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Equivariant topological complexity

HELLEN COLMAN
MARK GRANT

We define and study an equivariant version of Farber’s topological complexity for
spaces with a given compact group action. This is a special case of the equivariant
sectional category of an equivariant map, also defined in this paper. The relationship
of these invariants with the equivariant Lusternik—Schnirelmann category is given.
Several examples and computations serve to highlight the similarities and differences
with the nonequivariant case. We also indicate how the equivariant topological
complexity can be used to give estimates of the nonequivariant topological complexity.

55M99, 57510; 55M30, 55R91

1 Introduction

The sectional category of amap p: E — B, denoted secat(p), is the minimum number
of open sets needed to cover B, on each of which p admits a homotopy section. It
was first studied extensively by Svarc [20] for fibrations (under the name genus) and
later by Berstein and Ganea [2] for arbitrary maps. The notion of sectional category
generalizes the classical (Lusternik—Schnirelmann) category, since secat(p) = cat(B)
whenever E is contractible and p is surjective. For a general overview of these and
other category-type notions, we refer the reader to the survey article of James [14] and
the book of Cornea—Lupton—Oprea—Tanré [5].

Further to the classical applications of category to critical point theory, the concept of
sectional category has been applied in a variety of settings. We mention the work of
Smale [17] and Vassiliev [19] on the complexity of algorithms for solving polynomial
equations, and applications to the theory of embeddings [20]. More recently, Farber [8;
9] has applied these ideas to the motion planning problem in robotics. He defines the
topological complexity of a space X, denoted TC (X), to be the sectional category
of the free path fibration on X . The topological complexity is a numerical homotopy
invariant which measures the “navigational complexity” of X, when viewed as the
configuration space of a mechanical system. Along with various related invariants, it
has enjoyed much attention in the recent literature (see Basabe, Gonzalez, Rudyak and
Tamaki [1], Gonzélez and Landweber [12] and Grant [13], for example).
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In this paper we begin a systematic study of the equivariant versions of these notions.
For simplicity, we restrict to compact group actions (although most of our results
remain true for proper actions). Let G be a compact Hausdorff topological group, and
let p: E — B be a G—map. Then the equivariant sectional category of p, denoted
secatg p, is the minimum number of invariant open sets needed to cover B, on each of
which p admits a G-homotopy section. If p is a G —fibration, this is equivalent to
asking for a G —equivariant section on each open set in the cover. In the case when the
actions are trivial, secatg p reduces to the ordinary (nonequivariant) sectional category

secat(p).

The equivariant sectional category does not seem to have appeared in the literature
until now, although we note below (Corollary 4.7) that it generalizes the equivariant
category, or G—category, in many cases of interest. This latter invariant has been
extensively studied (see for example Colman [4], Fadell [7] and Marzantowicz [15]),
and gives a lower bound for the number of critical orbits of a G—invariant functional
on a G—manifold. We include a review of some of its properties in Section 3 below,
where we also prove product inequalities for equivariant category.

The equivariant topological complexity of a G—space X, denoted TC (X)), is defined
in Section 5 to be the equivariant sectional category of the free path fibration 7: X —
X x X, where G acts diagonally on the product and in the obvious way on paths in
X . After proving that TC ¢ (X) is a G-homotopy invariant (Theorem 5.2), we give
several inequalities relating 7C ¢ (X) to the equivariant and nonequivariant categories
and topological complexities of the various fixed point sets. We also show by examples
that TC g (X) can be equal to TC (X), or at the other extreme, one can be finite and
the other infinite (this always happens for example if X is a G-manifold which is
connected but not G —connected). For a group acting on itself by left translations, we
show that TC ¢ (G) = cat(G), so that category of Lie groups is obtained as a special
case of equivariant topological complexity (Theorem 5.11). Various other results are
given, including a lower bound in terms of equivariant cohomology (Theorem 5.15) and
an inequality which bounds the ordinary topological complexity of the fibre space with
fibre X associated to a numerable principal G -bundle by the product of 7C g(X)
and the topological complexity of the base space (Theorem 5.16).

The invariant 7C ¢ (X)) has an interpretation in terms of the motion planning problem,
when X is viewed as the configuration space of a mechanical system which exhibits G
as a group of symmetries. Namely, it is the minimum number of domains of continuity
of motion planners in X which preserve the symmetry. Whilst we do not pursue this
viewpoint here, it is conceivable that the invariant 7C ¢ (X) may find applications in
practical problems of engineering. For more background on the topological approach
to motion planning, we refer the reader to Farber [10].
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The computation of category and topological complexity in the nonequivariant case
are difficult problems which continue to inspire a great deal of research in homotopy
theory, and serve to gauge the power of new topological techniques. We believe that
the equivariant counterparts of these problems can fill a similar niche in equivariant
homotopy theory.
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2 Topological complexity

We begin by recalling some definitions and fixing some notation. The term fibration
will always refer to a Hurewicz fibration. The sectional category of a fibration was
introduced by Svarc (under the name genus) and generalized to any map by Berstein
and Ganea [2].

Definition 2.1 The sectional category of amap p: E — B, denoted secat(p), is the
least integer k such that B may be covered by k open sets {Uj,..., U} on each
of which there exists a map s: U; — E such that ps: U; — B is homotopic to the
inclusion iy,: U; < B. If no such integer exists we set secat(p) = oo.

The sets U; € B in the above definition are called sectional categorical for p.

Remark 2.2 Svarc’s original definition [20] of the genus of a fibration p: E — B
was as the least integer k£ such that B may be covered by k open sets {Uy, ..., Uy}
on each of which there exists a local section of p, that is to say a map s: U; — E
such that ps = iy, . It is easy to see (using the HLP) that this coincides with secat(p)
defined above.

Remark 2.3 In this paper, all our category-type invariants are unnormalized (they are
equal to the number of open sets in the cover). For instance, secat(p) = 1 if and only
if p admits a homotopy section. Thus our definitions exceed by one those in the book
[5], but are in agreement with those used in previous works of the authors, such as [4;
13].
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Recall that the (Lusternik—Schnirelmann) category of a space X, denoted cat(X), is
the least £ such that X may be covered by k open sets {Uj, ..., Ur} such that each
inclusion iy, : U; = X is null-homotopic. The U; are called categorical sets.

The sectional category of a surjective fibration p: E — B is bounded above by the
category of the base, secat(p) < cat(B), and they coincide if the space E is contractible
[20].

Lower bounds for the sectional category can be found using cohomology. If 7 is an
ideal in the commutative ring R, the nilpotency of I, denoted nil I, is the maximum
number of factors in a nonzero product of elements from 7. Let H* denote cohomology
with coefficients in an arbitrary commutative ring.

Proposition 2.4 [20] Let p: E — B be a fibration and p*: H*(B) — H*(FE) be
the induced homomorphism. Then secat(p) > nilker p*.

The topological complexity of a space X', denoted TC (X), is a homotopy invariant
defined by Farber [8] in order to study the motion planning problem in robotics. We
recall now some of its important properties. For more detail we refer the reader to the
original papers of Farber [8; 9; 10]. For any space X, let X! denote the space of paths
in X endowed with the compact-open topology. The free path fibration is the map
7 XT — X x X givenby n(y) = (y(0), y(1)). It is surjective if X is path-connected.

Definition 2.5 The ropological complexity of a space X is
TC (X) = secat(w),

the sectional category of the free path fibration 7: X7 — X x X .

Proposition 2.6 If X dominates Y, then TC (X) > TC (Y). In particular, if X >~ Y
then TC(X)=TC(Y).

Proposition 2.7 For a path-connected space X, cat(X) < TC(X) <cat(X x X).

Proposition 2.8 If X is path-connected and paracompact then TC (X) <2dim X +1,
where dim denotes the covering dimension.

Definition 2.9 Let k be a field. Then cup product defines a homomorphism of rings
H*(X:; k) @ H*(X: k) —> H*(X:K).
The ideal of zero-divisors Zx € H*(X; k) ®x H*(X; k) is the kernel of this homo-

morphism.
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Proposition 2.10 (cohomological lower bound) 7TC (X) > nil Zi for any field k.

Example 2.11 The topological complexity of the standard n—sphere is

oo n=0,
TC(S") =42 n>1odd,
3 n>2even.

3 Equivariant category

In this section we recall some definitions and results related to the equivariant (Lusternik—
Schnirelmann) category of a G —space. We also prove a product inequality for a diagonal
action with fixed points, and state the analogous inequality for product actions.

For the remainder of the paper, G will denote a compact Hausdorff topological group
acting continuously on a Hausdor{f space X on the left. In this case, we say that X is
a G—space. For each x € X the isotropy group Gx ={h € G | hx = x} is a closed
subgroup of G. The set Gx = {gx | g € G} C X is called the orbit of x, and also
denoted O(x). There is a homeomorphism from the coset space G/Gx to Gx, which
sends gGx to gx foreach g € G.

The orbit space X /G is the set of equivalence classes determined by the action,
endowed with the quotient topology. Since G is compact and X is Hausdorff, X/G
is also Hausdorff, and the orbit map p: X — X /G sending a point to its orbit is both
open and closed [6, Chapter 1.3].

If H is a closed subgroup of G, then X = {x € X | hx = x for all h € H} is called
the H —fixed point set of X .

Let X and Y be G-spaces. Two G-maps ¢,¥: X — Y are G—-homotopic, written
¢ ~g ¥, ifthereisa G-map F: X xI — Y with Fy = ¢ and F; = ¢, where G
acts trivially on I and diagonally on X x I.

We now begin to discuss the equivariant category of a G—space X, as studied for
instance in Colman [4], Fadell [7] and Marzantowicz [15]. An open set U C X is
described as invariant if gU C U forall g € G.

Definition 3.1 An invariant set U in a G—space X is called G —categorical if the
inclusion iyy: U — X is G—homotopic to a map with values in a single orbit.

Definition 3.2 The equivariant category of a G—space X, denoted catg(X), is the
least integer k such that X may be covered by k open sets {Uj,..., Uy}, each of
which is G —categorical.

Algebraic & Geometric Topology, Volume 12 (2012)



2304 Hellen Colman and Mark Grant

Definition 3.3 A G-space X is said to be G—contractible if catg(X) = 1.

Example 3.4 Let G = S acting freely on X = S! by rotations. Since the action is
transitive we have catg(X) = 1, whilst cat(X) = 2. Note that X is G —contractible
but not contractible.

Proposition 3.5 [7; 15] When X is a free metrizable G —space we have
catg(X) = cat(X/G),

the nonequivariant category of the orbit space. In general, catg(X) > cat(X/G).

The equivariant category of a G —space is independent from the category of the space,
as the following family of examples illustrates.

Example 3.6 For n > 1,let G = S' C C act on the unit sphere S2"~! ¢ C" by
complex multiplication in each coordinate. Then catg(S?"~!) = cat(CP"™ 1) = n,
whilst cat(S2"~1) = 2.

Just like its nonequivariant counterpart, the GG —category finds applications in critical
point theory.

Theorem 3.7 [7; 15] Let M be a compact G —manifold, and let f: M — R be a
smooth G —invariant function on M . Then f has at least catg (M) critical orbits.

Example 3.8 Let U(n) denote the compact Lie group of n x n—unitary matrices.
Then U(n) acts smoothly on itself by conjugation, A4- B = ABA™'. We can apply
Theorem 3.7 to obtain an upper bound for caty(,)(U(n)), as follows.

By diagonalization, two unitary matrices are conjugate if and only if they have the
same set of eigenvalues (all of which lie on the unit circle in C). Thus we can define
an invariant functional
n
[:Um) =R, f(A) =) =1,
i=1

where {Aq,...,A,} is the set of eigenvalues of A. We see that f is smooth, and that
the critical orbits are the conjugacy classes of the matrices diag(—1,...,—1,1,...,1).
There are precisely n + 1 such orbits. We therefore have caty(,)(U(n)) <n+1 by
Theorem 3.7.

In Example 5.13 below we will see that caty,)(U(n)) = n + 1, by relating it to the
notion of equivariant topological complexity. a
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We now give an equivariant version of the product inequality for category. Our treatment
is based on Cornea, Lupton, Oprea, and Tanré [5, Theorem 1.37], which in turn is
based on that of Fox [11, Theorem 9]. In particular, our proof relies on a notion of
categorical sequence.

Definition 3.9 A G-—categorical sequence in X of length k is a nested sequence
Ay € 47 C -+ € Ay = X with A9 = & and the property that each difference
Aj — A;— is invariant and is contained in some G —categorical open set U;. (Note that
we do not require the A; to themselves be invariant.)

Lemma 3.10 A G —space X has a G —categorical sequence of length k if and only if
catg(X) <k. O

Just as in the nonequivariant case, we also need some separation and connectedness
conditions. Recall that a space X is called completely normal if whenever A, B C X
such that AN B =@ = AN B, then A and B have disjoint open neighbourhoods in
X . For example, metric spaces and CW-complexes are completely normal.

Definition 3.11 A G- —space - X iscalled G—completely normal if whenever A, BC X
are invariant sets such that AN B =& = AN B, then A4 and B have disjoint open
invariant neighbourhoods in X .

Lemma 3.12 If X is a completely normal G —space, then X is G —completely normal.

Proof Tt is well known that if X is completely normal and G is compact, then X/G
is completely normal. Thus it suffices to prove that complete normality of X' /G implies
G —complete normality of X . This is an exercise in general topology, using the orbit
map p: X — X /G, and is left to the reader. O

Definition 3.13 A G -—space X is said to be G —connected if the H—fixed point set
XH is path-connected for every closed subgroup H of G.

Lemma 3.14 (conservation of isotropy) Let X be a G —connected G —space, and let
X,y € X such that Gx € G,. Then there exists a G—homotopy F: O(x) x I — X
such that Fo = ip() and F1(O(x)) C O(y).

Proof Let H=Gy. Then x, y € XH gince Gy C Gy . Consider a path o: [ — XH
joining x and y. Then H C Gy ;) forall ¢ € I. Define ahomotopy F: G/GxxI — X
given by F(gGy,t) = ga(t). We have that F is well defined, is equivariant and is a
homotopy of the inclusion into the orbit O(y). a
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Theorem 3.15 Let X and Y be G —connected G —spaces such that X x Y is com-
pletely normal. If X¢ # & or YO # &, then

catg(X xY) <catg(X) +catg(¥Y) —1,

where X x Y is given the diagonal G —action.

Proof Suppose that catg (X) =n with G —categorical sequence {Ag, A1, ..., An} and
catg(Y) = m with G —categorical sequence { By, B1, ..., Bm}. Denote by U; C X the
open G —categorical set containing A; —A;_;, and by W; C Y the open G —categorical
set containing B; — B;_1 . Suppose for concreteness that X G +£ . By Lemma 3.14 we
may assume that the inclusions iy,: U; — X are all G-homotopic into O(x¢) = {xo},
where xo € X9 is some fixed point. Each inclusion i w;: Wj — Y is G-homotopic
into O(y;) for some y; € Y. It follows that U; x W; € X x Y is G-homotopic into
O(x9, yj) = {xo} x O(yj), and hence these products are all G—categorical in X x Y.

Define subsets of X x Y by

k
Co=2. Ce=JArxBiy1oy (I=k<n+tm-1),
r=1
where we set A; =@ fori >n and Bj =@ for j >m. We claim that {Cy, ..., Cpym—1}

is a G —categorical sequence for X x Y.

The proof of this claim proceeds by analogy with the nonequivariant case [5, Theo-
rem 1.37], using the G —complete normality of X x Y . Therefore we omit the details. O

We remark that a similar result (with a similar proof) was given by Cicortas [3, Proposi-
tion 3.2]. There the assumption on the existence of fixed points was omitted, however,
leading to counterexamples. For example, let G = S! actingon X =Y = S! by
rotations as in Example 3.4. Then catg (X xY) = cat((S! x $1)/S1) = cat(S!) =2,
whilst catg(X) +catg(Y)—1 = 1. The problem is that an orbit of the diagonal action
is not necessarily a product of orbits.

The hypothesis on fixed point sets can be dropped when considering more general
product actions. Let K be another compact Hausdorff group. Then the product of a
G—space X and a K—space Y becomes a G x K—space in an obvious way. The orbits
of this action are the products of orbits, and one easily obtains the following result.

Theorem 3.16 Let X be a path-connected G —space and Y be a path-connected
K —space, such that X x Y is completely normal. Then

catgx g (X xY) <catg(X) +catg (Y) — 1.
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4 Equivariant sectional category
In this section we generalize the notion of sectional category to the equivariant setting.

Definition 4.1 The equivariant sectional category of a G—-map p: E — B, denoted
secatg p, is the least integer k such that B may be covered by k invariant open
sets {Uy,..., U} on each of which there exists a G-map s: U; — E such that
ps ~giy;: Ui — B.

The sets U; € B in the above will be called G —sectional categorical for p.

Proposition 4.2 If p: E — B is a G—fibration, then secatg p < k if and only if B
may be covered by k invariant open sets {U1, ..., Uy} on each of which there exists a
local G —section, thatis a G —map o;: U; — E such that po; = iy,: Ui — B.

Proof This is analogous to the nonequivariant case, using the G-HLP [6, page 53]. O

Next we observe that equivariant sectional category of G —fibrations cannot increase
under taking pullbacks (compare [20, Proposition 7]).

Proposition 4.3 Let p: E — B be a G—fibration and f: A — B be a G-map. The
pullback q: Axp E — A of p along [ satisfies secatg(gq) < secatgp.

Proof Given an invariant open set U € B with G—section s: U — E of p, one
obtains a G—section o: f~1(U) — A xp E of ¢ by setting o(a) = (a,sf(a)). O

We now study conditions under which the equivariant category of a G—space B is an
upper bound for the equivariant sectional category of a G—map p: E — B.

Proposition 4.4 (equivariant version of the connectivity condition) Let p: E — B
be a G—map. If B is G —connected and EC # &, then secatg p < catg(B).

Proof Let U be a G—categorical set for B andlet F: U xI — B be the G -homotopy
such that Fy = iy and F; = ¢ with ¢(U) € O(xg). Choose an e € EY, and let
b = p(e). By Lemma 3.14, since B is G—connected and Gy, € Gp = G we have
that there exists a G—homotopy ®: O(xg) x I — B such that ®y = ip(,) and
®1(O(xg)) € O(b) = {b}. Consider 5s: U - E given by s(x) =e forall x € U.
The map s is equivariant and the composition of the homotopies F and ® provides a
homotopy from iy to ps. a
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Proposition 4.5 (equivariant version of the surjectivity condition) Let p: E — B be
a G—map. If p(EH)= BH forall closed subgroups H of G, then secatg p <catg(B).

Proof Let U be a G—categorical set for B and let F: U x I — B be the G—
homotopy such that Fo =iy and F; = ¢ with ¢(U) € O(xp). Let H = G, , then
xo € B¥ = p(EH). Therefore there exists zg € E such that p(zg) = x¢. Define
s: U — E by s(x) = gzg if ¢(x) = gx¢. The proof that s is equivariant follows from
the fact that ¢ is equivariant. Moreover, ps is G —homotopic to the inclusion since

ps(x) = p(gzo) = gp(z0) = gxo =c(x) and ¢ =g iy. O

Finally in this section, we investigate equivariant sectional category in the case when
the total space is G —contractible.

Proposition 4.6 Let p: E — B be a G—map. If E is a G —contractible space then
catg(B) < secatg(p).

Proof Let U be a G—sectional categorical set for p and s: U — E be a G—map
such that ps ~g iy. We have that the identity map idg is G —-homotopic to a G-map
¢ whose image is contained in a single orbit O(x). Then pcs ~g ps ~¢ iy and
pes(U) is contained in O(p(x)). Thus U is G —categorical in B. a

Corollary 4.7 Let p: E — B be a G—map and E be a G —contractible space. If B
is G —connected and E¢ # @ orif p(E®) = BH for all closed subgroups H of G,
then secatg(p) = catg(B).

In particular, if X is a G —connected space with a fixed point x € X ¢ then the inclusion
p: {x} — X is a G-map with secatg(p) = catg(X).

5 Equivariant topological complexity
When X is a G—space, the free path fibration 7: X! — X x X is a G—fibration with
respect to the actions

Gxx!—x', GxXxX—>XxX,

g0 =gy @), g(x,p) = (gx, gy).

The verification of this fact is straightforward; one may use a G —equivariant version of
[18, Theorem 2.8.2].
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Definition 5.1 The equivariant topological complexity of the G —space X, denoted
TC g(X), is defined as the equivariant sectional category of the free path fibration
m: X1 — X x X. That is,

TCg(X) =secatg(m: X1 — X x X).

In other words, the equivariant topological complexity is the least integer k£ such that
X x X may be covered by k invariant open sets {Uj, ..., Ux}, on each of which there
is a G—equivariant map s;: U; — X7 such that 7s; ~¢giy;: Ui — X x X. (Since &
is a G—fibration, this is equivalent to requiring o;: U; — X! such that 7o; = iy; ) If
no such integer exists then we set TC g(X) = oo

We first show that equivariant topological complexity is a G —homotopy invariant.
Let X and Y be G—spaces. We say that X G -dominates Y if there exist G —maps
¢: X — Y and ¥: Y — X such that ¢ >~ idy. If in addition ¢ ~g idy, then
¢ and Y are G—homotopy equivalences, and X and Y are G-homotopy equivalent,
written X ~g Y.

Theorem 5.2 If X G—dominates Y then TCg(X) > TC g(Y). In particular, if
X>~gY thenTCg(X)=TCg(Y).

Proof Let ¢: X — Y and ¢¥: Y — X be G—maps such that ¢ ~¢ idy, and let
U C X x X be G-sectional categorical for my: X! — X x X . Hence there exists a
G-map s: U — X1 such that nys ~giy: U — X x X.

We will show that V = ( x)"1U C ¥ xY is G —sectional categorical for wy: Y1 —

Y xY. Denote by ( x¢): V — U the map obtained by restricting the domain and
range of (W x ). Let o: V — Y ! be the composition o = ¢ oso (¥ x ), where
qb X1 — Y is the map induced by ¢. Then

wyo = (pxP)mxs(¥ x¥) > (¢ xP)ig(¥Y X V) = (¢ X ) (¥ x ¥)iy ~¢ iy,

hence V' is G —sectional categorical for my .

Now if {Uy, ..., U} is a G—sectional categorical cover of X x X, then {Vy,..., Vi}
defined as above is a G —sectional categorical cover of Y x Y. This proves the first
statement, and the second follows immediately. a

It is obvious that TC (X) < TC g(X) for any G—space X . More generally we have
the following.

Proposition 5.3 Let X be a G —space, and let H and K be closed subgroups of G
such that X is K —invariant. Then TC g (X H) < TC ¢(X).
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Proof Let U € X x X be G-—sectional categorical for w: X! — X x X, and let
0: U — XT bea G-map such that 7o =iy: U — X x X.

Define V=UNXH x X7)C X x XH  and note that V is K—invariant. Since
o is G—equivariant it takes H —fixed points to H —fixed points, and so restricts to a
K —equivariant map oyp: V — (X H)! Tt is clear that 7oy = iy and therefore V is
K —sectional categorical for |y m: (X7)! — XH x X H i

Corollary 5.4 Let X be a G —space. Then:

(1) TC(XH)<TCg(X) forall closed subgroups H of G .
2) TCk(X)=<TCg(X) forall closed subgroups K of G.

Corollary 5.5 If X is not G—connected, then TC g(X) = 0.

Proof Let H be a closed subgroup of G such that X ¥ is not path-connected. Then
TC (XH) = 0o and the result follows from Corollary 5.4 (1). o

The next three results describe the basic relationship of equivariant topological com-
plexity with equivariant category.

Proposition 5.6 If X is G —connected, then TC g(X) < catg(X x X).

Proof Given a closed subgroup H of G, (X x X)# = XH x XH is path-connected
since X is G—connected. Then the map 7|y #: (X7)! — XH x XH is surjective
and the result follows from Proposition 4.5. a

Proposition 5.7 If X is G—connected, and H = G, C G is the isotropy group of
some z € X, then catg (X) < TCg(X).

Proof We have TC (X) < TC g(X) by Corollary 5.4 (2). When we pull back
7w: X — X x X along the H—equivariant map
JiX—>XxX, jx) =(z,x),

we obtain an H —fibration p: PX — X whose total space PX ={y: I - X |y(0) ==z}
is H—contractible. Therefore catg (X) <secatyg(p) < TC g (X) by Propositions 4.6
and 4.3. O

Corollary 5.8 Let X be a G—connected G —space with X # @ . Then:
(1) catg(X) <TCg(X) <2catg(X)—1.
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(2) TCg(X)=1 ifandonlyif X is G —contractible.

Proof Part (1) follows directly from Propositions 5.6 and 5.7, and Theorem 3.15.
Part (2) follows from part (1), since by definition X is G —contractible if and only if
catg(X) =1. a

We now turn to examples.

Example 5.9 (spheres under reflection) For n > 1,let X = S" C R”"*+! with the
group G = Z, acting by the reflection given by multiplication by —1 in the last
coordinate.

When n = 1 the fixed point set X¢ = {(1,0), (—1,0)} is disconnected, and so
TC g(X) = oo in this case.

When 7 > 2 the fixed point set X ¢ = §”~1 is the equatorial sphere, hence is connected.
Note that catg(X) = 2 in this case (X is clearly not G —contractible since the orbits
are discrete; we leave it to the reader to construct a cover by two G —categorical open
sets). Therefore we have

TC(X) <2catg(X)—1=3

by Corollary 5.8(1). When 7 is even we have 3 = TC(X) < TC g(X), and when
n is odd we have 3 = TC (X©) < TC g(X) by Corollary 5.4(1). We have therefore
shown that
oo n=1
TCg(S") = ’
G(5%) {3 n>2.
Example 5.10 If X = S is the circle with G = S! acting on X by rotations, then

TC (X) = 2. For the usual motion planner on S! with two local rules is equivariant
with respect to rotations. So TCg(X) <2,and TCg(X)>TC(X) =2.

Generalizing the previous example, we have the following result which shows that the
category of a connected group is a particular instance of its equivariant topological
complexity.

Theorem 5.11 Let G be a connected metrizable group acting on itself by left transla-
tion. Then TC g(G) = cat(G).
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Proof Since the diagonal action of G on G X G is free, we have

cat(G) < TCg(G) (Proposition 5.7)
<catg(G x G) (Proposition 5.6)
=cat((GxG)/G) (Proposition 3.5)
= cat(G),

where at the last step we have made use of the fact that there is a homeomorphism
(GxG)/G to G sending [g,h] to g~ 'h. a

This illustrates the importance of the fixed point set in determining equivariant topologi-
cal complexity. In particular it shows that 7C ¢ (X') can be arbitrarily large even when
X is G—contractible, as long as X has no fixed points. By contrast, a G —contractible
space with fixed points has TC g(X) = 1, by Corollary 5.8(2).

Next we give an equivariant version of a result of Farber [9, Lemma 8.2] which states
that the topological complexity of a connected topological group equals its category.

Proposition 5.12 Let X be a topological group. Assume that G acts on X by topolog-
ical group homomorphisms, and that X is G —connected. Then TC g(X) = catg(X).

Proof We first note that the identity element ¢ € X is a fixed point, since G acts by
group homomorphisms. It follows from Proposition 5.7 that catg(X) < TC g(X).

Now suppose that catg(X) = k. Let {Uy,..., Ur} be a G—categorical open cover of
X . By Lemma 3.14, for each i we can find a G-homotopy F: U; x I — X such that
Fo =iy, and F1(Uy) € O(e) = {e}.

Set V; = {(a,b) | ab™! € U;} € X x X. Since multiplication and inversion are
continuous and G —equivariant, the V; are open and G —invariant. Define a G —section on
V; by setting s;(a, b)(t) = F(ab™',t)b; this is easily checked as being G —equivariant.
Hence {V7,..., V}} forms a G —sectional categorical open cover, and TC g(X) <
k = catg(X). This completes the proof. o

Example 5.13 Let G be a connected Lie group, acting on itself by conjugation
g-a=gag~'. Note that G acts by homomorphisms. The fixed point set GH of a
closed subgroup H C G is the centralizer Cq(H) ={g € G |ga=ag foralla e H}.
Hence G is G—connected if and only if the centralizer of every closed subgroup is
connected (this holds for example if G is U(n) for n > 1, or a product of such). In
this case, Proposition 5.12 applies and gives

TC 6(G) = catg(G).
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We now look at the case G = U(n) in more detail. By results of Farber [9, Lemma 8.2]
and Singhof [16, Theorem 1(b)], we have

TC yoy(U(n)) = TC (U(n)) = cat(U(n)) =n + 1.

On the other hand, Example 3.8 gives TCU(,,)(U(n)) = CatU(n)(U(ﬂ)) <n4+1.
Therefore,
TCyu)(Un)) = caty)(Umn)) =n+ 1.

Next we give a cohomological lower bound for TC ¢(X), using equivariant coho-
mology theory. We use the following equivariant generalization of [10, Lemma 18.1],
whose proof is routine.

Lemma 5.14 An invariant open subset U C X x X is G —sectional categorical with
respectto w: X1 — X x X ifand only if the inclusion iyy: U < X x X is G —homotopic
to a map with values in the diagonal AX C X x X . a

Let EG — BG denote a universal principal G—bundle, and X, g = EG xg X the
corresponding homotopy orbit space of X'. Denote by H(X) = H*(X, g) the Borel
G —equivariant cohomology of X', with coefficients in an arbitrary commutative ring.
Note that the diagonal map A: X — X x X is equivariant, and hence induces a map
Ag: Xg — (XxX)}é.

Theorem 5.15 (cohomological lower bound) Suppose that there are cohomology
classes z1, ...,z € H (X x X) such that 0 = AG(z;) € Hf(X) for all i and the
product zy ... zy is nonzero. Then TC g(X) > k.

Proof Suppose TCg(X) <k, and let {Uy, ..., U} be a G—sectional categorical
open cover. Since the inclusion iy, : U; < X x X factors through A: X' — X x X up
to G-homotopy, it follows that the restriction (iy;)*: Hg (X x X) — Hg (U;) maps
z; to zero, and hence z; is in the image of H5(X x X, U;) — HE(X x X) for each
i =1,..., k. By naturality of cup products, it then follows that the product zy - - - z
is zero. a

We do not currently know of any examples of G —connected spaces X where the lower
bound for TC g (X) given by Theorem 5.15 improves on the nonequivariant lower
bound nilker(U) < TC(X) < TC g(X) given by the zero-divisors cup-length.

Finally in this section, we prove a result which relates equivariant and nonequivariant
topological complexity, and give an example indicating that the former may be useful
in estimating the latter.
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Theorem 5.16 Let X be a G —space, and let E — B = E /G be a numerable principal
G —bundle. Then

TC(Xg) =TCg(X)TC(B),

where Xg = E xXg X denotes the associated fibre space with fibre X .

Proof Suppose that TC (B) =k byacover BxB=U{U---UU and TCg(X)=¢
by acover X x X = W; U---U W, by G-invariant open sets admitting G —sections
sj: Wi — X1, Our aim is to cover Xg x Xg by k£ open sets on which the map
IT: (Xg)! — Xg x Xg admits a homotopy section. We have a strictly commuting
diagram

Exg(XT) (Xg)!

Exg (X x X)—= Xg x Xg

L

B % . pxB

whose bottom square is a pullback. Here ¢ is the map sending [e, x, x'] to ([e, x], [e, X'])
and p: Xg — B is the fibration sending [e, x] to [e].

To prove the proposition it suffices to cover Xg x Xg by k£ open sets on which the
map p given by ple, v] = (Je, y(0)],[e, y(1)]) admits a homotopy section.

By [10, Lemma 18.1] each inclusion U; < B x B is homotopic to a map with values in
the diagonal AB C B x B. Setting V; = (p x p) "1 (U;) € Xg x X and applying the
homotopy lifting property of the map p x p, we obtain a homotopy from the inclusion
Vi— Xg X Xg toamap H;: V; - Xg x Xg with values in £ xg (X x X), and
hence by restricting the range a map 4;: V; — E xg (X x X).

Since the sets W; € X x X form an invariant open cover, the sets
ExgW; CExg (X xX)

form an open cover. The equivariant sections s;: W; — X I' give rise to sections
0j:= Exgsj: ExgW; — E xg (X') such that

(Exgm)oj =igxgw;: ExgWj —> EXxg (X xX).

We now have a cover of Xg x Xg by the k£ open sets

Qij=hi(ExgW)), i=1,...k j=1...4(
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and candidate sections {;; = 0j o hjl|q,;: Qij — E Xg (XT) of the map p. These are
in fact homotopy sections, since

plij = pojhile;; = UE xg m)ojhilg;; = UExew;hile,; = Hilg;; ~ig;. O

Example 5.17 (compare with [13, Example 5.8]) Let K"*! be the “(n + 1)—
dimensional Klein bottle”. This is the mapping torus of the involution S" — S”
given by reflection in the last coordinate. Note that K? is the usual Klein bottle.

If E =S with free Z,—action given by the antipodal map, then K1 = E x z,S".
If n>2 we have TC z,(S™) = 3 by Example 5.9, and TC (B) = TC (S') =2. Then
Theorem 5.16 gives TC (K) < 3-2 = 6. However Theorem 5.16 says nothing in the
n =1 case, since TCZZ(SI) = 0.

References

[11 I Basabe, J Gonzalez, Y B Rudyak, D Tamaki, Higher topological complexity and
homotopy dimension of configuration spaces on spheres arXiv:1009.1851

[2] IBerstein, T Ganea, The category of a map and of a cohomology class, Fund. Math.
50 (1961/1962) 265-279 MRO0139168

[3] G Cicortas, Categorical sequences and applications, Studia Univ. Babes-Bolyai Math.
47 (2002) 31-39 MR1989588

[4] H Colman, Equivariant LS—category for finite group actions, from: “Lusternik—
Schnirelmann category and related topics”, (O Cornea, G Lupton, J Oprea, D Tanré,
editors), Contemp. Math. 316, Amer. Math. Soc. (2002) 35-40 MR1962151

[5] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik—Schnirelmann category, Math.
Surveys and Monographs 103, Amer. Math. Soc. (2003) MR1990857

[6] T tom Dieck, Transformation groups, de Gruyter Studies in Math. 8, Walter de Gruyter
& Co., Berlin (1987) MR889050

[71 E Fadell, The equivariant Ljusternik—Schnirelmann method for invariant functionals
and relative cohomological index theories, from: “Topological methods in nonlinear
analysis”, (A Granas, editor), Sém. Math. Sup. 95, Presses Univ. Montréal (1985) 41-70
MRS801933

[81 M Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29
(2003) 211-221 MR1957228

[91 M Farber, Instabilities of robot motion, Topology Appl. 140 (2004) 245-266
MR2074919

[10] M Farber, Topology of robot motion planning, from: “Morse theoretic methods in
nonlinear analysis and in symplectic topology”, (P Biran, O Cornea, F Lalonde, editors),
NATO Sci. Ser. Il Math. Phys. Chem. 217, Springer (2006) 185-230 MR2276952

Algebraic & Geometric Topology, Volume 12 (2012)


http://arxiv.org/abs/1009.1851
http://www.ams.org/mathscinet-getitem?mr=0139168
http://www.ams.org/mathscinet-getitem?mr=1989588
http://dx.doi.org/10.1090/conm/316/05493
http://www.ams.org/mathscinet-getitem?mr=1962151
http://www.ams.org/mathscinet-getitem?mr=1990857
http://dx.doi.org/10.1515/9783110858372.312
http://www.ams.org/mathscinet-getitem?mr=889050
http://www.ams.org/mathscinet-getitem?mr=801933
http://dx.doi.org/10.1007/s00454-002-0760-9
http://www.ams.org/mathscinet-getitem?mr=1957228
http://dx.doi.org/10.1016/j.topol.2003.07.011
http://www.ams.org/mathscinet-getitem?mr=2074919
http://dx.doi.org/10.1007/1-4020-4266-3_05
http://www.ams.org/mathscinet-getitem?mr=2276952

2316

(11]

(12]

[13]

(14]

[15]

[16]

(17]
(18]
[19]

(20]

Hellen Colman and Mark Grant

R H Fox, On the Lusternik—Schnirelmann category, Ann. of Math. 42 (1941) 333-370
MRO0004108

J Gonzalez, P Landweber, Symmetric topological complexity of projective and lens
spaces, Algebr. Geom. Topol. 9 (2009) 473-494 MR2491582

M Grant, Topological complexity, fibrations and symmetry, Topology Appl. 159 (2012)
88-97 MR2852952

IM James, On category, in the sense of Lusternik—Schnirelmann, Topology 17 (1978)
331-348 MR516214

W Marzantowicz, A G -Lusternik—Schnirelman category of space with an action of a
compact Lie group, Topology 28 (1989) 403412 MR1030984

W Singhof, On the Lusternik—Schnirelmann category of Lie groups, Math. Z. 145
(1975) 111-116  MR0391075

S Smale, On the topology of algorithms. I, J. Complexity 3 (1987) 81-89 MR907191
E H Spanier, Algebraic topology, McGraw-Hill, New York (1966) MR0210112

V A Vasiliev, Cohomology of braid groups and the complexity of algorithms, Funkt-
sional. Anal. i Prilozhen. 22 (1988) 15-24,96 MR961758

A S Svarc, The genus of a fiber space. 1, II., Amer. Math. Soc. Transl. 55 (1966) 49-140

Department of Mathematics, Wright College
4300 N. Narragansett Avenue, Chicago, IL 60634, United States

School of Mathematical Sciences, The University of Nottingham
University Park, Nottingham, NG7 2RD, United Kingdom

hcolman@ccc.edu, mark.grant@uottingham.ac.uk

http://faculty.ccc.edu/hcolman/,
http://www.maths.nottingham.ac.uk/personal/pmzmg/

Received: 2 May 2012 Revised: 2 August 2012

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://www.ams.org/mathscinet-getitem?mr=0004108
http://dx.doi.org/10.2140/agt.2009.9.473
http://dx.doi.org/10.2140/agt.2009.9.473
http://www.ams.org/mathscinet-getitem?mr=2491582
http://dx.doi.org/10.1016/j.topol.2011.07.025
http://www.ams.org/mathscinet-getitem?mr=2852952
http://dx.doi.org/10.1016/0040-9383(78)90002-2
http://www.ams.org/mathscinet-getitem?mr=516214
http://dx.doi.org/10.1016/0040-9383(89)90002-5
http://dx.doi.org/10.1016/0040-9383(89)90002-5
http://www.ams.org/mathscinet-getitem?mr=1030984
http://www.ams.org/mathscinet-getitem?mr=0391075
http://dx.doi.org/10.1016/0885-064X(87)90021-5
http://www.ams.org/mathscinet-getitem?mr=907191
http://www.ams.org/mathscinet-getitem?mr=0210112
http://dx.doi.org/10.1007/BF01077624
http://www.ams.org/mathscinet-getitem?mr=961758
mailto:hcolman@ccc.edu
mailto:mark.grant@nottingham.ac.uk
http://faculty.ccc.edu/hcolman/
http://www.maths.nottingham.ac.uk/personal/pmzmg/
http://msp.org
http://msp.org

	1. Introduction
	2. Topological complexity
	3. Equivariant category
	4. Equivariant sectional category
	5. Equivariant topological complexity
	References

