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The D.2/–problem for
dihedral groups of order 4n

SEAMUS O’SHEA

We give a full solution in terms of k –invariants of the D.2/–problem for D4n ,
assuming that Z ŒD4n� satisfies torsion-free cancellation.

57M05; 55P15

1 Introduction

The following question was first posed by Wall in [12]:

D.2/–problem. Let X be a finite connected 3–dimensional CW–complex, with
universal cover eX , such that

H3. zX IZ /DH 3.X IB/D 0

for all coefficient systems B on X . Is it true that X is homotopy equivalent to a finite
2–dimensional CW–complex?

The D.2/–problem is parametrized by the fundamental group of X ; we say that the
D.2/–property holds for a finitely presented group G if the above question is answered
in the affirmative for every X with �1.X /ŠG .

We shall be concerned with the D.2/–problem for D4n , the dihedral group of order
4n. Johnson [7] has shown that the D.2/–property holds for the groups D4nC2 for
any n� 1; however his result relies on the fact that D4nC2 has periodic cohomology,
a property not shared by D4n . Mannan [9] has shown that the D.2/–property holds
for D8 . We say that torsion-free cancellation holds for a group ring Z ŒG� if

X ˚M ŠX ˚N )M ŠN

for any Z ŒG�–lattices X , M and N . We shall show:

Theorem 1.1 Suppose that Z ŒD4n� satisfies torsion-free cancellation. Then the D.2/–
property holds for D4n .
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The calculations of Swan [11] and Endo and Miyata [3] show that torsion-free cancel-
lation holds for Z ŒD4p � when p is prime and 3� p � 31, p D 47; 179 or 19379. To
date the only finite nonabelian, nonperiodic groups for which the D.2/–property is
known to hold are those of the form D4p , where p is prime.

Let G be a group and set ƒDZ ŒG�. Any finite 2–dimensional CW–complex K with
�1.K/DG gives rise to an exact sequence of ƒ–modules

(1) 0! �2.K/! C2.K/
@2
�! C1.K/

@1
�! C0.K/!Z ! 0;

where Cr .K/ D Hr . zKr ; zKr�1IZ / is the free ƒ–module with basis the r –cells of
K . By an algebraic 2–complex over a group G , we mean an exact sequence of right
ƒ–modules of the form

(2) 0! J ! F2

@2
�! F1

@1
�! F0

"
�!Z ! 0;

where each Fi is finitely generated free. An algebraic 2–complex is said to be ge-
ometrically realizable if it is homotopy equivalent to a 2–complex of type (1). If
every algebraic 2–complex over a group G is geometrically realizable we say that
the realization property holds for G . The following result is due to Johnson [7] and
Mannan [10]:

Theorem 1.2 Let G be a finitely presented group. Then the D.2/–property holds for
G if and only if the realization property holds for G .

We are grateful to the referee for pointing out a paper of Latiolais [8], in which it is
proved that the homotopy type of a CW–complex with fundamental group D4n is
determined by the Euler characteristic. This result was extended by Hambleton and
Kreck [6] to include those complexes whose fundamental groups are finite subgroups
of SO.3/. Latiolais achieves this by realizing all values of the Browning obstruction
group (see Browning [1], Gruenberg [4], Gutierrez and Latiolais [5]); combining this
realization with Theorem 1.2, it seems possible to give a proof of Theorem 1.1 without
assuming torsion-free cancellation.

We begin by briefly recalling the classification of algebraic complexes in terms of
k –invariants — for a full treatment, see Johnson [7, Chapter 6]. Fix a finite group G

and put ƒDZ ŒG�. Let P D .0! J ! F2! F1! F0!Z ! 0/ be an algebraic
2–complex over G and let E D .0! J !E2!E1!E0!Z ! 0/ 2 Ext3ƒ.Z ;J /
be an arbitrary extension of Z by J . Then by the universal property of projective
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modules, there exists a commutative diagram:

P
˛

��

E

D .0 // J //

˛C

��

F2

˛2

��

// F1
//

˛1

��

F0
//

˛0

��

Z

Id
��

// 0/

D .0 // J // E2
// E1

// E0
// Z // 0/

We may extend ˛C thus:

0 // J //

˛C

��

F2

˛0
2

��

// F1
//

˛0
1

��

F0
//

˛0
0

��

Z

z̨

��

// 0

0 // J // F2
// F1

// F0
// Z // 0

Then z̨ is unique up to congruence modulo jGj and we have a well-defined map
�W EndƒJ!Z=jGj given by �.˛C/D z̨ . The k –invariant of the transition ˛W P! E
is defined to be k.P ! E/ D �.˛C/. Given ˛ 2 EndƒJ we have a k –invariant
k.P ! ˛�.P// D �.˛/k.P ! P/ D �.˛/, where ˛�.P/ is the pushout extension.
Since �.˛/ is a unit if ˛ is an isomorphism, this induces a mapping

AutƒJ ! .Z=jGj/�

called the Swan map, which is independent of the choice of algebraic complex in which
J appears. We have (see Johnson [7, Theorems 54.6 and 54.7]):

Theorem 1.3 Suppose that the Swan map Aut J ! .Z=jGj/� is surjective. Then for
each n� 0 there is, up to chain homotopy equivalence, a unique algebraic 2–complex
of the form

0! J ˚ƒn
! F2! F1! F0!Z ! 0:

2 The Swan map for D2n

For any n the group D2n may be described by the presentation

hx;y j xn;y2;y�1xyxi:

Write ƒDZ ŒD2n� and †D 1CxCx2C� � �Cxn�1 . Applying the Cayley complex
construction to this presentation gives the following 2–complex:

(3) 0! J !ƒ3 @2
�!ƒ2 @1

�!ƒ
"
�!Z ! 0;

where " is the augmentation map, @1 D .x� 1;y� 1/ and @2 D

�
† 0 1Cyx
0 1Cy x�1

�
. The

following proposition is easily verified:

Algebraic & Geometric Topology, Volume 12 (2012)
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Proposition 2.1 Fix n and let k be any odd integer with 3� k � n� 1. If we write
mD .k � 1/=2 then the following diagram commutes:

0 // J //

�

��

ƒ3
@2
//

˛2

��

ƒ2
@1
//

˛1

��

ƒ
"
//

˛0

��

Z

k

��

// 0

0 // J // ƒ3
@2
// ƒ2

@1
// ƒ

"
// Z // 0

where @1 D .x� 1;y � 1/, @2 D

�
† 0 1Cyx
0 1Cy x�1

�
,

˛0 D .1Cx�1
C � � �Cx�m

Cx�1yC � � �Cx�my/;

˛1 D

�
a 0

0 1

�
; ˛2 D

0@a 0 0

0 1 0

0 0 1

1A ;
aD 1Cx�1C � � �Cx�m�x�2y � � � � �x�m�1y and � D ˛2jJ .

Consider the commutative diagram above as a diagram of (free) Z–modules and
Z –linear maps; taking determinants we have:

Proposition 2.2 k det � det˛1 D det˛2 det˛0 .

Proof Let v denote the restriction of ˛0 to ker " and let u denote the restriction of
˛1 to ker @1 . Then v.ker "/� ker ", u.ker @1/� ker @1 and we have an commutative
diagram:

0 // ker @1
//

u

��

ƒ2

˛1

��

@1
// ker "

v

��

// 0

0 // ker @1
// ƒ2

@1
// ker " // 0

Considered as a diagram of (free) Z –modules, both exact sequences split, and so there
exists ˛0

1
such that

0 // ker @1
//

u

��

ker @1˚ ker "

˛0
1

��

// ker "

v

��

// 0

0 // ker @1
// ker @1˚ ker " // ker " // 0

commutes with the obvious maps, and where det˛0
1
D det˛1 . Therefore we have

det˛0
1
D det

�
u w
0 v

�
D det u det v . Similarly

det˛2 D det � det u and det˛0 D det v det k D k det v:
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Thus
det˛2 det˛0 D det � det u det.v/ k D k det � det˛1

as required.

Now, any ƒ–homomorphism is a ƒ–isomorphism if and only if it is an isomorphism
as a Z –linear map. Thus, in order to show that Œk� is in the image of the Swan map, it
suffices to show that det � D˙1.

Proposition 2.3 Suppose that k is coprime to 2n. Then det˛0 D˙k .

Proof Let M.˛0/ be the matrix of the ƒ–linear map given by x 7!˛0x with respect to
the Z –basis f1;x; : : : ;xn�1;y; : : : ;xn�1yg, with the elements of ƒ being interpreted
as columns. Notice that M.˛0/D

�
A B
B A

�
where AD .ai;j / and B D .bi;j / are n�n

matrices. We know that ai;1 D 1 if ˛0 contains an xi�1 term and ˛i;1 D 0 otherwise.
Thus

ai;1 D

�
1 if i 2 f1; n�mC 1; n�mC 2; : : : ; ng;

0 otherwise.
Similarly

bi;1 D

�
1 if i 2 fn�mC 1; n�mC 2; : : : ; ng;

0 otherwise.
The other columns of A and B are obtained by cyclically permuting the first column; let
�C; ��W f1; : : : ; ng ! f1; : : : ; ng be the permutations given by �C.i/D i C 1 mod n

and ��.i/D i � 1 mod n. We now have

ai;j D a�j�1
� .i/;1 and bi;j D b

�
j�1
C

.i/;1
:

Now label the columns of M.˛0/ by v1; : : : ; v2n . Let N be the matrix with columns
v0

1
; : : : ; v0

2n
where v0i D vi for 1 � i � n and v0nCi D vnCi � vnC1�i for 1 � i � n.

For example, if nD 4 and k D 3 (so that mD 1), we would have:

M.˛0/D

0BBBBBBBBBBB@

1 1 0 0 0 0 0 1

0 1 1 0 0 0 1 0

0 0 1 1 0 1 0 0

1 0 0 1 1 0 0 0

0 0 0 1 1 1 0 0

0 0 1 0 0 1 1 0

0 1 0 0 0 0 1 1

1 0 0 0 1 0 0 1

1CCCCCCCCCCCA
I N D

0BBBBBBBBBBBB@

1 1 0 0 0 0 �1 0

0 1 1 0 0 �1 0 0

0 0 1 1 �1 0 0 0

1 0 0 1 0 0 0 �1

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0

1CCCCCCCCCCCCA
Algebraic & Geometric Topology, Volume 12 (2012)
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If N D
�

A C
B D

�
for matrices C D .ci;j / and D D .di;j / then ci;j D bi;j � ai;nC1�j

and di;j D ai;j � bi;nC1�j . Now,

ai;n D a�n�1
� .i/;1 D

�
1 if 2 fn�m; n�mC 1; : : : ; ng;

0 otherwise,

and so

ci;1 D

�
�1 if i D n�m;

0 otherwise,
Similarly,

di;1 D

�
1 if i D n�mC 1;

0 otherwise.
We also have

ci;j D c
�
j�1
C

.i/;1
and di;j D d�j�1

� .i/;1:

There is precisely one �1 appearing in the i –th row of C ; fix i; j such that ci;j D�1.
Then c�j�1

C
.i/;1 D �1) �j�1

C .i/ D n �m) j D � i�1
� .n �m/. The row of D

containing C1 in the j –th position is the k –th, where

dk;� i�1
� .n�m/ D 1) d

�
�i�1
� .n�m/�1
� .k/;1

D 1

) ��
i�1
� .n�m/�1
� .k/D n�mC 1

) k � � i�1
� .n�m/C 1D n�mC 1 mod n

) k � nCmC i D n�mC 1 mod n

) k D n� 2m� i C 1 mod n

) k D � i�1
� .n� 2m/:

Let the rows of N be labelled by w1; : : : ; w2n . Put w0i D wi for nC 1 � i � 2n

and w0i D wi CwnC� i�1
� .n�2m/ for 1 � i � n. If we let P be the matrix with rows

w0
1
; : : : ; w0

2n
then by the preceding argument P is of the form P D

�
E 0
B D

�
. Here D

is a permutation matrix, and so we have det M.˛0/ D ˙ det E . In the case n D 4,
k D 3 we have:

E D

0BB@
1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1

1CCA
If E D .ei;j /, then

ei;j D ai;j C b� i�1
� .n�2m/;j :

Algebraic & Geometric Topology, Volume 12 (2012)
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Consider

ei;j � e�j�1
� .i/;1 D ai;j C b� i�1

� .n�2m/;j � a�j�1
� .i/;1� b

��
j�1
� .i/�1
� .n�2m/;1

D b
�
j�1
C

.� i�1
� .n�2m//;1

� b
��
j�1
� .i/�1
� .n�2m/;1

;

where we have cancelled the a terms. Now,

��
j�1
� .i/�1
� .n� 2m/D n� 2m� �j�1

� .i/C 1D n� 2m� .i � j C 1/C 1 mod n

D n� 2mC j � i mod n:

However,

�
j�1
C .� i�1

� .n� 2m//D � i�1
� .n� 2m/C j � 1D n� 2m� i C 1C j � 1 mod n

D n� 2mC j � i mod n;

so the b terms also cancel, and we can conclude that ei;j D e�j�1
� .i/;1 .

Consider the first column of E : we know that

b� i�1
� .n�2m/;1 D

�
1 if � i�1

� .n� 2m/ 2 fn�mC 1; n�mC 2; : : : ; ng;

0 otherwise.

However,

� i�1
� .n� 2m/ 2 fn�mC 1; : : : ; ng() Œn� 2m� i C 1� 2 fŒn�mC 1�; : : : ; Œn�g;

where Œ � represents class modulo n. This is equivalent to

Œ�i � 2 fŒ2m� 1�; Œ2m� 2�; : : : ; Œm�g;

or i 2 fn�2mC1; n�2mC2; : : : ; n�mg. Comparing this with the ai;1 s, we see that

ei;1 D

�
1 if i 2 f1; n� 2mC 1; : : : ; ng;

0 otherwise,

so that E has 2mC1D k 1s in each column. We may cyclically permute the rows of
E to form a new matrix F D .fi;j / with fi;j D f�j�1

� .i/;1 and

fi;1 D

�
1 if 1� i � k;

0 otherwise.

The matrix F is the circulant matrix associated to the row vector .v0; v1; : : : ; vn�1/

with vi D 1 for 0� i � k � 1 and vi D 0 for k � 1� i � n� 1. The determinant of

Algebraic & Geometric Topology, Volume 12 (2012)
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F is given by the well-known formula (see for example [2]):

det F D

n�1Y
iD0

n�1X
jD0

�ijvj ;

where � is a primitive n–th root of unity. Write �i D
Pn�1

jD0 �
ijvj ; clearly �0 D k .

However, for each i � 1, we have

�i D

k�1X
jD0

.�i/j D
�ik � 1

�i � 1
;

and hence

det F D k

n�1Y
iD1

�ik � 1

�i � 1
:

We note that since k is coprime to n, the sets f�ik j i 2 f1; 2; : : : ; n � 1gg and
f�i j i 2 f1; 2; : : : ; n� 1gg coincide, and hence det˛0 D˙ det F D˙k .

Proposition 2.4 det˛1 D det˛2 ¤ 0.

Proof The following commutes:

0 // J //

� 0

��

ƒ3
@2
//

˛0
2

��

ƒ2
@1
//

˛1

��

ƒ
"
//

˛0

��

Z

k

��

// 0

0 // J // ƒ3
@2
// ƒ2

@1
// ƒ

"
// Z // 0

where

˛02 D

0@ mC 1�my 0 0

0 1 0

0 0 1

1A
and � 0 is the restriction of ˛0

2
to J . We proceed to calculate det˛0

2
D det.mC1�my/.

If we represent .mC1�my/ with respect to the basis f1;x; : : : ;xn�1;y; : : : ;xn�1yg,
then we form the matrix:

M D

�
A B

B A

�
Here A is diagonal with each diagonal entry equal to mC 1, and B is equal to �m

times the permutation matrix associated to
�

1 2 3 ::: n
1 n n�1 ::: 2

�
. Label the rows of M by

v1; : : : ; v2n and let N be the matrix with rows v0
1
; : : : ; v0

2n
, where v0

1
D v1C vnC1 ,

v0i D vi C v2n�iC2 for 2 � i � n, and v0i D vi for nC 1 � i � 2n. Now label the
columns of M by w1; : : : ; w2n and let L be the matrix with columns w0

1
; : : : ; w0

2n

Algebraic & Geometric Topology, Volume 12 (2012)
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where w0i D wi for 1� i � n, w0
nC1
D wnC1�w1 and w0nCi D wnC1�wn�iC2 for

2� i � n. For example, if nD 4 and k D 3 (so that mD 1) we have:

N D

0BBBBBBBBBBBB@

1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0

�1 0 0 0 2 0 0 0

0 0 0 �1 0 2 0 0

0 0 �1 0 0 0 2 0

0 �1 0 0 0 0 0 2

1CCCCCCCCCCCCA
I LD

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

�1 0 0 0 3 0 0 0

0 0 0 �1 0 3 0 0

0 0 �1 0 0 0 3 0

0 �1 0 0 0 0 0 3

1CCCCCCCCCCCCA
It is easy to see that L is lower triangular with n diagonal entries equal to 1 and n

diagonal entries equal to 2mC 1D k . Then det˛0
2
D det.mC 1�my/D det LD kn .

Using k det � 0 det˛1 D det˛0 det˛0
2
D˙knC1 we see that det˛1 D det˛2 ¤ 0.

Therefore by Propositions 2.2, 2.3 and 2.4:

Proposition 2.5 If 3 � k � n� 1 is coprime to 2n then det � D˙1 and so � is an
isomorphism. Thus Œk� is in the image of the Swan map.

Clearly Œ�1� is in the image of the Swan map and so:

Corollary 2.6 The Swan map Aut J ! .Z=2n/� is surjective for each D2n .

Mannan [9] has previously shown that the Swan map is surjective for D2n .

3 The D.2/–property for Z ŒD4n�

We now restrict to the case D4n . An application of Schanuel’s lemma shows that
the module J appearing in (2) is determined up to stable equivalence; that is, if
0! J ! F2 ! F1 ! F0 ! Z ! 0 and 0! J 0 ! F 0

2
! F 0

1
! F 0

0
! Z ! 0

are two algebraic 2–complexes, we have J ˚ƒn Š J 0˚ƒm for some n;m. Write
�3.Z / for the class of modules J 0 appearing in an algebraic 2–complex over D4n .
Now take J D ker @2 in (3); the following proposition is due to Mannan [9]:

Proposition 3.1 J has minimal Z –rank in �3.Z /.

Algebraic & Geometric Topology, Volume 12 (2012)
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Let � be an order over a Dedekind domain R. We say that torsion-free cancellation
holds for � if X˚M ŠX˚N D)M ŠN for lattices X;M and N over � (so that
X;M and N are finitely generated as �–modules and torsion-free over R). There
are very few finite groups G for which � DZ ŒG� has torsion-free cancellation; if G

is nonabelian then the only possible candidates are A4 , A5 , S4 and D2n for certain
values of n. Clearly we have:

Proposition 3.2 Suppose that Z ŒD4n� has torsion-free cancellation. Then every
J 0 2�3.Z / is of the form J 0 Š J ˚ƒm for some m� 0.

For a finite group G , the integral group ring Z ŒG� is a Z –order in the semisimple
algebra QŒG�; we may choose a maximal Z –order � in QŒG� containing Z ŒG�, and
define D.Z ŒG�/ D ker. eK0.Z ŒG�/! eK0.�//. A necessary condition for Z ŒG� to
possess torsion-free cancellation is D.Z ŒG�/D 0. The following is due to Swan [11]:

Theorem 3.3 Let p be a prime. Then D4p satisfies torsion-free cancellation if and
only if D.Z ŒD4p �/D 0.

Endo and Miyata [3] calculate the order of D.Z ŒD2n�/ for various values of n. In
particular they show D.Z ŒD4p �/D 0 for prime p when 3� p � 31, p D 47; 179 or
19379. However, there do exist values of n for which D.Z ŒD4n�/¤ 0, for example
n D 37. Moreover, results of Swan show that D.Z ŒD4n�/ D 0 is not a sufficient
condition for torsion-free cancellation to hold. For example, D.Z ŒD2n �/D 0 for all
n, yet torsion-free cancellation fails when n� 7 (see [11, Theorem 8.1]). Of course,
although values of n exist for which Z ŒD4n� does not have torsion-free cancellation,
it may still be the case that cancellation of finitely generated free modules holds within
�3.Z / for such n.

If torsion-free cancellation holds for D4n then, by Theorem 1.3, Corollary 2.6 and
Proposition 3.2, up to congruence, the only algebraic 2–complexes over D4n are of
the form

Em D .0! J ˚ƒm
!ƒ3

˚ƒm @2�1
���!ƒ2 @1

�!ƒ!Z ! 0/;

where �1W ƒ
3 ˚ ƒm ! ƒ3 denotes projection onto the first factor. If a pair of

algebraic 2–complexes are congruent then they are homotopy equivalent (see Johnson [7,
page 182]), and so the Em represent all homotopy classes of algebraic 2–complexes
over D4n . However, Em is geometrically realized by the Cayley complex arising from
the presentation

Gm D hx;y j x
2n;y2;y�1xyx; 1; : : : ; 1i;

Algebraic & Geometric Topology, Volume 12 (2012)
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where there are m trivial relators added to the standard presentation for D4n . Therefore
every homotopy class of algebraic 2–complex over D4n is geometrically realized and
hence by Theorem 1.2 we have proved Theorem 1.1. By Theorems 1.1 and 3.3 we
have:

Corollary 3.4 Let p be a prime and suppose that D.Z ŒD4p �/D 0. Then the D.2/–
property holds for D4p .
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