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The D(2)-problem for
dihedral groups of order 4n

SEAMUS O’SHEA

We give a full solution in terms of k—invariants of the D(2)—problem for Dy,,
assuming that Z[Dy,] satisfies torsion-free cancellation.

57MO05; 55P15

1 Introduction
The following question was first posed by Wall in [[12]:

D (2)-problem. Let X be a finite connected 3—dimensional CW-complex, with
universal cover X , such that

H3(X:Z)=H3X:B)=0

for all coefficient systems BB on X . Is it true that X is homotopy equivalent to a finite
2—dimensional CW—complex?

The D(2)—problem is parametrized by the fundamental group of X ; we say that the
D(2)—property holds for a finitely presented group G if the above question is answered
in the affirmative for every X with 71 (X) = G.

We shall be concerned with the D(2)—problem for Dy, the dihedral group of order
4n. Johnson [7|] has shown that the D(2)—property holds for the groups Dy, for
any n > 1; however his result relies on the fact that D4, , has periodic cohomology,
a property not shared by Dy, . Mannan [9]] has shown that the D(2)—property holds
for Dg. We say that torsion-free cancellation holds for a group ring Z[G] if

XOM=XBSN=>Mx=N
for any Z[G]-lattices X', M and N. We shall show:

Theorem 1.1 Suppose that Z[D,,] satisfies torsion-free cancellation. Then the D(2)—
property holds for Dy, .
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The calculations of Swan [11]] and Endo and Miyata [3]] show that torsion-free cancel-
lation holds for Z[D4,] when p is prime and 3 < p <31, p =47,179 or 19379. To
date the only finite nonabelian, nonperiodic groups for which the D(2)—property is
known to hold are those of the form Dy, where p is prime.

Let G be a group and set A = Z[G]. Any finite 2—dimensional CW—complex K with
m1(K) = G gives rise to an exact sequence of A—modules

1) 0= 75 (K) = Cy(K) 2 C1(K) 25 Co(K) > Z — 0,

where C,(K) = H,(K,, K,_: Z) is the free A—module with basis the r—cells of
K. By an algebraic 2—complex over a group G, we mean an exact sequence of right
A —modules of the form

82 31 &
2) 0—>J—>F,—F —Fy—>Z —0,

where each F; is finitely generated free. An algebraic 2—complex is said to be ge-
ometrically realizable if it is homotopy equivalent to a 2—complex of type If
every algebraic 2—complex over a group G is geometrically realizable we say that
the realization property holds for G. The following result is due to Johnson [[7] and
Mannan [|10]:

Theorem 1.2 Let G be a finitely presented group. Then the D(2)—property holds for
G if and only if the realization property holds for G .

We are grateful to the referee for pointing out a paper of Latiolais [8]], in which it is
proved that the homotopy type of a CW—complex with fundamental group Dy, is
determined by the Euler characteristic. This result was extended by Hambleton and
Kreck [6]] to include those complexes whose fundamental groups are finite subgroups
of SO(3). Latiolais achieves this by realizing all values of the Browning obstruction
group (see Browning [[1]], Gruenberg [4]], Gutierrez and Latiolais [5]]); combining this

realization with [Theorem 1.2} it seems possible to give a proof of without

assuming torsion-free cancellation.

We begin by briefly recalling the classification of algebraic complexes in terms of
k —invariants — for a full treatment, see Johnson [7, Chapter 6]. Fix a finite group G
and put A = Z[G].Let P=(0—> J — F, > F; - Fy — Z — 0) be an algebraic
2—complexover Gandlet E=(0—>J - E; > E1 > Eg—~ Z —0) € Extf\(Z, J)
be an arbitrary extension of Z by J. Then by the universal property of projective
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modules, there exists a commutative diagram:

P = (0 J F, Fy Fy Z 0)
la la-i- laz lal l“o lld
E = (0 J E2 El E() VA O)

We may extend a4 thus:

0 J F F Fy Z 0
O O T O
0 J ) F Fy VA 0

Then & is unique up to congruence modulo |G| and we have a well-defined map
k: EndpJ — Z /|G| given by k(a4) = &. The k—invariant of the transition a: P — &
is defined to be k(P — &) = k(a+). Given @ € EndpJ we have a k—invariant
k(P — ax(P)) = k(a)k(P — P) = k(a), where o (P) is the pushout extension.
Since k(«) is a unit if « is an isomorphism, this induces a mapping

AutaJ — (Z/|G)*

called the Swan map, which is independent of the choice of algebraic complex in which
J appears. We have (see Johnson [7, Theorems 54.6 and 54.7]):

Theorem 1.3 Suppose that the Swan map AutJ — (Z /|G|)* is surjective. Then for
each n > 0 there is, up to chain homotopy equivalence, a unique algebraic 2—complex
of the form

0> JBAN">F,—F — Fy—~Z —0.

2 The Swan map for D,,

For any n the group D;, may be described by the presentation

(x,p [x", y* y~'xpx).

Write A = Z[D,,] and & =14 x + x2 4 ---4+x""1. Applying the Cayley complex
construction to this presentation gives the following 2—complex:

a ad
3) 0>J->A BN A5 750,

where ¢ is the augmentation map, 9; = (x — 1, y—1) and 9, = (% H(iy lj_ylx) The
following proposition is easily verified:
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Proposition 2.1 Fix n and let k be any odd integer with 3 <k <n— 1. If we write
m = (k —1)/2 then the following diagram commutes:

02 01 e

0 J A3 A2 A V4 0
R
2 01 €
0 J A3 A2 A V4 0
Whereal=(x—1,y—1),32=(§12y lj—ylx)’
o =1+x"+ o dx+xy 4Ty,
a00
a1=(g (1)) a=(010],
001
a:1+x—1+.--+x_’”—x_2y—"'—x_m_1y and8=a2|J.

Consider the commutative diagram above as a diagram of (free) Z-modules and
Z —linear maps; taking determinants we have:

Proposition 2.2 k det 6 deto; = detory detag .
Proof Let v denote the restriction of ¢ to kere and let # denote the restriction of

a1 to kerdy. Then v(kere) C kere, u(kerd;) C kerd; and we have an commutative
diagram:

01

0 ker 0¢ A2 kere 0
01

0 ker 0, A2 kere 0

Considered as a diagram of (free) Z —modules, both exact sequences split, and so there

exists oz’l such that

0 ker d; kerd; ®kere kere 0
lu la’l lv
0 ker d, kerd; @ kere kere 0

commutes with the obvious maps, and where deta| = deta;. Therefore we have
deta) =det(§ %) = detu detv. Similarly

detay =detfdetu and detwg = detvdetk = k detv.
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Thus
deta, det oy = det 6 detu det(v) k = k det 6 det o

as required. a

Now, any A-homomorphism is a A —isomorphism if and only if it is an isomorphism
as a Z —linear map. Thus, in order to show that [k] is in the image of the Swan map, it
suffices to show that det = +1.

Proposition 2.3 Suppose that k is coprime to 2n. Then detay = tk.

Proof Let M (o) be the matrix of the A —linear map given by x — «gx with respect to
the Z —basis {1, x,...,x""1, y, ..., x"" 1y}, with the elements of A being interpreted
as columns. Notice that M (cg) = (4 &) where 4 = (a;,j) and B = (b;,j) are n xn
matrices. We know that a; 1 = 1 if @y contains an x'~1 term and a;,1 = 0 otherwise.
Thus
P 1 fie{l,n—m+1,n—m+2,...,n},
1710 otherwise.
Similarly

i,1 —

1 fiefn—m+1,n—m+2,...,n},
{0 otherwise.

The other columns of A and B are obtained by cyclically permuting the first column; let
o+,0-:{1,...,n} —{1,...,n} be the permutations given by 64+ (i) =i +1 mod n
and 0_(i) =i —1 mod n. We now have

ai,j =dgi-1G),) and b ;= bgj'r—l(i),l'

Now label the columns of M («g) by vy,...,v2,. Let N be the matrix with columns
v{,..., vy, where v; = v; for 1 <i <n and v;l+l. = Upti — Upg1—i for 1 <i <n.
For example, if n =4 and k = 3 (so that m = 1), we would have:

1100 0001 (1 100 0 0-1 0)
0110 0010 01 10 0-1 00
0011 0100 001 1-10200
1001 1000 1 001 00 0-1
M(Olo)= ;0 N =
0001 1100 0001 01 00
0010 0110 0010 0010
0100 0011 01 00 0 0 0 1
\1000 1001 1 000 1 00 0
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If N =(4§) for matrices C = (c¢;,;) and D = (d;,j) then ¢; j = bi,j — ajns1—;
and d; j = aj j —bj yy1—j. Now,
1 f e{fn—mn—m+1,...,n},
din = don=1(),1 = 0 otherwise

and so
-1 ifi =n—m,
i1 = .
0 otherwise,
Similarly,

dig =

1 fi=n—m+1,
{0 otherwise.
We also have

Cij = Cai_l(i),l and di,j = do.i‘—l(,-),l.
There is precisely one —1 appearing in the i —th row of C; fix i, j such that ¢; j = —1.
Then Col= (i), = -1 = onr_l(i) =n—m= j =o' (n—m). The row of D
containing +1 in the j—th position is the k —th, where

dk,(fi_l(n—m) =1 = dagL_l(n—m)—l(k)’l =1

= 005 MLy = 4 1
=k—c""'m—m)+1=n—m+1 modn
=k—n+m+i=n—m+1 modn
=k=n—-2m—i+1 modn

=k =0c"1(n-2m).

Let the rows of N be labelled by wy, ..., wa,. Put w; = w; forn4+1=<i <2n
and W} = w; + Wy4oi—1 (n—2m) for 1 <i <n. If we let P be the matrix with rows
wi,..., w;n then by the preceding argument P is of the form P = (g g ) Here D
is a permutation matrix, and so we have det M («g) = fdet E. In the case n = 4,
k =3 we have:

1110

0111
E= 1011
1101

If E = (e;,j),then

ei,j =ai,j +bgi-1(n_om),j-

Algebraic € Geometric Topology, Volume 12 (2012)



The D(2)—problem for dihedral groups of order 4n 2293

Consider

¢i.j = €gi-1(i),1 = 4i,j + Dgi=1(n—2m),j — di=1(i),1 _bagi_l<i)—1(n—2m),1

= bai_l(oi—l(n—Zm)),l _bagi_](i)—l(n_zyn),l’
where we have cancelled the a terms. Now,

afi_l(i)_l(n—Zm)zn—2m—ai_1(i)+1:n—2m—(i—j+1)+1 mod n

=n—2m+j—i modn.
However,

Gi_l(ai_l(n—Zm))zai_l(n—2m)+j—1 =n—-2m—i+14+j—1 modn

=n—2m+j—i modn,
so the b terms also cancel, and we can conclude that e;,j = €4j—1(;),1 -

Consider the first column of E: we know that

baif‘ (n—2m),1 — {

However,

1 ifei'm—2mye{n—m+1,n—m+2,....,n},
0 otherwise.

ol m—2myeln—m+1,... .nt<=h-2m—i+1e{n—m+1],....[n]},
where [ | represents class modulo 7. This is equivalent to
[—ile{2m—1],[2m—=2],...,[m]},
ori €{n=2m+1,n—2m+2,...,n—mj. Comparing this with the a; 1 s, we see that

o 1 ifie{l,n—2m+1,...,n},
517 0 otherwise,

so that £ has 2m + 1 =k 1s in each column. We may cyclically permute the rows of
E to form a new matrix F' = (f;,;) with fij = f;j-1(;,, and

1 ifl1<i<k,
ﬁ-,1={

0 otherwise.

The matrix F is the circulant matrix associated to the row vector (vg, vq,...,Vy—1)
with v; =1 for 0<i <k —1and v; =0 for k —1 <i <n—1. The determinant of
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F is given by the well-known formula (see for example [2]):

n—1n-—1

det F = l—[ Z@ijvj,

i=0,j=0

where ¢ is a primitive n—th root of unity. Write A; = Z}’;(l) ¢l vj; clearly Ao = k.
However, for each i > 1, we have

é-lk
hi = Z(@ ) =
and hence
n—1 ik—l
det F =k Zi 1
vl
We note that since k is coprime to n, the sets {¢* | i € {1,2,...,n —1}} and
{¢'|ief{l,2,...,n—1}} coincide, and hence detag = & det F = +k. |
Proposition 2.4 detay =detay #0.

Proof The following commutes:

a a
0 J AN —A2—— A ——7Z 0
le’ la’z J/al lao lk
092 01 &
0 J A3 A2 A V4 0
where
m+1—my 0 0
o) = 0 10
0 0 1
and 0’ is the restriction of &), to J. We proceed to calculate det o, = det(m +1—my).
If we represent (m 4 1—my) with respect to the basis {1, x,...,x" 1, y, ..., x""1y},

then we form the matrix:
u(30)
B 4
Here A is diagonal with each diagonal entry equal to m 4 1, and B is equal to —m
times the permutation matrix associated to (} ’21 n31 - ) Label the rows of M by
V1,...,V2, and let N be the matrix with rows vl, ... 2n, where vl = V1 + VUp+1,
vl/. =V + Vyp—iqp for 2 <i <m, and vlf =v; for n + 1 <i <2n. Now label the

columns of M by wy, ..., wy, and let L be the matrix with columns w1, ..., w},
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where w; = w; for 1 <i <n, w, | =wy4;—wy and W, ; = Wy41 —Wy—j+2 for
2 <i <n. For example, if n =4 and k = 3 (so that m = 1) we have:

(10001000 (10000000
01 00 0O 0 1 01 00 00 0 0
001 0 0O0T1 0 001 0 0000
0001 0100 00 01 000 0
N: ,L:
-1 0 0 0 20 0 0 -1 0 0 0 3 00 0
00 0-1 02 0 0 00 0—-1 03 0 0
0 0-1 0 0 0 2 0 0 0-1 0 0 0 3 0
0-1 00 00 0 2 K0—1000003

It is easy to see that L is lower triangular with » diagonal entries equal to 1 and n
diagonal entries equal to 2m + 1 = k. Then deta), = det(m 4 1 —my) = det L = k".
Using k det 0’ deta; = detag deta), = +k"1 we see that deta; =deta, #0. O

Therefore by Propositions and

Proposition 2.5 If3 <k <n—1 is coprime to 2n then detf = 1 and so 0 is an
isomorphism. Thus [k] is in the image of the Swan map.

Clearly [—1] is in the image of the Swan map and so:
Corollary 2.6 The Swan map AutJ — (Z /2n)* is surjective for each D,,,.

Mannan [9] has previously shown that the Swan map is surjective for Djn.

3 The D(2)-property for Z[D,,]

We now restrict to the case Dy,. An application of Schanuel’s lemma shows that
the module J appearing in is determined up to stable equivalence; that is, if
0>J—>Fh—>F—>F—>Z—->0ad0—~>J - F —-F —-F—Z—0
are two algebraic 2—complexes, we have J & A” =~ J' & A™ for some n,m. Write
Q3(Z) for the class of modules J' appearing in an algebraic 2—complex over Dy, .
Now take J = kerd, in the following proposition is due to Mannan [9]:

Proposition 3.1 J has minimal Z —rank in 25(Z).
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Let I be an order over a Dedekind domain R. We say that forsion-free cancellation
holdsforI' if XM = XN = M = N for lattices X, M and N over I' (so that
X, M and N are finitely generated as I"'—modules and torsion-free over R). There
are very few finite groups G for which I' = Z[G] has torsion-free cancellation; if G
is nonabelian then the only possible candidates are A4, As, S4 and D5, for certain
values of n. Clearly we have:

Proposition 3.2 Suppose that Z[D4,] has torsion-free cancellation. Then every
J' € Q3(Z) is of the form J' =~ J & A™ for some m > 0.

For a finite group G, the integral group ring Z[G] is a Z —order in the semisimple
algebra Q[G]; we may choose a maximal Z —order I' in Q[G] containing Z[G], and
define D(Z[G]) = ker(KO(Z[G]) — KO(F)) A necessary condition for Z[G] to
possess torsion-free cancellation is D(Z[G]) = 0. The following is due to Swan [[11]:

Theorem 3.3 Let p be a prime. Then Dy, satisfies torsion-free cancellation if and
only if D(Z[D4,]) =0.

Endo and Miyata [3]] calculate the order of D(Z[D,,]) for various values of n. In
particular they show D(Z[D4,]) = 0 for prime p when 3 < p <31, p=47,179 or
19379. However, there do exist values of #n for which D(Z[Dg4,]) # 0, for example
n = 37. Moreover, results of Swan show that D(Z[D4,]) = 0 is not a sufficient
condition for torsion-free cancellation to hold. For example, D(Z[D,x]) = 0 for all
n, yet torsion-free cancellation fails when n > 7 (see [|11, Theorem 8.1]). Of course,
although values of n exist for which Z[D,,] does not have torsion-free cancellation,
it may still be the case that cancellation of finitely generated free modules holds within
Q3(Z) for such n.

If torsion-free cancellation holds for Dy, then, by [Theorem 1.3| [Corollary 2.6|and

up to congruence, the only algebraic 2—complexes over Dy, are of

the form

damy 5 31

Em=0>JBA" > AP A" =S5 A S A —> Z —0),

where 71 A3 @ A™ — A3 denotes projection onto the first factor. If a pair of
algebraic 2—complexes are congruent then they are homotopy equivalent (see Johnson 7}
page 182]), and so the &, represent all homotopy classes of algebraic 2—complexes
over Dy, . However, &, is geometrically realized by the Cayley complex arising from

the presentation

Gm = (x,y | x*", y%, y " Txyx, 1,..., 1),
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where there are m trivial relators added to the standard presentation for Dy, . Therefore
every homotopy class of algebraic 2—complex over Dy, is geometrically realized and

hence by we have proved By Theorems [T.1] and [3.3| we

have:

Corollary 3.4 Let p be a prime and suppose that D(Z[Dy4p]) = 0. Then the D(2)-
property holds for Dy .
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