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On sections of hyperelliptic Lefschetz fibrations

SHUNSUKE TANAKA

We construct a relation among right-handed Dehn twists in the mapping class group
of a compact oriented surface of genus g with 4gC 4 boundary components. This
relation gives an explicit topological description of 4gC 4 disjoint .�1/–sections of
a hyperelliptic Lefschetz fibration of genus g on the manifold CP 2 # .4gC 5/CP 2 .

57N13; 20F34

1 Introduction

Lefschetz fibrations relate the topology of symplectic 4–manifolds to the combinatorics
on relations in Dehn twist generators of mapping class groups of surfaces. It is well-
known that a Lefschetz fibration of genus 1 on the manifold E.1/ D CP2 # 9CP2

constructed by blowing up nine intersections of two generic cubics in CP2 has twelve
singular fibers and nine disjoint .�1/–sections. Korkmaz and Ozbagci [7] constructed
a relation among right-handed Dehn twists in the mapping class group of a torus with
nine boundary components to locate a set of nine disjoint .�1/–sections in a Kirby
diagram of E.1/. It is also known to algebraic geometers that a hyperelliptic Lefschetz
fibration of genus g on the manifold Xg DCP2 # .4gC 5/CP2 has 8gC 4 singular
fibers and 4gC 4 disjoint .�1/–sections for g � 2 (see Saitō and Sakakibara [10,
Section 3] and Kitagawa and Konno [6, Remark 1.1]).

In this paper we construct a relation among right-handed Dehn twists in the mapping
class group of a compact oriented surface of genus g with 4gC4 boundary components
to locate a set of 4gC 4 disjoint .�1/–sections in a Kirby diagram of Xg . In the
case g D 2, our relation can be considered as an improvement of Onaran’s relations
[9] in mapping class groups of surfaces of genus two with at most eight boundary
components.

In Section 2 we review basic relations in mapping class groups and produce two
relations on a torus with eight boundary components. Combining these relations, we
construct a new relation on a surface of genus g with 4gC 4 boundary components in
Section 3. In Section 4 we apply the relation to visualize 4gC4 disjoint .�1/–sections
in a Kirby diagram of a hyperelliptic Lefschetz fibration of genus g .
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2 Building blocks

In this section we review basic relations in mapping class groups and produce two
relations on a torus with boundary both used in the next section.

2.1 Basic relations in mapping class groups

Let †g;r be a compact oriented surface of genus g with r boundary components
and DiffC†g;r the group of orientation-preserving diffeomorphisms of †g;r fix-
ing the boundary @†g;r pointwise equipped with the C1–topology. The group
�0.DiffC†g;r / of path-components of DiffC†g;r is called the mapping class group
of †g;r and we denote it by Mg;r . We denote by Fg;r the free group generated by
all isotopy classes Sg;r of simple closed curves in the interior of †g;r . There is a
natural epimorphism $ W Fg;r !Mg;r which sends (the isotopy class of) a simple
closed curve a in the interior of †g;r to the right-handed Dehn twist ta along a. We
set Rg;r WD Ker$ .

A word in the generators Sg;r is called positive if it includes no negative exponents. We
put W .c/ WD t

"r
ar
� � � t

"1
a1
.c/ 2 Sg;r for c 2 Sg;r and W D a

"r
r � � � a

"1

1
2Fg;r (a1; : : : ; ar

in Sg;r , "1; : : : ; "r in f˙1g). We often denote a�1 by a for an element a of Sg;r . For
two words W1;W2 2 Fg;r , we denote W1 �W2 if $.W1/D$.W2/. If the relation
W1�W2 holds for W1;W2 2Fg;r , we obtain another relation V W1V �1�V W2V �1 ,
which is called a conjugate of W1 �W2 , for every V 2 Fg;r .

We recall definitions of basic relations in mapping class groups.

Definition 2.1 [3] (1) For disjoint simple closed curves a; b in the interior of
†g;r , we have a relation ab � ba in Fg;r called a commutativity relation. A regular
neighborhood of a[ b is the disjoint union of two annuli.

(2) For simple closed curves a; b in the interior of †g;r which intersect transversely
at one point, we have a relation aba� bab in Fg;r called a braid relation. A regular
neighborhood of a[ b is a torus with one boundary component.

(3) For simple closed curves ˛; �; 
; ı1; ı2; ı3; ı4 in the interior of †g;r shown in
Figure 1, we have a relation ı1ı2ı3ı4 � 
�˛ in Fg;r called a lantern relation. The
union of ı1; ı2; ı3; ı4 bounds a sphere with four boundary components in †g;r .

(4) An ordered n–tuple .c1; : : : ; cn/ of simple closed curves in the interior of †g;r

is called a chain of length n if ci and ciC1 intersect transversely at one point .i D
1; : : : ; n�1/ and other ci and cj never intersect. For a chain .c1; : : : ; c2gC1/ of length
2gC 1 on †g;0 , we have a relation .c1 � � � c2gC1c2gC1 � � � c1/

2 � 1 in Fg;0 called a
hyperelliptic relation (see Figure 2).
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Figure 1: Lantern relation
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Figure 2: Hyperelliptic relation

Remark 2.2 Let a and b be simple closed curves in the interior of †g;r and c the
simple closed curve tb.a/ D b.a/. Then we have the relation c � baxb in Fg;r . If
a and b intersect transversely at one point, we have another relation b � aca. This
relation together with the relation c � baxb yields a braid relation aba� bab .

2.2 Two relations on a torus with boundary

In this subsection we construct two relations on a torus with eight boundary components.
The first relation is the following.

Proposition 2.3 Relation (A) For simple closed curves in the interior of †1;8 shown
in Figure 3, we have the relation

a1a2ı1ı2ı3ı4ı5ı6 � a5a4b2a4�1�4a10a3b2a3�2a5a3a8b2a8a3�3�5a11:

We make use of the five-holed torus relation found by Korkmaz and Ozbagci [7] in
order to prove Proposition 2.3.

Lemma 2.4 (Korkmaz–Ozbagci [7]) For simple closed curves in the interior of †1;5

shown on the right in Figure 4, we have the relation

ı2ı1a2
 ı3 � a5b2a3a4a5b2�1a6a3b2�2a8:

Algebraic & Geometric Topology, Volume 12 (2012)



2262 S Tanaka

a1

a2

a3 a4

a5

a6

a8

a9

a10

a11

b2

ı1

ı2

ı3

ı4

ı5

ı6

�1

�2

�3

�4

�5

Figure 3: Relation (A)

Remark 2.5 The relation in Lemma 2.4 is deduced from the original five-holed torus
relation

ı2ı1a2
 ı3 � a5a3a4b2�1a6a3b2�2a8a5b2

(see [7, Section 3.5]) by using commutativity relations and conjugations.
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Figure 4: Five-holed torus relation
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Proof of Proposition 2.3 Applying commutativity relations and conjugations to the
five-holed torus relation in Lemma 2.4, we obtain

a2ı1ı2ı3
 � a5b2a3a4a5b2�1a6a3b2�2a8 � a8b2a8a8a3a4a5b2�1a6a3b2�2a5

� a8a3a4a5b2�1a6a3b2�2a5a8b2a8:

Multiplying both sides of this relation by 
 , we have

a2ı1ı2ı3 � a8a3a4a5b2�1a6a3b2�2a5a8b2a8
 :

We embed †1;5 into †1;6 and take simple closed curves a1; a9; ı4; �3 in the interior
of †1;6 shown in Figure 4. Then we have a lantern relation

ı4a1a3a8 � 
�3a9:

Combining these relations and applying commutativity relations, we obtain

a8a3a1a2ı1ı2ı3ı4 � a8a3a4a5b2�1a6a3b2�2a5a8b2a8

�3a9

� a8a3a4a5b2�1a6a3b2�2a5a8b2a8�3a9:

Multiplying both sides of this relation by a3a8 , we have a relation

(A1) a1a2ı1ı2ı3ı4 � a4a5b2�1a6a3b2�2a5a8b2a8�3a9

on †1;6 .

We change the name ı2 of a curve in relation (A1) into 
 (shown on the right in
Figure 5) and apply commutativity relations and conjugations to it to obtain

a1a2ı1ı3ı4
 � a4a5b2�1a6a3b2�2a5a8b2a8�3a9

� a5a4b2a4a4�1a6a3b2�2a5a8b2a8�3a9

� a4a6a3b2�2a5a8b2a8�3a9a5a4b2a4�1:

Multiplying both sides of this relation by 
 , we have

a1a2ı1ı3ı4 � a4a6a3b2�2a5a8b2a8�3a9a5a4b2a4�1
 :

We embed †1;6 into †1;7 and take simple closed curves a10; ı2; ı5; �4 in the interior
of †1;7 shown in Figure 5. Then we have a lantern relation

ı2ı5a4a6 � 
�4a10:

Combining these relations and applying commutativity relations, we obtain

a4a6a1a2ı1ı2ı3ı4ı5 � a4a6a3b2�2a5a8b2a8�3a9a5a4b2a4�1

�4a10

� a4a6a3b2�2a5a8b2a8�3a9a5a4b2a4�1�4a10:
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Figure 5: Embedding of †1;6 into †1;7 (I)

Multiplying both sides of this relation by a6a4 , we have a relation

(A2) a1a2ı1ı2ı3ı4ı5 � a3b2�2a5a8b2a8�3a9a5a4b2a4�1�4a10

on †1;7 .

We change the name a1 of a curve in relation (A2) into 
 (shown on the right in
Figure 6) and apply commutativity relations and conjugations to it to obtain

a2ı1ı2ı3ı4ı5
 � a3b2�2a5a8b2a8�3a9a5a4b2a4�1�4a10

� a3b2a3�2a5a3a8b2a8�3a9a5a4b2a4�1�4a10

� a3b2a3�2a5a3a8b2a8a3�3a3a9a5a4b2a4�1�4a10

� a3a9a5a4b2a4�1�4a10a3b2a3�2a5a3a8b2a8a3�3:

Multiplying both sides of this relation by 
 , we have

a2ı1ı2ı3ı4ı5 � a3a9a5a4b2a4�1�4a10a3b2a3�2a5a3a8b2a8a3�3
 :

We embed †1;7 into †1;8 and take simple closed curves a1; a11; ı6; �5 in the interior
of †1;8 shown in Figure 6. Then we have a lantern relation

ı6a1a3a9 � 
�5a11:

Combining these relations and applying commutativity relations, we obtain

a3a9a1a2ı1ı2ı3ı4ı5ı6�a3a9a5a4b2a4�1�4a10a3b2a3�2a5a3a8b2a8a3�3

�5a11

�a3a9a5a4b2a4�1�4a10a3b2a3�2a5a3a8b2a8a3�3�5a11:
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Figure 6: Embedding of †1;7 into †1;8 (I)

Multiplying both sides of this relation by a9a3 , we finally obtain relation (A). This
completes the proof of Proposition 2.3.

The second relation constructed in this subsection is the following.

Proposition 2.6 Relation (B) For simple closed curves in the interior of †1;8 shown
in Figure 7, we have the relation

a1a2a7a8ı1ı2ı3ı4 � a4a005a6b2a6a3b2a3�
0� 000a5a004a3b2a3a6b2a6��

00:

We make use of the four-holed torus relation found by Korkmaz and Ozbagci [7] in
order to prove Proposition 2.6.

Lemma 2.7 (Korkmaz–Ozbagci [7]) For simple closed curves in the interior of †1;4

shown on the left in Figure 8, we have the relation

a2a1a7
 � .a3a6b2a4a5b2/
2:

Remark 2.8 The relation in Lemma 2.7 is not the exact four-holed torus relation but
the relation written in a more symmetric form (see [7, Section 3.4, Remark]).

Proof of Proposition 2.6 We consider the four-holed torus relation reviewed in
Lemma 2.7. We then embed †1;4 into †1;5 and take simple closed curves a0

5
; a8; ı1; �

in the interior of †1;5 shown in Figure 8. Then we have a lantern relation

ı1a8a6a5 � 
�a05:
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Figure 7: Relation (B)

Combining this relations with the four-holed torus relation, and applying commutativity
relations and conjugations, we obtain a relation

a1a2a7a8ı1 � a5a4a5b2a3a6b2a4a5b2a3a6b2
 � a6
�a05(B1)

� a4b2a3a6b2a4a5b2a6a3b2a6�a05

� a4a5b2a6a3b2a6�a05a4b2a3a6b2

a1
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Figure 8: Four-holed torus relation
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on †1;5 .
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Figure 9: Embedding of †1;5 into †1;6

We change the name a1 of a curve in relation (B1) into 
 (shown on the right in
Figure 9) to obtain


a2a7a8ı1 � a4a5b2a6a3b2a6�a05a4b2a3a6b2:

We embed †1;5 into †1;6 and take simple closed curves a1; a
0
4
; ı2; �

0 in the interior
of †1;6 shown in Figure 9. Then we have a lantern relation

a4a3a1ı2 � 
�
0a04:

Combining these relations and applying commutativity relations and conjugations, we
obtain a relation

a1a2a7a8ı1ı2 � a4a4a5b2a6a3b2a6�a05a4b2a3a6b2
 � a3
�
0a04(B2)

� a5b2a6a3b2a6�a05a4b2a6a3b2a3�
0a04

� b2a6a3b2a3�
0a04a5b2a6a3b2a6�a05a4:

on †1;6 .

We change the name a8 of a curve in relation (B2) into 
 (shown on the left in
Figure 10) to obtain

a1a2a7
 ı1ı2 � b2a6a3b2a3�
0a04a5b2a6a3b2a6�a05a4:
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Figure 10: Embedding of †1;6 into †1;7 (II)

We embed †1;6 into †1;7 and take simple closed curves a00
5
; a8; ı3; �

00 in the interior
of †1;7 shown in Figure 10. Then we have a lantern relation

ı3a8a6a05 � 
�
00a005:

Combining these relations and applying commutativity relations and conjugations, we
obtain a relation

(B3) a1a2a7a8ı1ı2ı3 � a6b2a6a3b2a3�
0a04a5b2a6a3b2a6�a05a4
 � a

0
5
�
00a005

� a6b2a6a3b2a3�
0a04a5b2a6a3b2a6��

00a4a005

� b2a3a6b2a6��
00a4a005a6b2a6a3b2a3�

0a04a5:

We change the name a1 of a curve in relation (B3) into 
 (shown on the right in
Figure 11) to obtain


a2a7a8ı1ı2ı3 � b2a3a6b2a6��
00a4a005a6b2a6a3b2a3�

0a04a5:

We embed †1;7 into †1;8 and take simple closed curves a1; a
00
4
; ı4; �

000 in the interior
of †1;8 shown in Figure 11. Then we have a lantern relation

ı4a1a3a04 � 
�
000a004:
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Figure 11: Embedding of †1;7 into †1;8 (II)

Combining these relations and applying commutativity relations and conjugations, we
finally obtain relation (B):

a1a2a7a8ı1ı2ı3ı4 � a3b2a3a6b2a6��
00a4a005a6b2a6a3b2a3�

0a04a5
 � a
0
4
�
000a004

� a3b2a3a6b2a6��
00a4a005a6b2a6a3b2a3�

0� 000a5a004

� a4a005a6b2a6a3b2a3�
0� 000a5a004a3b2a3a6b2a6��

00:

This completes the proof of Proposition 2.6.

Remark 2.9 Both of relations (A) and (B) are different from the eight-holed torus
relation of Korkmaz and Ozbagci [7] though the constructions are similar.

3 Constructions

In this section we construct a new relation on a compact oriented surface of genus
g with 4gC 4 boundary components by combining copies of relations (A) and (B)
obtained in the previous section.

3.1 Higher genus

We assume g � 3. For integers m; n .0 < m � n/ and words Wm;WmC1; : : : ;Wn

in Fg;r , we denote the product WmWmC1 � � �Wn (respectively Wn � � �WmC1Wm ) byQn
iDm Wi (respectively

Qm
iDn Wi ).
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Theorem 3.1 Relation .Hg/ For simple closed curves in the interior of †g;4gC4

shown in Figure 12, we have the relation

ı1ı2 � � � ı4gC3ı4gC4 �

2Y
iDg�1

ˇ000i ˇi�
0
i�1�

000
i�1 �ˇ1�

0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

�

g�1Y
iD2

ˇ00i ˇ
0
i�i�1�

00
i�1 �ˇg�1�4a3gˇ

0
g�2a3g�1ˇ

00
g�3�5

in Mg;4gC4 , where

ˇ1 WD a3gC4
.b1/; ˇ01 WD a3

.b1/; ˇ001 WD a3gC5a3
.b1/;

ˇg WD a3gC1
.bg/; ˇ0g WD a3g�3

.bg/; ˇ00g WD a3g�3a3gC2
.bg/;

ˇi WD a3i�3
.bi/; ˇ0i WD a3i

.bi/; ˇ00i WD a3i�3
.bi/; ˇ000i WD a3i

.bi/;

and i D 2; : : : ;g� 1.

Proof We combine two copies of relation (A) and g � 2 copies of relation (B) to
obtain the desired relation. We first consider two relations for simple closed curves
shown in Figure 13. One is a copy of relation (A):

a5a04ı1ı4ı6ı2ı3ı5

� a1a3gC4b1a3gC4�
0
1�
0
4a3gC3a3b1a3�

0
2a1a3a3gC5b1a3gC5a3�

0
3�
0
5a2

Applying commutativity relations and conjugations, we obtain a relation

a04a5ı1ı2ı3ı4ı5ı6

� a1a2a3gC4b1a3gC4�
0
1�
0
4a3gC3a3b1a3�

0
2a1a3a3gC5b1a3gC5a3�

0
3�
0
5

� a1a2ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5:

Note that ˇ1 � a3gC4b1a3gC4 , ˇ0
1
� a3b1a3 and ˇ00

1
� a3gC5a3b1a3a3gC5 by

Remark 2.2. The other is a copy of relation (B):

a1a2a07a8ı7ı8ı9ı10 � a4a05a6b2a6a3b2a3�
0
1�
000
1 a5a04a3b2a3a6b2a6�1�

00
1

Applying commutativity relations and conjugations, we obtain a relation

a1a2a07a8ı7ı8ı9ı10 � a5a04a3b2a3a6b2a6�1�
00
1 a4a05a6b2a6a3b2a3�

0
1�
000
1 :

We embed two copies of †1;8 in Figure 13 into †2;12 as shown in Figure 14.
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g–3

� 000
g–3

a3g–6

a3g–8

a0
3g–5

bg–2

ı4g–2 ı4g–4

� 0
g–2

� 000
g–2

a3g–5

a3g–3

bg–1

a3g–2

bg

a3g–7 a3g–4
a0

3g–7

ı4g–7ı4g–9

�g–3 � 00
g–3 a3g–1

a0
3g–4

ı4g–3ı4g–5

�g–2 � 00
g–2

a3g

a3gC1

a3gC2

ı4g–1

ı4g

ı4gC1

ı4gC2

ı4gC3

ı4gC4

�1

�2

�3

�4

�5

Figure 12: Relation (Hg ) for g � 3

Combining these relations and applying commutativity relations and conjugations, we
obtain a relation

(C2) a07a8ı1ı2ı3ı4ı5ı6ı7ı8ı9ı10

� a5a04a5a04a3b2a3a6b2a6�1�
00
1 a4a05a6b2a6a3b2a3�

0
1�
000
1 a1a2

� a1a2ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

� a3b2a3a6b2a6�1�
00
1 a4a05a6b2a6a3b2a3�

0
1�
000
1

�ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

� a4a05a6b2a6a3b2a3�
0
1�
000
1 �ˇ1�

0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

� a3b2a3a6b2a6�1�
00
1 :
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a1

a2

a3

a0
4

a5

a3gC3

a3gC4

a3gC5

b1

ı1

ı2

ı3

ı4

ı5

ı6

� 0
1

� 0
2

� 0
3

� 0
4

� 0
5

a1

a2

a3

a4

a5

a6

a8

a0
4

a0
5

a0
7

b2

�1

� 0
1

� 00
1

� 000
1

ı7

ı8

ı9

ı10

Figure 13: Relations (A) and (B)

a1

a2

a3

a4

a5

a6

a8

a0
4

a0
5

a0
7

a3gC3

a3gC4

a3gC5

b1 b2

ı1

ı2

ı3

ı4

ı5

ı6

ı7

ı8

ı9

ı10

�1

� 0
1

� 00
1

� 000
1

� 0
1

� 0
2

� 0
3

� 0
4

� 0
5

Figure 14: Embeddings of two copies of †1;8 into †2;12 (I)

We next consider relation (C2) and another copy of relation (B) for simple closed
curves shown in Figure 15:

a4a05a010a11ı11ı12ı13ı14 � a8a07a6b3a6a9b3a9�2�
00
2 a7a08a9b3a9a6b3a6�

0
2�
000
2

We embed †2;12 in Figure 14 and †1;8 in Figure 15 into †3;16 as shown in Figure 16.

Algebraic & Geometric Topology, Volume 12 (2012)



On sections of hyperelliptic Lefschetz fibrations 2273

a4

a0
5

a6

a7

a0
7

a8

a0
8

a9

a0
10

a11

b3

ı11

ı12

ı13

ı14

�2

� 0
2

� 00
2

� 000
2

Figure 15: Another relation (B)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a0
4

a0
5

a0
7

a0
8

a11

a0
10

a3gC3

a3gC4

a3gC5

b1 b2 b3

ı1

ı2

ı3

ı4

ı5

ı6

ı7

ı8

ı9

ı10

ı11

ı12

ı13

ı14

�1

� 0
1

� 00
1

� 000
1

�2

� 0
2

� 00
2

� 000
2

� 0
1

� 0
2

� 0
3

� 0
4

� 0
5

Figure 16: Embeddings of †2;12 and †1;8 into †3;16

Combining these relations and applying commutativity relations and conjugations, we
obtain a relation

a010a11ı1ı2ı3ı4ı5ı6ı7ı8ı9ı10ı11ı12ı13ı14(C3)

� a07a8a8a07a6b3a6a9b3a9�2�
00
2 a7a08a9b3a9a6b3a6�

0
2�
000
2 a4a05

� a4a05a6b2a6a3b2a3�
0
1�
000
1 �ˇ1�

0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

� a3b2a3a6b2a6�1�
00
1
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� a6b3a6a9b3a9�2�
00
2 a7a08a9b3a9a6b3a6�

0
2�
000
2 � a6b2a6a3b2a3�

0
1�
000
1

�ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5 � a3b2a3a6b2a6�1�

00
1

� a7a08a9b3a9a6b3a6�
0
2�
000
2 � a6b2a6a3b2a3�

0
1�
000
1

�ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5 � a3b2a3a6b2a6�1�

00
1

� a6b3a6a9b3a9�2�
00
2 :

We repeat similar procedures by making use of g� 4 copies of relation (B):

a3i�5a03i�4a3iC1a3iC2ı4i�1ı4iı4iC1ı4iC2

� a3i�1a03i�2a3i�3bia3i�3a3ibia3i�i�1�
00
i�1

� a3i�2a03i�1a3ibia3ia3i�3bia3i�3�
0
i�1�

000
i�1

for i D 4; : : : ;g� 1 to obtain relations (C4), (C5), : : : and

(C(g� 1)) a3g�2a3g�1ı1ı2 � � � ı4g�3ı4g�2

� a3g�5a03g�4

2Y
iDg�1

a3ibia3ia3i�3bia3i�3�
0
i�1�

000
i�1

�ˇ1�
0
1�
0
4a3gC3ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

g�1Y
iD2

a3i�3bia3i�3a3ibia3i�i�1�
00
i�1

for simple closed curves on †g�1;4g shown in Figure 17.

We finally consider the other copy of relation (A) for simple closed curves shown in
Figure 18:

a3g�5a03g�4ı4gC1ı4gC2ı4gC4ı4gı4gC1ı4gC3

� a3g�1a3gC1bga3gC1�1�4a3ga3g�3bga3g�3�2

� a3g�1a3g�3a3gC2bga3gC2a3g�3�3�5a3g�2

Applying commutativity relations and conjugations, we obtain a relation

a3g�5a03g�4ı4g�1ı4gı4gC1ı4gC2ı4gC3ı4gC4

� a3g�2a3g�1a3gC1bga3gC1�1�4a3ga3g�3bg

� a3g�3�2a3g�1a3g�3a3gC2bga3gC2a3g�3�3�5

� a3g�2a3g�1ˇg�1�4a3gˇ
0
g�2a3g�1ˇ

00
g�3�5:

Note that

ˇg � a3gC1bga3gC1; ˇ0g � a3g�3bga3g�3; ˇ00g � a3g�3a3gC2bga3gC2a3g�3
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ı1

ı2

ı3

ı4

ı5

ı6

� 0
1

� 0
2

� 0
3

� 0
4

� 0
5

a3gC3

a3gC4

a3gC5

a1

a3

a0
4

b1

ı8ı10

� 0
1

� 000
1

a4

a6

a0
7

b2

ı12ı14

� 0
2

� 000
2

a7

a9

b3 b4

a2 a5 a0
5

a8

ı7 ı9

�1 � 00
1

a0
8

a11

ı11 ı13

�2 � 00
2

a3g–9

a3g–11

a0
3g–8

bg–3

ı4g–6 ı4g–8

� 0
g–3

� 000
g–3

a3g–6

a3g–8

a0
3g–5

bg–2

ı4g–2 ı4g–4

� 0
g–2

� 000
g–2

a3g–5

a3g–3

bg–1

a3g–2

bg

a3g–7 a3g–4
a0

3g–7

ı4g–7ı4g–9

�g–3 � 00
g–3 a3g–1

a0
3g–4

ı4g–3ı4g–5

�g–2 � 00
g–2

Figure 17: Relation (C(g� 1))

by Remark 2.2. We embed †g�1;4g in Figure 17 and †1;8 in Figure 18 into †g;4gC4

as shown in Figure 12.

Combining these relations and applying commutativity relations and conjugations, we
obtain relation (Hg ). Note that ˇi�a3i�3bia3i�3 , ˇ0i�a3ibia3i , ˇ00i �a3i�3bia3i�3

and ˇ000i � a3ibia3i .i D 2; : : : ;g�1/ by Remark 2.2. Thus we complete the proof of
Theorem 3.1.

3.2 Genus two

In this subsection we construct a relation on †2;12 similar to relations constructed in
the previous subsection.
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a3g–5

a0
3g–4

a3g–3

a3g–2

a3g–1

a3g

a3gC1

a3gC2

bg

�1

�2

�3

�4

�5

ı4g–1

ı4g

ı4gC1

ı4gC2

ı4gC3

ı4gC4

Figure 18: The other relation (A)

Theorem 3.2 Relation .H2/ For simple closed curves in the interior of †2;12 shown
in Figure 19, we have the relation

ı1ı2ı3ı4ı5ı6ı7ı8ı9ı10ı11ı12�ˇ1�
0
1�
0
4a13ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5ˇ2�1�4a12ˇ

0
2�2a5ˇ

00
2�3�5

in M2;12 , where

ˇ1 WD a2
.b1/; ˇ01 WD a3

.b1/; ˇ001 WD a3a9
.b1/;

ˇ2 WD a4
.b2/; ˇ02 WD a3

.b2/; ˇ002 WD a3a8
.b2/:

Proof We first consider two copies of relation (A) for simple closed curves shown in
Figure 20:

a5a14ı7ı8ı9ı10ı11ı12 � a1a2b1a2�
0
1�
0
4a13a3b1a3�

0
2a1a3a9b1a9a3�

0
3�
0
5a15

a1a15ı1ı2ı3ı4ı5ı6 � a5a4b2a4�1�4a12a3b2a3�2a5a3a8b2a8a3�3�5a14:

Applying commutativity relations and conjugations, we obtain relations

a5a14ı7ı8ı9ı10ı11ı12 � a15a1ˇ1�
0
1�
0
4a13ˇ

0
1�
0
2a1ˇ

00
1�
0
3�
0
5

a1a15ı1ı2ı3ı4ı5ı6 � a14a5ˇ2�1�4a12ˇ
0
2�2a5ˇ

00
2�3�5:

Note that ˇ1�a2b1a2 , ˇ0
1
�a3b1a3 , ˇ00

1
�a3a9b1a9a3 , ˇ2�a4b2a4 , ˇ0

2
�a3b2a3

and ˇ00
2
� a3a8b2a8a3 by Remark 2.2.

Combining these relations and applying commutativity relations and conjugations, we
obtain relation (H2 ). Thus we complete the proof of Theorem 3.2.
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a1

a2

a3

a4

a5

a6

a7
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a9

a10
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a12

a13

a14

a15

b1

b2

ı1

ı2

ı3

ı4

ı5

ı6
ı7

ı8

ı9

ı10

ı11

ı12

�1

�2

�3

�4

�5
� 0

1

� 0
2

� 0
3

� 0
4

� 0
5

Figure 19: Embeddings of two copies of †1;8 into †2;12 (II)

a1

a2 a3

a5

a7

a9

a11

a13
a14

b1

ı7

ı8

ı9

ı10

ı11

ı12

� 0
1

� 0
2

� 0
3

� 0
4

� 0
5

a1

a3 a4

a5
a6

a8

a10

a11

a14

a15

b2

ı1

ı2

ı3

ı4

ı5

ı6

�1

�2

�3

�4

�5

Figure 20: Two copies of relation (A)

4 Sections of Lefschetz fibrations

In this section we show that the relation constructed in the previous section gives an
explicit topological description of 4gC 4 disjoint .�1/–sections of a hyperelliptic
Lefschetz fibration of genus g on the manifold CP2 # .4gC 5/CP2 .
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We begin with a definition of Lefschetz fibrations (see [4; 8]).

Definition 4.1 Let M be a closed oriented smooth 4–manifold. A smooth map
f WM ! S2 is called a Lefschetz fibration of genus g if it satisfies the following
conditions:

(i) f has finitely many critical values b1; : : : ; bn 2S2 and f is a smooth fiber bundle
over S2�fb1; : : : ; bng with fiber †g;0

(ii) for each i .i D 1; : : : ; n/, there exists a unique critical point pi in the singular fiber
f �1.bi/ such that f is locally written as f .z1; z2/D z2

1
C z2

2
with respect to some

local complex coordinates around pi and bi which are compatible with orientations of
M and S2

(iii) no fiber contains a .�1/–sphere.

Remark 4.2 We always assume that a Lefschetz fibration is relatively minimal, it has
at most one critical point on each fiber, and the genus of the base is equal to zero. A
more general definition can be found in [4, Chapter 8].

Suppose that g � 2. According to theorems of Kas and Matsumoto, there exists a
one-to-one correspondence between the isomorphism classes of Lefschetz fibrations
and the equivalence classes of positive relators modulo simultaneous conjugations

c1 � � � cn � W .c1/ � � � W .cn/;

and elementary transformations

c1 � � � ci � ciC1 � � � cn � c1 � � � ciC1 � c�1
iC1
.ci/ � � � cn;

c1 � � � ci � ciC1 � � � cn � c1 � � � � ci
.ciC1/ � ci � � � cn;

where c1 � � � cn 2Rg;0 is a positive relator in the generators Sg;0 and W 2Fg;0 . This
correspondence is described by using the holonomy (or monodromy) homomorphism
induced by the classifying map of f restricted on S2�fb1; : : : ; bng (see [4; 8]).

Definition 4.3 Let f WM ! S2 be a Lefschetz fibration of genus g . A smooth map
s W S2!M is called a section of f if it satisfies f ı s D idS2 . A section s of f
is an embedding of S2 into M . The self-intersection number of the homology class
s�.ŒS

2�/ 2H2.M IZ/ is called the self-intersection number of s . A section of f with
self-intersection number k is often called a k –section.
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For a positive integer r , we attach r disks to the boundary components of †g;r to
obtain a closed surface †g;0 and an embedding †g;r ,!†g;0 . This embedding induces
a natural commutative diagram

1 ����! Rg;r ����! Fg;r
$
����! Mg;r ����! 1

�

??y �

??y ??y
1 ����! Rg;0 ����! Fg;0

$
����! Mg;0 ����! 1;

where the two horizontal sequences are exact. If two words W1 and W2 in Fg;r satisfy
W1 �W2 , then we have �.W1/ � �.W2/ in Fg;0 . In this case we call the relation
W1 �W2 a lift of the relation �.W1/� �.W2/.

Lemma 4.4 [1; 2; 11] Let f WM ! S2 be a Lefschetz fibration of genus g and
c1 � � � cn 2 Rg;0 a positive relator corresponding to f . Suppose that there exists a
relation a1 � � � an � ı

k1

1
� � � ı

kr
r .a1; : : : ; an 2 Sg;r ; k1; : : : ; kr > 0/ in Fg;r which is

a lift of the relation c1 � � � cn � 1 in Fg;0 , where ı1; : : : ; ır are simple closed curves
parallel to the boundary components of †g;r . Then f admits disjoint r sections
s1; : : : ; sr W S

2!M with self-intersection number �k1; : : : ;�kr , respectively.

For a chain .c1; : : : ; c2gC1/ of length 2gC1 on †g;0 , we obtain a Lefschetz fibration
Xg! S2 of genus g associated to the hyperelliptic relation

.c1 � � � c2gC1c2gC1 � � � c1/
2
� 1 in Fg;0:

The total space Xg of this fibration is known to be diffeomorphic to CP2#.4gC5/CP2

(see [4; 5]).

We denote the positive word on the right-hand side of relation (Hg ) by Ug for g � 2.
We consider the above embedding †g;r ,! †g;0 and the commutative diagram for
r D 4gC 4. By Theorems 3.1 and 3.2, relation (Hg ): Ug � ı1ı2 � � � ı4gC3ı4gC4 in
Fg;4gC4 is a lift of the relation �.Ug/� 1 in Fg;0 . This implies that the Lefschetz
fibration Yg ! S2 of genus g associated to the relation �.Ug/� 1 admits disjoint
4gC 4 sections with self-intersection number �1 by virtue of Lemma 4.4.

Theorem 4.5 The two Lefschetz fibrations Xg and Yg are isomorphic to each other.

Proof Suppose that g � 3. We set

c1 WD �.a1/; c2i WD �.bi/ .i D 1; : : : ;g/;

c2gC1 WD �.a3g�1/; c2iC1 WD �.a3i/ .i D 1; : : : ;g� 1/:
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Since .a1; b1; a3; b2; : : : ; a3g�3; bg; a3g�1/ is a chain of length 2gC 1 on †g;4gC4 ,
.c1; c2; c3; c4; : : : ; c2g�1; c2g; c2gC1/ is a chain of length 2gC 1 on †g;0 . It is easily
seen from Figure 12 that

�.a3gC3/D �.a3gC4/D �.a3gC5/D �.�
0
1/D �.�

0
4/D c1;

�.a3g/D �.a3gC1/D �.a3gC2/D �.�1/D �.�4/D c2gC1;

�.� 02/D �.�
0
3/D �.�

0
5/D c3;

�.�2/D �.�3/D �.�5/D c2g�1;

�.� 0i�1/D �.�
000
i�1/D c2i�1;

�.�i�1/D �.�
00
i�1/D c2iC1;

for i D 2; : : : ;g� 1. Hence we obtain

�.Ug/D

2Y
iDg�1

. xc2iC1
.c2i/c2i�1

.c2i/ � c
2
2i�1/ � c1

.c2/ � c
3
1 � c3

.c2/ � c3c1 � c1c3
.c2/ � c

2
3

�

g�1Y
iD2

. xc2i�1
.c2i/c2iC1

.c2i/ � c
2
2iC1/ � c2gC1

.c2g/ � c
3
2gC1 � c2g�1

.c2g/

� c2g�1c2gC1 � c2g�1c2gC1
.c2g/ � c

2
2g�1:

We now prove that �.Ug/� .c1 � � � c2gC1c2gC1 � � � c1/
2 for g�3. Applying elementary

transformations (including cyclic permutations), we obtain the following sequence of
equivalences:

�.Ug/� c2g�1 �

2Y
iDg�1

. xc2iC1
.c2i/ � c2i�1c2ic2i�1/ � c1c2c2

1c3c2c1c3 � c1
.c2/ � c3

�

g�1Y
iD2

.xc2i�1
.c2i/ � c2iC1c2ic2iC1/

� c2gC1c2gc2
2gC1c2g�1c2gc2gC1c2g�1 � c2gC1

.c2g/

�

2Y
iDg�1

.c2iC1 � xc2iC1
.c2i/ � c2i�1c2i/ � c3c1c2c2

1c3c2c1c3 � c1
.c2/

�

g�1Y
iD2

.c2i�1 � xc2i�1
.c2i/ � c2iC1c2i/

� c2g�1c2gC1c2gc2
2gC1c2g�1c2gc2gC1c2g�1 � c2gC1

.c2g/

� c1c2gC1 �

2Y
iDg�1

c2ic2iC1c2i�1c2i � c3c2c2
1c3c2c1c3 � c1

.c2/
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�

g�1Y
iD2

c2ic2i�1c2iC1c2i � c2g�1c2gc2
2gC1c2g�1c2gc2gC1c2g�1 � c2gC1

.c2g/

�

3Y
iD2g�2

ciciC1 � c3c2c2
1c3c2c1c3 � c1

.c2/ � c1

�

2g�2Y
iD3

ciC1ci � c2g�1c2gc2
2gC1c2g�1c2gc2gC1c2g�1 � c2gC1

.c2g/ � c2gC1

�

3Y
iD2g�2

ciciC1 � c3c2c3c2
1c2c2

1c3c2

�

2g�2Y
iD3

ciC1ci � c2g�1c2gc2g�1c2
2gC1c2gc2gC1c2g�1c2gC1c2g

�

3Y
iD2g�2

ciciC1 � c2c3c2c1c2c1c2c1c3c2

�

2g�2Y
iD3

ciC1ci � c2gc2g�1c2gc2gC1c2gc2gC1c2gc2gC1c2g�1c2g

�

2Y
iD2g�2

ciciC1 � c1c2c1c1c2c1

�

2g�1Y
iD2

ciC1ci � c2gC1c2gc2gC1c2gC1c2gc2gC1c2g�1c2g

� c2gc2gC1c2g�1c2g �

1Y
iD2g�2

ciciC1 � c1c1 �

2gY
iD1

ciC1ci � c2gC1c2gC1

�

1Y
iD2g

ciciC1 � c1c1 �

2gY
iD1

ciC1ci � c2gC1c2gC1

�

1Y
iD2g

ci �

2Y
iD2gC1

ci � c1c1 �

2gC1Y
iD2

ci �

2gY
iD1

ci � c2gC1c2gC1

D

1Y
iD2g

ci �

1Y
iD2gC1

ci �

2gC1Y
iD1

ci �

2gC1Y
iD1

ci � c2gC1

�

1Y
iD2gC1

ci �

1Y
iD2gC1

ci �

2gC1Y
iD1

ci �

2gC1Y
iD1

ci

�

2gC1Y
iD1

ci �

1Y
iD2gC1

ci �

2gC1Y
iD1

ci �

1Y
iD2gC1

ci D .c1 � � � c2gC1c2gC1 � � � c1/
2:
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Suppose that g D 2. We set

c1 WD �.a1/; c2 WD �.b1/; c3 WD �.a3/; c4 WD �.b2/; c5 WD �.a5/:

Since .a1; b1; a3; b2; a5/ is a chain of length 5 on †2;12 , .c1; c2; c3; c4; c5/ is a chain
of length 5 on †2;0 . It is easily seen from Figure 19 that

�.a2/D �.a9/D �.a13/D �.�
0
1/D �.�

0
4/D c1;

�.a4/D �.a8/D �.a12/D �.�1/D �.�4/D c5;

�.� 02/D �.�
0
3/D �.�

0
5/D �.�2/D �.�3/D �.�5/D c3:

Hence we obtain

�.U2/D c1
.c2/ � c

3
1 � c3

.c2/ � c3c1 � c3c1
.c2/ � c

2
3 � c5

.c4/ � c
3
5 � c3

.c4/ � c3c5 � c3c5
.c4/ � c

2
3 :

We now prove that �.U2/� .c1c2c3c4c5c5c4c3c2c1/
2 . Applying elementary transfor-

mations (including cyclic permutations), we obtain the following sequence of equiva-
lences:

�.U2/� c1c2c2
1c3c2c1c3 � c1

.c2/ � c3 � c5c4c2
5c3c4c5c3 � c5

.c4/ � c3

� c5c2c2
1c3c2c1c3 � c1

.c2/ � c3 � c4c2
5c3c4c5c3 � c5

.c4/ � c3c1

� c2c2
1c3c2c1c3 � c1

.c2/ � c1c3 � c4c2
5c3c4c5c3 � c5

.c4/ � c3c5

� c2c2
1c3c2c1c3c1c2c3 � c4c2

5c3c4c5c3 � c5
.c4/ � c5c3

� c2c2
1c3c2c1c3c1c2c3c4c2

5c3c4c5c3c5c4c3

� c1c3c2c3c1c1c2c3c4c3c2
5c4c5c3c5c4c3c2c1

� c1c2c3c2c1c1c2c4c3c4c2
5c4c5c3c5c4c3c2c1

� c1c2c3c4c2c1c1c2c3c4c5c4c5c4c3c5c4c3c2c1

� c1c2c3c4c2c1c1c2c3c5c4c5c5c4c3c5c4c3c2c1

� c1c2c3c4c5c2c1c1c2c3c4c5c5c4c3c5c4c3c2c1

� c1c2c3c4c5c5c4c3c5c4c3c2c1c1c2c3c4c5c2c1

� c1c2c3c4c5c5c4c3c2c1c1c2c3c4c5c5c4c3c2c1

D .c1c2c3c4c5c5c4c3c2c1/
2:

This completes the proof of Theorem 4.5.

The next corollary immediately follows from the theorem.

Corollary 4.6 The Lefschetz fibration Xg! S2 of genus g associated to the hyper-
elliptic relation admits disjoint 4gC 4 sections with self-intersection number �1.
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By virtue of Theorem 3.2, we can even depict disjoint twelve sections of the Lefschetz
fibration Y2 ! S2 in a Kirby diagram of Y2 � �F , where �F is an open fibered
neighborhood of a regular fiber of Y2 (see [7, Section 4]). We first construct a handle
decomposition of †2;0 �D2 with one 0–handle, four 1–handles, and one 2–handle
with framing 0 from a fixed handle decomposition of †2;0 . We then attach twenty
2–handles to †2;0�D2 along the simple closed curves ˇ1 , � 0

1
, � 0

4
, a13 , ˇ0

1
, � 0

2
, a1 ,

ˇ00
1

, � 0
3

, � 0
5

, ˇ2 , �1 , �4 , a12 , ˇ0
2

, �2 , a5 , ˇ00
2

, �3 , �5 (see Figure 19) on different
fibers of †2;0�S1!S1 with framing one less than the product framing of †2;0�S1

to obtain a handle decomposition of Y2 � �F . Thus we have a Kirby diagram of
Y2� �F shown in Figure 21. The framing coefficient of every component of the link
but one with framing 0 is equal to �1. Twelve disjoint sections coming from the
simple closed curves ı1; : : : ; ı12 are represented by twelve unknots transverse to each
fiber of the fibration †2;0 �S1! S1 and meeting a fiber at twelve points indicated
by encircled numbers 1; : : : ; 12 in Figure 21. Attaching a 2–handle with framing �1

along any one of the twelve unknots together with four 3–handles and a 4–handle to
Y2� �F , we have a handle decomposition of the closed manifold Y2 .

By virtue of Theorem 3.1, we can also depict disjoint 4gC 4 sections of the Lefschetz
fibration Yg! S2 in a Kirby diagram of Yg � �F for g � 3 in a similar way.

The following proposition implies that the largest possible number of disjoint .�1/–
sections of Xg! S2 is equal to 4gC 4 for most g .

Proposition 4.7 If g is not equal to k2 C k � 1 for any positive integer k , then
the Lefschetz fibration Xg ! S2 cannot admit disjoint 4g C 5 sections with self-
intersection number �1.

Proof Suppose that the Lefschetz fibration Xg! S2 admits disjoint 4gC5 sections
s1; : : : ; s4gC5 with self-intersection number �1. The orientation of S2 induces that
of Si WD si.S

2/ for i D 1; : : : ; 4gC 5. We orient a regular fiber F of Xg so that
it satisfies ŒF � � ŒSi � D C1 for i D 1; : : : ; 4gC 5. Blowing down the .�1/–spheres
S1; : : : ;S4gC5 in Xg , we obtain a 4–manifold X 0 and the image F 0 of F under the
projection Xg!X 0 . Since

ŒF �D ŒF 0�� ŒS1��� � �� ŒS4gC5� in H2.XgIZ/ŠH2.X
0
IZ/˚.4gC5/H2.CP2

IZ/

and ŒF �2 D 0, we have ŒF 0�2 D 4gC 5. On the other hand, ŒF 0�2 must be the square
of an integer because ŒF 0� is a multiple of a generator of H2.X

0IZ/Š Z. It is easy to
see that 4gC 5 is the square of an integer if and only if g is equal to k2C k � 1 for
some positive integer k .
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Figure 21: A Kirby diagram of Y2� �F

Algebraic & Geometric Topology, Volume 12 (2012)



On sections of hyperelliptic Lefschetz fibrations 2285

Remark 4.8 Two generic degree d curves in CP2 induce a Lefschetz pencil of genus
.d�1/.d�2/=2. Blowing up the base locus, we obtain a Lefschetz fibration Md!S2

of the same genus. This fibration has d2 sections with self-intersection number �1

and the total space Md is diffeomorphic to CP2 # d2CP2 . It is well-known that the
fibration M3! S2 is isomorphic to X1! S2 , whereas the fibration Md ! S2 for
d � 4 cannot be isomorphic to Xg! S2 for any g .

Acknowledgement The author is grateful to Professor Kazuhiro Konno for helpful
comments on sections of fibrations on algebraic surfaces, and to Professor Yoshihisa
Sato for helpful comments (Remark 4.8) on Lefschetz fibrations. And I wish to express
my deep gratitude to my mentor, Hisaaki Endo.

References
[1] J Amorós, F Bogomolov, L Katzarkov, T Pantev, Symplectic Lefschetz fibra-

tions with arbitrary fundamental groups, J. Differential Geom. 54 (2000) 489–545
MR1823313

[2] H Endo, M Korkmaz, D Kotschick, B Ozbagci, A Stipsicz, Commutators, Lef-
schetz fibrations and the signatures of surface bundles, Topology 41 (2002) 961–977
MR1923994

[3] B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Series 49,
Princeton Univ. Press (2012) MR2850125

[4] R E Gompf, A I Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathe-
matics 20, American Mathematical Society (1999) MR1707327

[5] T Ito, Splitting of singular fibers in certain holomorphic fibrations, J. Math. Sci. Univ.
Tokyo 9 (2002) 425–480 MR1930415

[6] S Kitagawa, K Konno, Fibred rational surfaces with extremal Mordell–Weil lattices,
Math. Z. 251 (2005) 179–204 MR2176471

[7] M Korkmaz, B Ozbagci, On sections of elliptic fibrations, Michigan Math. J. 56 (2008)
77–87 MR2433657

[8] Y Matsumoto, Lefschetz fibrations of genus two—a topological approach, from:
“Topology and Teichmüller spaces”, (S Kojima, Y Matsumoto, K Saito, M Seppälä,
editors), World Sci. Publ., River Edge, NJ (1996) 123–148 MR1659687

[9] S Ç Onaran, On sections of genus two Lefschetz fibrations, Pacific J. Math. 248 (2010)
203–216 MR2734172
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