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Gromov K–area and
jumping curves in CP n

YASHA SAVELYEV

We give here some extensions of Gromov’s and Polterovich’s theorems on k –area
of CP n , particularly in the symplectic and Hamiltonian context. Our main methods
involve Gromov–Witten theory, and some connections with Bott periodicity and the
theory of loop groups. The argument is closely connected with the study of jumping
curves in CP n , and as an upshot we prove a new symplectic-geometric theorem on
these jumping curves.
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1 Introduction

In [3] Gromov proposed an interesting way to probe the macroscopic geometry of
Riemannian and symplectic manifolds by means of the geometry of complex vector
bundles on the manifold. This is a geometric analogue of K–theory which is partly
why it was named k –area. This construction involves minimizing the supremum norm
of the curvature over all homologically essential vector bundles and all connections,
and Gromov’s main theorem in the Riemannian setting for spin, positively curved
manifolds .X;g/ used somewhat mysteriously the index theorem for the twisted Dirac
operator.

To pass to the symplectic world Gromov considered an additional variation over all
compatible metrics, ie all compatible almost complex structures with a symplectic form
! on X . At the moment the resulting invariant is still very poorly understood. Here
we focus on X DCPn and relate this notion to the classical theory of jumping curves
and quantum classes originally defined by the author in [10]. Interestingly, this allows
us to arrive at a purely algebraic-geometric theorem in the theory of jumping curves,
as well as its symplectic generalization.

Some of the symplectic methods of the present paper continue in the spirit of Polterovich
[8], and Entov [2].
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1.1

We begin by discussing k –area in the symplectic context. Fix

pW E!X;

a rank r complex vector bundle with c1.E/D 0 over a closed symplectic manifold
.X 2n; !/ and let pW P ! X denote its projectivization. Let A be a Hamiltonian
connection on P , with curvature 2–form RA , which at x 2X takes values in the Lie
algebra of Ham.p�1.x//, ie the space of normalized smooth functions G on p�1.x/.
Here normalized means that Z

p�1.x/

G Vol!st
D 0;

and !st on p�1.x/ ' CP r�1 is always assumed to be the standard form with
!st .Œline�/D 1.

Let jX be an !–compatible almost complex structure on X , and gjX
the associated

metric. We define the norm of the curvature tensor by

(1-1) kRA
kgjX

D sup
x2X ; �; �2TxX

jRA.�; �/jC
H
;

where j � jC
H

is “half” the Hofer norm jGjC
H
Dmax G , for GW .p�1.x/'CP r�1/!R

in the Lie algebra of Ham.p�1.x//, and the supremum is over all orthonormal pairs
� , �. Here is the basic quantity we will study:

(1-2) K–area�1.X; !/D inf
E;A; jX

kRA
kgjX

;

where the infimum is over all E with some nonvanishing Chern number, and 2r �

dimR X .

Remark 1.1 The quantity (1-2) is closely related to the one studied by Gromov in [3].
This relationship is discussed in Polterovich [8]. We make a few comments: Gromov
does not projectivize and works with unitary connections and consequently with the
standard norm on the Lie algebra of U.r/, he also works with the inverse of our
quantity, which we symbolize by the superscript �1 in K–area�1 . The condition that
2r � dimR X is related to stability for homotopy groups of SU.n/ and is vacuous if
we restrict to unitary connections, since after stabilizing E we may extend the unitary
connection to the stabilization, without affecting the norm (1-1).

Here is our first theorem:
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Theorem 1.2

(1-3) K–area�1.CPn;E/� inf
A; jX

kRA
kgjX

� 1;

where the infimum is over all Hamiltonian connections A on the projectivization of a
fixed complex vector bundle E on CPn , provided that

rankC E � n;

c1.E/D 0 and some other Chern class of E does not vanish. In particular

K–area�1.CPn/� 1:

This answers a question of Polterovich [8] about finding bounds for K–area�1.CP2;E/,
for rank 2 complex vector bundle over CP2 , with c1.E/D 0, c2.E/D 2. If c1 does
not vanish then the argument is more elementary, and was already worked out in [8],
although one can also adapt our discussion to subsume this case. The above theorem
extends this:

Theorem 1.3 (Gromov [3])

K–area�1
U .CPn; !st /� 1:

Here U in K–area�1
U emphasizes that Gromov worked with unitary connections. Notice

we have the same lower bound in the unitary and Hamiltonian case.

Remark/Question 1.4 We can of course define K–area�1.CPn;g/ for an arbitrary
non almost Kahler metric g on CPn . And it is easy to find g for which

K–area�1.CPn;g/ < 1;

as it is elementary to check that

K–area�1.CPn;E; c �g/D
1

c
K–area�1.CPn;E;g/

for c > 0. It appears to be much more difficult to construct an example of such a g

with the same volume as gj D .!st ; j /.

1.2 Jumping curves in CP n

Although the proof of Theorem 1.2 is via transcendental methods of Gromov–Witten
theory, it is also closely related to the classical notion of jumping curves in CPn . In
fact, as a corollary, we obtain an interesting phenomenon regarding these jumping
curves. Here is a simplified version of the definition, suitable in our context.
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Definition 1.5 Let E! CPn be a rankC E D r holomorphic vector bundle, with
c1.E/D 0. A smooth rational curve C in CPn will be called a jumping curve if the
restriction of E to C (by which we mean pullback) is not trivial as a holomorphic
vector bundle. (Actually we will just be concerned with jumping lines.)

Jumping curves C can be further classified by the holomorphic isomorphism type of
EjC , which by Birkhoff–Grothendieck theorem is:

(1-4) EjC '
M

i

O.˛.i//; with
X

i

˛.i/D 0:

We can give a symplectic generalization of this notion as follows: Let PE ! CPn

denote the projectivization of E , which is a Hamiltonian bundle and so its total space has
a natural deformation class of symplectic forms �, extending the fiber wise symplectic
forms !st ; see McDuff and Salamon [5].

For a smooth rational curve C in CPn , we have a smooth identification of PEjC with
X DCP r�1

�S2 , and a canonical identification of H�.X / with H�.CP r�1
�S2/,

since the group of bundle automorphisms of X acts trivially on homology by Lalonde
and McDuff [4, Theorem 1.16].

Definition 1.6 Let E!CPn be a complex vector bundle with c1.E/D 0. Let J be
an almost complex structure compatible with � on PE , and such that the projection
map PE ! CPn is J –holomorphic. We will call such J admissible. A smooth
rational curve C in CPn is called a jumping curve if PEjC ' CP r�1

� S2 has a
J –holomorphic section in the class d Œline�C ŒS2�, d < 0.

A more natural way of stating this is that PEjC has a J –holomorphic section u, with
hŒe��; Œu�i D d , d < 0, where Œe�� is the coupling class of PE ; see [5].

When J is induced by a holomorphic structure on E , this notion is equivalent to the
classical notion, since in this case PEjC is known to be the generalized Hirzebruch
bundle

PEjC ' S3
�S1 CP r�1;

for some circle subgroup S1 2 SU.r/. If this subgroup is nontrivial and H denotes
its generating Hamiltonian, then points x 2 Fmax , (the maximum set of H ), are fixed
points of the S1 –action on CP r�1 , and give holomorphic sections S3 �S1 fxg of
PEjC with d < 0 above.

If we restrict to lines in CPn , then the locus of classical jumping lines is a divisor of
the variety of all lines in CPn , and if E is holomorphically nontrivial it is nonempty;
see Okonek, Schneider and Spindler [7, Section 3]. We will prove the following partial
symplectic generalization of this:
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Theorem 1.7 Let E!CPn be a rank r � n, complex vector bundle, with c1.E/D 0

and some other Chern class nonzero. Then for any admissible J on PE it has degree
one jumping lines. If we also assume that J is suitably generic then d above can be
chosen to be �1.

Acknowledgements I am deeply grateful to Leonid Polterovich for explaining to me
his ideas on k –area, and compelling me to think about this subject. I also thank Jarek
Kedra and Dusa McDuff and Leonid for discussions and comments, as well as the
anonymous referee for some interesting questions, and numerous comments. This
paper was primarily written during the author’s stay at MSRI during spring of 2010,
much thanks to the organizers and administration for creating a pleasant atmosphere.

2 Setup

Here are our main conventions. The Hamiltonian vector field generated by H W .M; !/!

R is given by
!.XH ; � /D�dH. � /:

An !–compatible almost complex structure J is required to satisfy !.v;Jv/ > 0, for
v ¤ 0. Homology is always over Q unless specified otherwise.

Our main tools are certain characteristic cohomology classes

(2-1) qck 2H 2k.�SU.r/;QH.CP r�1//;

where QH.CP r�1/ denotes the ungraded vector space H.CP r�1;Q/, with its un-
graded quantum product. These classes were originally defined and named quantum
classes in much more generality by the author in [10]. Note however, that qck here is
qc2k in [10]. The grading change is for convenience, as in this context all odd quantum
classes vanish. We will not need the full definition, just some basic geometric content
and the following theorem [9]:

Theorem 2.1 The classes qck on �SU.r/ are algebraically independent and generate
cohomology in the stable range 2k � 2r � 2, with coefficients in QH.CP r�1/.

Here is a brief overview of the geometric construction of quantum classes. See [10]
for more details of the following discussion. Let M ,! P ! X be a Hamiltonian
bundle, with a Hamiltonian connection A, with monotone fiber .M; !/, over a smooth
manifold X . (Here M is used to denote a symplectic manifold because it serves a
different logical purpose to .X; !/ of Section 1, but this M will just be CP r�1 in the
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rest of the paper.) We have a natural S1 –action on �2X , induced by the rotation of
S2 , along the axis of revolution containing the base point 0 2 S2 .

Let �2XS1 denote the Borel S1 –quotient:

�2XS1 D�2X �S1 S1:

Let B denote a closed, oriented smooth manifold. Given a cycle

B
f
�!�2XS1 ;

there is a naturally induced Hamiltonian bundle M ,! Pf ! Y , where Y ! B is
an oriented S2 –bundle over B , classified by the composition B!�2XS1 !CP1 ,
with the map to CP1 being the canonical projection. Let us explain this: a map
B!�2XS1 induces an S1 –equivariant map T !X �S1 , for T an oriented circle
bundle over B . (Just by pulling back the universal circle bundle.) But this is the same
thing as an S1 –equivariant map

T �S2
!X �S1;

which then induces the S1 –quotient map Y ! X �CP1 , where Y is an oriented
S2 –bundle over B . Our M bundle over Y is then just the pull-back by the induced
map Y !X . Equivalently we have a bundle

(2-2) F ,! Pf
p
�! B;

with p denoting natural projection, where F is a Hamiltonian M bundle over S2 .

We may define classes
qc� 2H�.B;QH.M //

for Pf as in [10], via count of certain p–fiberwise holomorphic curves, with a p–
fiberwise family of complex structures on Pf , induced by some Hamiltonian connection
A on M ,! P !X . These classes are induced by universal classes

(2-3) qc� 2H�.�2BHam.M; !/S1 ;QH.M //:

Here are more details in the case M D CP r�1 and CP r�1 ,! P ! X is a pro-
jectivization of a rank r complex vector bundle E with c1.E/ D 0. For f W B !
�2BHam.CP r�1; !/S1 as above, the fibers Fb of Pf ! B (as in (2-2)) are Hamil-
tonian bundle diffeomorphic to F DCP r�1

�S2 , although not naturally. The group of
Ham.CP r�1/–bundle automorphisms of Fb acts trivially on homology, this follows by
[4, Theorem 1.16]. In particular a section class A in H2.Fb/ is uniquely characterized
by its “degree” d ,

AD d Œline�C ŒCP1�:
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Since Y !B has a pair of canonical sections corresponding to the pair of fixed points
of S1 action on S2 , we have a pair of natural embeddings I W B �CP r�1

! Pf .

The classes we now define “measure” quantum self intersection of I.B �CPn/� Pf .
Let

M.Pf ; d; fJbg/

denote the moduli space of tuples .u; b/, where u is a Jb –holomorphic section of Xb

in degree d . The virtual dimension of this space is given by the Fredholm index:

2nC 2kC 2hcvert
1 ;Ai D 2nC 2kC 2d � .nC 1/:

We define qck 2H 2k.�Ham.CPn; !/;QH.CPn// as follows:

(2-4) hqck ; Œf �i D
X
d2Z

bd :

Here bd 2H�.CPn/ is defined by duality:

bd �CPn c D evd �B�CPn ŒB�˝ c;

and where

evd WM.Pf ; d; fJbg/! B �CPn

evd .b;u/D .b;u.0//;

and �M , �B�M denote the intersection pairings in M , respectively B �M . The sum
(2-4), is finite and only d < 0 contribute for dimensional reasons.

3 Proofs

Proof of Theorem 1.7 Let E be a rank r complex vector bundle over CPn , with
n� r , and some Chern class nonzero. We may assume without loss of generality that
E has a nonvanishing Chern number. (Otherwise, restrict the following discussion to a
subspace CP i

�CPn , corresponding to a nonzero class ci.E/.) Let

M0;1.CPn; Œline�; j Ix0; ŒCPn�1�/!CPn

denote the moduli space of curves with 1 free marked point and 2 fixed marked points
mapping to x0 , CPn�1 , x0 62CPn�1 , with

evWM0;1.CPn; Œline�; j Ix0; ŒCPn�1�/!CPn;
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denoting the evaluation map given by evaluating at the free marked point. It is well
known that the standard complex structure on CPn is regular and that for this standard
j , the evaluation map is a degree one map

P !CPn;

where P is an S2 –bundle over CPn�1 associated to the Hopf bundle. This is because
there is a unique complex line through a pair of points in CPn . The induced cycle
f W CPn�1

!�2CPn
S1 represents a class denoted a. Let eW CP1!�2 BSU.r/S1D

�2 BSU.r/�S1 S1 be the section corresponding to the canonical fixed point of the
S1 –action on �2 BSU.r/, ie the constant map of S2 to the based point x0 2X .

Lemma 3.1
0¤ fE�

a 2H2n�2.�
2 BSU.r/S1/=e�H�.CP1/;

where
fE W �

2CPn
S1 !�2 BSU.r/S1

is the map induced by E!CPn .

Proof Let us suppose otherwise. The composition map

evW P !CPn
! BSU.r/;

is nonvanishing in homology, since E has a nonvanishing Chern number and

evW P !CPn

is of degree one by discussion above.

Let
H W T !�2 BSU.r/S1

be a bordism of fE�
ai�1 to c 2 e�H�.CP1/. We’ll denote the corresponding

boundary pieces of T by Ta and Tc . Consequently, the bordism H induces an
S2 –bundle PT over T , it is the pull-back of the tautological S2 –bundle

.�2
x0

BSU.r/�E1/�S1 S2
!�2

x0
BSU.r/S1 ;

and of course PT restricts over Ta to P . We have a natural “evaluation” map

evT W PT ! BSU.r/;

restricting to evaluation maps ev , evc over the boundary, and so a homology of Œev�
to Œevc �, but evc is the constant map to the based point x0 2 BU ; a contradiction.

Algebraic & Geometric Topology, Volume 12 (2012)



Gromov K–area and jumping curves in CP n 2325

Lemma 3.2 For some integer f˛i ; ˇig with at least one ˛i ; ˇi nonzero:

(3-1)
�Y

i;j

qc
˛i

ˇi
^ c

j
1
; fE�

an�1

�
¤ 0;

where c1 is the pullback to �2 BSU.r/S1 of the canonical generator of H 2.CP1/ by
the natural projection �2 BSU.r/S1 !CP1 .

Proof Note that all of the rational cohomology of �2 BSU.r/'�SU.r/, is in even
degree, since by Milnor–Morre [6] and Cartan–Serre [1], the rational homology algebra
of �SU.r/ is generated as a ring with Pontryagin product by the rational homotopy
groups, (via the Hurewicz homomorphism) which are all in even degrees since the
rational homotopy groups of SU.r/ are well known to be all in odd degrees. (In fact
SU.r/ has the rational homotopy type of the product of odd spheres S3 �S5 � � � � )
Consequently, the Serre spectral sequence for the fibration

�2 BSU.r/ ,!�2 BSU.r/S1 !CP1

degenerates at the second page and so:

H�.�2 BSU.r/S1/'H�.�2 BSU.r//˝H�.CP1/'H�.�SU.r//˝H�.CP1/:

Our lemma then follows by Lemma 3.1 and Theorem 2.1.

The theorem then readily follows. Since by construction of quantum classes and
Lemma 3.2, for any fixed (not necessarily regular) complex structure J on P compatible
with �, and with projection to CPn for some complex line l in CPn , the restriction of
P to l , which is diffeomorphic to CP r�1

�S2 has a J holomorphic stable section u

in the total class S D�Œline�CS2 , as otherwise the relevant Gromov–Witten invariants
in class S all vanish and (3-1) is impossible. Of course the stable section u may be in
the form of a holomorphic section up in a class d Œline�CS2 , with d < �1 together
with some vertical holomorphic bubbles, but this still implies our claim.

Proof of Theorem 1.2 We just need the following lemma:

Lemma 3.3 The norm of the curvature kRAk of the projectivization CP r�1 ,!P!

CPn is at least 1.

Proof Let e� denote the coupling form of the Hamiltonian fibration P associated to
A, (see for example [5] for discussion on coupling forms). This is a certain closed
form associated to the curvature form of A, with the following properties.
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The restriction of e� to fibers M ' CP r�1 of P ! CPn coincides with !st . Thee�–orthogonal subspaces in TP to the fibers are horizontal subspaces, whose value on
horizontal lifts ev; ew 2 Tm;zP

of v;w 2 TzCPn are given by

e�.ev; ew/D�RA.v; w/.m/;

for m 2 Mz ; in other words we evaluate the Lie algebra element of Ham.Mz; !/,
RA.v; w/ (ie, a function on Mz ), at m.

Consider the symplectic form �D e� C .kRAkC �/!st , where !st is the standard
Fubini–Study symplectic form on the base normalized by the condition that the area
of a complex line is 1, and � > 0. Pick any compatible complex structure JA . By
Theorem 1.7, for some complex line l in CPn , the restrictions of P to l , which
is diffeomorphic to CP r�1

� S2 (by the assumption that c1.E/ D 0) has a JA–
holomorphic section u in class S D d � Œline�CS2 , with d � �1. Here Œline� is the
class of the complex line in CP r�1 .

Since JA is � compatible, for the class S , JA–holomorphic section u of P jl we get

0� Œ��.Œu�/D Œe��.Œu�/CkRA
kC �:

On the other hand Œe��D Œ!st � on P jl since the cohomology class of the coupling form
is independent of the choice of connection, and the form !st on CP r�1

�S2 , is another
coupling form associated to the trivial connection on this bundle. Since Œ!st �.Œline�/D 1

by our normalization, it follows that Œe��.Œu�/D d , since Œu�D d Œline�CS2 . So we get

�d � kRA
kC �;

for every � > 0.

This finishes the proof of the theorem.
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