 1C � � �C 1˝ � � �˝ 1˝!z�1

;
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which is necessarily compatible with the induced complex structure on the product
space. We take !z� to be the symplectic form on the product .†.S2/nfw; zg/2n�2 ,
noting that with respect to this form, any of the .2n� 2/! lifts of T z̨ or T ž to the
product space is an exact Lagrangian submanifold of the product.

Now consider the symmetric product Sym2n�2.†.S2/nfw; zg/. The map z� induces a
(possibly singular) continuous function

 W Sym2n�2.†.S/nfw; zg/!R

.x1 � � �x2n�2/ 7!
X

�2S2n�2

z�.x�.1/; : : : ;x�.2n�2//

which is proper, bounded below, and smooth outside a neighborhood of the fat diagonal
f.x1 � � �x2n�2/ 2 Sym2n�2.S2nfw; zg/ W xi D xj for some i ¤ j g. Perutz observes
in [22] that this function is strictly plurisubharmonic in the sense of non-smooth
functions, that is, that the two-current �ddC is strictly positive. This gives us
a continuous exhausting function on Sym2n�2.†.S2/nfw; zg/. We may apply the
following lemma of Richberg [24], quoted by Cielebak and Eliashberg [2, Lemma
3.10].

Lemma 4.1 Let  be a continuous J –convex function on an integrable complex
manifold .V;J /. Then for every positive function hW V !RC , there exists a smooth
J –convex function  0 such that j 0.x/� .x/j< h.x/. If � is already smooth on a
neighborhood of a compact subset A, then we can achieve � D �0 on A.

In particular, we may take hW Sym2n�2.†.S2/nfw; zg/!RC to be a constant func-
tion h.x/ D � , and apply the lemma to our map  and h. Then we may produce
 0W Sym2n�2.†.S2/nfw; zg/! R such that j 0.x/� .x/j < � , and  0 is smooth
and Sym2n�2.zj /–convex. Moreover, since  is bounded below and proper,  0 is also,
since the two real valued functions differ by at most � . Therefore  0 is an exhausting
function on M , and M is convex at infinity.

We have yet to produce an appropriate symplectic form on M , which we will do using
work of Perutz [22]. We begin with a definition.

Definition 4.2 (Perutz [22, Definition 7.3]) Let X be a complex manifold with
complex structure J . A Kähler cocycle on X is a collection .Ui ; �i/i2I , where
.Ui/i2I is an open cover of X and �i W Ui !R is an upper semicontinuous function
such that

� �i is strictly plurisubharmonic, and
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� �i ��j is pluriharmonic.

If a Kähler cocycle .Ui ; �i/i2I is smooth then we can associate to it the symplectic
form ! which is �ddC�i on each Ui . Notice, for example, that a Kähler cocycle
can consist of a single plurisubharmonic function on all of X , as in the case of
the smooth Kähler cocycle ..†.S/nfw; zg/2n�2; z�/ on .†.S/nfw; zg/2n�2 and the
singular Kähler cocycle .M;  / on M .

Perutz proves the following technical result.

Lemma 4.3 (Perutz [22, Lemma 7.4]) Let .Ui ;  i/ be a continuous Kähler cocycle
on a complex manifold X . Suppose that X DX1[X2 such that X1 and X2 are open
and the functions  i jUi\X` are smooth. Then there exists a continuous function

�W X !R; Supp.�/�X2

and a locally finite refinement
Vj � Ui.j/

such that the family .Vi ;  i.j/jVj C�jVj / is a smooth Kähler cocycle.

Notice that if .Ui ;  i/ happened to be the Kähler cocycle associated to a single J –
convex function  on X , then .Vi ;  i.j/jVj C�jVj / is the Kähler cocycle associated
to the smooth plurisubharmonic function  C�.

In our particular case we take X to be Sym2n�2.†.S/nfw; zg/, X1 to be the com-
plement of the main diagonal in this symmetric product, and X2 to be a small
neighborhood of the main diagonal with no intersection with T z̨ and T ž . Then

the function  W Sym2n�2.†.S2/nfw; zg/!R admits a smoothing to a Sym2n�2.zj /–
convex function  C �W Sym2n�2.†.S2/nfw; zg/! R which is equal to  away
from a neighborhood of the large diagonal. The symplectic form ! C� is exact and
compatible with the complex structure on M . Finally, on a neighborhood of T z̨
the map � is identically 0 and  D .2n� 2/!z�jz̨1��.z̨1/�����z̨n�1��.z̨n�1/ . Therefore
! C�jT z̨ D 0 and dC. C�/jT z̨ D .2n�2/!dC.z�/jz̨1�����z̨n�1��.z̨n�1/ is exact. Ergo
T z̨ is an exact Lagrangian in the exact symplectic manifold M , and similarly T ž is
as well.

The reader may at this point be alarmed that we have failed thus far to check that � is
a symplectic involution. We’ll make one final alteration to the symplectic form on M

such that this is the case. Because our original zj –convex function z�1 on †.S/nfw; zg
was the pullback of a j –convex function �1 on S2nfw; zg, we see that !z�1

is certainly
� –invariant. Following our construction of the continuous singular plurisubharmonic
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function  on M , we see  is invariant with respect to the induced involution � on M .
Since ! C� D ! away from X2 a neighborhood of the large diagonal in M , ! C�
is � –invariant away from X2 . We replace ! C� with ! D 1

2
.! C� C �

�! C�/;
this exact form is Sym2n�2.zj /–compatible and nondegenerate since � is holomorphic.
Moreover, ! D ! C� away from X2 , implying that the two tori T z̨ and T ž remain
exact Lagrangian submanifolds with respect to ! . The form ! is our final choice of
symplectic form on M .

5 Homotopy type and cohomology of M and M inv

In order to show that our setting can be made to satisfy the hypotheses of Corollary 1.6,
we will need to begin with a good grip on the homotopy type of M inv . This in turn will
allow us to say something concrete concerning the cohomology ring of M inv � Œ0; 1�

and its relationship to the cohomology ring of Linv
0
� f0g[Linv

1
� f1g.

We begin with homotopy type. Notice that both S2nfw; zg and †.S2/nfw; zg are
.2n�2/–punctured surfaces of genus 0 and n�1, respectively, and therefore homotopy
equivalent to the wedge product of 2n� 1 and 4n� 3 circles, respectively. As the
operation of taking the symmetric product preserves homotopy equivalence (see, for
example, Hatcher [8, Section 4.K]), it suffices to determine the homotopy type of a
finite symmetric product of a wedge of circles .S1/_m . It will turn out that this space
deformation retracts onto a subspace of a torus .S1/m . Let us start by establishing
some notation. Give S1 the coordinates of the unit circle in the complex plane, and let
1 be its basepoint and unique zero-cell. If I is a subset of f1; : : : ;mg, let .S1/I be
the subspace of .S1/m defined as follows.

.S1/I D f.x1; : : : ;xm/ 2 .S
1/r W xi D 1 if i 62 Ig

Lemma 5.1 For r � m, the symmetric product Symr ..S1/_m/ has the homotopy
type of an m–torus .S1/m . For r <m, the symmetric product Symr ..S1/_m/ has the
homotopy type of the union of the

�
m
r

�
canonical subtori of .S1/m ,[

jI jDr

.S1/I � .S1/m:

If the torus .S1/m is given the usual product CW structure this space is the r –skeleton
of the CW complex.

Algebraic & Geometric Topology, Volume 12 (2012)



2152 Kristen Hendricks

Proof We essentially follow the argument given by Ong [18]. Let �1; : : : ; �r be the
first r elementary symmetric functions of r variables x1; : : : ;xr , such that

�j .x1; : : : ;xr /D
X

1�i1<���<ij�r

xi1
: : :xij :

There is a well-known biholomorphism between Symr .C/ and Cr by evaluating each
of the functions �j for 1� j � r on an unordered set of complex numbers x1; : : : ;xr .
This has the effect of mapping to the ordered coefficients of the monic polynomial with
roots x1; : : : ;xr , multiplied by an alternating sign.

(3)
�W Symr .C/!Cr

.x1 : : :xr / 7! .�1.x1; : : : ;xr /; : : : ; �r .x1; : : : ;xr //:

Under the map � the submanifold Symr .C�/ is carried to Cr�1 �C� . We can use
this map to construct the following homotopy equivalence between S1 and Symr .S1/

for any r .

Symr .S1/
� � // Symr .C�/

�jSymr .C�/ // Cr�1 �C� // C� // S1

Here the first inclusion map is a homotopy equivalence and the final two maps
are deformation retractions. The total map carries .ei�1 : : : ei�r / 2 Symr .S1/ to
�r ..e

i�1 ; : : : ; ei�r //, which is exactly the product of the entries, ei.�1C���C�r / . Ergo
the total map from Symr .S1/ to S1 which multiplies the entries of an unordered
r –tuple of points on the circle is a homotopy equivalence. Indeed, since this ho-
motopy equivalence can be regarded as a retract from Symr .S1/ to its subspace
Ar D f.e

i�1ei�2 : : : ei�r /W �2 D � � � D �r D 0g D S1 � f1gr�1 , there must be a defor-
mation retraction F r from Symr .S1/ to this subspace.

It will be useful to be slightly more careful concerning our choice of deformation
retraction. Suppose Symr�1.S1/ is regarded as a subspace Symr�1

�f1g of Symr .S1/

via the embedding .ei�1 : : : ei�r�1/ 7! .ei�1 : : : ei�r�1ei0/. Then both Symr .S1/ and
Symr�1.S1/� f1g deformation retract onto the subspace Ar in Symr .S1/, implying
that the relative homotopy groups �i.Symr .S1/;Symr�1.S1/�f1g/ are trivial. Hence
since all the spaces involved carry CW structures induced by the CW structure on S1 and
the inclusion Symr�1.S1/ ,! Symr .S1/ is cellular, there is a deformation retraction
F r;0 from Symr .S1/ to Symr�1.S1/�f1g, which can be taken to run on a time interval�
0; 1

r�1

�
. By similar logic for r � k � 2, there is a deformation retraction F r;r�k from

Symk.S1/�f1gr�k to Symk�1.S1/�f1gr�kC1 whose time input can be taken to be�
r�k
r�1

; r�kC1
r�1

�
. If we take F r to be the map Symr .S1/� Œ0; 1�! Symr .S1/ which

is F r;r�k on
�

r�k
r�1

; r�kC1
r�1

�
, then F r is a deformation retraction from Symr .S1/ to

Ar D Sym1.S1/� f1gr�1 which preserves each of the subspaces Symk
� f1gr�k .
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We can now deal with the symmetric product of a wedge of circles. To keep track of
which points originate in which circle, label the circles S1

1
; : : : ;S1

m and refer to points
ei�
j on S1

j . Take the wedge point to be the basepoint 1D ei0 on each circle.

Regard the space Symr
�Wm

iD1 S1
i

�
as the subspace Symr

�Wm
iD1 S1

i

�
� f1gr.m�1/ of

Symrm
�Wm

iD1 S1
i

�
. Any point in Symr

�Wm
iD1 S1

i

�
�f1gr.m�1/ may be split uniquely

into a point in Symr .S1
1
/ � Symr .S1

2
/ � � � � � Symr .S1

m/, as there are at most r

terms from any circle S1
i in an mr –tuple in Symr

�Wm
iD1 S1

i

�
� f1gr.m�1/ . Consider

applying F r W Symr .S1
1
/� Œ0; 1� to this submanifold; that is, consider the following

map.

F r
1 W Symr .S1

1 /� � � � �Symr .S1
m/�Œ0;1�! Symr .S1

1 /� � � � �Symr .S1
m/��

e
i�1

1
: : :e

i�r

1

�
; : : : ;

�
ei�1

m : : :ei�r
m

��
�Œ0;1� 7!

�
F r
�
e

i�1

1
: : : e

i�r

1
; t
�
; : : : ;

�
ei�1

m : : :ei�r
m

��
:

Because F r never increases the number of nonbasepoint terms in
�
e

i�1

1
: : : e

i�r

1

�
, the

map F r
1

preserves the subspace Symr
�Wm

iD1 S1
i

�
� f1gr.m�1/ in

Symr .S1
1 /�Symr .S1

2 /� � � � �Symr .S1
m/:

Ergo F r
1

is a deformation retraction from Symr
�Wm

iD1 S1
i

�
to the subspace of r –

tuples in Symr
�Wm

iD1 S1
i

�
of which at most one entry is a nonbasepoint point on S1

1
.

Running this procedure on each factor of Symr .S1
1
/� Symr .S1

2
/� � � � � Symr .S1

m/

produces a deformation retraction from Symr
�Wm

iD1 S1
i

�
to the subspace of r –tuples

in this space containing only one nontrivial point of each S1
j for 1 � j � r . So we

have the homotopy equivalence

Symr

� m_
iD1

S1
i

�
'
˚�

e
i�1

1
; : : : ; ei�m

m

�
W at most r �i are nonzero

	
� S1

1 � � � � �S1
m:

If r >m, this space is all of S1
1
� � � � �S1

m D .S
1/m . If r <m, this space is exactlyS

IDjr j.S
1/I � .S1/m .

We are now ready to discuss cohomology, and in particular to prove an important
relationship between the cohomology of M inv � Œ0; 1� and its subspace .Linv

0
� f0g/[

.Linv
1
� f1g/. Consider the inclusion map

i1W .Tˇ � f0g/[ .T˛ � f1g/! Symn�1.S2
nfw; zg/� Œ0; 1�:

Proposition 5.2 The cohomology pullback

i�1 W H
�.Symn�1.S2

nfw; zg/� Œ0; 1�/!H�..Tˇ � f0g/[ .T˛ � f1g//
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induced by inclusion map i1 is a surjection for � � 1.

Proof We will see in this proof that the homology (and hence the cohomology) groups
of M inv� Œ0; 1�D Symn�1.S2nfw; zg/� Œ0; 1� and of .Tˇ �f0g/[ .T˛�f1g/ are all
free abelian. Under these circumstances it suffices to work with a set of generators
for Hk.M

inv/ D Hk.M
inv � Œ0; 1�/ as an abelian group and a set of generators for

Hk..Tˇ � f0g/[ .T˛ � f1g// as an abelian group.

The following commutative square is natural, and both of the horizontal arrows are
isomorphisms, since there is no torsion in the cohomology of any of the spaces involved.

H k.M inv � Œ0; 1�/

i�
1

��

// Hom.Hk.M
inv � Œ0; 1�/;Z/

.i1/
T
�

��
H k..Tˇ � f0g/[ .T˛ � f1g// // Hom.Hk..Tˇ � f0g/[ .T˛ � f1g//;Z/

If we can show that the homology push-forward .i1/� is an injection mapping a
generator � of the k th homology of the subspace to a generator � of the k th homology
of M inv , then the cohomology pullback i�

1
maps the dual y� of � in H k.M inv� Œ0; 1�/

to the dual y� of � in H k..Tˇ � f0g/[ .T˛ � f1g//.

Let the curves f˛1; : : : ; ˛n�1g, fˇ1; : : : ; ˇn�1g on the punctured sphere S2nfw; zg
be as in Section 3. Choose a parametrization of each of the ˛ and ˇ curves such
that j̨ W Œ0; 1�! S2nfw; zg is a one-cycle in the punctured sphere, and similarly for

ǰ W Œ0; 1�! S2nfw; zg. Moreover, choose a set of one-cycles �i W Œ0; 1�! S2nfw; zg
for 1� i � 2n such that the image of �2j�1 is a small circle oriented counterclockwise
around wj and the image of �2j is a small circle around zj . Then Œ ǰ �D Œ�2j�1�CŒ�2j �

and Œ j̨ �D Œ�2j �C Œ�2jC1� in H1.S
2nfw; zg/.

Choose a set of one-cycles f�0
1
; : : : ; �0

2n�1
g in S2nfw; zg such that the image of each

�0i is an oriented circle homologous to �i , and moreover the union of the images of
the �i is a wedge of circles. We abuse notation slightly by referring to this wedge
as
W2n�1

iD1 �0i . Then S2nfw; zg admits a deformation retraction onto the wedge of
circles

W2n�1
iD1 �0i . This deformation retraction of the punctured sphere onto a wedge of

circles induces a deformation retraction of the space M invD Symn�1.S2nfw; zg/ onto
Symn�1.

W2n�1
iD1 �0i/. However, since

W2n�1
iD1 �0i is a wedge of circles, from Lemma 5.1

we observe that Symn�1
�W2n�1

iD1 �0i
�

admits a deformation retraction onto the .n�1/st
skeleton of the torus

Q2n�1
iD1 �0i . In particular, the first homology of this space is
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Figure 2: The Heegaard diagram of Figure 1 with the knot deleted. The
curves �1 , �2 , and �3 generate the first homology of S2nfw; zg .

generated by the homology classes of the following one-cycles.

x�0i W Œ0; 1�
// Q2n�1

iD1 �0i
� � // Symn�1

�W2n�1
iD1 �0i

� � � // M inv

t
� // .�0i.t/;x0; : : : ;x0/

� // .�0i.t/x0 : : :x0/
� // .�0i.t/x0 : : :x0/

Hence H1.M
inv/D ZhŒx�0

1
�; : : : ; Œx�0

2n�1
�i and by the Kunneth formula Hk.M

inv/ has
a basis consisting of tensor products of k distinct one-cycles Œx�0i � for 1 � k � n� 1.
Through a slight abuse of notation, we say Hk.M

inv/D
Vk

H1.M
inv/, although it

does not have the product structure of the exterior algebra. This will not, however,
be the most convenient presentation of this group. Let us introduce the following
one-cycles in M inv , for 1� i � n� 1.

x̨i W Œ0; 1�!M inv x̌
i W Œ0; 1�!M inv

t 7! .˛i.t/x0 : : :x0/ t 7! .ˇi.t/x0 : : :x0/
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Recall that in S2nfw; zg, ˇi is homologous to �2i�1C �2i , and hence to �0
2i�1
C �0

2i
.

Similarly, ˛i is homologous to �2i C �2iC1 , and hence to �0
2i
C �0

2iC1
. Therefore in

H1.M
inv/ we have the following equalities.

Œ x̌i �D Œx�
0
2i�1�C Œx�

0
2i �

Œx̨i �D Œx�
0
2i �C Œx�

0
2iC1�

Therefore we can rewrite the homology of M inv as follows.

H1.M
inv/D ZhŒx�01�; : : : ; Œx�

0
2n�1�i

D ZhŒx̨1�; : : : ; Œx̨n�1�; Œ x̌1�; : : : ; Œ x̌n�1�; Œx�
0
2n�1�i

Hk.M
inv/D

Vk ZhŒx�0
1
�; : : : ; Œx�0

2n�1
�i

D
VkZhŒx̨1�; : : : ; Œx̨n�1�; Œ x̌1�; : : : ; Œ x̌n�1�; Œx�

0
2n�1

�i

Here as before 1� k � n�1. Using the isomorphism Hk.M
inv/ŠHk.M

inv� Œ0; 1�/

we will also regard this as a description of Hk.M
inv � Œ0; 1�/.

Next we consider T˛ D ˛1 � � � � �˛n�1 �M inv . Let zx̨i denote the one-cycle in T˛

corresponding to the curve ˛i . To wit, choose a basepoint xi on each ˛i and let zx̨i be
defined as follows.

zx̨i W Œ0; 1�! T˛

t 7! .x1; : : : ;xi�1; ˛i.t/;xiC1; : : : ;xn�1/

Then the first homology of T˛ has generators
�
zx̨i

�
for 1� i � n� 1 and we see that,

for 1� k � n� 1,

H1.T˛/D Z
˝�
zx̨1

�
; : : : ;

�
zx̨n�1

�˛
Hk.T˛/D

VkZ
˝�
zx̨1

�
; : : : ;

�
zx̨n�1

�˛
The story for Tˇ is completely analogous; if yi is a basepoint on ˇi , then let zx̌i be
the one-cycles

zx̌
i W Œ0; 1�! Tˇ

t 7! .x1; : : : ;xi�1; ˇi.t/;xiC1; : : : ;xn�1/:

Then

H1.Tˇ/D Z
˝� zx̌

1

�
; : : : ;

� zx̌
n�1

�˛
Hk.Tˇ/D

VkZ
˝� zx̌

1

�
; : : : ;

� zx̌
n�1

�˛
:
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Notice that we have now seen that H�.M
inv � Œ0; 1�/, H�.Tˇ � f0g/DH�.Tˇ/, and

H�.T˛ � f1g/DH�.T˛/ are all free abelian as promised at the start of this proof.

We are now ready to consider the relationship of T˛ and Tˇ to M inv and prove that
the homology push forward

.i1/�W H�..T˛ � f0g/[ .Tˇ � f1g//!H�.M
inv/

is an injection and maps a generator on homology to a generator on homology for
� � 1.

From our description of the one-cycles whose homology classes generate the first
homology of M inv � Œ0; 1� and .T˛ � f0g/[ .Tˇ � f1g/, we see that the inclusion of
zx̨i into M inv � Œ0; 1� is x̨i and likewise the inclusion of zx̌i into M inv is x̌i . Ergo for
1� k � n� 1, i1 induces an injective map on homology of the following form.

.i1/�W Hk..Tˇ � f0g/[ .T˛ � f1g//!Hk.M
inv/�Vk1

tD1
Œ
zx̌
jt
�
�
˚
�Vk2

tD1
Œzx̨j 0t �

�
7!
Vk1

tD1
Œ x̌jt

�C
Vk2

tD1
Œx̨j 0t �

Here .j1; : : : ; jk1
/ and .j 0

1
; : : : ; j 0

k2
/ are any two collections of distinct integers be-

tween 1 and n�1 inclusive, with k1Ck2Dk . Since the generators of Hk..T˛�f0g/[

.Tˇ�f1g// as a free abelian group are
˚Vk

tD1

�
zx̨jt

�	
[
˚Vk

tD1

� zx̌
j 0t

�	
, whereas the

generators of H k.M inv/ include
˚Vk

tD1Œx̨jt
�
	

and
˚Vk

tD1Œ
x̌
j 0t
�
	

, the homology map
.i1/� on Hk maps a generator to a generator injectively. Therefore the corresponding
map on cohomology i�

1
is a surjection.

Remark The map in Proposition 5.2 is not a surjection if only half the basepoints of
the Heegaard diagram are removed; that is, for the inclusion map

i2W .Tˇ � f0g/[ .T˛ � f1g/! Symn�1.S2
nfwg/� Œ0; 1�

the cohomology pullback

i�2 W H
�.Symn�1.S2

nfwg//!H�..Tˇ � f0g/[ .T˛ � f1g//

DH�..S1/n�1/˚H�..S1/n�1/

has image the diagonal of H�..S1/n�1/˚H�..S1/n�1/. This is the primary reason
that the argument of this paper does not extend to a statement regarding bHF.†.K//
and bHF.S3/, although in a future paper we will be able to overcome this difficulty.
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6 Important constructions from K –theory

Central to our argument that the space .M inv;Linv
0
;Linv

1
/ admits a stable normal trivi-

alization will be several useful results from complex K–theory, most trivial but one
rather less so. A detailed treatment of the subject, along with proofs of all results up to
Proposition 6.8, may be found in Hatcher [9].

Let V be a complex vector bundle over a base space X , which for purposes of this
paper we take to be a compact Hausdorff topological space. We let VectCn .X / denote
the set of isomorphism classes of n–dimensional vector bundles over X . This is a
monoid under the direct sum of vector bundles. For any n, as before we refer to
the trivial complex vector bundle of degree n over X simply as Cn . Then there is
an equivalence relation �S on VectCn .X / defined as follows: given V;W two n–
dimensional vector bundles over X , we say that V �S W if and only if there is some
m such that V ˚Cm ŠW ˚Cm . The two vector bundles V and W are said to be
stably isomorphic. This relation respects the direct sums and tensor products of vector
bundles, such that the set of equivalence classes of bundles under �S inherits two
abelian laws of composition ŒV �SC ŒW �S D ŒV ˚W �S and ŒV �S � ŒW �S D ŒV ˝W �S .
This set of equivalence classes may be given the structure of a ring by formally adjoining
the inverse of each element under the direct sum. More precisely, we set

K0.X /D
˚
ŒV �S � ŒW �S W ŒV �S ; ŒW �S are equivalence classes with respect to �S

	
:

Commonly ŒV �S � ŒC
0�S will be written simply as ŒV �S and its additive inverse

ŒC0�S � ŒV �S simply as �ŒV �S .

Lemma 6.1 K0.X / is a ring with respect to the operations ŒV �SC ŒW �S D ŒV ˚W �S
and ŒV �S � ŒW �S D ŒV ˝W �S .

There is also a reduced form of this ring zK.X / constructed as follows. Let � be a
second equivalence relation on

S
n2N VectCn such that V �W if there is some m1;m2

such that V ˚Cm1 ŠW ˚Cm2 . In this case one can show that the set of equivalence
classes with respect to � contains additive inverses without adjoining any additional
elements. Let the equivalence class of a vector bundle V with respect to � be ŒV �.

Lemma 6.2 zK0.X / is a ring with respect to the operations ŒV �C ŒW � D ŒV ˚W �

and ŒV �� ŒW �D ŒV ˝W �.

Then K0.X /Š zK0.X /˚Z. In both cases a vector bundle in the same equivalence
class as Cm is said to be stably trivial. Notice as a most basic case that for fx0g a one
point space K0.x0/D Z and zK0.x0/D 0.
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Given a continuous map f W X ! Y , the corresponding map f �W VectCn .Y / !
VectCn .X / which maps a vector bundle V over Y to its pullback f �.V / descends
to maps f �W K0.Y /! K0.Y / and f �W zK0.Y /! zK0.X /. Recalling that if maps
f;gW X ! Y are homotopic then f �.V / and g�.V / the two pullbacks of a bundle V

over Y are isomorphic, we see that homotopic maps f and g induce the same maps
f � D g� on K0.Y / and zK0.Y /. In particular, we have the following lemma.

Lemma 6.3 If f W X1 ! X2 is a homotopy equivalence with homotopy inverse
gW X2 ! X1 , the induced map f �W K0.X2/ ! K0.X1/ is an isomorphism with
inverse g� . The same is true of the reduced theory.

We will use this lemma to deal with the minor problem that M inv is not actually
compact. The three spaces whose K–theory will be of interest to us are M inv � Œ0; 1�,
its subspace X DLinv

0
� f0g[Linv

1
� f1g, and the quotient space M inv=X . The space

X is a disjoint union of two tori, hence compact. We have seen previously that M inv

deformation retracts onto a compact subspace homeomorphic to the n� 1 skeleton of
.S1/2n�1 . For purposes of dealing with K0.M inv/ let us choose a slightly different
deformation retraction. Let Y D

�S
˛i

�
[
�S

ˇi

�
. Then let F W .S2nfw; zg/� Œ0; 1�!

S2nfw; zg be a deformation retraction from the punctured sphere to the union of Y

and all components of S2nY not containing any point of fw; zg. This is a compact
subspace of the punctured sphere; let it be Z . Then F induces a deformation retraction
Symn�1.F / of M invD Symn�1.S2nfw; zg/ onto the compact set Symn�1.Z/, so we
can legitimately refer to the K–theory of M inv by identifying it with K0.Symn�1.Z//.
Notice further that F is the identity on Y � I , so the induced deformation retraction
from M inv preserves X � Symn�1.Y /. Therefore we may produce a deformation
retract Symn�1.F / from M inv=X to Symn�1.Z/=X , and Symn�1.Z/=X is compact
Hausdorff. So we identify the K–groups of M inv=X with those of Symn�1.Z/=X ,
and from now on make no further reference to this technical subtlety.

The relationship between homotopy classes of maps and pullbacks of vector bundles
in fact gives us the following deeper proposition, which follows from the theorem
that any n–dimensional complex vector bundle over X is a pullback of the canonical
n–dimensional bundle over the Grassmanian Gn.C1/ along some homotopy class of
maps X !Gn.C1/.

Proposition 6.4 zK0.X /Š ŒX;BU �.

Here BU is the classifying space of the infinite unitary group.

We extend our definition of zK0.X / as follows. Let zK�i.X /D zK0.†i.X //, where
†.X / is (for this section only) the reduced suspension of X . Then we have the
following.
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Proposition 6.5 (The Bott Periodicity Theorem) zK0.X /Š zK0.†2.X //.

We use this two-periodicity to define zKi.X / for positive i . Now notice that zK0.X /D

K0.XC/, where XC denotes the one-point compactification of X (when X is compact,
this will mean X together with a point at infinity). In particular, K1.X /D zK0.†.X //.
Then the groups Ki.X / are also doubly-periodic.

With Ki.X / now defined for all i 2 Z, we are ready for the following proposition,
which deals with K�.X /D

S
i Ki.X / merely as a collection of abelian groups and

(momentarily) ignores their ring structure.

Proposition 6.6 The groups Ki.X / form a generalized cohomology theory on com-
pact topological spaces. Likewise, the groups zKi.X / form a reduced cohomology
theory.

A relevant note is that if fx0g is a one point space, we have

Ki.fx0g/D

(
Z if i even

0 if i odd :

One consequence of this structure on the K–theory of a space is that there is a notion
of the relative K–theory of a compact space X and a closed subspace Y . We let
K0.X;Y / be the ring of isomorphism classes of vector bundles over X which restrict
to a trivial bundle over Y . Equivalently, K0.X;Y /Š zK0.X=Y /; notice that if X is
compact Hausdorff and Y is a closed subspace, X=Y is compact Hausdorff, so this
statement makes sense. With respect to this construction, the long exact sequence of
a pair .X;x0/ consisting of a space X together with a basepoint x0 becomes a long
exact sequence relating the groups Ki.X / and zKi.X /.

� � � ! zKi.X /!Ki.X /!Ki.x0/! zKi�1.X /! � � �

For our purposes, the crucial results from K–theory will be those relating K�.X / to the
rational cohomology H.X IQ/ of X . The exact sequence above, and the corresponding
exact sequence on the reduced and unreduced rational cohomology of X , will allow
us to move between maps on K�.X / and zK�.X / with relative ease.

Recall that the Chern classes of a vector bundle V over a space X are a set of natural
characteristic classes ci.V / 2 H 2i.X /. The total Chern class of an n–dimensional
vector bundle V is c.V /D c0.V /C c1.V /C � � �C cn.X /. If X has the structure of a
complex manifold, as do most spaces of interest to us, we will often use c.X / to refer
to the total Chern class of the tangent bundle TX of X . The Chern classes may be
used to produce a ring homomorphism K0.X /[K1.X /!H�.X IQ/.
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Let �j .x1; : : : ;xk/ be the elementary symmetric functions on k elements as in
Section 5. Then we assert the existence of a new set of polynomials s.x1; : : : ;xk/

with the following properties.

Lemma 6.7 There exists a unique set of polynomials sj .x1; : : : ;xk/ with the property
that sj .�1.x1; : : : ;xk/; : : : ; �k.x1; : : : ;xk//D x

j
1
C � � �Cx

j

k
.

The polynomials sj are defined recursively in terms of the elementary symmetric
functions and the si of lower degree by the following relation.

sj D �1sj�1� �2sj�2C � � �C .�1/j�2�j�2s2C .�1/j�1�j�1s1

We can now define the Chern character of a vector bundle.

chW K0.X /!H even.X IQ/

ŒV �S 7! nC
X
j>0

sk.c1.V /; : : : ; ck.V //=k!

While this is the quickest way to produce this definition, it is not clear that it is
necessarily the most intuitive. To clarify: this definition is explicitly chosen so that
if L is a line bundle over X and the total Chern class of L is 1 C c1.L/, then
ch.L/ D 1C c1.L/C

c1.L/
2

2!
C

c1.L/
3

3!
C � � � , the “exponential” of the total Chern

class of L. As the map ch was intended to be a ring isomorphism on K0.X /, we
next require that for a product of line bundles L1˝L2˝ � � �˝Lk over X we have
ch.L1˝ � � �˝Lk/D ch.L1/ � � � ch.Lk/. A computation leads to the formula above.

The Chern character descends to a reduced map zchW zK0.X / ! zH even.X IQ/. We
may also consider the Chern character of vector bundles on †.X /, which yields the
following map into the odd cohomology of X .

chW K1.X /D zK0.†.X //! zH even.†.X /IQ/ŠH odd.X IQ/

Similarly, we define echW zK1.X /! zH odd.X IQ/. We then have the following extremely
useful result.

Proposition 6.8 The Chern character induces a rational isomorphism

chW K0.X /[K1.X /˝Q!H�.X IQ/:

In particular, the rank of K0.X / [ K1.X / is equal to the rank of H�.X /. The
analogous statement holds for ech and the two reduced theories.
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The proof of this proposition takes Bott periodicity as a base case and is laid out in
Hatcher [9, Theorem 4.5].

We will last need a K–theoretic statement about relationship between the torsion of
H�.X / and K�.X /. As it is a rather high-powered result, we’ll say a few words
about the proof, which relies on the Atiyah–Hirzebruch spectral sequence, a device for
computing an arbitrary cohomology theory first described by its eponymous introducers
in [1].

Proposition 6.9 Let hn.X / be any cohomology theory. Then there is a spectral
sequence which converges to hn.X / whose E2 page is given by

E2
i;j DH i.X I hj .fptg/:

In the particular case of the cohomology theory K�.X / this spectral sequence collapses
rationally, leading to a useful statement concerning the torsion groups of K�.X /.

Proposition 6.10 (Atiyah and Hirzebruch [1, Section 2.5]) Let X be a compact
Hausdorff space. If H i.X IZ/ is torsion-free for all i and finitely generated, then
K0.X /[K1.X / is torsion-free of the same rank.

Proof Recall that if fx0g is a one-point space then Kq.x0/ is Z for q even and 0

for q odd. Since unreduced K–theory is a cohomology theory, Proposition 6.9 gives
first and second quadrant spectral sequence converging to K�.X / whose E2 page has
entries

E2
p;q DH p.X IKq.fx0g//D

(
H p.X / if q is even

0 if q is odd :

The rank of Ki.X / is the sum
P

pCqDi rk.E1p;q/. Moreover, the ranks of the corre-
sponding entries on the E2 page of the spectral sequence sum to

P
pCqDi rk.E2

p;q/DP
p�nmod2 H p.X /. By Proposition 6.8, the rank of Ki.X / and the total rank of the

integer cohomology groups of degree the same parity as i are equal, soX
pCqDi

rk.E1p;q/D
X

pCqDi

rk.E2
p;q/:

As rk.E1p;q/� rk.E2
p;q/ for all p; q , we see that in fact this is an equality for all pairs

.p; q/.

Now notice that every entry on the E2 page of this spectral sequence is free abelian.
Suppose E1p;q has a nontrivial torsion subgroup for some fixed p; q such that q is
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even. Then there must be some first Er
p;q such that r > 2 with this property. Because

Er
p;q is a quotient of a subgroup of the free abelian group Er�1

p;q , if it contains a torsion
subgroup it must have lower rank than Er

p;q , implying that E1p;q has strictly lower
rank than E2

p;q . We have seen that this never happens. Therefore the E1 page of our
spectral sequence is torsion-free, implying that K�.X /, which is filtered by the entries
on the E1 page, is also free abelian.

This argument, which is similar to the original proof of Atiyah and Hirzebruch [1,
Section 2.5], was suggested by Dan Ramras.

Our proof that .M inv;Linv
0
;Linv

1
/ carries a stable normal trivialization will contain as a

crucial step a proof that H�.M inv�Œ0; 1�; .Linv
0
� f0g/[ .Linv

1
� f1g// is torsion-free,

and thus that the K–theory of this space must likewise be free abelian.

7 Stable trivialization of the normal bundle

We are now finally ready to discuss the proof of Theorem 3.11. We begin by restating
the theorem in a form that will be slightly easier to prove. Let J denote the complex
structure on M inv . As in Definition 2.4, we denote the trivial bundle X �Cn!X by
Cn whenever the base space X is clear from context, and similarly for Rn .

Proposition 7.1 (Seidel and Smith [26, Section 3d]) The existence of a stable normal
trivialization of ‡.M inv/ is implied by the existence of a nullhomotopy of the map

f W .M inv
� Œ0; 1�; .Linv

0 � f0g/[ .L
inv
1 � f1g//! .BU;BO/

which classifies the complex bundle ‡.M inv/ and the totally real subbundles N.Linv
0
/�

f0g over L0 � f0g and J.N.Linv
1
//� f1g over L1 � f1g. That is, it suffices to find a

complex stable trivialization of ‡.M inv/ which restricts to a real stable trivialization
of N.Linv

0
/� f0g and of J.N.Linv

1
//� f1g.

Proof This is largely the statement that we can dispense with the symplectic structure
involved in a stable normal trivialization and argue purely in terms of complex vector
bundles. Recall that any symplectic vector bundle can be equipped with a compatible
complex structure which is unique up to homotopy, and any complex vector bundle
similarly admits a symplectification. Moreover, two symplectic vector bundles are
isomorphic if and only if their underlying complex vector bundles are isomorphic, and
isomorphisms of symplectic vector bundles map Lagrangian subbundles to Lagrangian
subbundles (see McDuff and Salamon [14, Theorem 2.62]). Let !M be the natural
symplectic structure on N.M inv/ coming from the symplectic structure on TM .
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Suppose that gW N.M inv/! BU is a classifying map of N.M inv/ thought of as a
unitary vector bundle, so that the image of g lies inside BUkanti . Let

�kanti W EUkanti ! BUkanti

be the complex kanti –dimensional universal bundle, and similarly let

�kanti W EOkanti ! BOkanti

be the real kanti –dimensional universal bundle. Equip EUkanti with a symplectic
structure !� such that �kanti � �kanti is a Lagrangian subbundle. Then the bundles
.N.M inv/; !M / and .N.M inv/;g�.!�// are isomorphic (indeed, equal) as complex
vector bundles, so there is a symplectic vector bundle isomorphism

�W .N.M inv/; !M /! .N.M inv/;g�.!�//:

This extends to a symplectic vector bundle isomorphism

z�W .‡.M inv/; z!M /! .‡.M inv/; zg�.!�/D f
�.!M //;

where in both cases the symplectic forms are the pullbacks of the original symplectic
forms on N.M inv/ to ‡.M inv/, and therefore constant with respect to the interval
Œ0; 1�, as is the map z�. From now on, we assume that we have first applied an
isomorphism of this form to ‡.M inv/ so that the map gW ‡.M inv/! BU is in fact
a symplectic classifying map. We can if necessary precompose the resulting stable
normal trivialization with z�.

Consider a nullhomotopy H of f .

H W .M inv
� Œ0; 1�;Linv

0 � f0g[Linv
1 � f1g/� Œ0; 1�! .BU;BO/

.x; t; s/ 7! hs.x; t/

Here the map h0 is equal to f and the map h1 is constant.

Since M inv is homotopy equivalent to a compact subspace of itself, we may assume
there is some K> 0 such that if sDkantiCK , the image of H lies inside .BUs;BOs/.
Let �sW EUs! BUs be the complex s–dimensional universal bundle with subbundle
�sW EOs! BOs the real s–dimensional universal bundle. Then the pullbacks of �s
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and �s along h1 and h0 are certain bundles of great interest to our investigation.

h�0.�s/D .‡.M
inv/˚CK ; h�0!�/

h�1.�s/D .C
s; h�1!�/

.h0jLinv
0
�f0g/

�.�s/D .N.L
inv
0 /� f0g/˚RK

.h0jLinv
1
�f1g/

�.�s/D .J.N.L
inv
1 //� f1g/˚RK

.h1jLinv
i
�fig/

�.�s/DRs for i D 0; 1

For clarity’s sake it should be borne in mind that RK and Rs refer to the canonical
real subspaces in CK and Cs .

Since H is a nullhomotopy, it induces a stable trivialization  of ‡.M inv/. Write
an arbitrary vector in ‡.M inv/ as .x; t; v/ where .x; t/ 2M inv � Œ0; 1� and v is an
element of the fiber over .x; t/.

 W N.M inv/˚CK
D h�0.�s/

�
�! h�1.�s/DCs

.x; t; v/ 7!  .x; t; v/

The restrictions of  to .N.Linv
0
/� f0g/˚RK and to .J.N.Linv

1
/� f1g//˚RK are

real stable trivializations of these two bundles.

 j.N.Linv
0
�f0g/˚RK /W .N.L

inv
0 /� f0g/˚RK

!Rs

 j.J .N.Linv
1
/�f1g/˚RK /W .J.N.L

inv
0 //� f1g/˚RK

!Rs

Since ‡.M inv/ is the pullback of N.M inv/ to M inv � Œ0; 1�, the map h0 D f is
constant with respect to the interval Œ0; 1�. That is, h0.x; t1/ D h0.x; t2/ for all
x 2M inv and t1; t2 2 Œ0; 1�. Then each  t D  jM inv�ftg is a stable trivialization of
N.M inv/� ftg DN.M inv/. More concretely, we have symplectic trivializations

 t W N.M
inv/!Ck

.x; v/ 7!  .x; t; v/:

We will use the family of isomorphisms  t to produce a stable normal trivialization of
‡.M inv/. Consider a map � defined by applying  0 to each M inv�ftg�M inv�Œ0; 1�.

�W ‡.M inv/!Ck

.x; t; v/ 7!  0..x; v//D  .x; 0; v/:

This is a stable trivialization of ‡.M inv/. Because the symplectic structure on ‡.M inv/

is constant with respect to the interval Œ0; 1�, it is in fact a symplectic isomorphism
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of vector bundles. We next need to produce two Lagrangian subbundles ƒ0 and ƒ1

satisfying the conditions outlined in Definition 2.8. Consider the following candidates.

ƒ0jLinv
0
�ftg D .N.L

inv
0 /� ftg/˚RK

ƒ1jLinv
1
�ftg D  

�1
0 ı t .N.L

inv
1 /� ftg˚ iRK /:

Since the maps  t form a homotopy, ƒ1 is a smooth subbundle as desired. Both
subbundles are Lagrangian since their restriction to each Linv

i �ftg is Lagrangian. The
next thing to check is the restriction of ƒi to Linv

i � f0g for i D 0; 1.

ƒ0jLinv
0
�f0g D .N.L

inv
0 /� f0g/˚RK

ƒ1jLinv
1
�f0g D  

�1
0 ı 0..N.L

inv
1 /� f0g/˚ iRK /D .N.Linv

1 /� f0g/˚ iRK :

This is exactly as desired. The other condition to check is that �.ƒ0jLinv
0
�f1g/ is

Rs �Cs and �.ƒ1jLinv
1
�f1g/ is iRs �Cs .

�.ƒ0jLinv
0
�f1g/D  0..N.L

inv
0 /� f0g/˚RK /

D  ..N.Linv
0 /� f0g/˚RK /

DRs

�.ƒ1jLinv
1
�f1g/D  0. 

�1
0 ı 1..N.L

inv
1 /� f0g/˚ iRK /

D  1.J.J..N.L
inv
1 /� f0g/˚ iRK ///

D J. 1.J.N.L
inv
1 /� f0g/˚Rk//

D i.Rs/

Ergo the stable trivialization � of ‡.M inv/ together with the subbundles ƒ0 and ƒ1

constitutes a stable normal trivialization of ‡.M inv/.

The proof of Theorem 3.11 will rely on analysis of the bundle in question and the
K–theory of Symn�1.S2nfz; wg/. We start by showing that ‡.M inv/ is trivial as a
complex vector bundle.

Lemma 7.2 The complex vector bundle ‡.M inv/ is trivial.

Proof It suffices to show N.M inv/ is trivial. Let h be a map from Symn�1.S2/ to
Sym2n�2.†.S2// which restricts to the embedding (2) on Symn�1.S2nfw; zg/ and is
defined as follows.

hW Symn�1.S2/! Sym2n�2.†.S2//

.x1 : : :xn�1/ 7! .zx1�.zx1/ : : : zxn�1�.zxn�1//
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A proof on charts that h is continuous and holomorphic appears in Appendix A.

Now we have the following useful commutative diagram of spaces, where i1 , i2 are
inclusion maps.

Symn�1.S2/
h // Sym2n�2.†.S2//

Symn�1.S2nfz;wg/
?�

i1

OO

� � i // Sym2n�2.†.S2/nfz;wg/
?�

i2

OO
(4)

Since the map i2 is an inclusion of the space Sym2n�2.†.S/nfz;wg/ of complex
dimension 2n� 2 into the similarly .2n� 2/–dimensional space Sym2n�2.†.S//,
the tangent bundle to M D Sym2n�2.†.S/nfz;wg/ is the pullback of the tangent
bundle to Sym2n�2.†.S// along i2 . Hence we have the following equalities of vector
bundles.

N.M inv/˚T .M inv/D i�.TM /

D i�.T .Sym2n�2.†.S/nfz;wg//

D i� ı i�2 .T .Sym2n�2.†.S////

D i�1 ı h�.T .Sym2n�2.†.S////

It will be most illuminating to consider the map i1 . Let i3W S
2nfz;wg ,! S2 , and �1 ,

�2 be quotient maps, so that the following diagram commutes.

.S2nfz;wg/n�1 �
� i

�.n�1/

3 //

�1

��

.S2/n�1

�2

��

Symn�1.S2nfz;wg/ �
� i1 // Symn�1.S2/

The map i3 is nullhomotopic. Since the operation of taking the symmetric product
preserves homotopy equivalence, the original map i1 is likewise nullhomotopic. In
particular, the pullback of any bundle along i1 is trivial, so we conclude that

0D i�1 ı h�.T .Sym2n�2.†.S////

DN.M inv/˚T .M inv/

Finally, TM inv is the pullback of T .Symn�1.S2// along i1 , and therefore trivial.
Ergo N.M inv/ is trivial as a complex vector bundle. This implies that ‡.M inv/, the
pullback of N.M inv/ to M inv � Œ0; 1�, is also trivial.
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Remark The triviality of N.M inv/ is the reason we have been compelled to choose
a Heegaard surface for .S3;K/ on the sphere S2 and strew basepoints about like
confetti. In the general case, given a surface S of genus g with a choice of 2n

basepoints w D .w1; : : : ; wn/ and z D .z1; : : : ; zn/, its double branched cover over
these basepoints is a surface †.S/ of genus nC 2g� 1. By the same mechanism as
before, there is an embedding

i W SymnCg�1.Snfw; zg/ ,! Sym2nC2g�2.†.S/nfw; zg/

In [13] Macdonald has calculated the Chern classes of the symmetric product of a
Riemann surface. A computation using his results proves that the normal bundle to
i.SymnCg�1.Snfw; zg// in Sym2nC2g�2.†.S/nfw; zg/ is in general stably equivalent
to the tangent bundle of SymnCg�1.Snfw; zg/. In the case that S is actually a sphere,
both are trivial.

We will also require N.Linv
i / for i D 0; 1 to be a trivial real bundle.

Proposition 7.3 N.Linv
i / is trivial for i D 0; 1.

Proof Recall that L1 D T z̨ � Sym2n�2.Snfz;wg/ is the totally real torus

z̨1 � �.z̨1/� � � � � z̨n�1 � �.z̨n�1/:

Thus the tangent bundle

TL1 D T .z̨1/�T .�.z̨1//� � � � �T .z̨n�1/�T .�.z̨n�1//

is the trivial real tangent bundle to .S1/2n�2 . The invariant set

Linv
1 D i.T˛/D i.˛1 � � � � �˛n�1/

is embedded in L1 via

i jT˛
W T˛ ,! T z̨

.x1; : : : ;xn�1/ 7! .zx1; �.zx1/; : : : ; zxn�1; �.zxn�1//:

Therefore the tangent and normal bundles to Linv
1

have the following descriptions.

T .Linv
1 /D i�.T .T˛//

D f.zv1; ��.zv1/; : : : ; zvn�1; ��.zvn�1// W .v1; v2; : : : ; vn�1/ 2 T˛g � TL1

N.Linv
1 /D f.zv1;���.zv1/; : : : ; zvn�1;���.zvn�1// W .v1; : : : ; vn�1/ 2 T˛g � TL1:
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The point is that T .Linv
1
/' T ..S1/n�1/ is trivial, and there is an isomorphism

T .Linv
1 /!N.Linv

1 /

.zv1; ��.zv1/; : : : ; zvn�1; ��.zvn�1// 7! .zv1;���.zv1/; : : : ; zvn�1;���.zvn�1//:

Triviality of N.Linv
0
/ is proven analogously.

With these facts in hand, we are finally ready to give a proof of Theorem 3.11.

Proof of Theorem 3.11 We claim that ‡.M inv/ carries a stable normal trivialization.
As per Proposition 7.1, it suffices to produce a nullhomotopy of the map

f W .M inv; .Linv
0 � f0g/[ .L

inv
1 � f1g//! .BU;BO/

which classifies the complex bundles ‡.M inv/ and Lagrangian subbundles N.Linv
0
/�

f0g over Linv
0

and J.N.Linv
1
// � f1g over Linv

1
. In fact, we shall do slightly better.

By Proposition 7.3, both N.Linv
0
/ � f0g and J.N.Linv

1
// � f1g are trivial bundles.

Choose, once and for all, a preferred real trivialization of each. We will show that
there is a complex trivialization of ‡.M inv/ whose restriction to .N.Linv

0
/� f0g/[

J.N.Linv
1
/� f1g/ is the fixed real trivialization in question; this implies the existence

of a nullhomotopy of the map f .

For ease of reference, let X D .Linv
0
� f0g/[ .Linv

1
� f1g/D .Tˇ � f0g/[ .T˛ � f1g/.

Since N.Linv
0
�f0g/ is a totally real subbundle of ‡.M inv/jLinv

0
, the bundle ‡.M inv/jLinv

0

is equal to N.Linv
0
/� f0g˚J.N.Linv

0
//� f0g/. In particular, a choice of real trivial-

ization of N.Linv
0
/� f0g induces a choice of complex trivialization of ‡.M inv/jLinv

0
.

Similarly, a choice of real trivialization of J.N.Linv
1
/ � f1g/ induces a choice of

complex trivialization of ‡.M inv/jLinv
1
�f1g .

We now have a complex trivialization of ‡.M inv/jX , and we would like to show it
extends to a trivialization of ‡.M inv/. It is enough to demonstrate that the relative
vector bundle Œ‡.M inv/rel�2 zK

0..M inv�Œ0; 1�/;X /Š zK0..M inv�Œ0; 1�/=X / is trivial.

To begin, we claim that the equivalence class Œ‡.M inv/rel� is a torsion element of
zK0..M inv � Œ0; 1�/=X /. As the reduced Chern characterechW zK0..M inv

� Œ0; 1�/=X /˝Q! zH�..M inv
� Œ0; 1�/=X IQ/

is an isomorphism, it suffices to show that the Chern classes of ‡.M inv/rel are trivial.

Recall from Proposition 5.2 that the map H�.M inv � Œ0; 1�/! H�.X / induced by
inclusion is a surjection for each � � 1. This remains true in the setting of reduced
cohomology, which will be a slightly more useful setting for our purposes. Indeed,
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since .M inv � Œ0; 1�;X / can be taken to be a CW pair, there is a long exact sequence
on the reduced cohomology of these three spaces.

� � � �! zH m..M inv
� Œ0; 1�/=X /

q�

�! zH m.M inv/
i�

�! zH m.X /

@
�! zH mC1..M inv

� Œ0; 1�/=X / �! � � �

Here i is the inclusion map i W X ,! M inv and q is the quotient map qW M inv !

.M inv� Œ0; 1�/=X . Since i� is a surjection for m� 1, for m� 2 this sequence breaks
up into short exact sequences as follows.

0 // zH m..M inv � Œ0; 1�=X /
� � q� // zH m.M inv/

i� // // zH m.X / // 0

In particular, for m � 2 the map q�W zH m..M inv � Œ0; 1�/=X / ,! zH m.M inv/ is an
injection. For i > 0, let ci.‡.M

inv// D 0 be the i th Chern class of ‡.M inv/ in
H 2i.M inv/ D zH 2i.M inv/. Then since ‡.M inv/ D q�.‡.M inv/rel/, we see that
0 D ci.‡.M

inv// D q�.ci.‡.M
inv/rel//. As the induced map q� is injective on

H 2i.M inv=X /, the i th Chern class of ‡.M inv/rel is trivial.

Next we show that the K–theory of M inv=X is in fact torsion free. By Proposition 6.10,
it suffices to show that the cohomology of M inv=X is torsion-free. Consider again
the short exact sequence above. When m � 2, the group zH m.M inv=X / injects into

the free abelian group zH m.M inv/Š Z
�
2n�1

m

�
and therefore is torsion free. In order to

analyze zH 1.M inv=X /, let us look closely at the early stages of the long exact sequence
of the pair .M inv;X /.

� � � �! 0D zH 0.M inv/
i� // zH 0.X /

@ // zH 1.M inv=X /
q� // zH 1.M inv/ �! � � �

We observe that zH 0.X /ŠZ since X D .Linv
0
�f0g/[ .Linv

1
�f1g/ has two connected

components. Moreover, zH 1.M inv/ is free abelian, so its subgroup Im.q�/ is as well.
Thus we have the short exact sequence

0 // Z
� � // zH 1..M inv � Œ0; 1�/=X / // // Im.q�/ // 0:

As Z and Im.q�/ are free abelian, zH 1..M inv�Œ0; 1�/=X / is as well. Thus zH�..M inv�

Œ0; 1�/=X / is torsion free, implying that zK0..M inv � Œ0; 1�/=X / is as well.

Ergo the relative bundle Œ‡.M inv/rel� 2 zK
0..M inv� Œ0; 1�/=X / is trivial, implying that

‡.M inv/ carries a stable normal trivialization.
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This proves Theorem 3.11, which together with the discussion of the symplectic
geometry of M in Section 4 shows that M D Sym2n�2.†.S/nfw; zg/ satisfies the
hypotheses of Theorem 1.5. This proves Theorem 1.1. For the reader’s convenience,
we summarize here the arguments that allow us to deduce Corollaries 1.2, 1.3, and 1.4
from Theorem 1.1.

Proof of Corollary 1.2 Since there is a spectral sequence whose E1 page is

. bHFK .†.K/;K/˝V ˝.n�1//˝Z..q//

and whose E1 page is isomorphic to . bHFK .S3;K/˝V ˝.n�1//˝Z..q// as Z..q//–
modules, the rank of . bHFK .†.K/;K/˝ V ˝.n�1//˝Z..q// as a Z..q//–module is
greater than the rank of . bHFK .S3;K/˝V ˝.n�1//˝Z..q// as a Z..q//–module. Ergo

2n�1 rk. bHFK.†.K/;K//� 2n�1 rk. bHFK.S3;K//

implying
rk. bHFK .†.K/;K//� rk. bHFK .S3;K//:

Proof of Corollary 1.3 We have seen in Section 3 that the spectral sequence of
Theorem 1.1 arises from the double complex

0 //

��

bCFKiC1. zD/

@
��

1C�#
// bCFKiC1. zD/

@
��

1C�#
// bCFKiC1. zD/

@
��

// � � �

0 //

��

bCFKi. zD/

@
��

1C�#
// bCFKi. zD/

@
��

1C�#
// bCFKi. zD/

@
��

// � � �

0 // bCFKi�1. zD/
1C�#

// bCFKi�1. zD/
1C�#

// bCFKi�1. zD/ // � � �

where D is a Heegaard diagram for .S3;K/ on the sphere S2 , and zD its lift to
a Heegaard diagram for .†.K/;K/, and that this spectral sequence preserves the
canonical spinc structure on bCFK . zD/. (Other spinc structures are exchanged in pairs
by the involution �� on eHFK . zD/, and thus vanish after the second page of the spectral
sequence.) Since the splitting of eHFK . zD/ along spinc canonically corresponds to the
splitting of bHFK .Y 3;K/, we sharpen our statement to the following.

rk
� bHFK .†.K/;K; s0/

�
� rk

� bHFK .S3;K/
�
:

Proof of Corollary 1.4 Consider the double complex of the preceding proof. Both dif-
ferentials in the spectral sequence preserve the Alexander grading, and the isomorphism
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between the E1 page of the spectral sequence and eHFK .D/ does not disrupt the
splitting of the spectral sequence along the Alexander grading. Therefore we sharpen
Corollary 1.2 to

rk
� eHFK . zD; s0; i/

�
� rk

� eHFK .D; i/
�

In particular, let g be the largest Alexander grading for which eHFK . zD/ is nonzero.
Then since the vector space V has elements with gradings .0; 0/ and .�1;�1/, we have
eHFK . zD; s0;g/ D bHFK .†.K/;K;g/, and similarly eHFK .D;g/ D bHFK .S3;K/.

Ergo the inequality in this Alexander grading takes the form

rk
� bHFK .†.K/;K; s0;g/

�
� rk

� bHFK .S3;K;g/
�
:

Remark In [26, Section 3d], Seidel and Smith observe that although their theorem
deals with an obstruction on the level of the classifying map

f W .Œ0; 1��M inv; .Linv
0 � f0g/[ .f1g �Linv

1 //! .BU;BO/

there is evidence to suggest that the fundamental obstruction is a map encoding slightly
less structure. Let P inv D fyW Œ0; 1�!M invW y.0/ 2 Linv

0
;y.1/ 2 Linv

1
g be the set of

paths between the two Lagrangians in M inv . Then f induces a map

P inv
! U=O

This descends to a map on loop spaces:

�P inv
!�.U=O/Š Z�BO(5)

This map records the Maslov index of a self-flow in �P inv . The difference between
the Maslov index and equivariant Maslov index of a holomorphic curve u in M inv is
classified by the composition of (5) with a map M.x�;xC/

inv!�P inv ; which suggests
that (5) is the fundamental obstruction to the existence of a spectral sequence from
HF.L0;L1/ to HF.Linv

0
;Linv

1
/. For more detail, see Seidel and Smith [26, Section 3d].

In the Heegaard Floer context this has a nice interpretation. If D D .S;˛;ˇ;w; z/
is a Heegaard surface for .Y;K/, and M inv is SymgCn�1.Snfw; zg/, then a loop in
�P inv is a periodic domain on the punctured Heegaard surface Snfw; zg. The map
�P inv! Z which is the composition of (5) with projection to Z records the Maslov
index of the periodic domain, and is nullhomotopic exactly when there are no periodic
domains of nonzero index on S . We speculate that Seidel and Smith’s observations
might contain a method for extending Corollary 1.2 from pairs .S3;K/ to pairs .Y;K/
for which a punctured Heegaard surface contains no periodic domain of nonzero index.
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Appendix A Inclusion maps of M inv into M

Since the proof that the map

hW Symn�1.S2/! Sym2n�2.†.S2//

.x1 : : :xn�1/ 7! .zx1�.zx1/ : : : zxn�1�.zxn�1//

is holomorphic is a computation on charts in the symmetric product, we place it here
so as not to disrupt the flow of the arguments above.

We claim h is continuous; indeed, holomorphic. Let xx D .x1 : : :xn�1/ be a point in
Symn�1.S2/. Collect repeated points, so that .x1 : : :xn�1/ has the form

.y1; : : : ;y1;y2; : : : ;y2; : : : ;y`; : : : ;y`/

with n�1 total entries but ` unique entries. Moreover, list points which are not branch
points of the double branched cover (that is, points which are not in fw; zg) first, so
that y1; : : : ;ys 62 fw; zg and ysC1; : : : ;y` 2 fw; zg for some s .

First consider yi such that 1 � i � s , so that yi is not a branch point of the double
cover. Then let zyi be a lift of yi . There is a neighborhood Ui of yi which admits
a homeomorphic lift to a neighborhood zUi of zyi such that .�j zUi

/�1W Ui !
zUi is

holomorphic. Moreover, we may pick Ui sufficiently small such that there is a chart
fi W Ui!D , where D is the unit disk in the complex plane, and a corresponding chart
zfi D fi ı� W zUi !D . In total this gives a local biholomorphism between Ui and zUi

expressed on charts as follows.

D D
Id

//

zUi

D

fi

��

zUi
zUi

� �

�
�j zUi

��1

// zUi

D

zfi

��

Similarly, there is a neighborhood �. zUi/ of the second lift �.zyi/ of yi which is
homeomorphic to Ui via .�j

�. zUi /
/�1 and has a chart �. zfi/W �. zUi/!D .

Now suppose sC1� i � `, so that yi is a branch point for the double branched cover
map. Then there is a chart fi W Ui!D around yi and a chart gi W �

�1.Ui/!D with
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respect to which fi ı� ı .gi/
�1 is x 7! x2 .

��1.Ui/

gi

��

�j
��1.Ui / // Ui

fi

��
D

x 7!x2
// D

In particular, if y 2 Ui and fi.y/ D x 2 D , then if zy and � zy the two lifts of y in
��1.Ui/, then gi.zy/ and gi.�.zy// are

p
x and �

p
x in some order.

We will insist that all of our choices of neighborhoods Ui about each yi on which we
choose preferred charts �i be made such that if i1¤ i2 , Ui1

\Ui2
D∅, by shrinking if

necessary. This in turn implies that zU1; �. zU1/; : : : ; zUs; �. zUs/;�
�1.UsC1/; : : : ;�

�1.U`/

are all pairwise disjoint.

We are now ready to discuss the map h. Recall that we began with a point xx D
.x1 : : :xn�1/D .y1 : : :y1y2 : : :y2 : : :y` : : :y`/ in Symn�1.S2/. Let ki be the num-
ber of times xi appears in xy . Then xy is contained in the open neighborhood

Symk1.U1/� � � � �Symk`.U`/:

Here the product notation arises due to our unwavering insistence that the Ui be
pairwise disjoint. Moreover, we see h.xx/D .zx1�.zx1/ : : : zxn�1�.zxn�1// is contained
in the analogous open neighborhood

sY
iD1

.Symki . zUi/�Symki .�. zUi//�
Ỳ

iDsC1

Sym2ki .��1.Ui//:

We see that locally the map h is a product of maps

hi W Symki .Ui/! Symki . zUi/�Symki .�. zUi//

.y01 : : :y
0
ki
/ 7! ..zy01 : : : zy

0
n�1/; .�.zy

0
1/; : : : ; �.zy

0
ki
//

where zy0i is the lift of y0i in zUi and similarly for �. zUi/, and maps

hi W Symki .Ui/! Sym2ki .��1.Ui//

.y01 : : :y
0
ki
/ 7! .zy01�.zy

0
1/ : : : zy

0
ki
�.zy0ki

//

Our goal is to show hi is holomorphic in each of these cases. We begin with the first
case, in which xi is not a branch point of the double branch covering. In this case
hi carries a point .y0

1
: : :y0

ki
/ in Symki .Ui/ to the product of its lifts .zy1 : : : zyki

/ in

Symki . zUi/ and .�.zy1/ : : : �.zyki
// in Symki .�. zUi//. Ergo hi D Symki ..�j zUi

/�1/�
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Symki ..�j
�. zUi /

/�1/. We already know how to express this map in terms of the bi-

holomorphisms Symki .fi/W Symki .Ui/! Symki .Dki / and the corresponding maps
Symki . zfi/ on Symki . zUi/ and Symki .�. zfi// on �. zUi/.

Symki .D/ Symki .D/�Symki .D/
Id� Id

//

Symki .Ui/

Symki .D/

Symki .fi /

��

Symki .Ui/ Symki . zUi/�Symki .�. zUi//
hiDSym..�jUi

/�1/�Symki ..�j
�. zUi /

/�1/
// Symki . zUi/�Symki .�. zUi//

Symki .D/�Symki .D/

Symki . zfi /�Symki .�. zfi //

��

We see ji is holomorphic. For the second case we will need to be slightly more
subtle, producing actual charts for Symki .Ui/ and Sym2ki .��1.Ui//. We can assign
Symki .Uj /Š Symki .D/ a holomorphic chart using the familiar biholomorphism (3)
which maps a point .r1 : : : rki

/ in Symki .D/ to the ki elementary symmetric functions
of its coordinates in D . Let’s see what this produces in our particular case. Let
�ki
.D/�Cki be the image of Symki .D/ under the map (3) from Symki .C/!Cki ,

and similarly for �2ki
.D/.

Symki .Ui/
hi //

Symki .fi /
��

Sym2ki .��1.Ui//

Sym2ki .gi /
��

Symki .D/

�ki

��

// Sym2ki .C/

�2ki

��
�ki
.D/ // �2ki

.D/

Let .y0
1
: : :y0

ki
/ be an arbitrary point of Ui , so that

hi.y
0
1 : : :y

0
ki
/D .zy01�.zy

0
1/ : : : zy

0
ki
�.zy0ki

/:

Then the middle horizontal map carries .r1 : : : rki
/D .fi.y

0
1
/ : : : fi.y

0
ki
/ to

.gi.zy
0
1/gi.�.zy

0
1// : : :gi.zy

0
ki
/gi.�.zy

0
ki
//D .

p
r1�
p

r1 : : :
p

rki
�
p

rki
/:

Taking symmetric functions of both sides reveals that the bottom horizontal map is
expressed in coordinates as

�ki
.D/! �2ki

.D/

.�1.r1; : : : ; rki
/; : : : ; �ki

.r1; : : : ; rki
// 7! .�1.

p
r1;�
p

r1; : : : ;
p

rki
;�
p

rki
/; : : : ;

�2ki
.
p

r1;�
p

r1; : : : ;
p

rki
;�
p

rki
//
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Let’s consider the symmetric functions �j of

.a1; : : : ; a2ki
/D .
p

r1;�
p

r1; : : : ;
p

rki
;�
p

rki
/

of our set of complex roots and their opposites. Recall from Section 5 that the functions
�j are defined to be the sums

�j .a1; a2; : : : ; a2ki
/D

X
1�i1<���<ij�2ki

ai1
: : : aij :

If the set of indices .i1; : : : ; ij /� .i1; : : : ; i2k/ contains only one of i2t�1 and i2t for
any r , then there is a set of indices .i 0

1
; : : : ; i 0j / identical to .i1; : : : ; ij / except that

either i2t is replaced with i2t�1 or vice versa. Moreover ai1
: : : aij D �a0

i0
1

: : : ai0
j

,
so these two terms cancel each other out in the sum which comprises �j . Therefore
�j .a1; : : : ; a2ki

/ is a sum of terms ai1
: : : aij for sets 1 � i1 < � � � < ij < 1 which

contain either both i2t�1 and i2t or neither, for every 1 � t � j
2

. In particular,
�j .
p

r1;�
p

r1; : : : ;
p

rki
;�
p

rki
/D 0 for j odd. When j is even we may make the

following computation.

�j .a1;�a1; : : : ; ak ;�ak/D
X

1�i1<���<ij�ki

a2i1�1a2i1
: : : a2ij�1a2ij

D

X
1�i1<���<ij�ki

.
p

ri1
/.�
p

ri1
/ : : : .

p
rij /.�

p
rij /

D

X
1�i1<���<ij�ki

.�1/j ri1
: : : rij

D .�1/j�j .r1; : : : ; rki
/

So the bottom horizontal map in the diagram above is of the form

�ki
.D/! �2ki

.D/

.�1.r1; : : : ; rki
/; : : : ; �ki

.r1; : : : ; rki
// 7!

.0;��1.r1; : : : ; rki
/; 0; : : : ; .�1/ki�ki

.r1; : : : ; rki
//

This is holomorphic, implying that hi is as well. Since all the maps hi are holomor-
phisms, and h is locally the product h1 � � � � � h` , h is holomorphic.
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