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A generalisation of the deformation variety

HENRY SEGERMAN

Given an ideal triangulation of a connected 3–manifold with nonempty boundary con-
sisting of a disjoint union of tori, a point of the deformation variety is an assignment of
complex numbers to the dihedral angles of the tetrahedra subject to Thurston’s gluing
equations. From this, one can recover a representation of the fundamental group
of the manifold into the isometries of 3–dimensional hyperbolic space. However,
the deformation variety depends crucially on the triangulation: there may be entire
components of the representation variety which can be obtained from the deformation
variety with one triangulation but not another. We introduce a generalisation of the
deformation variety, which again consists of assignments of complex variables to
certain dihedral angles subject to polynomial equations, but together with some extra
combinatorial data concerning degenerate tetrahedra. This “extended deformation
variety” deals with many situations that the deformation variety cannot. In particular
we show that for any ideal triangulation of a small orientable 3–manifold with a
single torus boundary component, we can recover all of the irreducible nondihedral
representations from the associated extended deformation variety. More generally, we
give an algorithm to produce a triangulation of a given orientable 3–manifold with
torus boundary components for which the same result holds. As an application, we
show that this extended deformation variety detects all factors of the PSL.2;C/ A–
polynomial associated to the components consisting of the representations it recovers.
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1 Introduction

In Thurston’s groundbreaking notes [17], explicit computations of hyperbolic structures
on cusped 3–manifolds are given. The strategy is as follows: First we decompose the
3–manifold M (which we will assume to be orientable throughout this paper) into ideal
tetrahedra1 in some way, giving an ideal triangulation of the manifold. Next, we try
to give each tetrahedron the geometry of an ideal hyperbolic tetrahedron2, embedded

1An ideal tetrahedron is a tetrahedron missing its vertices, which are to be thought of as being out at
the cusp(s) of the manifold.

2An ideal hyperbolic tetrahedron (with distinct ordered vertices) is the intersection of H3 with the
convex hull of 4 point on the sphere at infinity of H3 , which we write as @H3 .
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in H3 . Thurston considers a system of polynomial equations, the gluing equations,
whose (complex) variables describe the shapes of the ideal hyperbolic tetrahedra.
The equations are satisfied if and only if the ideal hyperbolic tetrahedra fit together
properly around the edges, and a solution of these determines a representation of �1M

into Isom.H3/. He also defined additional polynomial equations, the completeness
equations, and showed that a solution to the gluing and completeness equations gives a
discrete and faithful representation of �1M (as long as all tetrahedron shapes specified
by the solution are positively oriented), and so a complete hyperbolic structure on M .
Solutions of the gluing equations near to the complete structure give incomplete
hyperbolic structures, which we can view as deformations of the complete structure.
The “deformation variety” is the affine algebraic set determined by the gluing equations,
and therefore contains this family of deformations of the complete structure. Note that
the deformation variety depends on the ideal triangulation in an intrinsic way, so is not
an invariant of M .

The representations of �1M in the above construction arise as holonomy representations
of developing maps. The developing map is a map ˆ from the universal cover �M
of M to H3 , which can be thought of as being constructed by building a copy of �M
in H3 out of (possibly overlapping) ideal hyperbolic tetrahedra of the appropriate
shapes. The holonomy representation of a developing map is the unique representation
�W �1M ! Isom.H3/ such that ˆ is equivariant with respect to � . A point of the
deformation variety determines a developing map up to conjugacy by elements of
Isom.H3/, and so the holonomy representation is also only defined up to conjugacy.
Thus we can also think of it as encoding essentially the same information as a point of
the PSL.2;C/ character variety.

If all the tetrahedron shapes are strictly positively oriented, then the developing map is
a local homeomorphism, and we get a hyperbolic structure on the manifold. In general
this is not true if there are flat or negatively oriented tetrahedron shapes. However, the
algebraic (as opposed to geometric) interpretation as a representation (up to conjugacy)
into Isom.H3/Š PSL.2;C/ holds, and we can think of the map from the deformation
variety to the PSL.2;C/ character variety of M as a parameterisation of the character
variety. For computational purposes, this is by far the most effective way of describing
the character variety known (as implemented in SnapPea and SnapPy [20; 5] and also
recent work by Culler on calculating the A–polynomial; see Section 11.3). However, the
character variety is a canonical object, while the deformation variety is not, depending
on the choice of triangulation. Many applications are concerned only with the complete
hyperbolic structure of a manifold with torus boundary components, and for these uses
the dependence is a minor disadvantage. If an ideal triangulation of a cusped hyperbolic
manifold has all edges essential (an edge is essential if it cannot be homotoped into the
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boundary of the manifold) then the associated deformation variety has a component
which maps to the Dehn surgery component of the character variety, which contains
the complete structure; see Tillmann [19].

However, for applications that involve structures corresponding to components of the
character variety other than the Dehn surgery component (for example, in finding ideal
points in order to detect incompressible surfaces, as in Yoshida [21], Tillmann [19], the
author [13], or calculating the A–polynomial), this dependence becomes troublesome.
Depending on the triangulation, entire components may be missing from the deformation
variety, even if the triangulation is minimal. The problem arises when the shape of an
ideal hyperbolic tetrahedron would be degenerate, ie that the positions of its vertices
on @H3 are not distinct. This means that the (supposed) complex number associated to
the shape of the tetrahedron would be 0, 1 or 1. Thus these degenerate shapes do not
appear as solutions to the gluing equations. In Sections 4 and 11.3 we give examples
of this behaviour. Moreover, there does not currently seem to be a general method for
finding a “good” ideal triangulation for which the associated deformation variety does
not miss components, and it is not even known if such a triangulation exists in general.

The dependence on the triangulation is the issue we tackle in this paper. We introduce
a generalisation of the deformation variety3 for orientable manifolds, which to a large
extent solves the problem of dependence on the triangulation, whilst retaining many
useful features of the standard deformation variety (in particular, computation is not
significantly more complicated in many cases). Our generalisation, the “extended
deformation variety”, is another affine complex variety. It still uses a triangulation as
part of its data, and it includes the standard deformation variety as a subset. The points
of the extended deformation variety also give conjugacy classes of representations
of �1M into PSL.2;C/, and the map from the extended deformation variety onto the
character variety may strictly reduce dimension. However, as long as the triangulation
satisfies certain mild conditions, this map is guaranteed to be surjective (onto irreducible
nondihedral elements of the representation variety, up to conjugation).

The following result uses notation which will be defined in detail later. For now: A
horo-normal surface is a normal surface that intersects each edge of the triangulation
either zero or two times, and so cuts the manifold into an inside and outside region,
the latter containing the cusp(s)4. A horo-normal surface is porous if the preimage
(under the covering map) of the inside region in the universal cover of the manifold
is connected, and for every cusp, there is some tetrahedron incident to that cusp that
the inside region intersects; see Definitions 7.4 and 7.16 for details. �D.M I T / is the

3For clarity, henceforth we refer to the deformation variety as the “standard deformation variety”.
4The lift of the surface in the universal cover acts similarly to a horosphere in H3 , hence the name.
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extended deformation variety for M with triangulation T , R.M / is the PSL.2;C/
representation variety for M , and RT is a canonical (up to conjugation) map from the
former to the latter. A dihedral representation � is such that �.�1M / is of the form
A Ì Z2 with Z2 acting on A by inverting elements.

Theorem 1.1 Let M be the interior of a compact, connected, orientable 3–manifold
with nonempty boundary consisting of a disjoint union of tori. Let T be an ideal
triangulation of M such that every horo-normal surface is porous. Then the map
RT W �D.M I T /!R.M / maps onto the irreducible nondihedral representations, up to
conjugation.

This is proved in Section 9. The condition of every horo-normal surface being porous is
relatively mild. For example, in Theorem 8.1, we show that for any ideal triangulation
of a small (ie for which every closed incompressible surface is boundary parallel)
irreducible manifold with a single cusp, every horo-normal surface is porous. Thus, for
these manifolds any triangulation gives Theorem 1.1, even in cases when the standard
deformation variety misses components, or is even empty.

However, when the manifold has more than one cusp, or is not small, a given triangula-
tion may not have every horo-normal surface porous. In contrast to the situation with
the standard deformation variety, we give an algorithm (in Section 8.2) for finding a
“good” triangulation, for which every horo-normal surface is porous. From this, we get
the following version of the result.

Theorem 1.2 Let M be the interior of a compact, connected, orientable 3–manifold
with nonempty boundary consisting of a disjoint union of tori. Then there exists an ideal
triangulation T� of M such that RT� W �D.M I T�/!R.M / maps onto the irreducible
nondihedral representations, up to conjugation.

Proof This follows from Corollary 8.20 (which gives us the ideal triangulation T� ,
for which every horo-normal surface is porous) and Theorem 1.1.

Note that although the extended deformation variety still requires a particular choice of
triangulation in its definition, the above result shows that we get all of the irreducible
nondihedral representations. Thus, this gives a way to describe representations using
shapes of ideal tetrahedra, but in a triangulation-independent way, in the sense of
describing all irreducible nondihedral representations.

In Section 11 we give an application which is relevant to calculating the PSL.2;C/
A–polynomial, with the following result.
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In the following result, the polynomials H .T�IS/.l;m/ are the factors of the A–
polynomial detected by the subset of the extended deformation variety with tetrahedra
degenerate in the way described by the horo-normal surface S (see Section 7 for
details).

Theorem 1.3 Let N be a connected topologically finite 3–manifold with a single
torus boundary component. Then there exists an ideal triangulation T� of N so that
the polynomials H .T�IS/.l;m/, ranging over each horo-normal surface S , contain all
factors of the PSL.2;C/ A–polynomial of N associated to components of irreducible
nondihedral representations.

In contrast, the corresponding result for the standard deformation variety tells us only
that the associated polynomial H.l;m/ divides the PSL.2;C/ A–polynomial; see
Champanerkar [2]. Using this result, we get all factors of the PSL.2;C/ A–polynomial
associated to components of irreducible nondihedral representations. However, it is not
currently clear whether or not those factors could be repeated for different horo-normal
surfaces, and so this does not necessarily give us the A–polynomial outright.

As an example, in Section 11.3 we calculate a factor of the PSL.2;C/ A–polynomial of
the complement of the knot 820 that was not found in calculations by Marc Culler that
used only the standard deformation variety associated to the triangulation computed
by Joe Christy. The extra factor comes from a component of the character variety that
is missed by the standard deformation variety with many choices of triangulation. In
contrast, the extended deformation variety detects this component and so detects the
factor of the A–polynomial.

Acknowledgements The author thanks Marc Culler, Eric Katz, Thomas Mattman,
Alan Reid, Stephan Tillmann and Genevieve Walsh for helpful discussions, and the
anonymous referee, whose very helpful comments greatly improved the introduction
and motivation sections of the paper. This work was partially supported by an NSF
RTG grant, and partially by Australian Research Council grant DP1095760.

2 Motivation

A key ingredient of the construction of the extended deformation variety is a tree
associated to C..�//, the set of Laurent series over the complex numbers. This tree
is a special case of the Bruhat–Tits building for GL.2;F /, where F is a field with a
discrete rank 1 valuation. In our case F DC..�// and the valuation assigns to a Laurent
series the minimal degree of its nonzero terms. Actions of 3–manifold groups on this
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tree have been widely studied, particularly in order to construct incompressible surfaces;
see Culler and Shalen [6] and Shalen [16] (particularly the latter for background on
this section).

Given any algebraic curve C in the SL.2;C/ representation variety of M , one obtains
a “tautological” representation of �1M into SL.2;C.C //. This follows by viewing
the four coordinates of the representation into SL.2;C/ as functions on C , and hence
in C.C /. A smooth point p of C determines a discrete valuation on C.C /. There is a
natural embedding of C.C / into C..�//, obtained by expanding rational functions on C

as Laurent series in a local coordinate � , where �D 0 corresponds to p . Moreover, the
restriction of the standard valuation on C..�// agrees with the valuation determined
by p . Using this, we get a representation into SL.2;C..�/// for each such point p .
We can think of this as giving a parameterisation of a neighbourhood of p by the
variable � .

An action on the Bruhat–Tits tree is trivial if some vertex is fixed by every element
of �1M . When p is an ideal point we get a nontrivial action on the Bruhat–Tits
tree, from which the existence of an incompressible surface follows. However, for
the purposes of this paper, the relevant actions are the trivial actions, which give no
information about incompressible surfaces. The stabiliser of a vertex fixed by every
element of �1M is conjugate to a subgroup of SL.2;O/, where O is the valuation
ring of C..�//, in this case the subring CŒŒ��� of power series in � . Setting � D 0, we
get a representation into SL.2;C/ (and so into PSL.2;C/ by projecting). This gives a
natural way to associate a point of the character variety to one of these trivial actions.
Although this is inaccurate in a way which will become clear later in this section, it is
useful to think of a point of the extended deformation variety as encoding this trivial
action in terms of shapes of possibly degenerate ideal tetrahedra. From the action on
the tree, one can then recover the point of the character variety, which would give
Theorem 1.1.

We will not in fact construct such an action, but it is helpful to consider the reverse
process: Suppose we are given an ideal triangulation T of a manifold M and an
irreducible nondihedral representation P W �1M ! SL.2;C..�/// which is trivial in
the sense that a vertex of the associated Bruhat–Tits tree T� is fixed by the entire image
of P . (Therefore we can actually assume that P W �1M ! SL.2;CŒŒ���/.) Then, we can
construct a �1M –equivariant map ‰ from the universal cover �M of M (with vertices
of �T adjoined, corresponding to the cusps of �M ) to the tree T� (with ends adjoined)
which sends each tetrahedron to the convex hull in T� of a possibly degenerate 4–tuple
of ends of T� . Since M has torus boundary components, the stabiliser of a cusp of �M
is abelian, so fixes at least one end of T� . Choose one cusp of �M from each orbit
(ie one for each cusp of M ), and map it to an arbitrarily chosen end with the same
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stabiliser, and then extend equivariantly. This determines where the vertices of the
triangulation �T map to. Extend the map over the edges by sending each edge to the
geodesic line joining the images of the endpoints, and then extend over the higher
skeleta so that each tetrahedron is mapped into the convex hull of its vertices. The
image of this map will contain a fixed vertex H of T� , and with appropriate choices
for extending the map to the edges, triangles and tetrahedra, the preimage of the set
of midpoints of edges in T� is a �1M –invariant surface zS , which is normal relative
to the triangulation �T . The image of zS under the covering projection is a normal
surface S in M , and is a dual surface for the action on T� . The image of one of the
complementary components of zS in �M , zRin say, contains the fixed vertex H . Throw
away any components of zS that are not incident to zRin to obtain a normal surface zS 0 ,
which is once again �1M –equivariant, so projects to a normal surface S 0 in M . The
region zRin similarly projects down to a component Rin which carries �1M .

One might expect that S 0 consists of vertex-linking tori. That is, that S 0 has exactly
one copy of each normal triangle, and no quads. In general however, there can be some
quads. In either case, S 0 is an example of a porous horo-normal surface studied in this
paper.

A key example illustrating how there can be quads in the porous horo-normal surface
is if a single edge e of the ideal triangulation T of a hyperbolic manifold M is
inessential, ie homotopic into @M . Note that by the author and Tillmann [14], the
standard deformation variety for such a triangulation is empty. However, following
the above construction starting from a generic point of the Dehn surgery component
and producing a representation into SL.2;C..�///, we then get a horo-normal surface
which is the boundary of a small regular neighbourhood of the union of the boundary
tori and e . Since both ends of the edge are at the same cusp of �M , the two endpoints
map to the same end of T� under ‰ , so e also maps to this end. In this example, the
inessential edge is entirely contained within the “outside” region Rout associated to
the horo-normal surface (the union of the complementary components that contain the
cusps).

Essential edges can also be entirely contained within Rout for certain representations.
For example, consider a manifold M which is a cover of another manifold N . Then
a subset Y of the character variety of M corresponds to the character variety of N .
Suppose also that M has a triangulation T , with an edge e which maps (under the
covering map) to an arc that is homotopic into the boundary of N . Similarly to as in
the previous example, a generic point on Y produces a map ‰ under which the edge e

maps into an end of T� , and again e is contained in Rout . The standard deformation
variety with the triangulation T misses such a point (since the shape of a tetrahedron
that has e as an edge would be degenerate).
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For these two examples, and also for the examples in Sections 4 and 11.3, we get
horo-normal surfaces that are not vertex-linking tori for all points belonging to entire
components of their respective character varieties. It can also happen that for most
of a component we get vertex-linking tori, and only get a horo-normal surface with
quadrilaterals at isolated points.

The �1M –equivariant map ‰W �M ! T� is strictly analogous to a developing map�M !H3 . The image ‰.t/ of a tetrahedron t 2 �T is a subtree with 4 (ordered) ends
on the boundary of T� , which have a well defined cross ratio in C..�//. These cross
ratios are preserved by the action of M . Given an edge e of a tetrahedron t , the two
faces adjacent to e map to “tripods” in T� , and the cross ratio associated to t , with the
appropriate ordering, determines the element of SL.2;C..�/// which takes one tripod
to the other while preserving the line ‰.e/.

The construction in this paper is almost a converse to the construction above. Beginning
with a representation �W �1M!SL.2;C/, we construct something which is analogous
to a developing map from �M into T� . However, the analogy is, by design, very weak.
We do not assume the existence of any SL.2;C..�/// representation that specialises
to � when �D0. We have a special vertex H of T� as above. The representation � acts
on H3 . Similarly to as in the above discussion in which we construct ‰ from P , we
can use � to construct a �1M –equivariant map  from the universal cover �M of M

(with vertices of �T adjoined, corresponding to the cusps of �M ) to H3 (with @H3

adjoined). We view this H3 and its boundary as corresponding to H and the edges of T�
leaving H . The vertices of the tetrahedra of �T are then positioned at the midpoints of
these edges of T� leaving H . If we could push these vertices out to the ends of T� in an
equivariant manner, then we would be able to reconstruct a SL.2;C..�/// representation
that specialises to � when � D 0. As previously mentioned, we will not do this. In
fact we will only push the vertices out one edge further5. The point of pushing these
vertices outwards is to separate vertices that would otherwise be coincident, giving each
degenerate tetrahedron (that would ordinarily have shape parameter zero) a nonzero
shape in CŒŒ���. Pushing only one step outwards is equivalent to having only “lowest
order” information about the positions of the vertices, and so we read off only “lowest
order” information about the shapes of degenerate tetrahedra. This extra data is however
enough to support developing through these degenerate tetrahedra.

The map  tells us which edges of the triangulation map into single points on @H3 ,
and this determines a horo-normal surface as the boundary of a regular neighbourhood

5Actually the construction is slightly weaker even than this. We only record the relative position of
two vertices of �T that share an edge that gets mapped to a single point of @H3 by  , not their individual
absolute positions.
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of the complex generated by these “zero-length” edges. The degrees of the shapes of
the tetrahedra in CŒŒ��� are determined by the intersection of the horo-normal surface
with the tetrahedron. There is a way to generate the shapes of the degenerate tetrahedra
in an equivariant way.

If we start with the shapes of the (degenerate and nondegenerate) tetrahedra, we
can develop through paths of tetrahedra into T� . In this construction, the developed
positions of the vertices of the tetrahedra are given by elements of C..�// (which we
identify with the ends of T� ), but only up to “lowest order information” since we only
have lowest order information about the tetrahedron shapes. This effectively allows us
to reconstruct the extended version of  , with the vertices pushed out one edge further.
If we ignore the higher order information, “specialising at � D 0”, then we recover  ,
and from this get the data needed to reconstruct the representation � .

The gluing equations are generalised to a “consistent developing condition”, which
says that the lowest order positions of the vertices of �M are consistently determined,
no matter what path of tetrahedra we develop through to get to them. Our degenerate
tetrahedra have nonzero shapes of the form �z1 or �2z2 , the nondegenerate tetrahedra
have shapes of the form z0 2Cnf0; 1g �CŒŒ��� and the consistent developing condition
is realised as a set of polynomial equations in the coefficients of these shapes. These
determine an affine algebraic variety over C , and this is the generalisation of the
deformation variety, the “extended deformation variety”.

In nice cases, we can derive this system of polynomial equations in a natural way. Con-
sider an irreducible, nondihedral representation �W �1M ! PSL.2;C/, and suppose
we are trying to construct a curve in the representation variety which passes through � .
Note that this is possible, even if the character of � does not lie on a 1–dimensional
component of the character variety. One might attempt this by trying to solve the gluing
equations so that the tetrahedra shapes are in CŒŒ���, carrying out the developing map
construction and from there get a representation. Reversing the construction of the
tautological representation, one would obtain a curve of representations. One approach
to finding such a power series solution goes back to Newton and Puiseaux, and is
now known as “tropical algebraic geometry”. We replace each variable in each of the
gluing equations with a formal power series in � and try to solve for the terms in the
series recursively. For each gluing equation, setting the coefficient of the lowest degree
term equal to zero produces a polynomial equation in the coefficients of the lowest
degree terms of the formal series. If one can find a solution to these equations having
all coordinates nonzero then the recursion can be continued. A necessary condition
for being able to do this is that each equation should have at least two monomials
which contribute to the lowest degree term. This is only possible if one chooses the
orders of the formal power series correctly. The orders must satisfy a certain system of
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linear equations and inequalities. (A tropical algebraic geometer would say that these
linear equations and inequalities define the tropical prevariety associated to the gluing
equations, and the vector of orders must lie in this prevariety.) However, in the case of
the gluing equations, at the first step of the recursion this system of linear equations and
inequalities are precisely the Q–matching equations for spun-normal surfaces relative
to the triangulation (with the inequalities simply saying that the quadrilateral weights
are nonnegative). So the starting point for using this recursive process to find a power
series solution to the gluing equations is a normal surface. In our case, this normal
surface is the porous horo-normal surface.

For a single polynomial equation, this recursive procedure will always continue to
work, and will lead to a power series solution. This is essentially the Newton–Puiseux
algorithm for resolving singularities of plane algebraic curves. But it is a standard
issue in tropical algebraic geometry that this fails for systems with more than one
equation. However, the system of polynomial equations produced at the first step of the
recursion, which is all that the normal surface produces, is already useful. These are
the equations that define the extended deformation variety in this nice case. A solution
to these equations need not lead to a power series solution and hence need not lead to
a representation in PSL.2;C..�///. However, every solution does determine the very
weak analogue of a developing map and has a “specialisation at � D 0” which is a
representation in PSL.2;C/. Moreover, every irreducible nondihedral representation
is realised as such a specialisation. This is the content of Theorem 1.1.

3 The standard deformation variety

Let M be a topologically finite 3–manifold which is the interior of a compact 3–
manifold with nonempty boundary consisting of a disjoint union of tori. An ideal
triangulation T of M consists of a pairwise disjoint union of standard Euclidean 3–
simplices, z�D

Sn
kD1
z�k , together with a collection I of Euclidean isometries between

the 2–simplices in z�, called face pairings, such that .z� n z�.0//=I is homeomorphic
to M . The simplices in M may be singular. It is well-known that every noncompact,
topologically finite 3–manifold admits an ideal triangulation.

Definition 3.1 Let M be a 3–manifold with nonempty boundary consisting of a dis-
joint union of tori, and with ideal triangulation T consisting of N tetrahedra. The stan-
dard deformation variety of M with respect to the triangulation T , D.M /DD.M I T /
is the affine variety in .C n f0; 1g/3N , defined as the solutions of gluing equations and
identities between complex dihedral angles within each tetrahedron, where each of the
three complex dihedral angles in each tetrahedron corresponds to a dimension of the
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ambient space. Specifically, for the 6 dihedral angles within each tetrahedron, angles
on opposite edges are the same, as shown in Figure 1 (hence the fact that there are
three complex variables for each of the N tetrahedra), and x1;x2;x3 are related to
each other by

x1x2x3 D�1;(1)

x1x2�x1C 1D 0:(2)

For each edge of T , we also require that the product of the complex dihedral angles
arranged around an edge of the triangulation equals 1 (these are the gluing equations).

This definition is first seen in Thurston’s notes [17, Chapter 4].

x1
x1

x2

x2

x3

x3

Figure 1: The 6 dihedral angles in a tetrahedron

Let �M be the universal cover of M with induced triangulation �T . Let zV be the set of
vertices of �T 6. Given a point Z 2D.M I T / the developing map ˆZ W

zV! @H3 is
defined up to conjugation as follows7 (also see Yoshida [21] and Tillmann [19]). If 4
is a triangle in �T , we arbitrarily choose distinct images for the three vertices of 4
in @H3 . If t is one of the two tetrahedra incident to 4 in �T , then t has an associated
ideal hyperbolic shape, given by Z . This shape, together with the known positions of
three of its vertices on @H3 determine the position of the fourth, and so the image of
that vertex under ˆZ . We repeat this procedure, spreading out through the tetrahedra
of �T to determine the whole map. The gluing equations ensure that we get the same
answer, no matter which path through the tetrahedra we take to reach a given vertex.
The arbitrary choice in the positions of the initial three vertices corresponds to the
definition being up to conjugacy.

6 zV is also the set of cusps of �M , and so is independent of T .
7Note that the map is usually defined as from �M to H3 (as in the introduction), but our formulation

encodes equivalent data and is more natural in the context of this paper.
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Definition 3.2 Let R.M / be the set of representations �W �1M ! PSL.2;C/ Š
Isom.H3/. The developing map construction gives a map

RT W D.M I T /!R.M /

(again up to conjugation). For a given Z 2 D.M I T /, we construct the developing
map ˆZ , and then read off a corresponding representation (the holonomy represen-
tation) �Z as follows. The three vertices v1; v2; v3 of 4 have distinct positions
ˆZ .vi/ 2 @H3 . An element  2 �1M acts on the vertices as a deck transformation,
and the images vi have distinct positions ˆZ . vi/ 2 @H3 . A triple of distinct points
of @H3 maps to another triple of distinct points under a unique element of PSL.2;C/,
and this is the value we take for �Z . /.

3.1 Dependence of the deformation variety on the triangulation

Theorem 3.3 (Matveev [11, Theorem 1.2.5]) If T and T 0 are two ideal triangulations
of a given manifold M , each of which has at least two tetrahedra, then T and T 0 are
connected by a sequence of 2–3 and 3–2 moves (see Figure 2).

2–3

3–2

Figure 2: 2–3 and 3–2 moves

We might hope that the deformation varieties for triangulations T2 and T3 of a manifold
that differ by a 2–3 move might be equivalent in some sense, and then given the above
theorem and induction we would get equivalence for any triangulation (with a possible
exception for the manifolds that have a one-tetrahedron triangulation). We would expect
to be able to convert between points of D.M I T2/ and D.M I T3/ as follows.

Figure 3 shows two tetrahedra labelled with complex dihedral angles x and y which
share a face, and three tetrahedra labelled by a; b and c which all share an edge.
We label the angles within one tetrahedron x1 D x;x2 D

x�1
x
;x3 D

1
1�x

, moving
clockwise from x on each truncated triangular end and similarly for the other tetrahedra.
The extra edge for the three tetrahedra gives us the equation a1b1c1 D 1. If we are to
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x

x

x x
y y

y

y

a a

a

a
c b

c b

c b

c b

Figure 3: The 2–3 and 3–2 moves with truncated ends, showing the dihedral angles

have corresponding points of the two deformation varieties, then the dihedral angles
outside of the six-sided shape in which the 2–3 move is performed must be the same.
Because of the gluing equations, the dihedral angles inside must also be the same and
we have the following relations:

a1 D x1y1; x1 D b3c2; y1 D b2c3;

b1 D x2y3; x2 D c3a2; y2 D a2b3;

c1 D x3y2; x3 D a3b2; y3 D c2a3:

In good situations, these equations do allow us to produce a birational map between
two deformation varieties of a manifold with triangulations that differ by a 2–3 move.
However, this does not always work, in particular if we happen to have the relation in
D.M I T2/ that xy D 1, as we will see in the following example.

4 Examples, part 1: The once punctured torus bundle with
monodromy LLR

We will consider two examples of this phenomenon. The first is somewhat artificial but
demonstrates the phenomenon well, and we will return to it in Section 10 to show how
the extended deformation variety solves the problem. In Section 11.3 we will see a
more natural occurrence of the issue, in the calculation of the PSL.2;C/ A–polynomial
for the knot 820 .

In this section we give an example of two triangulations of a manifold such that the
deformation variety for one triangulation contains an entire component that does not
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appear in the deformation variety for the other triangulation. We consider the punctured
torus bundle MLLR with monodromy given by LLR (see for example, Guéritaud [9]
for the notation), and show two triangulations of this punctured torus bundle, T4 and T5

(with 4 and 5 tetrahedra respectively, neither is canonical) in Figure 4. Vertices of the
triangulation of the torus boundary correspond to edges of the triangulation, and we
can read off the gluing equation from the corners of triangles incident to vertices. We
see both ends of each edge so each equation appears twice.

For D.MLLRI T4/ we obtain the following gluing equations:

hij k D 1;(3)

i � 1

i
j

1

1� h
D 1;(4)

i
1

1� i

j � 1

j

1

1� j

1

1� h

�
k � 1

k

�2

D 1;(5)

i � 1

i

1

1� i

j � 1

j

1

1� j
h

�
h� 1

h

�2

k

�
1

1� k

�2

D 1:(6)

One gluing equation always depends on the others, so we discard the last of these and
the others simplify to

hij k D 1;(7)

i � 1

i
j

1

1� h
D 1;(8)

i

1� i

�1

j

1

1� h

�
k � 1

k

�2

D 1:(9)

The variety consists of two 1–dimensional components, one of which contains the
complete structure, and the other of which satisfies the extra condition that hk D 1.
Then these equations become

ij D 1;(10)

i � 1

i
j

1

1� h
D 1;(11)

i

1� i

�1

j
.1� h/D 1:(12)
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k
h

h k

ji

j

i
h k

j
i

j i
h

k k

k

h

h
h h

kk

ji

j

i

j
i

j i

r
p q r

q p

p

r

p

q
r q

p
r q

p
r q

p p

r q

r q

Figure 4: Induced boundary torus triangulations of two triangulations, T4

and T5 , of the punctured torus bundle MLLR . The edges of each fundamental
domain are identified in the obvious way. In the top left is a fundamental
domain for the triangulation on the torus boundary induced by T4 . There
are four tetrahedra in this triangulation, with angles labelled h; i; j ; k . Each
tetrahedron has four ends and we see these four truncated ends as triangles on
the torus boundary. To the right are the tetrahedra involved in the 2–3 move,
and in the bottom left the resulting fundamental domain for T5 , with angles
labelled i; j ;p; q; r .

Algebraic & Geometric Topology, Volume 12 (2012)



2194 Henry Segerman

The latter two equations are redundant and we get a 1–dimensional variety. For
D.MLLRI T5/ we obtain

pqr D 1;(13)

ij
q� 1

q

1

1� q

r � 1

r

1

1� r
D 1;(14)

i � 1

i
j

1

1�p

q� 1

q
D 1;(15)

i
1

1� i

j � 1

j

1

1� j

p� 1

p

1

1� q
r D 1;(16)

i � 1

i

1

1� i

j � 1

j

1

1� j
p

p� 1

p

1

1�p
q

r � 1

r

1

1� r
D 1:(17)

Equations (14) through (17) correspond to (3) through (6), and we get the extra
equation (13). Again discarding the last equation and simplifying we get

pqr D 1;(18)

ij
1

q

1

r
D 1;(19)

i � 1

i
j

1

1�p

q� 1

q
D 1;(20)

i

1� i

�1

j

p� 1

p

1

1� q
r D 1:(21)

This time, if ij D 1 then equations (18) and (19) imply that p D 1, and there is no
solution.

Remark 4.1 More generally, if a particular component of the representation variety
has an extra relation on it (in addition to those defining the variety) which implies that
certain cusps always appear in the same place under ‰� (see Definition 9.3) as we
vary � within the component, then a triangulation with an edge between two such
cusps will have an associated deformation variety that will not see this component.

5 Extending the deformation variety: Overview

In this paper we define and then prove properties of a generalisation of the deformation
variety, which solves these problems of degenerate tetrahedra and dependence on the
triangulation whilst retaining many useful properties of the deformation variety, in
particular, a map to the representation variety.
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The first step, in Section 6, is to move to a more general setting, replacing dihedral angles
(ie cross ratios) in C n f0; 1g with dihedral angles in C..�// n f0; 1g, formal Laurent
series in a variable � . This allows tetrahedra to be degenerate whilst retaining enough
information to develop through them, and so define a developing map. Ohtsuki [12]
uses a similar idea to describe the shape of a tree on which the fundamental group of
a manifold acts in the Culler–Shalen construction associated to an ideal point. The
elements of the field C..�//nf0; 1g can be viewed as the ends of a tree, the Bruhats–Tits
building for GL.2;C..�///; also see Serre [15].

In this setting the ends of the tree (which are Laurent series) correspond to cusps in the
universal cover of the manifold, and so the cross ratio associated to an ideal tetrahedron
should be a Laurent series as well. In the case of an ideal point we expect tetrahedra
to be degenerate, which corresponds to cross ratios with first nonzero term �kzk for
k > 0 and zk 2 C . In general, we would expect the Laurent series to continue with
infinitely many further terms for higher powers of � .

In our case we may also have degenerate tetrahedra, but they do not necessarily come
from an ideal point. In Section 4 for example, there is generally no way to approach
the degenerate shapes from nondegenerate shapes. We also want our extension of the
deformation variety to be a finite dimensional complex variety, and so we do not want
to deal with cross ratios being Laurent series with infinitely many complex coefficients.
Instead, the idea is to consider only the first nonzero term (“lowest order term”) of
a Laurent series (in fact we will only use cross ratios of the form z , �z and �2z to
describe degenerate tetrahedra). It turns out that in good situations, the lowest order
terms of the cross ratios are enough to determine the developed positions of vertices
of tetrahedra, and therefore the developing map, up to lowest order. Making this idea
precise is the main purpose of Section 6.

In Section 7 we consider the subset of edges of a given triangulation that are supposed
to be of “zero length”, meaning that the vertices at each end are meant to be in the
same place under the developing map. These must satisfy a certain condition (“no
bad loops”), and given this condition we construct a normal surface (which we call
a “horo-normal surface”) surrounding the zero length edges. In fact we can see the
surface as the boundary of a neighbourhood of the complex generated by the zero
length edges. The horo-normal surface and the set of zero length edges determine each
other, and so record the same data. The surface cuts the manifold M into inside and
outside regions, and in the case that the lift of the inside region is connected in �M we
say that the surface is “porous”.

We define the extended deformation variety �D.M I T IS/ of a manifold M with a
given triangulation T and porous horo-normal surface S, by specifying the lowest
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order terms of cross ratios for tetrahedra that intersect the inside region. The results
of Section 6 then imply that we can develop through paths of triangles in the inside
region using only the lowest order terms of the cross ratios. The surface needs to be
porous for us to be able to develop through paths of triangles in the inside region to
reach every vertex. In place of the gluing equations of the deformation variety, we
have a more general condition that states that if we develop along paths of triangles to
a vertex, the position should not depend on the path. We show in Theorem 7.22 that�D.M I T IS/ is indeed an affine algebraic variety.

In Section 8 we deal with the issue of requiring the surface to be porous. In Section 8.1
we show that if the manifold is small and has a single torus boundary component, then
for any triangulation, every horo-normal surface is porous. If however the manifold
is not small or has multiple boundary components, we may need to retriangulate. In
Section 8.2 we give an algorithm that modify a given triangulation T by inserting
“pillows”, pairs of tetrahedra that share two faces along a single edge. Algorithm 8.19
modifies a triangulation so that any horo-normal surface relative to the new triangulation
is porous.

If we have a developing map from the universal cover of M to H3 then we get a
representation into PSL.2;C/, and so we get a homomorphism from �D.M I T IS/ to
the representation variety R.M /, defined up to conjugation. We make this precise and
prove the main result, Theorem 1.1, in Section 9.

6 The tree associated to C..�//

The following definition is the same as in Ohtsuki [12, Definition 1.3]. Ohtsuki refers
to it as “Serre’s tree”, although Serre [15] attributes it to Bruhat and Tits. It is a special
case of the Bruhat–Tits building by Bruhat and Tits in [1].

Definition 6.1 For an indeterminate variable � we define the tree T� with the following
four conditions:

(1) T� has a special vertex H ; we call it the home vertex.

(2) We call an infinitely long path from the home vertex an end. The set of ends
of T� is identified with the set C..�//[ f1g, to which we give the discrete
topology.

(3) The part of T� from H to the set of ends CŒŒ��� (power series in � ) is identified
with the series

fH g  CŒ��=.�/ CŒ��=.�2/ CŒ��=.�3/ � � �  CŒŒ���;
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where the maps are the natural projections. Here we identify the set of vertices
at distance n from H with the set CŒ��=.�n/, the ring of polynomials of degree
at most n� 1. Two vertices are connected by an edge if one of the maps takes
one vertex to the other.

(4) The part of T� from H to the set of ends C..�//[f1gnCŒŒ��� is homeomorphic
to .�/�CŒŒ��� by the map C..�//[f1g!C..�//[f1g, which takes x to x�1 .

See Figure 5 for a very small part of the tree, showing how paths from the ends of the
tree to H meet each other.

1

H

���1� �2 ���1 ���1C � ��2 0 � �C �2 1 1C � 1C �C �2

Figure 5: A very small subset of T� , with the home vertex H marked. In
fact each vertex has a CP 1 ’s worth of neighbours.

Definition 6.2 For x 2C..�// n f0g with coefficients xk , we define

order.x/ WDminfk 2 Zjxk ¤ 0g;

x� WD xorder.x/ 2C n f0g:

We set order.0/ WD1 and order.1/ WD �1.

If nD order.x/ then x D xn�
nCxnC1�

nC1C � � � .

Given four distinct ends a; b; c and d of T� we define the cross ratio

(22) z D
.a� c/.b� d/

.a� d/.b� c/
2C..�// n f0; 1g:
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Just as in C [ f1g, if a D 1, for example, we interpret this as z D .b�d/
.b�c/

, using
the rules 1C x D1 for x 2 C..�// and 1=1D 1. There are six possible cross
ratios to take, but only three if we preserve orientation. They are related to each
other as z; .z� 1/=z; 1=.1� z/. At least one of these three is a preferred cross ratio,
meaning that z 2 CŒŒ��� and z0 ¤ 1. If z 2 C..�// nCŒŒ��� then 1=.1� z/ 2 CŒŒ��� and
.1=.1� z//0 D 0, and if z0 D 1 then ..z � 1/=z/0 D 0. If z 2 CŒŒ���; z0 62 f0; 1g then
all of the three cross ratios are preferred. Note that the order of the preferred cross
ratio determines the length of the spine determined by the four ends, as in Figure 6.

c

a

d

b

c

a

d

b

Figure 6: On the left, a spine in T� determined by four ends a; b; c; d . The
order of the preferred cross ratio is the same as the length of the spine (given
by the number of edges in the midsection), which is 2 in this example. On the
right, a spine isometric to the first viewed as part of the dual tree to a normal
surface within a tetrahedron, this time a; b; c; d are vertices of the tetrahedron.

Given three distinct ends a; b; c 2 C..�// [ f1g and cross ratio z , solving for the
fourth gives

(23) d D
.b� c/za� .a� c/b

.b� c/z� .a� c/
:

We deal with 1 in this equation in the same way we did for the cross ratio.

For each pair of triangles sharing an edge, we may assign a dihedral angle between them,
which is a cross ratio in C..�// n f0; 1g. Given specified ends e; e0; e00 2C..�//[f1g
for the locations of the vertices of one triangle, this tells us the location of the fourth
vertex using equation (23); see Figure 7. We call this process of determining the
position of a vertex from a dihedral angle and the positions of three vertices developing.
The cross ratio assigned to the pair of triangles that share an edge is the one (of the
three possibilities) so that the labelling on the left hand diagram of Figure 7 matches
equation (22)8. The right hand diagram of Figure 7 and the independence of the cross

8The reason we call this choice of cross ratio the dihedral angle is that if we then set aD1; bD0; cD1

and put the picture in the upper half space model of H3 , then with appropriate interpretation of 1 in
equation (22) we get that z D d , and so the usual meaning of angle comparing c � b D 1 � 0 with
d � b D d � 0 is the argument of z .
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ratio under swapping a with b and c with d shows us that it does not matter which
way up the picture is when we choose which cross ratio is the dihedral angle.

Definition 6.3 A chain of triangles in T (or �T ) is a sequence of triangular faces
4.1/;4.2/; : : : ;4.n/ 2 T (or �T ) such that neighbouring triangles are two faces of a
tetrahedron of T (or �T ) (and therefore share an edge).

By induction we can develop positions of vertices for chains of triangles with dihedral
angles between neighbours.

b

a

c

d

z

a

b

d

c

z

Figure 7: Developing across a dihedral angle between two neighbouring triangles

Remark 6.4 For any field F , PSL.2;F/ acts freely and transitively on PF1 and
preserves cross ratios, and so this is true for the field C..�//. Therefore choosing
different initial points e; e0; e00 for the first triangle moves the set of developed vertex
positions consistently. In particular, for any construction in this paper there will be
only countably many developed vertex positions but a CP1 ’s worth of vertices next
to H so we may choose e; e0; e00 so that all vertex positions are in CŒŒ���, avoiding the
one edge leading away from H in the direction of 1.

Lemma 6.5 If z is the preferred cross ratio of a; b; c; d 2CŒŒ��� then

z� D
.a� c/�.b� d/�

.a� d/�.b� c/�
:

Proof Let .a� c/D p; .b� d/D q; .a� d/D r; .b� c/D s , all in CŒŒ���. Then

z D
pq

rs
D �k .p�C �p

0/.q�C �q
0/

.r�C �r 0/.s�C �s0/
; p0; q0; r 0; s0 2CŒŒ���; k 2N;
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where k � 0 since this is the preferred cross ratio. Then

z D �k p�q�C �e

r�s�C �f
D

�
�k

r�s�

�
p�q�C �e

1� �. �f
r�s�

/
; e; f 2CŒŒ���;

so

z D

�
�k

r�s�

�
.p�q�C �e/.1C �g/D �

k

�
p�q�

r�s�
C �h

�
; g; h 2CŒŒ���;

hence
z� D

p�q�

r�s�

This provides motivation that under good conditions we should be able to ignore all
higher order information about cross ratios and developed positions if we only care
about lowest order information about those objects. This is the subject of the next few
lemmas.

Lemma 6.6 Suppose a; b; c; d 2 CŒŒ���, at most one of order.a � b/, order.a � c/,
order.b�c/ is greater than 0 and z is the preferred cross ratio for the four ends a; b; c; d .
Then .d � a/�; .d � b/� and .d � c/� are determined by .a� b/� , .a� c/� , .b� c/� ,
z� and the orders of those terms.

Proof Note the following relations:

.d � a/D

�
1

.b� c/z� .a� c/

�
.a� b/.a� c/;(24)

.d � b/D

�
1

.b� c/z� .a� c/

�
.b� c/.a� b/z;(25)

.d � c/D

�
1

.b� c/z� .a� c/

�
.a� c/.b� c/.z� 1/:(26)

Let q D .b� c/z� .a� c/. If order.q/D n� 0 then q� D qn ¤ 0 and

1

q
D

1

�nqnC �nC1q0
D

1

�nqn

1

1C �
� q0

qn

� D 1

�nqn

1X
mD0

�
�

q0

qn

�m

�m;

where q0 2CŒŒ���. Thus
�

1
q

�
�
D

1
qn
D

1
q�

.

First, z is the preferred cross ratio, so order.z/�0. Note order.q/�minforder.b�c/C

order.z/; order.a� c/g, with equality unless order.b � c/C order.z/ D order.a� c/

and .b� c/�z�� .a� c/� D 0. We rule this out by considering the possible cases for
this given that at most one of order.a� b/; order.a� c/; order.b� c/ is greater than 0:
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(1) order.b�c/ > 0 and so order.a�c/D 0. If this is true, then since order.z/� 0,
then ..b� c/z� .a� c//0 D�.a� c/0 ¤ 0, so this case is impossible.

(2) order.a�b/>0 and so order.b�c/Dorder.a�c/D0. order.b�c/Corder.z/D
order.a� c/ so order.z/ D 0. Then we have that .b � c/0z0 � .a� c/0 D 0,
so .b0� c0/z0� .a0� c0/D 0. Since order.a� b/ > 0; a0 D b0 and therefore
z0 D 1, which is ruled out by the choice of preferred cross ratio.

(3) order.a�c/Dn� 0; order.a�b/D order.b�c/D 0. order.b�c/Corder.z/D
order.a� c/ so order.z/D n. Then the numerator of d in equation (23) is

.b� c/za� .a� c/D .b� c/0zn�
na� .a� c/n�

nbC h.o.t.

D .a� c/n�
n.a� b/C h.o.t.

D .a� c/n.a� b/0�
n
C h.o.t.

Here h.o.t. stands for “higher order terms”. Since .a� c/n.a� b/0 ¤ 0, the
lowest power of � in the numerator is less than that in the denominator, which is
strictly greater than n because of the cancellation, and so d 62CŒŒ���, contradicting
the hypothesis.

So we have equality: order.q/Dminforder.b� c/C order.z/; order.a� c/g, and q�
is one of .b�c/�z�; .a�c/� or .b�c/�z�� .a�c/� , none of which is zero. We then
have that

.d � a/� D

�
1

q�

�
.a� b/�.a� c/�;(27)

.d � b/� D

�
1

q�

�
.b� c/�.a� b/�z�;(28)

.d � c/� D

�
1

q�

�
.a� c/�.b� c/�.z� 1/�:(29)

For .d � c/� , since z0 ¤ 1, .z � 1/� D .z � 1/0 D z0 � 1, which is either z� � 1 or
just �1 depending on order.z/. In all cases therefore, .d �a/�; .d �b/� and .d �c/�
and their orders are determined by .a� b/�; .a� c/�; .b� c/� , z� and their orders.

Similar analysis shows that (3) is the only case in which d can fail to be in CŒŒ���.

Definition 6.7 For each triple fa; b; cg of distinct ends of T� we define the tripod of
fa; b; cg to be the smallest connected subtree of T� that contains an infinite tail of each
end (recall that an end is an infinitely long path from H ). The unique trivalent vertex
of the tripod is the center of the tripod.
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Definition 6.8 A triple fa; b; cg of distinct ends of T� is domestic if the tripod of
fa; b; cg contains H and foreign otherwise.

We can thus rephrase the condition in Lemma 6.6 on the orders of .a� b/; .a� c/ and
.b� c/ as the triple fa; b; cg being domestic.

Lemma 6.9 Let 4.1/;4.2/; : : : ;4.n/ be a chain of triangles with specified dihedral
angles w.i/ between 4.i/ and 4.iC1/ . Suppose initial points e; e0; e00 for the locations
of the 3 vertices of 4.1/ are chosen so order.e�e0/Dorder.e0�e00/Dorder.e00�e/D0,
all developed vertices are in CŒŒ��� and suppose that each triple of developed vertices
given by those triangular faces is domestic. Then for every developed vertex f 2CŒŒ���
which corresponds to a vertex of one of the 4.i/ , f0 depends only on e0; e

0
0
; e00

0
and

the z
.i/
� and order

�
z.i/

�
, where z.i/ is the preferred cross ratio corresponding to the

dihedral angle w.i/ .

Proof This is essentially an induction using Lemma 6.6. Each triangular face with
vertex positions fa; b; cg � CŒŒ��� we develop from is domestic. This implies that
at most one of the orders order.a � b/; order.a � c/; order.b � c/ is greater than 0.
If a and b are positions for vertices at opposite ends of an edge of a 4.i/ , then by
induction, .a�b/� and order.a�b/ are determined by .e�e0/� , .e0�e00/� , .e00�e/� ,
the z

.i/
� and their orders. All of those orders are 0 by our choice of e; e0; e00 , and so

.e � e0/� D .e � e0/0 D e0 � e0
0

and similarly for the others, so in fact .a� b/� and
order.a� b/ are determined by e0; e

0
0
; e00

0
, the z

.i/
� and order

�
z.i/

�
.

Note that .a� b/0 is either 0 or .a� b/� depending on if order.a� b/ > 0 or not,
so .a � b/0 D a0 � b0 is also determined by the same data. Now consider a path
of edges walking along a sequence of vertex positions f .1/; f .2/; : : : ; f .m/ where
f .1/ 2 fe; e0; e00g and f .m/ D f . Then for each neighbouring pair

�
f .j/; f .jC1/

�
,

f
.j/

0
� f

.jC1/
0

is determined by the data, we start from one of e0; e
0
0
; e00

0
and so again

by induction f .m/
0
D f0 is also determined by the data.

Now suppose we have an ideal triangulation T of an orientable 3–manifold with
boundary M and an embedded surface S �M in (spun-)normal form relative to T .
We lift T to �T , a triangulation of �M , the universal cover of M and lift S to zS � �M
a surface in (spun-)normal form relative to �T . We allow the possibility that S is
boundary parallel. Dual to zS we have a tree denoted T zS , which we can view as made
by gluing together spines, with the tree dual to the intersection of zS with a tetrahedron
of �T being such a spine, as in Figure 6. Vertices of T zS correspond to connected
components of �M n zS .
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We will assign dihedral angles (elements of C..�// n f0; 1g) to the six edges between
pairs of triangles in each tetrahedron of T . Given this information and any chain of
triangles in T together with the positions of the vertices of the first triangle we can
develop the positions of all vertices along the chain.

Definition 6.10 For f 2C..�//[f1g, the direction of f from H is

fH WD

(
f0 if f 2CŒŒ���;

1 if f 2 .C..�//[f1g/ nCŒŒ���:

Condition 6.11 The degeneration order condition on dihedral angles assigned to a
tetrahedron t states: If t contains no quadrilateral of S then all dihedral angles w must
have wH ¤ 0; 1;1 (and hence order.w/D 0), and if t has k quadrilaterals then wH

is as in Figure 8, and the order of the preferred cross ratio corresponding to w is k .

This is consistent with the connection between ideal points of the deformation variety
and spun-normal surfaces as in [19]. This also means that for a tetrahedron t 2 �T , the
spine dual to S \ t is the same shape as the corresponding spine in T� we get when
developing through any pair of triangles of t . Spines corresponding to neighbouring
tetrahedra glue to each other in the same way in both contexts.

0 0

1

1

1

1

Figure 8: The wH for dihedral angles w in a tetrahedron with a quadrilateral

Lemma 6.12 Suppose we assign dihedral angles to each tetrahedron of T that satisfy
the degeneration order condition with respect to the surface S . Let 4.1/;4.2/; : : : ;4.n/

be a chain of triangles in zT and R0 be the component of �M n zS that contains the
central region of 4.1/ . Suppose we can trace a path following R0 continuously through
the 4.i/ and we develop positions of the vertices starting from e; e0; e00 for the locations
of the 3 vertices of 4.1/ as in Lemma 6.9, and all developed positions are in CŒŒ���.
Then the positions for the triple of vertices for each 4.i/ is domestic.
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Proof The triple of images of the vertices of 4.1/ is domestic by assumption. When
we develop to 4.2/ , the image of the new vertex (say f ) is arranged with respect to
e; e0; e00 in CŒŒ��� in the same arrangement as the corresponding vertices in T zS , by the
degeneration order condition 6.11. The tripod in T zS corresponding to 4.1/ has center
the vertex dual to R0 and the tripod corresponding to 4.2/ together with the tripod
corresponding to 4.1/ form a spine as in the right diagram of Figure 6, as a subtree
of T zS ; see also Figure 9.

As we continue to develop to further triangles, the condition that R0 has nonempty
intersection with each 4.i/ corresponds to the condition that each new tripod in T zS
contains the central vertex of the tripod for 4.1/ . The tripods we add in CŒŒ��� satisfy
the corresponding condition, which is that they contain the home vertex, and so are all
domestic.

e

e0

e00

f

R0

e

e0

e00

f

V0

Figure 9: Two neighbouring triangles and their intersections with zS and
the corresponding spine in T zS . The central region of the first triangle is
marked R0 and the corresponding vertex of the spine is marked V0 .

Theorem 6.13 Suppose that we assign dihedral angles w to each tetrahedron of T
which satisfy the degeneration order condition with respect to the surface S . Let
4.1/;4.2/; : : : ;4.n/ be a chain of triangles in �T (so neighbouring triangles are both
part of a single tetrahedron) and R0 be the component of �M n zS that contains the
central region of 4.1/ . Suppose we can trace a path following R0 continuously through
the 4.i/ and we develop positions of the vertices starting from e; e0; e00 for the locations
of the three vertices of 4.1/ where the tripod of fe; e0; e00g has center H . Then for
every developed position f corresponding to a vertex of one of the 4.i/ , fH depends
only on eH ; e

0
H
; e00

H
and the z�; order.z/ where z is the preferred cross ratio for the

dihedral angle w .

Proof This is a combination of Lemmas 6.9, 6.12 and the observation that we can
drop the condition that we develop only into CŒŒ��� by noting that the result is true when
we do restrict to CŒŒ���, and we can always conjugate the developed vertex positions so
that they are all in CŒŒ��� without altering the cross ratios, and hence the developing
map.
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We will use the same trick again later, assuming without loss of generality that we
develop only into CŒŒ��� but then dropping this requirement for the result.

Remark 6.14 If we identify CŒ��=.�/[f1g with @H3 , then this gives us a way to
define a developing map from chains of triangles that contiguously contain R0 into H3 .
Some of the triangles may be degenerate, having two vertices at the same location
on @H3 , although due to the construction we never have any triangles with all three
vertices at the same location (this would correspond to a foreign triple of vertices).

We have yet to put any conditions on the assigned dihedral angles other than the
degeneration order condition. In the construction following we will add some more
conditions, in particular appropriate versions of the relations from equations (1) and (2),
although in some cases only for certain tetrahedra. We will also require a condition
playing the role of the gluing equations.

7 The extended deformation variety

Let E and zE be the edge sets of T and �T . We consider disjoint subsets E0; EC � E
whose union is E , and define zE0; zEC as their preimages in �T . The idea is that zE0 will
be the set of developed edges of zero length in H3 , and zEC the set of developed edges
of positive (ie nonzero) length. We will refer to edges in zE0 and zEC as zero-length and
positive-length edges respectively.

Definition 7.1 Given a subset of edges E0 � E we say that a loop of edges in zE is
a bad loop if exactly one edge is in zEC and all others are in zE0 . A subset of edges
E0 � E has no bad loops if there is no such loop.

We will only allow subsets E0 with no bad loops. In particular, if two of the three
edges of a face of T are in E0 then the third must also be to avoid a bad loop.

Definition 7.2 We refer to the three possibilities for the arrangement of edges of E0

around a triangle of T or �T as types 111 (no zero-length edges), 21 (one zero-length
edge), or 3 (all zero-length edges).

Definition 7.3 There are five possibilities for the arrangement of edges in E0 around
each tetrahedron of T or �T , as in Figure 10. We refer to these five possibilities as
types 1111, 211, 22, 31 and 4 respectively.
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1111 211 22 31 4

Figure 10: The 5 possible arrangements of edges in E0 (the dotted tetrahedron
edges) around a tetrahedron with corresponding parts of normal surfaces. The
barycenters of faces of the tetrahedra are shown with large dots and a valid
chain of triangles corresponds to a path of these dots along the graph formed
by the dashed lines.

a

b

c

d

e

f

g

zRin

a

b

c

d

e

f

g

Figure 11: From left to right, tetrahedra in �T of type 1111 , 211 , 31 , 22 and
the dual tree.

The naming convention in these two definitions is derived from the size and number of
equivalence classes of vertices within the tetrahedron, where two vertices are equivalent
if they are connected by a zero-length edge; see also Figure 11.

Definition 7.4 Given a subset E0 ¨ E with no bad loops, we construct a corresponding
normal surface as follows: each tetrahedron t 2 T has one of the five arrangements
of edges in E0 as in Figure 10. We also place normal quadrilaterals and triangles in
these tetrahedra as in the figure. Each face of T is of type 111, 21 or 3. These faces
have either three normal arcs cutting off each vertex, two normal arcs parallel to the
edge in E0 , or no normal arcs, respectively. Therefore these normal quadrilaterals and
triangles match up across the faces of T to form a normal surface.
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We do not allow the empty surface, corresponding to E0 D E . If S is a (nonempty)
normal surface corresponding to a subset of edges with no bad loops, then we say S is
in horo-normal form9 (relative to T ), and that S is a horo-normal surface.

Remark 7.5 We can construct E0 from a horo-normal surface by reading off from
Figure 10, and so horo-normal surfaces and subsets E0 with no bad loops are in one to
one correspondence.

Remark 7.6 An alternate way to see the horo-normal surface corresponding to a
subset E0 with no bad loops is as the boundary of a small regular neighbourhood of
the subcomplex of the triangulation generated by E0 .

Lemma 7.7 A horo-normal surface S is orientable, closed, and cuts M into a compact
inside region Rin and an outside region Rout which contains @M .

Proof The quadrilateral and triangle parts of S are prescribed and finite in each of
the finitely many tetrahedra of T , and so S is made from finitely many parts and is
therefore finite and closed. S is orientable because there is a consistent choice of
the side of the parts of S which face the vertices of the tetrahedra. It follows that S

cuts M into the two regions (not necessarily connected).

Definition 7.8 A chain of triangles
�
4.0/;4.1/; : : : ;4.n/

�
in T (or �T ) is valid if zRin

(the lift of Rin , as in Lemma 7.7) intersects 4.0/ as its central region (in other words
all edges of 4.0/ are in zEC ), and the chain of triangles contiguously intersects zRin (in
other words, the edge between neighbouring triangles is in zEC ).

Definition 7.9 The data for a point of the extended deformation variety of M with
triangulation T and horo-normal surface S consists of:

� a cross ratio z 2C n f0; 1g for each tetrahedron of type 1111,

� a cross ratio z� 2CŒŒ���, z 2C n f0g for each tetrahedron of type 211,

� a cross ratio z�2 2CŒŒ���, z 2C n f0g for each tetrahedron of type 22,

� two complex angles z1; z2 2C n f0g for each tetrahedron of type 31.

9As mentioned in the introduction, the surface is similar to a horosphere, cutting the vertices that are
all in the same place on @H3 away from all of the other vertices in other locations.
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This determines dihedral angles for each edge of a tetrahedron that is in zEC , as in
Figure 12 (only lowest orders are shown; the dihedral angles for type 211 for example
are z�; .z� � 1/=z� and 1=.1� z�/, so the preferred cross ratio is always z� ). We
record no data for tetrahedra of type 4.

Remark 7.10 What the data of Definition 7.9 amounts to is the following.

(1) Choose dihedral angles from C..�// n f0; 1g for each tetrahedron of types 1111,
211, and 22 for each of the six edges, subject to
(a) the degeneration order condition,
(b) opposite dihedral angles being equal,
(c) equations (1) and (2) (from Section 3) holding as equations in C..�//.

(2) Choose dihedral angles from C..�// n f0; 1g for each tetrahedron of type 31 for
the 3 edges not in E0 subject to
(a) the degeneration order condition,
(b) equation (1) holding as an equation in C..�//.

Remark 7.11 The data for a tetrahedron of type 31 may seem strange at first. The
conditions on the dihedral angles for a type 31 tetrahedron are weaker than for other
types of tetrahedron. This is to do with the fact that only the difference in positions
between two vertices joined by a zero-length edge matters. The absolute positions of
these vertices (other than their direction from H ) does not; see the proof of Theorem 9.8
for more details.

1111 211 22 31

1
1�z

1
1�z

z�1
z

z�1
z

z z

1

z� z�
�z�1��1

�z�1��1

z�2 z�2

�z�1��2

�z�1��2

z2

z1
�1

z1z2

Figure 12: Lowest order coefficients for dihedral angles associated to edges
of tetrahedra in zEC as in Definition 7.9. When we develop we only ever use
the preferred cross ratios.

For types 1111, 211, and 22 the two equations and opposite dihedral angles being
equal reduce the choice for each tetrahedron to a single cross ratio, and the degeneration
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order condition implies the power on the cross ratios as in Definition 7.9. In light of
Theorem 6.13 we only need to record the lowest order information for the preferred
cross ratio in order to be able to develop positions of vertices along valid chains of
triangles. For type 31 we similarly only record data for dihedral angles that a valid
chain of triangles in �T could turn through. We likewise never need to record data for
type 4, since we will never develop through any of these dihedral angles.

The data of Definition 7.9 then allows us develop through any valid chain of triangles,
starting from three ends of T� whose tripod center is H . We require one further
condition on this data.

Condition 7.12 The consistent development condition on the data for a point of the
extended deformation variety states that given any two valid chains of triangles that
start from the same triangle in �T , if a vertex v 2 zV is a vertex of triangles in both chains
then the developed positions f and f 0 of v under the two chains satisfy fH D f

0
H

.

Remark 7.13 Conditions (1)(b), (1)(c) and (2)(b) in Remark 7.10 ensure valid chains
contained within a single tetrahedron satisfy the consistent development condition.

Example 7.14 If E0 D � then EC D E , the horo-normal surface S is boundary
parallel and zRin is isotopic to �M , all tetrahedra are of type 1111, the consistent
development condition is equivalent to the gluing equations holding and we get the
standard deformation variety for M with triangulation T .

Definition 7.15 Let M be a 3–manifold with boundary a disjoint union of tori and
ideal triangulation T and S a surface in horo-normal form relative to T such that:

(1) zRin is connected;

(2) for each component of @M there exists an e 2 EC that has at least one endpoint
on that component;

(3) there exists a triangle 4 2 �T of type 111 (ie all three edges are in zEC , or
equivalently zRin intersects 4 as its central region).

Then the extended deformation variety of M with triangulation T and horo-normal
surface S , �D.M I T IS/ consists of points of the extended deformation variety (as in
Definition 7.9) subject to the consistent development condition. We will also consider
the disjoint union of all such varieties with a fixed triangulation but ranging over
all horo-normal surfaces satisfying these conditions. We call this set the extended
deformation variety of M with triangulation T , and write it as �D.M I T /.
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Note that the second condition is automatic for manifolds with only one boundary
component and the third holds as long as there are any tetrahedra of type 1111 or 211.

Definition 7.16 A surface in horo-normal form relative to T that satisfies condi-
tions (1) and (2) of Definition 7.15 is called porous.

A surface is porous if, like a sponge, we can move through zRin to get to every cusp
of �M , without having to go through zRout .

Definition 7.17 Given an element Z 2 �D.M I T IS/ we define the developing map

ˆZ W
zV! @H3;

up to conjugation, determined by the distinct images (positions on @H3 ) we choose
for the vertices of 4. (In fact we choose ends of T� for those positions, but by
Theorem 6.13 only the lowest order information of these matters.) To determine the
image of any other vertex v of zV , take any valid chain of triangles from 4 to a triangle
containing v , and develop along that chain. Such a chain exists by the porousity
conditions: each v corresponds to a lift of some component of @M , let e 2 EC be as in
condition 2 of porousity, then some lift ze of e has v as an endpoint and intersects zRin .
Traverse triangles with nonempty intersection with zRin from 4 to ze (which we can
always do by condition 1) and we get a position for v on @H3 by forgetting all but the
lowest order information, which is independent of the chain we took by the consistent
development condition, Condition 7.12.

Lemma 7.18 Suppose ze 2 zE has endpoints v; v0 and we can develop through a
valid chain of triangles to a triangle containing ze . Then ze 2 zE0 if and only if
ˆZ .v/DˆZ .v

0/.

Proof We prove a slightly stronger result: that if a; a0 2CŒŒ��� are the positions of v; v0 ,
developed along some valid chain of triangles, then

order.a� a0/D

(
1 if e 2 E0;

0 if e 2 EC:

We prove this by induction along chains of triangles starting with 4. By definition, no
edges of 4 are in E0 so we start out developing from three distinct points of @H3 , by
which we mean three ends e; e0; e00 2 T� such that eH ; e

0
H

e00
H

are all different. This
shows that the base case holds. The inductive step follows from the degeneration order
condition: for every new triangle we develop to, the order of the difference between the
developed positions of the endpoints is determined by the orders for the edges in the
triangle we develop from and the dihedral angle we develop through. The degeneration
order condition ensures that we get the correct order for the new edges.
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Lemma 7.19 If v; v0 2 zV are in the same component
�
zRout

�
0

of zRout , the lift of Rout

to �M , then ˆZ .v/DˆZ .v
0/.

Proof We first develop from 4 out to v , and then note that one valid chain of triangles
from 4 out to v0 is to go via a triangle containing v and then traverse along the lift
of S which separates

�
zRout

�
0

from zRin . This gives us a path of edges on the
�
zRout

�
0

side, all of which are in zE0 . The vertex at the start of the path is v , the vertex at the
end is v0 . Now apply Lemma 7.18 at each step of the path.

Remark 7.20 If we allowed in Definition 7.15 a choice of S and hence E0 with a bad
loop consisting of all but one edge in zE0 and one edge in zEC , then the two endpoints of
the path of edges in zE0 , v and v0 , would necessarily be in the same component of zRout .
By Lemma 7.19, their developed positions would be the same on @H3 , and then the
tetrahedra that contain the single edges of zEC would not be able to have dihedral angles
that satisfied both the degeneration order and consistent development conditions.

Remark 7.21 If there is no 42 �T of type 111, then all tetrahedra are of types 22, 31

or 4. zRin is then sandwiched between only two components of zRout , and given
Lemma 7.19, the only sensible developing map we might define (see Footnote 10 in
the proof of Theorem 7.22 on how we can develop starting from a triangle of type 21)
would have all vertices appear at one of only two positions on @H3 , and there would
be no hope of constructing a representation from this data. If all tetrahedra are of
type 4 then zRout D �M and the developing map would have to have all vertices appear
at only one position on @H3 (this case is ruled out since E0 ¤ E ); see also the proof
of Theorem 9.8.

Theorem 7.22 �D.M I T IS/ is an affine algebraic variety.

Proof We may view �D.M I T IS/ as a subset of CN1C2N2 , where N1 is the number
of tetrahedra of T of types 1111, 211 and 22, and N2 the number of type 31, as in
Definition 7.9. We now need to show that the consistent development Condition 7.12
gives a finite number of polynomial conditions on these variables.

First consider all the dihedral angles as elements of C..�//n f0; 1g and assume without
loss of generality that all developed positions are in CŒŒ���. By repeated application of
equation (23), every developed position f is a rational function of the preferred cross
ratios z.i/ 2 CŒŒ��� corresponding to the dihedral angles, and the initial three points
e; e0; e00 2CŒŒ���, so

f D f .z.i/; e; e0; e00/D
p.z.i/; e; e0; e00/

q.z.i/; e; e0; e00/
;
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where p and q are polynomials. We can then write p D �k.p0C �p1/ where p0 is
a polynomial in the z

.i/
� and e0; e

0
0
; e00

0
(but not � ), and p1 is a polynomial. We can

similarly write q D q0C �q1 (where there is no factor of � since f 2CŒŒ���). Then

f D �k p0C �p1

q0C �q1

D �k p0C �p1

q0.1� �
q1

�q0
/
D �k p0C �p1

q0

�
1C�

q1

�q0

C

�
�

q1

�q0

�2

C� � �

�
:

Thus fH D p0=q0 , or 0 if k > 0, and the equation fH D f 0
H

can be rearranged
into the form of a polynomial in the z

.i/
� together with e0; e

0
0
; e00

0
being equal to 0.

Whether or not the two developed points coincide does not depend on the starting
positions e0; e

0
0
; e00

0
, since moving those points consists of conjugating, which likewise

conjugates all of the developed vertices of triangles in the chains, since cross ratios
are preserved. Thus if we fix the values of e0

0
; e00

0
and the z

.i/
� , we get a polynomial in

only e0 , but which is constantly zero and hence the polynomial cannot depend on e0

at all. Similarly for e0
0

and e00
0

, and the polynomial equation depends only on the z
.i/
� .

We require that there are a finite number of such polynomial equations needed to ensure
consistent development. Again we assume without loss of generality that all developed
positions are in CŒŒ���. Given a triangle 40 2 �T with vertices u0; v0; w0 to which we
have developed positions in CŒŒ���, then due to Lemma 6.6, ˆZ .u

0/; ˆZ .v
0/; ˆZ .w

0/

together with the first order coefficient of the difference between developed positions
of a pair of these vertices with the same image under ˆZ (if such a pair exists)
are all the information we need in order to entirely determine ˆZ .v/ for further
vertices10. Moreover, the consistent development condition also means that this first
order coefficient of the difference is also independent of the chain we take. If it were
not, we could continue developing from two chains that produced different answers for
the first order coefficient of the difference along some valid chain that connects 40 to
a triangle of type 111. Then the different answers from the two chains would produce
different positions of the images under ˆZ , contradicting consistent development. (If
we cannot reach a triangle of type 111 then there was no choice of 4 to start developing
from in the first place.)

Let C1 and C2 be two valid chains of triangles that start at 4 and end at 40 :

C1 D
�
4D4

.0/
1
;4

.1/
1
; : : : ;4

.n1/
1
D4

0
�
;

C2 D
�
4D4

.0/
2
;4

.1/
2
; : : : ;4

.n2/
2
D4

0
�
:

10This is the sense in which we can develop starting from a triangle of type 21.
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Now suppose C1 and C2 agree at some triangle in the middle, at 400 WD4.j1/
1
D4

.j2/
2

.
We can then split these chains in two, getting

C1;A D
�
4D4

.0/
1
;4

.1/
1
; : : : ;4

.j1/
1
D4

00
�
;

C2;A D
�
4D4

.0/
2
;4

.1/
2
; : : : ;4

.j2/
2
D4

00
�
;

C1;B D
�
4
00
D4

.j1/
1
;4

.j1C1/
1

; : : : ;4
.n1/
1
D4

0
�
;

C2;B D
�
4
00
D4

.j2/
2
;4

.j2C1/
2

; : : : ;4
.n2/
2
D4

0
�
:

Then by the above discussion, consistency of development (possibly including con-
sistency of first order coefficient of differences) between C1 and C2 is implied by
consistency between C1;A and C2;A , and between C1;B and C2;B .

Consider the graph zG with vertex set the triangles of �T and edges between two vertices
if the corresponding triangles are in the same tetrahedron and the edge between them is
in zEC (see the large dots and dashed lines in Figure 10). Any valid chain of triangles
corresponds to a path in zG . Showing that any pair of valid chains of triangles develop to
the same result is equivalent to showing that any valid chain that is a loop in zG develops
back to the starting position of the first triangle (for any choice of first triangle); see
Figure 13.

A C C�1 B

Figure 13: Chains of triangles, combining a large loop from two smaller ones

Given a loop A ıB (ie following the chain A then B ), A ıB develops consistently
if and only if A ıC ıC�1 ıB does (since all of our developing steps are reversible),
which by the above discussion is implied by the loops A ıC and C�1 ıB developing
consistently. Thus, all we need is a generating set of loops of triangles to develop
consistently in order to ensure that every loop develops consistently. A finite set of such
loops can be found, using a set of generating loops for H1.G/, where G is the graph
defined analogously to zG , but with vertices corresponding to the triangles of T rather
than �T . The consistency of developing around each loop is a polynomial condition in
the dihedral angles, and the result follows.
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We should worry that perhaps there are some strange solutions to the consistent de-
velopment condition equations, for a triangulation for which we cannot define the
developing map in the first place. This is analogous to the situation for the standard
deformation variety, where it is conceivable that we could have a solution to the gluing
equations but an edge of the triangulation not be essential. An edge is essential if it
cannot be homotoped into the boundary of the manifold. If an edge of the triangulation
is not essential, then in the lift of the triangulation to the universal cover, the lift of the
edge will still be inessential. But then we run into trouble in defining a developing map
from the universal cover to H3 , since the two endpoints of the inessential edge would
have to map to the same point on @H3 , but this cannot happen for an ideal hyperbolic
tetrahedron; see [14] for details. It is shown in [14] that this situation cannot happen;
that the existence of a point of the standard deformation variety implies that all edges
are essential.

For our purposes, an inessential edge is only a problem to defining a developing map if
it is in EC . The analogous result is the following lemma.

Lemma 7.23 Let E0; EC be the partition of the edge set E of T , corresponding to the
horo-normal surface S . If �D.M I T IS/¤∅ then every edge in EC is essential.

Proof The proof is similar to [14, Lemma 1]. The main difference is that in addition to
drilling out tubular neighbourhoods of the edges to form the handlebody manifold H ,
we also cut the manifold along the horo-normal surface and remove the component
containing the cusps. Call the resulting drilled and cut manifold H 0 . In fact, cutting
away the outside region(s) has only a small effect on the combinatorics of the drilled
manifold. The combinatorics of drilled tetrahedra of types 1111, 211 and 22 are
unchanged, and the effect is that we remove tetrahedra of type 4 and introduce boundary
faces on tetrahedra of type 31; see Figure 10. Thus H 0 is also a handlebody, and so
similarly to as in [14], a point of the extended deformation variety gives us a developing
map from the universal cover of H 0 , and so a representation �W �1H 0! PSL.2;C/.
The consistent development condition replaces the gluing equations, and tells us that
any curve in the manifold that is null-homotopic before drilling and cutting maps to
the identity isometry under � . The rest of the proof follows.

This implies that whenever we have a point of the extended deformation variety, then
we can indeed define a developing map for it.

8 Porous horo-normal surfaces

In order to be able to define the extended deformation variety �D.M I T IS/, we require
that the horo-normal surface S is porous. In fact, we will want each of the (finitely

Algebraic & Geometric Topology, Volume 12 (2012)



A generalisation of the deformation variety 2215

many) horo-normal surface relative to the triangulation to be porous. In Section 8.2, we
give an algorithm for changing a triangulation for which some horo-normal surfaces
are not porous into a triangulation (of the same manifold) for which all are porous.
However, for many triangulations, modification is unnecessary.

8.1 Small manifolds with a single torus boundary component

Theorem 8.1 Suppose that M is a small irreducible manifold with a single torus
boundary component, and T a triangulation of M . Then every horo-normal surface
in T is porous.

By a small manifold, we mean that the only closed incompressible surfaces are boundary
parallel.

Proof First note that Rout is connected. This is true because, by Remark 7.6, Rout

is a small regular neighbourhood of the subcomplex of T generated by E0 , and this
subcomplex is connected since the vertices of all cells are at the single boundary
component.

Let R
.1/
in ;R

.2/
in ; : : : ;R

.n/
in be the components of Rin , with boundaries S .i/ . Compress

all of the components of all of the S .i/ as much as possible, to produce surfaces S
.i/
�

(each of which may not be a connected surface). We can do this in an “innermost
first” order, keeping all of the resulting surfaces disjoint. That is, if we want to make
a compression along a disk which intersects the union of the surfaces, first perform
compressions along the innermost circle(s) in the intersection. A compression move
can only disconnect regions in the complement of a surface, never connect regions
that were not connected before, so it makes sense to classify the new regions in the
complement of the surface as either outside or inside, depending on whether they came
from Rout or one of the R

.i/
in . Each compression move has a reverse, which in terms

of the complementary regions either adds a 1–handle to an inside region (or between
two inside regions), or adds a 1–handle to an outside region (or between two outside
regions), which we interpret as drilling a hole through an inside region. There are three
possibilities for each component of the resulting surfaces S

.i/
� . Each is either

(1) a closed incompressible surface (possibly a sphere) that is not boundary parallel,

(2) a closed incompressible surface, that is a torus parallel to the boundary torus,

(3) an S2 that bounds a ball.

Case (1) is ruled out because the manifold is small and irreducible, so there is no
graph of groups decomposition of �1M with surface groups as edge groups. So every
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component is either a sphere that bounds a ball, or a boundary parallel torus. Suppose
that there are k boundary parallel tori. Ignoring for a moment any spheres from case (3),
there are then k alternating inside and outside T 2 � I regions between the tori, the
outermost incident to @M , and a central region homeomorphic to M . Now add in the
spheres: each region has some number of possibly nested spheres within it, each of
which flips its interior from inside to outside or vice versa.

Consider first the case that k is even. Then the central region is an outside region. Now
undo all of the compression moves, by attaching 1–handles and drilling through the
inside regions. This connects all of the outside regions together to form Rout . This,
together with the central region being an outside region implies that in fact zRout is
connected. To see this, note that adding 1–handles to, and drilling holes through the
inside regions cannot divide the lift of the central outside region to the universal cover
into more than one component, nor can it divide the lifts of any of the outside T 2 � I

regions.

Next, since zRin is not empty (since by definition, the horo-normal surface is nonempty),
there is some edge in zEC . The edge intersects the surface twice, going from zRout

to zRin to zRout . The two endpoints of this edge are in the same (the only) component
of zRout . Therefore this edge, together with some edges from zE0 form a bad loop,
which is a contradiction to the surface being horo-normal.

Now suppose that k is odd. Then the central region is an inside region. Again, undo
all of the compression moves. We claim that zRin is connected. If not, there must be a
component that does not get connected to the central region as we undo the compression
moves, resulting in some region R

.i/
in . This region is made from some number of T 2�I

pieces (possibly zero) and balls, connected together by 1–handles, and those pieces and
handles drilled out in some way. The handles may be quite complicated, for example
there could be a hole drilled through the central region along a curve that is nontrivial
in �1M , and then a 1–handle attached between T 2�I pieces, following along inside
the hole. Nevertheless, we claim that a given connected lift of the region, zRin

.i/ , has a
single component of zRout surrounding it, and so by the same argument as for k being
even, this gives us a bad loop and a contradiction. To prove the claim, notice that near
a cusp in �M , there is a single component surrounding zRin

.i/ , since Rout is connected.
When the part of zRin

.i/ near this cusp connects to a part near some other cusp, it does
so by 1–handles, which are always surrounded by the same, single outside component.

Thus, there can be only one component of zRin . This proves condition 1 for a surface
being porous. Condition 2 follows trivially from the fact that there is only one cusp
and that the horo-normal surface is nonempty, which means that EC is nonempty.
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8.2 Retriangulating

In this section we show how to alter any given triangulation of a manifold in order to
turn all of the horo-normal surfaces that are not porous into ones that are. The tool we
will use to do this involves the following object.

Definition 8.2 A pillow is a pair of tetrahedra that share an edge and are the only two
tetrahedra incident to that edge; see Figure 14.

Figure 14: A pillow

Definition 8.3 The move of inserting a pillow alters a triangulation T as follows.
Take a pair of triangles of T which share an edge e , open up a gap between the two
pairs of faces of tetrahedra that meet at the pair of triangles and insert a pillow between
them.

Remark 8.4 Inserting a pillow corresponds to Matveev’s lune move [11, Defini-
tion 1.2.9].

Definition 8.5 In the new triangulation, T 0 , in place of the edge e there are two
corresponding edges e" and e# , and in place of each triangle involved are two corre-
sponding triangles, each of which shares the same vertices as the edge or triangle it
came from. We refer to these edges and triangles as splits of e and the original triangle
respectively. If we go on to make further pillow insertions we will also recursively
refer to splits of those splits of e as splits of e .

Let E be the edge set of the triangulation T and T 0 the triangulation obtained by
inserting a pillow across an edge e . T 0 has edge set E 0D .Enfeg/[fe"; e#; f g where f
is the edge joining opposite vertices of the pair of triangles. If we have a subset of
zero-length edges E0 � E , we can ask what possible subsets E 0

0
� E 0 are compatible

with E0 , meaning E0 � E 0
0

if e 62 E0 and .E0 n feg/[ fe
"; e#g � E 0

0
if e 2 E0 . We
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0 11 12

22

21

3 5

Figure 15: The seven possible configurations (up to symmetry) of edges in E0

or EC for two triangles that meet at an edge and the 9 possible configurations
after inserting a pillow. Edges in E0 are shown with dotted lines. The
numerical labels refer to the number of edges of the two triangles that are
in E0 , and where there is more than one configuration with that many we have
assigned subscripts to the labels arbitrarily. For each of the five configurations
12; 21; 22; 3 and 5 there is only one possibility for whether the added edge is
in E0 or EC that avoids bad loops. For the two configurations 0 and 11 the
local picture does not force this, although edges outside of the two triangles
may do so.

analyse the possibilities in Figure 15, which shows all possible configurations without
bad loops in the original pair of triangles. Note that the splits of e must either both be
in E 0

0
or both be in E 0C in order to avoid a bad loop.

Lemma 8.6 Suppose for a triangulation T we have a subset E0 with no bad loops.
Let T 0 be the triangulation obtained from T by inserting a pillow, so then we have
E 0 D .E n feg/[fe"; e#; f g. Let E 00

0
D .E0 n feg/[fe

"; e#g if e 2 E0 , and E 00
0
D E0 if

not. Then at least one of the subsets E 0
0
D E 00

0
or E 0

0
D E 00

0
[ff g has no bad loops in E 0 .

Proof Assume for contradiction that both choices for f would result in a bad loop.
First, f being positive-length gives a bad loop. This means that for each lift zf� of f
to �T , there is a path ı� of zero-length edges in BE 0 n ff g connecting the two endpoints
of zf� . We also have that f being zero-length gives a bad loop  . Replace each lift zf�
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of f in  with the corresponding path ı� . Now replace any splits e" or e# in 
with e and we get a bad loop for the subset of zero-length edges E0 � E , contradicting
the hypothesis.

Definition 8.7 Because of Lemma 8.6, given a horo-normal surface relative to a
triangulation T , there are either one or two corresponding horo-normal surfaces relative
to the triangulation T 0 where T 0 is obtained from T by inserting a pillow. We call such
a derived horo-normal surface a child of the original surface, and the original surface the
parent of the derived surface. If we go on to insert further pillows, we call the children
of children (with any number of generations) of a surface the descendants of that surface.
We extend these definitions to the subsets E0 with no bad loops corresponding to the
horo-normal surfaces in the obvious way. Likewise, the set of regions of zRin (in the
complement of S ) has either one or two descendant sets of regions in the complements
of the descendants of S .

Lemma 8.8 Suppose that T 0 is obtained from T by inserting a pillow and that S is a
horo-normal surface relative to T 0 . Then S has exactly one parent.

Proof Let E 0
0

be the subset corresponding to S , and let e"; e#; f be the edges added
by inserting the pillow. The subset E 0

0
has no bad loops, and collapsing e"; e# to e

and removing f cannot create a bad loop, so taking E0 D .E 00 n fe
"; e#; f g/[ feg

if e"; e# 2 E 0
0

, or E0 D E 0
0
n ff g if not produces a parent of S . Any parent of the

subset E 0
0

must agree with E 0
0

everywhere but at f , and contains e if and only if E 0
0

contains e" and e# , so the parent is unique.

Given a sequence of pillow insertions starting from a triangulation T , the horo-normal
surfaces of the various triangulations thus form a graded forest (a disjoint union of
trees, one tree for each horo-normal surface relative to T ), with all roots of trees at the
level of T and a nondecreasing number of nodes at successive levels.

Lemma 8.9 Suppose that S is a surface in horo-normal form relative to a triangula-
tion T . Suppose that we insert a pillow, changing T to T 0 , and let S 0 be a descendant
of S in T 0 . Let zRin and zR0in be the inside regions relative to S and S 0 respectively.
Then there is a natural surjective map from the set of components of zRin to the set of
components of zR0in .

Proof First note that we can see regions of zRin from diagrams of the edges of
tetrahedra marked as being in zE0 or zEC by looking at the midpoints of edges in zEC .
Observe that two midpoints are part of the same component of zRin if and only if they
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are connected by a path of midpoints of edges in zEC where neighbouring midpoints are
midpoints of edges of triangles of �T ; see Figure 10. Now consider the possible moves
in Figure 15. In all possible configurations of pairs of triangles and pillows only the
pair of triangles in configuration 11 has the midpoints of edges in zEC corresponding
to potentially distinct components of zRin . Those potentially distinct components get
connected together when we insert the pillow, no matter which choice we make for the
added edge. Thus connectivity can only increase for the descendants of a horo-normal
surface.

The above argument means that it makes sense to view a component of zRin as having a
descendant component of zR0in . A descendant component may merge with the descendant
of some other component, but no component can have multiple descendants.

Remark 8.10 Notice that the midpoints of splits of an edge in zEC are always connected
to each other, and so this will be true for all splits of that edge produced by further
pillow insertions.

Lemma 8.11 Suppose that S is a surface in horo-normal form relative to a triangula-
tion T which is porous. Then all descendants of S are also porous.

Proof Let S 0 be a descendant of S . Condition (1) of porousity (Definition 7.15)
follows directly from Lemma 8.9. Condition (2) is clear since inserting a pillow only
removes edges when replacing them with splits (which have the same endpoints and are
in EC if the original edge is). Therefore the subset E 0C corresponding to S 0 contains
an edge or a split of it if the subset EC corresponding to S does.

The results so far tell us that the pillow insertion move can never introduce truly new
horo-normal surfaces, only descendants of surfaces we started with. We also know
that the move cannot make a horo-normal surface “less porous”, and can only improve
matters. Next, we will need a structure that we can use to organise a sequence of pillow
insertion moves, in order to make the descendant horo-normal surfaces porous.

Definition 8.12 A strip of triangles in T (or �T ) is a sequence of triangular faces
.41;42; : : : ;4n/ of T (or �T ) alternating with a sequence of edges .e1; e2; : : : ; en�1/

such that neighbouring triangles 4k ;4kC1 share the edge ek . We call these internal
edges (as in, internal to the strip). For each 4k , k D 2; 3; : : : ; n�1, the internal edges
on either side, ek�1 and ek , must be distinct. We allow repeated triangles and edges
in the strip, even consecutive repeated triangles.

We will sometimes write a strip as .41; e1;42; e2; : : : ; en�1;4n/; compare with
Definition 6.3.
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Definition 8.13 If T is an ideal triangulation of a manifold M , we construct a
corresponding handle decomposition T ˇ of M by “thickening up” the edges and
triangles of T . Each edge e is replaced by a polygonal tubular neighbourhood (or
thick edge) eˇ , where the number of sides of the polygon is equal to the number of
triangles incident to the edge. Each triangle 4 is replaced by a triangular prism (or
thick triangle) 4ˇ with the rectangular faces coinciding with the rectangular faces
of the thick edges. Each tetrahedron t remains combinatorially the same but shrinks
a little to become tˇ so that its faces coincide with the triangular faces of the thick
triangles; see Figure 16. Inserting a pillow into T has a corresponding effect on T ˇ
and splits of thick edges and triangles are defined in an analogous way.

41

42e
4
ˇ

1

4
ˇ

2

eˇ

Figure 16: Four triangles of T that meet at an edge and the corresponding
four thick triangles of T ˇ meeting at the corresponding thick edge

Definition 8.14 A strip of triangles in T ˇ (or �T ˇ ) is a sequence of n triangles
embedded in and respecting the product structure of the thick triangles, alternating
with n� 1 rectangular pieces embedded in and respecting the product structure of the
thick edges such that the pieces connect together analogously to as in Definition 8.12;
see Figure 17. If we collapse all of the product structures to recover T then a strip of
triangles in T ˇ becomes a strip of triangles in T .

We can think of a strip of triangles in T ˇ as having all of the data of a strip of triangles
in T together with ordering information in the case when the strip passes through a
triangle or edge multiple times. We will refer to a strip of triangles � 0 in T ˇ that
collapses to a strip of triangles � in T as an ordered version of � .
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Figure 17: Strips embedded in part of T ˇ

Algorithm 8.15 (Insert pillows along a strip of triangles in T ˇ )

Input An ideal triangulation T of a connected 3–manifold M , together with a strip
of triangles � 0 D .40

1
; e0

1
;40

2
; e0

2
; : : : ; e0

n�1
;40n/ embedded in T ˇ .

Output A triangulation of M obtained from T by “inserting pillows along � 0”.

Let � D .41; e1;42; e2; : : : ; en�1;4n/ be the image of � 0 after collapsing the handle
decomposition T ˇ to T . Note that the strip may go through a handle of T ˇ multiple
times, and so there may be repeated triangles and edges in this list.

First we insert a pillow between41 and42 across e1 . This changes the triangulation T
to a new triangulation which we will call T1 ; see Figures 18 and 19 for the handle
decomposition of a thick pillow and how the handle decomposition changes under
a pillow insertion. The handle decomposition T ˇ

1
corresponding to T1 inherits an

embedded strip of triangles under the pillow insertion move in a natural way: all of
the handles of T ˇ other than 4ˇ

1
; eˇ

1
and 4ˇ

2
remain in T ˇ

1
, and they keep the strip

parts within them, connected to each other in the same way. The handles 4ˇ
1
; eˇ

1

and 4ˇ
2

are replaced by the handles as shown in Figure 18. Parts of � 0 that went
through 4ˇ

1
; eˇ

1
and 4ˇ

2
now go through either 4"ˇ

1
; e
"ˇ

1
and 4"ˇ

2
or 4#ˇ

1
; e
#ˇ

1

and 4#ˇ
2

, depending on the original ordering of those parts of � 0 in 4ˇ
1
; eˇ

1
and 4ˇ

2

relative to 40
1
; e0

1
, and 40

2
, and connect to other handles in the natural way. Finally,

one of either 4L or 4R (as in Figure 18) is incident to e2 , and we add a copy of
that triangle to the front of the new strip of triangles in T ˇ

1
, connecting onto the

rectangle e0
2

. This gives a new strip of triangles, � 0
1

embedded in T ˇ
1

.

We now repeat the process, using the first two triangles of the new strip to insert a new
pillow, to construct T ˇ

2
with a new embedded strip of triangles � 0

2
, and so on. Finally,
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the strip contains only two triangles, and after inserting a pillow between these two
triangles we are done.

See Figure 20 for a schematic picture showing the result of this algorithm.

Note that it is possible that the first two triangles in the sequence are in the same thick
triangle, with the strip folded over, backtracking immediately. In this case the pillow
insertion move is slightly different, opening up only one triangle and inserting a “folded
pillow”. Allowing this modified move does not change any of the arguments in this
section.

4
"ˇ

1

e"ˇ
4
"ˇ

2 4
"

1 e"

4
"

2

4
#

1

e# 4
#

2

4
ˇ

L

4
ˇ

R

f ˇ

4L

4R

f

4
#ˇ

1
e#ˇ

4
#ˇ

2

Figure 18: Top right: a pillow in T . Bottom left: the triangles inside the
pillow, redrawn for clarity. Diagonally from top left to bottom right: the
corresponding thick pillow in T ˇ in exploded view. Top left are two thick
triangles and a thick edge, next a tetrahedron, next two thick triangles and a
thick edge. The lower half is the mirror image of the upper half.

Algorithm 8.16 (Connect two components of zRin using a strip of triangles)

Input A horo-normal surface S relative to an ideal triangulation T of a connected
3–manifold M , and a strip of triangles z� in �T which projects to a strip of triangles
� D .41; e1;42; e2; : : : ; en�1;4n/ in T which has an ordered version � 0 embedded
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Figure 19: Thick versions of a pair of triangles and the corresponding pillow,
only the boundary faces are shown. The versions shown here correspond to
the situation in Figure 16, with one triangle incident to the central edge above
and one below. If there are more above, then the rectangular face is cut into
more strips, in both the pair of triangles and pillow diagrams, and similarly
below.

Figure 20: Inserting pillows along a strip joining two components of zRin .
Edges in zEC are solid, edges in zE0 are dotted and the last added edge (which
could be in either) is dashed.

in T ˇ . We also require that 41 and 4n are of type 21 and e1 and en�1 are zero-
length relative to the horo-normal surface S . Let A and B be the components of zRin

that contain the midpoints of the positive-length edges of 41 and 4n respectively.

Output A triangulation T � of M obtained from T by a finite number of pillow
insertions such that all descendants of S in horo-normal form relative to T � each
have their associated descendants of the regions A and B merged together into single
components.

First consider the case where 41;4n are type 21 and 42; : : : ;4n�1 are type 3.
(This is the case illustrated in Figure 20.) We insert pillows along the strip � 0 , as
in Algorithm 8.15. If n D 2, and the strip � has only two triangles, then we are
in configuration 11 of Figure 15. When we insert the pillow, the descendants of
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the previously disconnected components of zRin become connected for both possible
children of S . Otherwise, after the first pillow insertion we are in configuration 3, the
added edge f is positive-length and we have two new triangles which have f as an
edge. Both of these triangles are of type 21, and one of them (the new triangle added to
the front of the new strip to form � 0

1
) is arranged together with 43 in configuration 3

of Figure 15 (if n> 3) or configuration 11 (if nD 3). We repeat, as in Algorithm 8.15,
inserting pillows until we reach the same situation as when nD 2, and the descendants
of the previously disconnected components of zRin become connected; see Figure 20.
Notice that pillow insertions early in the strip may split edges that the strip revisits.
However, all of the splits of these edges will be zero-length edges, since the original
edges were also zero-length edges. So the pairs of triangles we insert pillows along are
still in configuration 3, or 11 at the very end.

Now suppose that the middle triangles of the strip are not all of type 3. There
must be some triangles of type 21, and possibly some of type 111; see Figure 21.
The strip decomposes into a number of substrips, each of which has triangle types
.21; 3; 3; : : : ; 3; 21/, or has a region of zRin running along it. We run the above procedure
on each of the substrips with types .21; 3; 3; : : : ; 3; 21/, and so connect the intermediate
regions of zRin together. This eventually connects the regions of zRin at either end of
the strip together.

Figure 21: A strip of triangles with a horo-normal surface. Edges in zEC are
solid, edges in zE0 are dotted. The regions of zRin are shaded.

Remark 8.17 We will apply Algorithm 8.16 to make a horo-normal surface (or rather,
its descendants) satisfy condition 1 of porousity. A very similar process also works to
make a surface satisfy condition 2. If condition 2 fails then a vertex v 2 V has only
edges in E0 incident to it, and so all triangles incident to it are of type 3. All we have
to do is insert pillows along a strip from a type 21 triangle through type 3 triangles out
to v , and this works in exactly the same way as in Algorithm 8.16.
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Algorithm 8.18 (Convert a set of strips of triangles in T into a set of strips of triangles
whose union is embedded in T ˇ )

Input A set of strips of triangles, f�ig
n
iD1

, each in the ideal triangulation T .

Output A set of strips of triangles f� 0ig
n
iD1

embedded in T ˇ , where the first and last
triangles, and first and last internal edges of each � 0i collapse to the corresponding first
and last triangles and internal edges of �i .

We start by building the strip � 0
1

in T ˇ . Suppose �1D.41; e1;42; e2; : : : ; em�1;4m/.
We build it in order from the start, placing triangles and rectangles into the handles,
arbitrarily making any choices of where to place the next triangle relative to other
triangles in a thick triangle, until we reach a barrier, in the form of a rectangle in eˇ

iC1

blocking us from extending the strip from 4ˇi into 4ˇ
iC1

; see Figure 22.

We “push aside” any such rectangles behind us, removing them and reconnecting the
strip by adding two triangles and three rectangles each as shown, one of the rectangles
pushing into the thick edge incident to 4ˇi other than eˇ

iC1
and eˇi . This process adds

a finite number of pieces to the strip and the result is once again embedded. Using this
move, we can deal with any further obstructions, and we end up with an altered strip,
embedded in T ˇ .

Note that this process of pushing the strip aside cannot move any preexisting triangles
in the strip, nor can it change which edges the triangles are connected to in the strip.
Thus, although the resulting strip � 0

1
may be longer than the original strip �1 , it starts

and ends in the same way as �1 does, as required.

We continue in exactly the same way for all of the other strips: we start building them
in the appropriate thick triangle, with an arbitrary position relative to any preexisting
triangles in that thick triangle, and build along the strip, pushing parts of this or other
strips aside as needed. By the same argument as before, these moves do not change
the start and end of any of the previous strips. The result is a set of strips of triangles
embedded in T ˇ , with the required beginning and ending properties.

Algorithm 8.19 (Make all horo-normal surfaces porous)

Input An ideal triangulation T .

Output An ideal triangulation T� , obtained from T by a finite number of pillow
insertions, such that every horo-normal surface in T� is porous.

There are a finite number of horo-normal surfaces in T . For each one of them, we
need to make it (or rather, its descendants) porous. We will do this for each surface
by specifying a set of strips of triangles in �T which will connect the components
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Figure 22: A rectangle in the way of extending the strip and the result of
pushing it aside. The left thick triangle is 4ˇi , the right thick triangle is
4
ˇ

iC1
and the thick edge in the middle is eˇ

iC1
. The strip enters 4ˇi from the

thick edge eˇi marked with an arrow. In these diagrams we do not specify
how many thick triangles are incident above and below eˇ

iC1
, and the number

does not alter the argument.

of zRin (for that surface) together (condition 1 of porousity, using Algorithm 8.16),
and connect zRin out to any vertices that do not already have a positive-length edge
incident to them (condition 2 of porousity, using the variant of Algorithm 8.16 outlined
in Remark 8.17). We choose these strips in �T , project them to T , and then use
Algorithm 8.18 to modify them so that their union is embedded in T ˇ . This done,
we can apply Algorithm 8.16 and the variant outlined in Remark 8.17. Notice that
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the modifications in Algorithm 8.18 do not move the start and end triangles of the
strips, so the modified strips work the same way to connect components of zRin , or to
connect zRin to vertices. The edges of the start and end triangles of a strip � 0 may be
split many times by pillow insertions along other strips. However, by Remark 8.10,
the splits of positive-length edges that we actually connect to when inserting pillows
along � 0 have midpoints in the corresponding descendants of the original components
of zRin .

For each horo-normal surface, there are a finite number of strips that are needed. To
see this, first choose some connected fundamental domain D0 �

�M for M made
from some union of tetrahedra of the original triangulation �T . Consider the connected
components of zRin that intersect D0 . There will be some finite number of these
since D0 is made from finitely many tetrahedra, each of which can intersect at most
one component of zRin . D0 has some finite number of �1M –translates that touch
it along faces of �T . Connecting all of the components that intersect D0 together,
and connecting the resulting single component for D0 to each of the components
intersecting the touching �1M –translates (if they are not already the same component
as the one intersecting D0 ) results in a connected zRin . In addition, the manifold has
only finitely many boundary components, lifts of all of which must be incident to
tetrahedra in D0 . Therefore we also need only finitely many strips to connect out to
the vertices corresponding to those boundary components.

Therefore, applying Algorithm 8.18 to the finite set of strips of triangles, then applying
Algorithm 8.16 and the variant outlined in Remark 8.17 produces T� via a finite number
of pillow insertions.

Corollary 8.20 Suppose M is the interior of a compact, connected, orientable 3–
manifold with nonempty boundary. Then there exists a triangulation T� such that all
surfaces in horo-normal form relative to T� are porous.

Proof It is well-known that every manifold that is the interior of a compact 3–
manifold with nonempty boundary admits an ideal triangulation (eg, Tillmann [18,
Proposition 1.2] is a summary of results in [11] proving this). We can then apply
Algorithm 8.19 to obtain T� .

Remark 8.21 The algorithm given in this section is likely to be very inefficient in
the number of tetrahedra required. One simple way to improve it would be to check if
inserting pillows along strips to improve one horo-normal surface would also improve
the others. If so, we would be able to use fewer strips of triangles.
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9 Representations

Definition 9.1 We define a map

R.T IS/W �D.M I T IS/!R.M /;

up to conjugation as follows: Given Z 2 �D.M I T IS/, the developing map ˆZ

gives us for each vertex in zV a position on @H3 . To construct a representation
R.T IS/.Z/ D �Z W �1M ! PSL.2;C/, for each  2 �1M we consider the trans-
late 4 of 4 (the triangle we start developing from), which is another triangle of �T .
No edges of 4 are in zE0 , and the same is true for the edges of 4, since both are lifts
of the same triangle of T . The positions of the vertices v; v0; v00 of 4 on @H3 are
distinct by definition, and the developed positions of the vertices v;  v0;  v00 of 4
are distinct by Lemma 7.18. We define �Z . / to be the unique element of PSL.2;C/
that takes the positions of v; v0; v00 on @H3 to the positions of v;  v0;  v00 . We also
define

RT W �D.M I T /!R.M /

as R.T IS/ on each �D.M I T IS/ in the disjoint union that makes up �D.M I T /.
To show that the map results in a representation, we need the following.

Lemma 9.2 R.T IS/.Z/D �Z W �1M ! PSL.2;C/ is a homomorphism.

Proof Suppose we have valid chains of triangles

C1 D
�
4D4

.0/
1
;4

.1/
1
; : : : ;4

.n1/
1
D 14

�
;

C2 D
�
4D4

.0/
2
;4

.1/
2
; : : : ;4

.n2/
2
D 24

�
:

An example of a chain from 4 to 214 is given by

C3 D
�
4D4

.0/
2
;4

.1/
2
; : : : ;4

.n2/
2
D 24D 24

.0/
1
; 24

.1/
1
; : : : ; 24

.n1/
1
D 214

�
:

Also let C0 D .4/ be the trivial chain. Let C .j/ denote the subchain of C up to the
j –th triangle. Let x̂ .C;Z/.v/ be the developed position of v into the ends of T� along
a chain of triangles C (so x̂ .C;Z/.v/H D ˆZ .v/, but the higher order information
can depend on C ). Let I.C;Z/ 2 PSL

�
2;C..�//

�
be the unique element that takes the

developed position of the first triangle of C to the developed position of the last.

By definition,
x̂
.C2;Z/.24/D I.C2;Z/

x̂
.C0;Z/.4/:
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Here we are abusing notation in having x̂ take input the ordered triple of vertices
forming a triangle rather than just one vertex, and x̂ .C0;Z/.4/ is a complicated way
to write the position of 4 that we start developing from.

We would like to show that for each j D 0; : : : ; n1 , we have

(30) x̂
.C
.n2Cj/

3
;Z/
.24

.j/
1
/D I.C2;Z/

x̂
.C
.j /

1
;Z/.4

.j/
1
/:

When j D 0 this is the previous equality, and when j D n1 this says that

x̂
.C3;Z/.214/D I.C2;Z/

x̂
.C1;Z/.14/;

and so

x̂
.C3;Z/.214/D I.C2;Z/

x̂
.C1;Z/.14/D I.C2;Z/I.C1;Z/

x̂
.C0;Z/.4/;

which is what we need. We show equation (30) by induction. As noted before, we have
the case when j D 0. When we develop from 24

.j/
1

to 24
.jC1/
1

, and from 4.j/
1

to 4.jC1/
1

, in both cases we are developing out one further vertex position, the position
determined by the positions of the triangles we are developing from and the dihedral
angle. The dihedral angle is the same in both cases because the corresponding dihedral
angle in T is the same. Since elements of PSL

�
2;C..�//

�
preserve cross ratios, the

positions of the two new vertices are related in the appropriate way by I.C2;Z/ .

A similar argument shows that the representation we get is independent (up to conjuga-
tion) of the triangle 4 we choose to start developing from.

The following definition closely follows an argument of Tillmann [19].

Definition 9.3 Let T1; : : : ;Th be the torus boundary components of M , and so
@M D

S
i Ti . A vertex v 2 zV is stabilised by a unique subgroup Pv � �1M which

is conjugate to im.�1Ti ! �1M / for some i . Let v1; : : : ; vh be a choice of such
vertices, one for each of the tori. Let �W �1M ! PSL.2;C/ be any representation.
The subgroup �.Pvi

/� PSL.2;C/ fixes either one or two points of @H3 , or the whole
of @H3 if �.Pvi

/D f1g. For each i , choose a wi 2 @H3 which is fixed by �.Pvi
/.

We define a map
‰�W zV! @H3

by extending to all other vertices equivariantly.

Compare with Definition 7.17. The map ‰� depends on the choices of fixed point wi

but the maps are otherwise well-defined up to conjugation of H3 . There are at most 2h

choices of ‰� unless �.Pvi
/ D f1g for some vi , in which case there are infinitely

many choices.
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Definition 9.4 Let � 2R.M / and fix a choice of ‰� . We associate a horo-normal
surface

S.‰�/

to ‰� as follows: Let E be the edge set of T . Consider the images of the endpoints of
edges in zE under ‰� . Let zE0 be the set of such edges whose endpoints map to the same
point of @H3 . By the equivariance of ‰� , zE0 descends to E0 � E . Let EC D E n E0 .
Let S.‰�/ be the horo-normal surface associated with the subsets E0 and EC as in
Definition 7.4.

Lemma 9.5 The subset E0 in the above definition has no bad loops.

Proof Suppose for contradiction this subset E0 has a bad loop. Then by definition
of a bad loop (Definition 7.1) all but one edge of the loop is in zE0 . Let the loop
be given by edges e1; e2; : : : ; en 2

zE , where ei has endpoints vi ; viC1 2
zV for i D

1; 2; : : : ; n� 1 and en has endpoints vn; v1 . Suppose that e1; e2; : : : ; en�1 2
zE0 and

en 2
zEC . Then ‰�.v1/D‰�.v2/D � � �D‰�.vn/, but in fact ‰�.vn/¤‰�.v1/, which

is our contradiction.

Definition 9.6 If A is an abelian group, the generalised dihedral group of A is the
semidirect product A Ì Z2 with Z2 acting on A by inverting elements. A representa-
tion � is dihedral if �.�1M / is a generalised dihedral group.

Lemma 9.7 If � 2R.M / is irreducible then either � is dihedral or every ‰� is such
that

ˇ̌
‰�.zV/

ˇ̌
� 3.

Proof We use the same notation as in Definition 9.3. Let wi be a point fixed by �.Pvi
/,

so wi 2‰�.zV/. Let fix.wi/�G D �.�1M / be the set of isometries that have wi as
a fixed point. The representation � is irreducible, which means that no point of @H3

is fixed by all of G , and in particular fix.wi/ is a proper subset of G .

Either there are at least three translates of wi (and we have
ˇ̌
‰�.zV/

ˇ̌
� 3) or every

element of G n fix.wi/ is of order 2, taking wi to some w0i ¤ wi and back. In this
case we must also have fix.w0i/D fix.wi/, otherwise if we could move one without
moving the other, we would obtain a third point. Thus the subgroup fix.wi/ is abelian,
since it fixes two distinct points on @H3 .

If we arrange the fixed points at 0 and 1 on @H3 then every element a 2 fix.wi/

is diagonal and every element r 2 G n fix.wi/ is antidiagonal. One can verify that
rar D a�1 , and so G D fix.wi/Ì Z2 is a generalised dihedral group.
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Theorem 9.8 Let M be the interior of a compact, connected, orientable 3–manifold
with nonempty boundary consisting of a disjoint union of tori, and T an ideal triangu-
lation of M . Let � 2R.M / such that there is a choice of ‰� with

ˇ̌
‰�.zV/

ˇ̌
� 3 and

S.‰�/ porous. Then there exists Z�2
�D.M I T IS.‰�// such that R.T IS.‰�//.Z�/D�

up to conjugation.

Proof By assumption S.‰�/ is porous. Suppose for contradiction Definition 7.15(3)
fails. Then all tetrahedra are of types 22, 31 or 4. They cannot all be of type 4 since
then

ˇ̌
‰�.zV/

ˇ̌
D 1. zRin is connected by condition 1 of porousity and intersects edges of

every vertex in zV by condition 2, so we can follow chains of triangles that contiguously
intersect zRin starting from some triangle 4 of type 21, and going to each vertex. Every
triangle we move through is of type 21, and we see that the vertices of zV fall into two
sets, those that are connected by paths of edges in zE0 to either the pair of vertices of
4 connected by an edge of zE0 , or the other vertex of 4. Vertices from these two sets
are never connected by an edge of zE0 , since that would give a bad loop. Thus in this
case

ˇ̌
‰�.zV/

ˇ̌
D 2.

So S.‰�/ is a horo-normal surface that satisfies all of the conditions of Definition 7.15.
We now need to construct Z� 2

�D.M I T IS.‰�// such that R.T IS.‰�//.Z�/D � up
to conjugation. Because of the definition of R.T IS.‰�// in Definition 9.1 and the fact
that elements of PSL.2;C/ are determined by their action on 3 distinct points of @H3 ,
it is enough to construct Z� so that ‰� DˆZ� as maps zV! @H3 .

Fix a conjugation of H3 so that 1 62 ‰�.zV/. The map ‰� determines the position
on @H3 of every vertex of zV , and each edge of zE0 has both endpoints in the same
position. To determine the data (see Definition 7.9) for a tetrahedra of type 1111 in T
we simply read off the cross ratio given by the positions of the vertices of one of its
lifts in �T . The answer we get is independent of the choice of lift since elements of
PSL.2;C/ preserve cross ratios and lifts are taken to each other by deck transformations
 2 �1M , and their images in @H3 taken to each other by �. / 2 PSL.2;C/. We
will use a similar construction to deal with the degenerate tetrahedra.

For each ei 2 E0 , arbitrarily choose a lift zei 2
zE0 . We also arbitrarily choose an offset

ıi 2C n f0g for zei , viewing it as a directed edge between its endpoints ui ; vi 2
zV . The

idea is that although ‰�.ui/D‰�.vi/, we want to introduce some extra information
to talk about the difference between the two positions, namely that the difference will
be ıi� 2CŒŒ���. We extend the choice of offset to all other lifts of edges in E0 using � :
if zei and ze0i are lifts of ei 2 E0 with endpoints ui ; vi ;u

0
i ; v
0
i then there is some deck

transformation  2 �1M such that  zei D ze
0
i . If ‰�.ui/ D ‰�.vi/ D x 2 C then
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�. /.x/D‰�.u
0
i/D‰�.v

0
i/. If

�. /D

�
a b

c d

�
with determinant 1, then�

a b

c d

��
xC ıi�

1

�
D

�
axC aıi�C b

cxC cıi�C d

�
;

axC aıi�C b

cxC cıi�C d
D

axC b

cxC d
C

ıi�

.cxC d/2
C .h.o.t. in �/:

Then .ax C b/=.cx C d/ D ‰�.u
0
i/ D ‰�.v

0
i/, and we take the offset for ze0i to be

ıi=.cxC d/2 2C n f0g. One can verify that this choice is consistent in that we get the
same answer under action by products of elements of PSL.2;C/. Note also that the
only element of �1M that fixes an edge of zE is the identity element, which of course
fixes the offset.

We can also see the consistency as follows: consider four points xCıi�;y;x; w 2CŒŒ���,
where x;y; w 2 C are distinct. The cross ratio z of these four points is preserved
under elements of PSL.2;C/� PSL

�
2;C..�//

�
, and by Lemma 6.5,

z� D
ıi.y �w/

.x�w/.y �x/
:

So ıi is determined by z� and x;y; w . If we then apply some combination of elements
of PSL.2;C/ then z� stays fixed and our new ıi is determined by the new positions
for x;y; w , which are independent of the combination of elements of PSL.2;C/ that
take us here.

So we have a ıi assigned to each zei 2
zE0 . We use these and Lemma 6.5 to read off

the lowest order information of the preferred cross ratios for tetrahedra of types 211,
and 22; see Figure 23. Again the answer we get is independent of the choice of lift of
tetrahedron. For tetrahedra of type 31 we only care about the dihedral angle between
pairs of triangles that meet at an edge in zEC . We can read this cross ratio off as

z D
.x� .xC ıj�//.w� .xC ıi�//

.x� .xC ıi�//.w� .xC ıj�//
D
ıj .w� .xC ıi�//

ıi.w� .xC ıj�//
;

so z� D ıj=ıi .

Notice that we do not require that the offset of the third edge of the 31 tetrahedron
together with the first two link up to form a triangle. We track the first order offset
(difference) between two points with the same position on @H3 , but not the absolute
first order positions.
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y

w

x
xC ıi�

y

yC ıj�

x
xC ıi� x

xC ıi�
xC ıj�

w

Figure 23: Positions of vertices of 211, 22, 31 tetrahedra. The larger circle
represents @H3 ŠCŒ��=.�/[f1g . The smaller circles represent the set of
points of the form xC �x0 where x0 2CŒŒ��� . Offsets ıi and ıj may or may
not be associated to edges that are �1M –translates of each other.

We now have the data for a point of the extended deformation variety, we need to
show that these choices satisfy the consistent development condition. Suppose that we
have two triangles 41 and 42 which share an edge in zEC , the positions on @H3 of
the vertices of 41 as given by ‰� and the offset for any edge of 41 in zE0 , together
with the cross ratio data for the dihedral angle. Then Lemma 6.6 tells us that we
can recover the position on @H3 of the vertex of 42 not shared with 41 , and any
offsets for edges of 42 in zE0 . As we develop through valid chains we always get the
correct answer (agreeing with ‰�.zV/, and with our offsets) no matter which chain of
triangle we develop along, so we get consistent development. So if we start developing
from a triangle with vertex positions agreeing with ‰� , we get ‰� D ˆZ� as maps
zV! @H3 .

Proof of Theorem 1.1 This theorem follows immediately from Theorem 9.8 and
Lemma 9.7.

10 Examples, part 2: The once punctured torus bundle with
monodromy LLR , revisited

We return to the example of Section 4. The component which satisfies ij D 1 in
D.MLLRI T4/ has hkD1, so the top right diagram of Figure 4 has all of the “equatorial”
dihedral complex angles being 1. (The back dihedral angle is obviously 1, the other
two dihedral angles turn out to be 1 via the equations internal to each tetrahedron, (1)
and (2).) Then the north and south vertices of the two tetrahedra are in the same place
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on @H3 , and so the added edge e in T5 is the single edge in E0 . The corresponding
horo-normal surface S is shown in Figures 24 and 25.

Figure 24: Tetrahedra incident to one fundamental domain of the boundary
torus, as seen in perspective. Only some of the vertical edges are shown (each
vertex below has an edge above it going towards the vertex at infinity). The
dashed lines are all translates of the one edge e 2 E0 . Shown are some of the
pieces of the horo-normal surface: tubes made from quadrilaterals around the
vertical lifts of e and triangles nearest the vertex at infinity.

As in Figure 25, all tetrahedra are of types 1111 or 211, and so zRin is connected. (If
there are no tetrahedra of type 31 or 4 then all triangles are of type 111 or 21, and
so zRin connects through the center of each triangular face of �T .) In this example, if we
perform one compression move to the surface S we obtain a boundary parallel torus,
and consistent development for �D.MLLRI T5IS/ is achieved if we have the gluing
equations (or rather, lowest order versions, using angles as in Figure 12) for each edge
apart from e 2 E0 , together with consistency for a chain of triangles going around e .
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r�

p� r�

q�

j

i q�

j r�

p�

i

p�

j

q�

p� i

j i

r�

q�

Figure 25: The view from above: Shown here are all parts of the horo-
normal surface. Each edge of EC intersects the surface twice, the edge
e 2 E0 (dashed) is disjoint from the surface. Tetrahedra labelled with dihedral
angles i and j are of type 1111, p�; q� and r� are type 211.

The gluing equation (13) is gone, the gluing equations (14) through (17) become

ij q�.�q�1��1/r�.�r�1��1/D 1;(31)

i � 1

i
j .�p�1��1/q� D 1;(32)

i
1

1� i

j � 1

j

1

1� j
p�.�q�1��1/1D 1;(33)

i � 1

i

1

1� i

j � 1

j

1

1� j
1p�.�p�1��1/1r�.�r�1��1/D 1;(34)
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which simplify (caring only about lowest order) to

ij D 1;(35)

i � 1

i
j

�
�

q

p

�
D 1;(36)

i

i � 1

1

j

�
�

p

q

�
D 1;(37)

1

ij
D 1:(38)

There are obvious redundancies here. To see the consistency for a chain of triangles
going around e , consider developing around the left hand vertical tube in Figure 24.
There are three triangles, all of which share the vertex at infinity. The dihedral angles
between those triangles are p�.�r�1��1/ D �p=r , q�.�p�1��1/ D �q=p and
r�.�q�1��1/D�r=q . The three triangles are three faces of a tetrahedron (in fact the
tetrahedron labelled h in T4 , from before the 2–3 move, see Figure 4) and consistent
development around these triangles is the same as equations (1) and (2) for that
tetrahedron. The first is satisfied automatically, and the second simplifies to the last
equation we need for �D.MLLRI T5IS/:

(39) pC qC r D 0:

Remark 10.1 We have three independent equations in five variables, and so this
variety is 2–dimensional, whereas the corresponding component of the deformation
variety with triangulation T4 is 1–dimensional. The extra dimension comes from the
choices of p; q and r , all of which can be scaled by some constant at once to give
another point of �D.MLLRI T5IS/, and the scaled and original points map to the same
representation in R.M /.

11 Application: the PSL.2 ;C/ A–polynomial

11.1 Definitions

The A–polynomial was introduced by Cooper, Culler, Gillet, Long and Shalen in [3],
and originally defined for the SL2.C/ character variety. For the PSL.2;C/ version,
we follow [2]. Assume that N is a 3–manifold with @N being a single torus bound-
ary component and choose generators L;M 2 �1@N . Let X.N /;X.@N / be the
PSL.2;C/ character varieties of N and @N respectively, and r W X.N /!X.@N / the
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restriction. Let ��R.@N / be the subvariety consisting of diagonal representations.
Let pBW �!C� �C� be an isomorphism given as follows: If � 2� is such that

�.L/D˙

�
l 0

0 l�1

�
; �.M /D˙

�
m 0

0 m�1

�
;

then pB.�/D .l
2;m2/. Let t W R.N /!X.N / be the quotient map and t�W �!X.N /

the restriction to �, which is a surjection and generically 2–to–1. Let X 0.N / be the
union of irreducible components Y 0 of X.N / such that the closure of r.Y 0/ is 1–
dimensional. For each component W 0 of X 0.N / let W be the curve t�1

�
.r.Y 0//��.

Let DN be the union of curves W as W 0 varies over all components of X 0.N /.

Definition 11.1 The defining polynomial of the closure of the image of DN in C��C�

is called the PSL.2;C/ A–polynomial of N and denoted by AN .l;m/.

11.2 Calculating eigenvalues

Lemma 11.2 There is a well-defined rational map HolW �D.N I T IS/!C��C� such
that the following diagram commutes:

X.N /
tıR.T IS/
 ������ �D.N I T IS/

r

??y ??yHol

X.@N /
p�1

B
ıt�

 ����� C� �C�

Proof Let Z 2 �D.N I T IS/, and suppose we have a choice of initial triangle 42 �T
with vertices v; v0; v00 2 zV where all edges of 4 are in zEC , and a choice of ideal triangle
with vertices e0; e

0
0
; e00

0
2 @H3 for the image of 4. Then we have the developing map

ˆZ W
zV ! @H3 as in Definition 7.17. For now we assume that 1 62 ˆZ . zV /. As in

the proof of Theorem 7.22, the developed positions of cusps are rational functions of
the z

.i/
� (the lowest nonzero order terms of the cross ratios) and e0; e

0
0
; e00

0
.

Let L0;M 0 2 �1.N / be images of L;M under the injection �1.@N / ,! �1.N /

chosen so that the deck transformations of zN corresponding to L0;M 0 fix v . In
order to calculate ˆZ .L

0.v//, ˆZ .L
0.v0// and ˆZ .L

0.v00// we choose a valid chain
of triangles starting with 4 and ending at L0.4/. By the consistent development
condition, the values of the developed positions are independent of the particular choice
of valid chain. However, as L0 is peripheral, we can choose such a chain which follows
along the lift of the horo-normal surface which bounds the component

�
zRout

�
0

of zRout

that contains v , and then by Lemma 7.19 we get that ˆZ .L
0.v//DˆZ .v/.
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Now conjugate the whole picture to move .e0; e
0
0
; e00

0
/ to .0; 1;1/. We still call the

developing map ˆZ , so now ˆZ ..v; v
0; v00// D .1; 0; 1/. All developed positions

other than those that are now at 1 are still rational functions, now of only the z
.i/
� .

Then ˆZ .L
0.4//D .1; b; bCa/ for some developed cusp positions b; bCa, and so b

and a are rational functions of the z
.i/
� . The corresponding element of PSL.2;C/ is

�Z .L
0/D˙

�p
a b=
p

a

0 1=
p

a

�
;

and the square of the eigenvalue is a, which is therefore a rational function of the z
.i/
� .

Similarly for M , and we have constructed a rational map HolW �D.N I T IS/!C��C�

in such a way that the above diagram commutes.

See Equations (45) and (46) and Figure 26 for an example of how to compute Hol in
practice. One travels along the path, picking up a factor (resp. its inverse) when the
path rotates anticlockwise (resp. clockwise) around the corner of a triangle. The factors
are as shown in Figure 12. Note that the � terms will always cancel with each other.

Now let XS D
S

Yi where Yi is a component of �D.N I T IS/ whose closure of the
image under Hol is a curve in C �C .

Definition 11.3 If XS ¤∅, the image Hol.XS / is called the holonomy variety with re-
spect to the triangulation T and horo-normal surface S , and is denoted by H .T IS/.N /.
The defining polynomial of the closure of H .T IS/.N / is denoted by H .T IS/.l;m/.

Theorem 11.4 Let T� be an ideal triangulation of N for which every surface in horo-
normal form relative to T� is porous. Then the polynomials H .T�IS/.l;m/, ranging
over each horo-normal surface S , contain all factors of the PSL.2;C/ A–polynomial
of N associated to components of irreducible nondihedral representations.

Proof By Lemma 11.2, for each choice of S for which �D.N I T IS/ ¤ ∅, then
H .T IS/.l;m/ divides the PSL.2;C/ A–polynomial. Moreover, by Lemma 9.7 and
Theorem 9.8, RT� W �D.M I T�/!R.M / is onto the irreducible nondihedral represen-
tations.

Proof of Theorem 1.3 Combine Theorem 11.4 with Corollary 8.20.
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11.3 Examples, part 3: The knot 820

Marc Culler has compiled a list of A–polynomials of knot complements, using the
standard deformation variety associated to triangulations of knots calculated by Joe
Christy and included in SnapPy [5]. The list is available at http://www.indiana.edu/ knot-
info/references/a_polys_table_glueing.html. For details on how the calculations are
performed, see also http://www.math.uic.edu/ culler/talks/apolynomials. As the standard
deformation variety is used in these calculations, Culler does not claim that all factors of
the A–polynomial are listed. Indeed, Mattman [10] shows that the knot 820 must have
two factors, one of which is missing in Culler’s calculations, which list the following
expression for the A–polynomial of 820 :

m10
C l.1�m2

C 2m4
� 2m6

�m8
C 5m10

Cm12/

C l2.�1C 5m2
� 3m6

C 3m8
C 4m12

C 2m14/

C l3.2m4
C 4m6

C 3m10
� 3m12

C 5m16
�m18/

C l4.m6
C 5m8

�m10
� 2m12

C 2m14
�m16

Cm18/

C l5m8:

In Figure 26 (top) we see the triangulation of the boundary torus induced by triangulation
for the complement of the knot 820 as given by SnapPy. We have chosen a labelling
of the angles to match with the preferred cross-ratios for the particular choice of
horo-normal surface shown below.

One can check that the standard deformation variety for this triangulation has only one
component by repeatedly solving an equation for one of the variables and substituting
in until there is one polynomial in two variables, then checking that this polynomial
does not factor. In cases with a small number of tetrahedra this is often possible to do.
However, there is another component in the representation variety which is mapped
to by the extended deformation variety with the horo-normal surface as shown in the
figure.

As in the previous example, only one edge is in E0 . This time four tetrahedra are of
type 112 and one is of type 22. The equations for consistent development, and the
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z0

z2
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z2 z3
z1

z4

z0

y0�
2

y2�

y3�
y1�y4�
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2

y4�

y2�
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y4�
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Figure 26: Above: tetrahedra incident to one fundamental domain of the
boundary torus of the knot 820 as viewed from the cusp, with the triangulation
as given by SnapPy [5]. The edges of the fundamental domain are identified
in the obvious way, and the generators of the holonomy as given by SnapPy
are also shown. Below: all parts of the horo-normal surface. Each edge of EC
intersects the surface twice, the edge in E0 (dashed) is disjoint from the
surface.

holonomies of the meridian and longitude are

.y0�
2/.�y�1

3 ��1/.�y�1
4 ��1/D 1;(40)

.�y�1
0 ��2/.y4�/.�y�1

2 ��1/.y1�/.y3�/.�y�1
4 ��1/.y2�/D 1;(41)

.�y�1
0 ��2/.y1�/.y4�/.�y�1

3 ��1/.�y�1
1 ��1/.y2�/.y3�/D 1;(42)

.y0�
2/.�y�1

2 ��1/.�y�1
1 ��1/D 1;(43)

y1Cy2Cy3Cy4 D 0;(44)

.�y�1
0 ��2/�1.�y�1

3 ��1/.�y�1
1 ��1/�1.y0�

2/�1.�y�1
1 ��1/�1

�.�y�1
0 ��2/.y3�/.y4�/.�y�1

0 ��2/.y2�/.y4�/
�1.�y�1

0 ��2/�1
Dm;

(45)

.y2�/
�1.y1�/

�1.�y�1
0 ��2/�1.�y�1

3 ��1/D l:(46)
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The first four consistency equations come from four of the usual gluing equations. The
last equation arises from developing around the zero-length edge, similarly to as in the
previous example. The equations simplify to

y0 D y3y4;(47)

y1y3 D�y0;(48)

y2y4 D�y0;(49)

y0 D y1y2;(50)

y1Cy2Cy3Cy4 D 0;(51)

�y1y�1
3 Dm;(52)

1D l:(53)

We can solve these as y4D�y1;y3D�y2;y0D y1y2 , where y1;y2 2C nf0g. Once
again, the variety is 2–dimensional, and one of the degrees of freedom comes from
the choices of the yi : .y0;y1;y2;y3;y4/ and .�2y0; �y1; �y2; �y3; �y4/ give the
same representations, for any � 2 C n f0g. As for the holonomies, the longitude is
constant whereas the meridian has no restriction. Therefore the factor of the PSL.2;C/
polynomial corresponding to this component is H .T IS/.l;m/D l � 1, which is clearly
different from the factor calculated by Culler.

Remark 11.5 The results of this paper suggest that one can try to find extra factors of
the A–polynomial with the standard deformation variety by retriangulating to remove
edges that are of zero-length for the relevant component of the character variety.
On reading a draft of this paper, Culler did this experiment [4]: Using randomised
retriangulation, he found a triangulation of the complement of the knot 820 which does
not contain the zero-length edge. With this triangulation, his calculations do pick up
the extra factor .l � 1/.

Note that in general there is no guarantee that retriangulating to remove a bad edge
will result in a triangulation for which the deformation variety picks up a missing
component. It is also possible that the edge could be removed but some other added
edge be of zero length for the component, and then again the deformation variety would
miss it.

Remark 11.6 Garoufalidis and Mattman have recently calculated the A–polynomial
for all nonabelian factors for all .�2; 3; n/ pretzel knots using a recursion relation [8].
The knot 820 is the .�2; 3;�3/ pretzel knot; see also Garoufalidis and Koutschan [7]
where the A–polynomial for the .�2; 3;�3/ pretzel knot is given explicitly. Their
calculation also detects the .l � 1/ factor coming from the component of irreducible
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representations that we find. There is also a component of abelian representations
which give another .l � 1/ factor. Note that they work with the mirror image of the
version of the manifold that Culler uses, so their polynomial differs by the map l 7! 1= l

as well as the added factor .l � 1/.

12 Further questions
(1) How should we compactify the extended deformation variety, similarly to Till-

mann’s compactification of the standard deformation variety in [19]?

(2) If we can solve the previous question, how much of the Culler–Shalen machinery
can we reproduce in the context of triangulations? The set of ideal points of
the extended deformation variety for a 3–manifold with a triangulation with all
horo-normal surfaces porous should contain ideal points corresponding to each
ideal point of the character variety (for components not made up of reducible or
dihedral representations).

(3) Are there manifolds for which the standard deformation variety for every trian-
gulation “misses” some component seen by the extended deformation variety?
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