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Finite type invariants of rational homology 3–spheres

DELPHINE MOUSSARD

We consider the rational vector space generated by all rational homology spheres up
to orientation-preserving homeomorphism, and the filtration defined on this space by
Lagrangian-preserving rational homology handlebody replacements. We identify the
graded space associated with this filtration with a graded space of augmented Jacobi
diagrams.

57M27; 57N10, 57N65

1 Introduction

1.1 Finite type invariants

The greatest achievements in the theories of finite type invariants are theorems that
express the graded spaces associated with topological filtrations of vector spaces
generated by knots or manifolds as combinatorial vector spaces generated by Feynman
diagrams. The two main examples of these theorems, that are useful to classify invariants
and to evaluate their power, concern the Vassiliev filtration of the space generated by the
knots in S3 , and the Goussarov–Habiro filtration of the space generated by the integral
homology 3–spheres (ZHS), that are oriented compact 3–manifolds with the same
integral homology as S3 . The graded space associated with the Vassiliev filtration
was identified with a space of Jacobi diagrams by an isomorphism induced by the
Kontsevich integral [6] (see Bar-Natan [2]). Several filtrations of the space generated by
the ZHSs were defined. In [3], Garoufalidis, Goussarov and Polyak compared various
filtrations, and defined a surjective map from a graded space of Jacobi diagrams to the
graded space associated with the Goussarov–Habiro filtration. In [8], Le proved that
this map is an isomorphism by showing that the LMO invariant that he constructed
in [9] with the help of Murakami and Ohtsuki is a universal finite type invariant of
ZHSs. In [1], Auclair and Lescop defined the Goussarov–Habiro filtration and the
properties of the graded space, algebraically, using Lagrangian-preserving integral
homology handlebody replacements.

In this article, we will consider the rational vector space generated by all the rational
homology spheres (QHS), that are the oriented compact 3–manifolds with the same
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rational homology as S3 . We will define a filtration on this space by means of LP–
surgeries, that are Lagrangian-preserving rational homology handlebody replacements.
Our main result (Theorem 1.7) identifies the graded space associated with this filtration
with a graded space of diagrams. The role of the LMO invariant in the integral case
will be held here by the KKT invariant of rational homology spheres constructed by
Kontsevich, and proved to be a universal finite type invariant of ZHSs by Kuperberg and
Thurston in [7]. Lescop has proved in [10] that the KKT invariant ZKKTD .Zn;KKT/n2N

satisfies a universality property with respect to LP–surgeries. Massuyeau has proved
in [11] that the LMO invariant ZLMO D .Zn;LMO/n2N satisfies the same property. As
we prove at the end of Section 6, these results and our main theorem imply that ZLMO

and ZKKT are equivalent in the following sense.

Theorem 1.1 Let M and N be QHSs such that jH1.M IZ/j D jH1.N IZ/j, where
j � j denotes the cardinality. Then, for any n 2N ,

.Zk;LMO.M /DZk;LMO.N / for all k � n/

, .Zk;KKT.M /DZk;KKT.N / for all k � n/:

1.2 The Goussarov–Habiro filtration

Throughout the article, the manifolds will be compact, connected and oriented. When
it does not seem to cause confusion, we will use the same notation for a curve and its
homology class.

leaf

internal vertex

�0

†.�0/

Figure 1: The standard Y–graph

The standard Y–graph is the graph �0 � R2 represented in Figure 1. With �0 is
associated a regular neighborhood †.�0/ of �0 in the plane.

Consider a 3–manifold M and an embedding hW †.�0/!M . The image � of �0

is a Y–graph, and †.�/D h.†.�0// is the associated surface of � . The Y–graph �
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is equipped with the framing induced by †.�/. The looped edges of a Y–graph are
called leaves. The vertex incident to three different edges is the internal vertex.

� L

Figure 2: Y–graph and associated surgery link

Consider a Y–graph � in a 3–manifold M . Associate with � the six-component
link L represented in Figure 2. The Borromean surgery on � is the surgery along the
framed link L. As proved by Matveev in [12], a Borromean surgery can be realized by
cutting a genus 3 handlebody (a regular neighborhood of the Y–graph) and regluing it
another way. A Y–link in a 3–manifold is a collection of disjoint Y–graphs.

Consider the rational vector space FZ
0

generated by all ZHSs up to orientation-
preserving homeomorphism. Let FZ

n denote the subspace generated by all the

ŒM I��D
X

I�f1;:::;ng

.�1/jI jM

�[
i2I

�i

�
;

where M is a ZHS, �i are disjoint Y–graphs in M , � D
Sn

iD1 �i , and M
�S

i2I �i

�
is the manifold obtained from M by surgery on the �i for i 2 I . Here and in
all the article, jI j stands for the cardinality of the set I . The associated quotients
GZ

n D FZ
n =FZ

nC1
can be described in terms of Jacobi diagrams.

+ = 0 - + = 0

Figure 3: AS and IHX relations

A Jacobi diagram is a trivalent graph with oriented vertices. An orientation of a vertex
of such a diagram is a cyclic order of the three half-edges that meet at this vertex. In the
pictures, this orientation is induced by the cyclic order . The degree of a Jacobi
diagram is half the number of its vertices. Note that it is an integer. Let An denote the
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rational vector space generated by all degree n Jacobi diagrams, quotiented out by the
AS and IHX relations (Figure 3). The space A0 is generated by the empty diagram.
Let Ac

n denote the subspace of An generated by the connected diagrams.

Let � be a Jacobi diagram of degree n. Let 'W � ,!R3 be an embedding such that
the orthogonal projection on R2�f0g of '.�/ is regular, and hence induces a framing
of '.�/. Now associate a Y–link z� in S3 with � by replacing all edges of '.�/ as
indicated in Figure 4.

� � � �

Figure 4: Replacement of an edge

�

�

�

�

�

�

�

�

Figure 5: Jacobi diagram and associated Y–link

Lemma 1.2 (Garoufalidis, Goussarov and Polyak [3, Corollaries 4.2, 4.6, Theo-
rem 4.11]) The bracket ŒS3I z�� 2 GZ

2n
only depends on the class of � in An . Hence it

defines

ˆW An! GZ
2n;

� 7! ŒS3
I�� WD ŒS3

I z��:

Theorem 1.3 (Garoufalidis, Goussarov and Polyak [3], Habiro [4], Le [8]) For n

odd, GZ
n D 0. For n even, the map ˆW An

2
! GZ

n is an isomorphism.

1.3 Statement of the results

We first define the filtration on the rational vector space F0 generated by all QHSs up
to orientation-preserving homeomorphism.

Definition 1.4 For g 2N , a genus g rational (respectively integral) homology han-
dlebody (QHH, respectively ZHH) is a 3–manifold which is compact, oriented, and
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which has the same homology with rational (respectively integral) coefficients as the
standard genus g handlebody.

Such a QHH (respectively ZHH) is connected, and its boundary is necessarily home-
omorphic to the standard genus g surface.

Definition 1.5 The Lagrangian LA of a QHH A is the kernel of the map

i�W H1.@AIQ/!H1.AIQ/

induced by the inclusion. Two QHHs A and B have LP–identified boundaries if we
have a homeomorphism hW @A! @B such that h�.LA/D LB .

The Lagrangian of a QHH A is indeed a Lagrangian subspace of H1.@AIQ/ with
respect to the intersection form.

Consider a QHS M , a QHH A�M , and a QHH B whose boundary is LP–identified
with @A. Set M.B=A/ D .M n Int A/[@AD@B B . We say that the QHS M.B=A/

is obtained from M by Lagrangian preserving surgery, or LP–surgery. Note that a
Borromean surgery is a special type of LP–surgery. If .Ai/1�i�n is a family of disjoint
QHHs in M , and if, for each i , Bi is a QHH whose boundary is LP–identified
with @Ai , we denote by M..Bi=Ai/1�i�n/ the manifold obtained from M by the n

LP–surgeries .Bi=Ai/.

Let Fn denote the subspace of F0 generated by the�
M I

�
Bi

Ai

�
1�i�n

�
D

X
I�f1;:::;ng

.�1/jI jM

��
Bi

Ai

�
i2I

�
for all QHSs M and all families of QHHs .Ai ;Bi/1�i�n , where the Ai are embedded
in M and disjoint, and each @Bi is LP–identified with the corresponding @Ai . Since
FnC1 � Fn , this defines a filtration. Set Gn D Fn=FnC1 and G D

L
n2N Gn .

Definition 1.6 A finite type invariant of degree at most n of rational homology spheres
is a linear map �W F0 ! Q such that �.FnC1/ D 0. It is said to be additive if
�.M ]N /D �.M /C�.N / for all QHSs M and N .

Let In (respectively Ic
n ) denote the rational vector space of all invariants (respectively

additive invariants) of degree at most n. Set Hn D In=In�1 and H D
L

n2N Hn .
Note that In is canonically isomorphic to .F0=FnC1/

� WD Hom.F0=FnC1;Q/. We
have an exact sequence

0! Gn!
F0

FnC1

!
F0

Fn
! 0:
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Since the functor Hom. � ;Q/ is exact, the dual sequence

0! In�1! In! .Gn/
�
! 0

is also exact. Thus Hn Š .Gn/
� .

We will call augmented diagram of degree n the union of a Jacobi diagram of degree
k � n

2
and of .n� 2k/ weighted vertices, where the weights are prime integers.

� 2

� 5

� 5

� � �

� �

�

��

��

Figure 6: Augmented diagram of degree 13

Note that the degree of an augmented diagram is equal to its number of vertices.
Let Aaug

n denote the rational vector space generated by all augmented diagrams of
degree n, quotiented out by the AS and IHX relations. The main goal of this article is
to prove the following theorem.

Theorem 1.7 For n 2N , Aaug
n Š Gn .

This result will follow from Propositions 1.8, 1.11 and 6.9. An isomorphism can be
described in the following way. Consider an augmented diagram �a of degree n given
by a Jacobi diagram � of degree k , and .n�2k/ vertices with weights .pi/1�i�n�2k .
Define '.�/ � S3 and the associated Y–link z� as before. For each i , consider a
rational homology ball Bpi

such that H1.Bpi
IZ/D Z=piZ. Then define the image

of �a as ŒS3I z�; .Bpi
=B3/1�i�n�2k � 2 Gn .

Since connected sums are LP–surgeries of genus 0, one can easily see that G0 ŠQS3 .
In Section 4, we give a description of G1 .

Proposition 1.8 For any prime integer p , fix a QHS Mp such that jH1.Mp/j D p .
Then .Mp �S3/p prime is a basis for G1 .

Remark The QHSs Mp are not unique in F0 , but we will see in Section 4.1 that
they are unique modulo F2 .

We will show in Section 4.1 that the family .Mp �S3/p prime generates G1 . To see
that it is a basis, we will prove the following proposition in Section 4.2.

For a prime integer p , let vp denote the p–adic valuation, defined on N n f0g by
vp.p

kn/D k if n is prime to p .
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Proposition 1.9 For any prime integer p , define a linear map �p on F0 by setting
�p.M /D vp.jH1.M /j/ when M is a QHS. Then �p is a degree 1 invariant of QHSs.

Since �p.Mp/ D 1, �p.Mq/ D 0 for any prime q ¤ p , and �p.S
3/ D 0 for any

prime p , this result shows that the family .Mp �S3/p prime is free.

Corollary 1.10 I1=I0 D Ic
1
D
Q

p prime Q �p .

In Section 5, we prove the following.

Proposition 1.11 For n> 1, Ic
n=Ic

n�1
Š .Ac

n=2
/� if n is even, and Ic

n=Ic
n�1
Š 0 if n

is odd.

In this proof, we will use the description of finite type invariants of degree 1 of framed
rational homology tori given in Section 5.1.

In Section 6, we use the structures of graded algebras on G and H in order to show that
any finite type invariant � such that �.S3/D 0 can be written as a sum of products of
additive invariants. More precisely, let I�n denote the subspace of In generated by all
the products

Q
1�i�k �i , where k > 1, the �i are additive invariants of degree ki < n,

and
P

1�i�k ki � n. Our version of the Milnor–Moore theorem about the structure of
Hopf algebras implies the following.

Proposition 1.12 For all n> 0, In D I0˚ Ic
n˚ I�n .

We will obtain this result as a consequence of Proposition 6.9.

In order to describe the spaces of additive invariants, we shall prove that LP–surgeries
can be reduced to more specific moves.

Definition 1.13 Consider a positive integer d . We call d –torus a rational homology
torus such that:

� H1.@Td IZ/D Z˛˚Zˇ , with h˛; ˇi D 1;
� d˛ D 0 in H1.Td IZ/;
� ˇ D d
 in H1.Td IZ/, where 
 is a curve in Td ;
� H1.Td IZ/D Zd˛˚Z
 .

Definition 1.14 An elementary surgery is an LP–surgery among the following ones:

(1) connected sum (genus 0);

(2) LP–replacement of a standard torus by a d –torus (genus 1);

(3) Borromean surgery (genus 3).
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In Section 2, we prove the following.

Theorem 1.15 If A and B are two QHHs with LP–identified boundaries, then B

can be obtained from A by a finite sequence of elementary surgeries and their inverses
in the interior of the QHHs.

This proposition generalizes a result of Auclair and Lescop [1, Lemma 4.11] which says
that any two ZHHs with LP–identified boundaries can be obtained from one another
by a finite sequence of Borromean surgeries in the interior of the ZHHs.

In Section 3, we recall some facts about Borromean surgeries proved by Garoufalidis,
Goussarov and Polyak in [3], and we give consequences of these facts that are useful
in the sequel.

Acknowledgements I wish to thank the referee for his careful reading. My thanks
also go to my advisor, Christine Lescop, for her helpful advice and rigorous supervision.

2 Elementary surgeries

2.1 Homological properties of QHHs

Definition 2.1 Consider the genus g compact surface †g . A basis .˛i ; ˇi/1�i�g

of H1.†gIZ/ is called symplectic if the matrix in .˛1; : : : ; ˛g; ˇ1; : : : ; ˇg/ of the
intersection form is

�
0 Ig

�Ig 0

�
.

Notation We denote by Tors.H / the torsion submodule of a module H .

Lemma 2.2 If A is a genus g QHH, then

� H1.AIZ/Š Zg˚Tors.H1.AIZ//;
� H2.AIZ/D 0;
� H2.A; @AIZ/Š .H1.AIZ/=Tors.H1.AIZ///

� Š Zg .

Proof The first point is given by H1.AIZ/˝QŠH1.AIQ/ŠQg .

By the Poincaré duality, we have H2.AIZ/ŠH 1.A; @AIZ/. The universal coefficient
theorem gives H 1.A; @AIZ/Š Hom.H1.A; @AIZ/;Z/. Hence H2.AIZ/ is torsion
free. Since H2.AIQ/D 0, we get the second point.

The last point also follows from the Poincaré duality and the universal coefficient
theorem:

H2.A; @AIZ/ŠH 1.AIZ/Š Hom.H1.AIZ/;Z/Š Zg:

Algebraic & Geometric Topology, Volume 12 (2012)
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Lemma 2.3 Consider a genus g QHH A and the map i�W H1.@AIZ/!H1.AIZ/
induced by the inclusion. Set

LZ
A D Ker i�; LT

A D .i�/
�1.Tors.H1.AIZ///:

Then there is a symplectic basis .˛i ; ˇi/1�i�g of H1.@AIZ/, a family .
i/1�i�g of
curves in A, and positive integers di , 1� i � g , such that

LZ
A D

M
1�i�g

Z.di˛i/; LT
A D

M
1�i�g

Z˛i ;
H1.AIZ/

Tors.H1.AIZ//
D

M
1�i�g

Z
i ;

and ˇi D di
i in H1.AIZ/=Tors.H1.AIZ// for 1� i � g .

In particular,

LT
A

LZ
A

;
H1.AIZ/

Tors.H1.AIZ//˚
�L

1�i�g Zˇi

� ;
are isomorphic to

Q
1�i�g Z=diZ.

Proof The exact sequence over Z associated with .A; @A/ yields the exact sequence

0!H2.A; @A/!H1.@A/
i�
�!H1.A/:

Thus LZ
A

is a free submodule of rank g of H1.@AIZ/. Hence there exist a basis
.˛i ; ˇi/1�i�g of H1.@AIZ/, and integers di > 0, 1� i � g , such that .di˛i/1�i�g

is a basis of LZ
A

. It follows that LT
A
D
L

1�i�g Z˛i . Since the intersection form is
trivial on LT

A
, we can choose the ˇi in such a way that the basis .˛i ; ˇi/1�i�g is

symplectic.

The boundary map H2.A; @A/ ! H1.@A/ in the above exact sequence induces
an isomorphism H2.A; @AIZ/ Š LZ

A
. Thus we can choose a basis .Si/1�i�g of

H2.A; @AIZ/ such that @Si D di˛i for 1� i � g . Let .
i/1�i�g denote the basis of
H1.AIZ/=Tors.H1.AIZ// Poincaré dual to .Si/1�i�g .

For 1� i; j � g , hSj ; ˇiiA D hdj j̨ ; ˇii@A D ıij di , where ıij is the Kronecker delta,
equal to 1 if i D j and 0 otherwise. Thus ˇi D di
i in H1.AIZ/=Tors.H1.AIZ//.

Corollary 2.4 Let A be a QHH. If the map H1.@AIZ/!H1.AIZ/, induced by the
inclusion @A ,!A, is surjective, then A is a ZHH.

Algebraic & Geometric Topology, Volume 12 (2012)
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a1

b1

a2

b2

Figure 7: The handlebody A

2.2 d –tori

Lemma 2.5 For any positive integer d , there exists a d –torus Td .

Proof Consider the standard genus 2 handlebody A represented in Figure 7.

Consider a curve c on @A such that c D a1 C db2 in H1.@AIZ/. According to
Meyerson in [13], since c is primitive, it can be chosen simple and closed. The
torus Td will be obtained from A by adding a 2–handle to A along c as follows.
Define Td DA

S
h.D

2� Œ�1; 1�/, where hW @D2� Œ�1; 1�! @A is an embedding such
that h.@D2 � f0g/D c . We have H1.Td IZ/D hb1; b2 j db2 D 0i.




c

˛

ˇ

Figure 8: The surface @A

Moreover, we can define curves ˛ , ˇ , 
 , on @A, with ˛ D b2 , ˇ D �a2 � db1

and 
 D �b1 in H1.@AIZ/ such that the boundary of A is homeomorphic to the
surface represented in Figure 8. Then we get that H1.Td IZ/D h
; ˛ j d˛ D 0i and
H1.@Td IZ/D Z˛˚Zˇ .

Given a curve 
 in a 3–manifold M , we will call exterior of 
 in M the complement
of the open tubular neighborhood of 
 in M .

Lemma 2.6 Let d be a positive integer. Let Td be a d –torus. Let 
 be a curve in Td

whose homology class generates H1.Td IZ/=Tors.H1.Td IZ//. Let m.
 / and `.
 /

Algebraic & Geometric Topology, Volume 12 (2012)
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be respectively a meridian and a parallel of 
 . For any integer k , there is a symplectic
basis .˛; ˇ/ of H1.@Td IZ/ such that d˛ D 0 in H1.Td IZ/, and such that the curve
ˇ� d`.
 /C km.
 / bounds a surface in the exterior of 
 in Td .

Proof Let X be the exterior of 
 in Td . Consider a symplectic basis .˛; ˇ0/ of
H1.@Td IZ/ such that d˛ D 0 and ˇ0 D d
 in H1.Td IZ/. There is an integer k0

such that ˇ0 � d`.
 /C k0m.
 / bounds a surface in X , ie, is trivial in H1.X IZ/.
Since d˛ bounds a surface in Td that 
 meets once, d˛�m.
 / is trivial in H1.X IZ/.
Let k be any integer, and set ˇD ˇ0C .k0�k/d˛ . The curve ˇ�d`.
 /Ckm.
 /D

.ˇ0� d`.
 /C k0m.
 //C .k0� k/.d˛�m.
 // is trivial in H1.X IZ/.

2.3 Relating QHHs by elementary surgeries

In this subsection, we prove Theorem 1.15.

Definition 2.7 Consider a QHH A . Consider a simple closed curve 
 �A. Consider
a disk D � @A. Consider two distinct points y and z in Int D , and a path s from z

to y in Int D . Consider a cylinder C D h.D2� Œ0; 1�/�A, where h is an embedding
such that:

� h.D2�f0g/ (respectively h.D2�f1g/) is a disk Dy (respectively Dz ) in Int D ;

� h.0; 0/D y and h.0; 1/D z ;

� C \ @ADDy [Dz ;

� h.f0g � Œ0; 1�/[ s is homologous to 
 in A.

We will call tunnel around 
 such a cylinder C .

Lemma 2.8 Let A be a QHH of genus g . Let 
 be a simple closed curve in A.
Let C be a tunnel around 
 . Set B DA nC . Then B is a QHH of genus gC 1.

Proof Consider the pair .A;B/. By excision, for i 2N ,

Hi.A;BIQ/ŠHi.C;C \BIQ/:

Since .C;C \B/Š .D2 � Œ0; 1�; .@D2/� Œ0; 1�/, it follows that Hi.A;BIQ/D 0 if
i ¤ 2, and H2.A;BIQ/ŠQ. The exact sequence over Q associated with the pair
.A;B/ yields the exact sequence

0!H2.B/! 0!H2.A;B/ŠQ!H1.B/!H1.A/ŠQg
! 0:

Hence H2.BIQ/D 0 and H1.BIQ/ŠQgC1 .

Algebraic & Geometric Topology, Volume 12 (2012)
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Lemma 2.9 Let A be a QHH of genus g . The quotient H1.AIZ/=H1.@AIZ/ is a
torsion module. Set H1.AIZ/=H1.@AIZ/D

Ln
iD1 Z=diZ�i . Let Ci , 1� i � n, be

pairwise disjoint tunnels around the �i . Then B D A n
�S

1�i�n Ci

�
is a ZHH of

genus gC n.

Proof The fact that H1.AIZ/=H1.@AIZ/ is a torsion module follows from Lemma 2.3.

By Lemma 2.8, B is a QHH of genus gC n. Hence, by Corollary 2.4, it suffices to
show that the map H1.@BIZ/!H1.BIZ/ induced by the inclusion is surjective, or,
equivalently, that H1.B; @BIZ/ is trivial. By excision, H1.B; @BIZ/ is isomorphic
to H1

�
A; @A[

�S
1�i�n Ci

�
IZ
�
, which is trivial by definition of the Ci ’s.

For a 3–manifold A, let lkAW Tors.H1.AIZ//�Tors.H1.AIZ//!Q=Z denote the
linking form on A, defined in the following way. Consider disjoint representatives ˛; ˇ
of two homology classes in Tors.H1.AIZ//. Consider a surface S � A, transverse
to ˇ , such that @S D k˛ for some positive integer k . Then lkA.˛; ˇ/ D

1
k
hS; ˇi,

where h � ; � i is the algebraic intersection number in A. For a QHS M , the linking form
lkM is defined on H1.M IZ/�H1.M IZ/, and it is known to be bilinear, symmetric
and nondegenerate.

Lemma 2.10 Let A be a QHH of genus g . Assume LT
A
=LZ

A
D 0. Then there exists

a QHS M such that .H1.M IZ/; lkM / is isomorphic to .Tors.H1.AIZ//; lkA/.

Proof By Lemma 2.3, there is a symplectic basis .˛i ; ˇi/1�i�g of H1.@AIZ/ such
that the ˛i are null-homologous in A, and H1.AIZ/DTors.H1.A//˚

�L
1�i�g Zˇi

�
.

Consider a standard handlebody Hg , and a symplectic basis

.ai ; bi/1�i�g of H1.@HgIZ/;

where each ai bounds a disk in Hg . Construct a QHS M by gluing A and Hg along
their boundaries, in such a way that, for 1� i � g , ˛i is identified with bi , and ˇi is
identified with ai . We have H1.M IZ/Š Tors.H1.AIZ//. Moreover, the linkings of
the curves in A are preserved, thus the linking forms on H1.M / and Tors.H1.A//

are isomorphic.

Lemma 2.11 Let A and A0 be QHHs of genus g with LP–identified boundaries.
Assume LT

A
=LZ

A
D 0 and LT

A0
=LZ

A0
D 0. If .Tors.H1.A//; lkA/ is isomorphic to

.Tors.H1.A
0//; lkA0/, then A and A0 can be obtained from one another by a finite

sequence of Borromean surgeries.
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Proof Consider a basis .�i/1�i�n of Tors.H1.A//, and its image .�0i/1�i�n under an
isomorphism .Tors.H1.A//; lkA/Š .Tors.H1.A

0//; lkA0/. Fix framed representatives
of the �i and �0i such that lk.�i ; �j /D lk.�0i ; �

0
j / 2Q for 1 � i; j � n. Consider

pairwise disjoint tunnels Ci (respectively C 0i ) around the �i (respectively �0i ). Set
BDA n

�S
1�i�nCi

�
and B0DA0 n

�S
1�i�nC 0i

�
. Extend the identification @AŠ @A0

to an identification @B Š @B0 so that the longitude of each �i is identified with the
longitude of the corresponding �0i . By Lemma 2.9, B and B0 are ZHHs of genus
gCn. The equality between the linking numbers ensures that the identification of their
boundaries preserves the Lagrangian. Thus, by [1, Lemma 4.11], B can be obtained
from B0 by a finite sequence of Borromean surgeries. Gluing back the cylinders, we
get that A can be obtained from A0 by a finite sequence of Borromean surgeries.

Corollary 2.12 Consider a QHH A such that LT
A
=LZ

A
D 0. Let Hg be a standard

handlebody such that @Hg and @A are LP–identified. Then there exists a QHS M

such that A is obtained from Hg ]M by a finite sequence of Borromean surgeries.

Lemma 2.13 Let A be a genus g QHH. Let Hg be a standard handlebody such
that @Hg and @A are LP–identified. Assume there are a symplectic basis .˛i ; ˇi/1�i�g

of H1.@AIZ/, a curve 
 in A, and a positive integer d such that

H1.AIZ/D
Z

dZ
˛1˚Z
 ˚

� M
2�i�g

Zˇi

�
and ˇ1 D d
 . Then there are a solid torus T0 embedded in Hg , a d –torus Td , and
an LP–identification @Td Š @T0 , such that A is obtained from Hg.Td=T0/ by a finite
sequence of Borromean surgeries.

Proof Consider a tunnel C around 
 in A. Set B DA nC . By Lemma 2.9, B is a
ZHH of genus gC 1. There is a surface S �B such that @S � @B is homologous to
ˇ1� d`C km in @B , where m is a meridian of 
 , ` is a longitude of 
 , and k is an
integer. Consider simple closed curves �1 and �2 in @B such that �1 Dm� d˛1 and
�2 D ˇ1� d`C km in H1.@B/. Then .�1; �2; ˛2; : : : ; ˛g/ is a basis of LZ

B
.

Consider the symplectic basis .ai ; bi/1�i�g of H1.@HgIZ/ image of .˛i ; ˇi/1�i�g

by the LP–identification @A Š @Hg . Consider a simple closed curve represent-
ing b1 in Int Hg and a tubular neighborhood T0 of this curve. Consider a d –
torus Td , a symplectic basis .˛0; ˇ0/ of H1.@Td IZ/ and a curve 
 0 in Td such
that H1.Td IZ/ D .Z=dZ/˛0 ˚ Z
 0 and ˇ0 D d
 0 . By Lemma 2.6, ˇ0 can be
chosen so that ˇ0 � d`.
 0/C km.
 0/ bounds a surface in the exterior of 
 0 in Td

(where k is the integer that appears when tunneling A). Choose an LP–identification
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@Td Š @T0 that identifies ˇ0 with a curve on @T0 homologous to b1 in Hg n Int T0 .
Set A0 DHg.Td=T0/.

Consider a tunnel C 0 around 
 0 in A0 . Set B0 D A0 nC 0 . By Lemma 2.9, B0

is a ZHH of genus g C 1. Like in B , there is a surface S 0 in B0 bounded by
b1 � d`.
 0/C km.
 0/, and we can define a basis of LZ

B0
similarly. Hence the LP–

identification @A Š @Hg Š @A
0 extends to an LP–identification @B Š @B0 . By [1,

Lemma 4.11], B can be obtained from B0 by a finite sequence of Borromean surgeries.
Gluing back the cylinders, we get that A can be obtained from A0 DHg.Td=T0/ by a
finite sequence of Borromean surgeries.

Proof of Theorem 1.15 It suffices to prove the result when B is a standard handlebody.
We will proceed by induction on jLT

A
=LZ

A
j. The case jLT

A
=LZ

A
j D 1 is given by

Corollary 2.12.

Consider a QHH A of genus g with jLT
A
=LZ

A
j> 1, and a standard genus g handle-

body Hg whose boundary is LP–identified with @A. By Lemma 2.3, there is a sym-
plectic basis .˛i ; ˇi/1�i�g of H1.@AIZ/, positive integers di , and a basis .
i/1�i�g

of H1.AIZ/=Tors.H1.AIZ//, such that, in H1.AIZ/, di˛i D 0 and ˇi D di
i C ti ,
with ti 2 Tors.H1.AIZ//. Note that jLT

A
=LZ

A
j D

Q
1�i�g di . Assume d1 > 1.

Consider a tubular neighborhood T of t1 , with a meridian m.t1/. Consider a d1 –
torus Td1

, a basis .˛; ˇ/ of H1.@Td1
IZ/, and a curve t in Td1

, such that d1˛D 0 and
ˇ D d1t in H1.Td1

IZ/. Define an LP–surgery .Td1
=T / by identifying ˛ with m.t1/

and ˇ with t1 . Set A0 D A.Td1
=T /. In A0 , t1 D d1t , thus we have ˇ1 D d1
 with


 D 
1C t .

Consider a tunnel C around 
 . Set B D A0 nC . By Lemma 2.8, B is a QHH
of genus g C 1. There is a surface S � B such that @S � @B is homologous to
ˇ1�d1`Ckm in @B , where m is a meridian of 
 , ` is a longitude of 
 , and k is an
integer. Consider simple closed curves �1 and �2 in @B such that �1Dm�d1˛1 and
�2 D ˇ1� d1`C km in H1.@B/. The curves �1 and �2 are null-homologous in B ,
and .�1; �2; ˛2; : : : ; ˛g/ is a basis of LZ

B
. Hence jLT

B
=LZ

B
j< jLT

A
=LZ

A
j.

Consider a genus gC1 standard handlebody HgC1 of boundary @B , where the �i and
the ˛i bound disks in HgC1 . By induction, B can be obtained from HgC1 by a finite
sequence of elementary surgeries or their inverses. Gluing back the cylinder C to HgC1 ,
we get a genus g QHH zA satisfying H1. zA/D .Z=d1Z/˛1˚Z
 ˚

�L
2�i�gZˇi

�
,

such that A0 can be obtained from zA by a finite sequence of elementary surgeries or
their inverses. Hence A can be obtained from zA by a finite sequence of elementary
surgeries or their inverses. Since @ zA and @Hg are both LP–identified with @A, they
are LP–identified with each other. By Lemma 2.13, zA can be obtained from Hg by a
finite sequence of elementary surgeries or their inverses.
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Remark We could have defined elementary surgeries by restricting the genus 1 case
to LP–replacements of standard tori by p–tori, for p prime, and keep Theorem 1.15
true. Indeed, consider a d –torus Td and the usual curve 
 in Td that generates
H1.Td IZ/=Torsion. One can check that an LP–replacement of a tubular neighborhood
of 
 by a d 0–torus produces a dd 0–torus. Hence, for any positive integer d , a d –torus
Td can be obtained from a standard torus by a finite sequence of “prime” elementary
surgeries of genus 1. Use then the “tunneling method” to see that any d –torus can
be obtained from this Td , with the right choice of longitude, by a finite sequence of
Borromean surgeries.

3 Borromean surgeries and clasper calculus

Fix a 3–manifold M , possibly with boundary. Let FZ
0
.M / denote the rational vector

space generated by all the 3–manifolds that can be obtained from M by a finite
sequence of Borromean surgeries, up to orientation-preserving homeomorphism. Let
FZ

n .M / denote the subspace generated by the ŒM I�� for all m–component Y–link �
in M , with m� n. Let “Dn ” denote the equality modulo FZ

nC1
.M /.

Lemma 3.1 [3, Corollary 4.3] Let � be an n–component Y–link in a 3–manifold
M . Let ` be a leaf of � . Let 
 be a framed arc starting at the vertex incident to `
and ending in another point of `, embedded in M as the core of a band glued to the
associated surface of � as shown in Figure 9. The arc 
 splits the leaf ` into two leaves
`0 and `00 . Denote by � 0 and � 00 the Y–links obtained from � by replacing the leaf `
by `0 and `00 respectively. Then ŒM I��Dn ŒM I�

0�C ŒM I� 00�.




` `00

`0

Figure 9: Cutting a leaf

Lemma 3.2 [3, Lemma 4.8] Let � be an n–component Y–link in a 3–manifold M .
If � has a leaf ` that bounds a disk in M n .� n`/ and has framing 1, then ŒM I��D 0.
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These two lemmas imply that the class of ŒM I�� modulo FZ
nC1

.M / does not depend
on the framing of the leaves.

Lemma 3.3 [3, Corollary 4.2] Let � be an n–component Y–link in a 3–manifold
M . Let K be a framed knot in M n� . Let � 0 be obtained from � be sliding an edge
of � along K (see Figure 10). Then ŒM I��Dn ŒM I�

0�.

K

� � 0

Figure 10: Sliding an edge

Lemma 3.4 [3, Lemma 4.4] Let � be an n–component Y–link in a 3–manifold M .
Let � 0 be obtained from � by twisting the framing of an edge by a half twist. Then
ŒM I� 0�Dn �ŒM I��.

In the following, we will consider oriented Y–links, defined as follows. A Y–graph is
oriented if its associated surface is oriented. An orientation of a Y–graph induces an
orientation of its leaves and of its internal vertex, as shown in Figure 11, where the
surface drawn is given the standard orientation of the plane. A Y–link is oriented if its

Figure 11: Oriented Y–graph

components are oriented. In this setting, one can twist the framing of an edge only by
an integral number of twists. A half twist corresponds to a change of orientation of the
adjacent leaf.
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Let � be an oriented Y–link in a 3–manifold M . The above results imply that the
class of ŒM I�� modulo FZ

nC1
.M / does not depend on the edges of � and on the

incident vertices of the leaves of � . We shall see that, in some sense, it only depends
on the homology classes of the leaves.

Lemma 3.5 [3, Lemma 2.2] Let � be a Y–graph in a 3–manifold M , which has a
0–framed leaf ` that bounds a disk in M n .� n `/. Then M.�/ŠM .

Lemma 3.6 Let � be an oriented n–component Y–link in a 3–manifold M . Assume
� has a leaf ` which is trivial in H1.M n .� n `/IZ/. Then ŒM I��Dn 0.

Proof We can assume that ` is 0–framed. The leaf ` bounds a surface † whose
interior does not meet � . First assume † has a positive genus. Thanks to Lemma 3.1,
we can assume † has genus 1. Apply Lemma 3.1 to decompose ` into four leaves,
and apply it again to reglue them by pairs, as shown in Figure 12. This leads us to the

†

Figure 12: Decomposing a leaf

case of a leaf which bounds a disk. The result follows then from Lemma 3.5.

Lemma 3.7 Let � be an n–component Y–link in a 3–manifold M . Let ` be a leaf
of � . Fix � n `. Then the class of ŒM I�� mod FZ

nC1.M / is a linear function of
` 2H1.M n .� n `/IQ/.

Proof Consider an n–component Y–link � 0 that has a leaf `0 such that � 0 n `0

coincides with � n ` and `0 is homologous to ` in M n .� n `/. Construct another
n–component Y–link �ı by replacing the leaf ` by `� `0 in � (see Figure 13). By
Lemma 3.6, ŒM I�ı �D 0. Thus Lemma 3.1 implies ŒM I��Dn ŒM I�

0�. Hence, for
�n` fixed, ŒM I��mod FZ

nC1
.M / only depends on the class of ` in H1.M n.�n`/IZ/.

The linearity follows from Lemma 3.1. Since the FZ
n .M / are rational vector spaces,

ŒM I�� mod FZ
nC1

.M / only depends on the rational homology class of `.

In the case of QHSs, we want to restrict the set of generators of FZ
n .M /=FZ

nC1
.M /

to brackets defined by Jacobi diagrams.

Lemma 3.3 implies the following.
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`0

` `� `0

Figure 13: The leaf `� `0

Lemma 3.8 Let J be a Jacobi diagram of degree n=2. Equip J with a framing
induced by an immersion of J in the plane. Embed the framed diagram J in a 3–
manifold M . Let � be the oriented n–component Y–link obtained from J by replacing
its edges as shown in Figure 14. Then the class of ŒM I�� modulo FZ

nC1
.M / does not

depend on the embedding and framing of J .

� � � �

Figure 14: Replacement of an edge

In the sequel, we will denote by ŒM IJ � the class of ŒM I�� modulo FZ
nC1

.M /.

Lemma 3.9 Let � be an oriented n–component Y–link in a 3–manifold M . Assume
that all the leaves of � are trivial in H1.M IQ/. Then ŒM I�� is equal to a Q–linear
combination of terms ŒM IJ � for some Jacobi diagrams J , modulo FZ

nC1
.M /.

Proof Suppose � has a leaf ` which is nontrivial in H1.M IZ/. Then there is a
positive integer k such that k`D 0 in H1.M IZ/. Denote by � 0 the Y–link obtained
from � by replacing the leaf ` by a leaf homologous to k` in H1.M n .� n`/IZ/. By
Lemma 3.7, we have ŒM I��Dn

1
k
ŒM I� 0�. Thus we can assume that all the leaves of

� are null-homologous in M . As we have seen above, we also can assume that they
are 0–framed.

Such leaves bound embedded surfaces in M . Thanks to Lemma 3.3, we can assume
that the interior of these surfaces do not meet the edges of � . Consider a leaf ` of
� . Apply Lemma 3.1 to cut ` into some leaves which are meridians of other leaves,
and one leaf which bounds a surface in M n .� n `/. The last one can be excluded
by applying Lemma 3.6. Cutting similarly each leaf of � , we obtain Y–links whose
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leaves are linked by pairs, in the pattern of Hopf links. Since Lemma 3.7 allows us to
change the orientation of a leaf, modulo a sign, we get Y–links obtained from Jacobi
diagrams.

Corollary 3.10 Let M be a QHS. Then FZ
n .M /=FZ

nC1
.M / is generated by the

ŒM IJ � for all Jacobi diagrams J of degree n=2. In particular, if n is odd, FZ
n .M /D

FZ
nC1

.M /.

We end the section by focusing the case of Y–graphs.

Lemma 3.11 Let � be an oriented Y–graph in a 3–manifold M . Suppose that � has
two leaves ` and `0 that bound disks in M n .� n .`[ `0// and that form a positive
Hopf link. Then ŒM I��D2 0.

Proof If the curve ˛ obtained from the leaves ` and `0 and their adjacent edges, as
shown in Figure 15, is 0–framed and bounds a disk whose interior does not meet � ,
then, according to [3, Lemma 2.3], the surgery on � preserves the homeomorphism
class of M . Lemma 3.3 allows us to reduce the proof to this case.

`0`
˛

Figure 15: The Y–graph � and the associated curve ˛

Lemma 3.12 Let � be an oriented Y–graph in a 3–manifold M . If � has a leaf `
which is trivial in H1.M IQ/, then ŒM I��D2 0.

Proof As in the proof of Lemma 3.9, we can assume that ` is null-homologous in M

and 0–framed. Then ` bounds a surface †. Using Lemma 3.3, we can assume that
its interior V† does not meet the edges of � . However, it can meet the other leaves.
Using Lemma 3.1 to decompose the different leaves of � , we can restrict to two cases.
Either V† does not meet � , or ` is linked with another leaf in the pattern of a Hopf link.
Conclude with Lemma 3.6 in the first case. In the second case, since Lemma 3.7 allows
us to change the orientation of a leaf, modulo a sign, conclude with Lemma 3.11.
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Lemma 3.13 Let � be an oriented Y–graph in a 3–manifold M . The class of
ŒM I�� modulo FZ

2
.M / only depends on the classes of the leaves of � in H1.M IQ/.

Moreover, the dependance is trilinear and alternating.

Proof Consider a leaf ` of � . Consider an oriented Y–graph � 0 and a leaf `0 of � 0

such that � 0 n `0 coincides with � n ` and `0 D ` in H1.M IQ/. Construct another
Y–graph �ı by replacing the leaf ` by `� `0 in � (see Figure 13). By Lemma 3.12,
ŒM I�ı � D 0. Thus Lemma 3.1 implies ŒM I�� Dn ŒM I�

0�. Hence, for � n ` fixed,
ŒM I�� mod FZ

2
.M / only depends on the class of ` in H1.M IQ/. The linearity

follows from Lemma 3.1. To get the alternating property, note that exchanging two
leaves is equivalent to changing the orientation of the three leaves.

4 Finite type invariants of degree 1

4.1 The family .Mp � S 3/p prime generates G1

We denote by “D2 ” the equality modulo F2 . Note that F1 is generated by the
.M � S3/. For any QHS M , let lkM W H1.M IZ/ � H1.M IZ/ ! Q=Z be the
linking form on H1.M IZ/.

Lemma 4.1 Let M and N be QHSs such that .H1.M IZ/; lkM /Š.H1.N IZ/; lkN /.
Then M D2 N .

Proof By [12, Theorem 2], N can be obtained from M by a finite sequence of
Borromean surgeries. It suffices to show that M.B0=B/ D2 M for one Borromean
surgery .B0=B/. This follows from Corollary 3.10.

We call linking a pair .H; �/, where H is a finite abelian group, and � is a nondegener-
ate symmetric bilinear form on H , with values in Q=Z. Consider the abelian semigroup
N of all linkings under orthogonal sum. We have a homomorphism H from the semi-
group of all QHSs under connected sum to N, given by H.M /D .H1.M IZ/; lkM /.
By Kawauchi and Kojima [5, Theorem 6.1], this homomorphism is onto. So we can
define an equivalence relation on N by H1 �2 H2 if H1 DH.M1/, H2 DH.M2/,
and M1�S3 D2 M2�S3 .

Note that

(?) M ]N �S3
D2 .M �S3/C .N �S3/:

Thus, by Lemma 4.1, in order to prove that .Mp �S3/p prime generates G1 , it suffices
to show that any H 2N is 2–equivalent to a direct sum of groups Zp WDZ=pZ, with
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p prime, independently of the associated bilinear form. Since N is the direct sum of
the abelian semigroups Np of linkings on p–groups, we restrict ourselves to the study
of p–groups.

Lemma 4.2 Any linking in Np is 2–equivalent to an orthogonal sum of linkings on
cyclic p–groups. Two linkings defined on the same cyclic group are 2–equivalent.

Proof In the case of odd primes p , by Wall [16, Theorem 4], Np has generators Apk ,
Bpk , k � 1, and sole relation 2Apk D 2Bpk .Rpk /, where

� Apk D .Zpk ; �A/, �A.1; 1/D 1=pk ;

� Bpk D .Zpk ; �B/, �B.1; 1/D x=pk with x nonsquare modulo pk .

The relations .?/ and .Rpk / show that Apk �2 Bpk .

In the case of 2–groups, we will use the presentation of N2 given by Miranda in
the introduction of [15], which is an alternative version of the description of N2

obtained in [5]. The generators are 4 linkings Ak , Bk , Ck , Dk , defined on Z2k ,
and 2 linkings Ek , Fk , defined on Z2k �Z2k . The relation Ak CEk D 2Ak CBk

implies Ek �2 Ak CBk , and the relation 2Ek D 2Fk implies Ek �2 Fk . So we are
lead to the cyclic case. The relations 2Ak D 2Ck , 2Bk D 2Dk , 4Ak D 4Bk , give
Ak �2 Bk �2 Ck �2 Dk .

Lemma 4.2 reduces our study to the case of cyclic groups with arbitrary linkings.

Lemma 4.3 Denote by Gpk any linking on Zpk . We have GpkCk0 �2 Gpk CGpk0

for any prime p and any positive integers k and k 0 . It follows that Gpk �2 k Gp .

Proof We will use the following easy result.

Sublemma 4.4 Let d be a positive integer. Let Td be a d –torus. Let .˛; ˇ/ be a
symplectic basis of H1.@Td IZ/ such that ˛ generates LTd

and ˇD d
 in H1.Td IZ/.
Let T be a standard solid torus trivially embedded in S3 . Define an LP–identification
@Td Š@T that identifies ˇ with the preferred longitude of T . Then H1.S

3.Td=T //D

Zd˛˚Zd
 .

In S3 , consider two disjoint, trivially embedded, tori T and T 0 , linked in the pattern
of a Hopf link. Consider the LP–surgeries given by Sublemma 4.4 for d D pk and for
d D pk0 . We still denote by ˛ , ˇ , 
 (respectively ˛0 , ˇ0 , 
 0 ) the curves defined in
the lemma. We have

H1

�
S3

�
Tpk

T

��
D Zpk˛�Zpk
; H1

�
S3

�
Tpk0

T 0

��
D Zpk0˛

0
�Zpk0


0:
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Now, in S3.Tpk=T;Tpk0=T 0/, we have ˛0 D ˇ D pk
 and ˛ D ˇ0 D pk0
 0 . Thus

H1

�
S3

�
Tpk

T
;
Tpk0

T 0

��
D ZpkCk0
 �ZpkCk0


0:

Conclude with the following equality:

S3

�
Tpk

T
;
Tpk0

T 0

�
�S3

D2

�
S3

�
Tpk

T

�
�S3

�
C

�
S3

�
Tpk0

T 0

�
�S3

�
:

This achieves the proof of the first part of Proposition 1.8, namely the fact that the
family .Mp �S3/p prime generates G1 .

4.2 The invariants �p

In this subsection, unless otherwise mentioned, all the homology modules are con-
sidered with integral coefficients. We prove the following proposition that implies
Proposition 1.9.

Proposition 4.5 Consider a QHS M , two disjoint genus g QHHs A and B in
M , and two QHHs A0 and B0 whose boundaries are LP–identified with @A and @B
respectively. Then

jH1.M /j

jH1.M.A0=A//j
D

jH1.M.B0=B//j

jH1.M.A0=A;B0=B//j
:

Proof The exact sequence associated with .M;A/ gives

0!H2.M;A/!H1.A/!H1.M /!H1.M;A/! 0:

Set X DM n Int A. By excision, we have Hi.M;A/DHi.X; @X / for any integer i .
So the above exact sequence can be rewritten as follows:

0!H2.X; @X /
'1
�!H1.A/

'2
�!H1.M /

'3
�!H1.X; @X /! 0:

Since H1.M / is finite, H1.X; @X / also is, and we have jH1.M /j D jH1.X; @X /j �

j Im'2j.

Similarly, we have an exact sequence

0!H2.X; @X /
'0

1
�!H1.A

0/
'0

2
�!H1.M.A0=A//

'0
3
�!H1.X; @X /! 0:

We get
jH1.M /j

jH1.M.A0=A//j
D
j Im'2j

j Im'0
2
j
:

Algebraic & Geometric Topology, Volume 12 (2012)



Finite type invariants of rational homology 3–spheres 2411

Similarly arguing with M.B0=B/ instead of M , and setting X 0DX.B0=B/, we have
the exact sequences

0!H2.X
0; @X 0/

 1
�!H1.A/

 2
�!H1.M.B0=B//

 3
�!H1.X

0; @X 0/! 0;

0!H2.X
0; @X 0/

 0
1
�!H1.A

0/
 0

2
�!H1.M.A0=A;B0=B//

 0
3
�!H1.X

0; @X 0/! 0;

and we get
jH1.M.B0=B//j

jH1.M.A0=A;B0=B//j
D
j Im 2j

j Im 0
2
j
:

We now relate j Im'2j and j Im 2j. Since Im'2 Š H1.A/=Im'1 and Im 2 Š

H1.A/=Im 1 , we shall study Im'1 and Im 1 .

The following sublemma gives us additional information about X .

Sublemma 4.6 If M is a QHS and if A is a genus g QHH in M , then X DM nInt A

also is a genus g QHH.

Proof It is clear that H3.X IQ/D 0 and H0.X IQ/DQ.

The Mayer–Vietoris sequence associated with M DA[X gives

0!H3.M IQ/!H2.@AIQ/!H2.AIQ/˚H2.X IQ/! 0:

Since H3.M IQ/! H2.@AIQ/ is an isomorphism that identifies the fundamental
classes, we have H2.X IQ/D 0.

The Mayer–Vietoris sequence also gives an isomorphism H1.@AIQ/ŠH1.AIQ/˚
H1.X IQ/, thus H1.X IQ/DQg .

We have the following commutative diagram, where i? is the map induced by the
inclusion i W @A ,!A. Denote the images of H2.X; @X / and H2.X

0; @X 0/ in H1.@A/

H2.X; @X /
@

H1.@A/

'1
i?

H1.A/

H2.X
0; @X 0/

@

 1

by F and F 0 respectively. Since '1 and  1 are injective, the two boundary operators
also are. Thus, by Sublemma 4.6 and Lemma 2.2, F and F 0 are free submodules
of H1.@A/, of rank g . Consider bases 
 of F and 
 0 of F 0 . Over Q, F generates
the Lagrangian LX , and F 0 generates LX 0 . Since X 0 is obtained from X by an
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LP–surgery, we have LX D LX 0 . Hence we have a matrix R 2GLg.Q/ of change of
basis from 
 to 
 0 . Thus

j Im 2j D

ˇ̌̌̌
H1.A/

Im 1

ˇ̌̌̌
D

ˇ̌̌̌
H1.A/

i?.F 0/

ˇ̌̌̌
D j det Rj �

ˇ̌̌̌
H1.A/

i?.F /

ˇ̌̌̌
D j det Rj � j Im'2j:

Since the same submodules F and F 0 occur in the decomposition of '0
1

and  0
1

, we
also have

j Im 02j D j det Rj � j Im'02j:

Finally,

jH1.M.B0=B//j

jH1.M.A0=A;B0=B//j
D
j Im 2j

j Im 0
2
j
D
j det Rj � j Im'2j

j det Rj � j Im'0
2
j
D

jH1.M /j

jH1.M.A0=A//j
:

5 Additive invariants of degree n> 1

5.1 Degree 1 invariants of framed rational homology tori

Fix a genus 1 surface †1 and a symplectic basis .˛0; ˇ0/ of H1.†1IZ/. Define
F0.†1/ as the rational vector space generated by all the rational homology tori T ,
equipped with an oriented longitude `.T /. Denote by m.T / the meridian of T that
satisfies hm.T /; `.T /i@T D 1. The data of the framing is equivalent to the data of an
orientation-preserving homeomorphism hW †1! @T such that h�.Q˛0/D LT , the
equivalence being given by m.T / D h.˛0/ and `.T / D h.ˇ0/. In particular, given
two framed rational homology tori, we have a canonical LP–identification of their
boundaries, which identifies the fixed longitudes. Define a filtration .Fn.†1//n2N ,
and quotients .Gn.†1//n2N , as in the case of QHSs. Note that G0.†1/ŠQ.

Denote by T0 the standard solid torus with a fixed longitude `.T0/. For any prime p ,
fix a QHS Mp such that H1.MpIZ/Š Z=pZ. Define a rational homology ball Bp

by removing an open ball from Mp . In this subsection, we prove the following.

Proposition 5.1 G1.†1/D
M

p prime

Q

�
T0I

Bp

B3

�
.

Consider a framed rational homology torus T . Set d.T /D jLT
T
=LZ

T
j (see Lemma 2.3

for the definition of LT
T

and LZ
T

). For p prime, define

�p.T /D vp
�
d.T /jTors.H1.T IZ//j

�
;

where vp denotes the p–adic valuation.

Algebraic & Geometric Topology, Volume 12 (2012)



Finite type invariants of rational homology 3–spheres 2413

Lemma 5.2 For any prime p , �p is a degree 1 invariant of the framed rational
homology tori.

Proof Consider a framed rational homology torus T . Define a QHS M.T / by
gluing T and the standard torus T0 along their boundaries, in such a way that `.T /
is identified with m.T0/. We have H1.M.T // D H1.T /=Z`.T /. By Lemma 2.3,
jH1.M.T //jDd.T / jTors.H1.T //j. Thus �p.T /D vp.jH1.M.T //j/D �p.M.T //.
The result follows from the fact that �p is a degree 1 invariant of QHSs.

Corollary 5.3 The sum
L

p prime QŒT0IBp=B
3� is direct.

Lemma 5.4 The space G1.†1/ is generated by the ŒT IE0=E�, where .E0=E/ is an
elementary surgery.

Proof Consider ŒT IA0=A� 2 F1.†1/. By Theorem 1.15, A0 is obtained from A

by a sequence of elementary surgeries, or their inverses, .E0i=Ei/1�i�k . Set Ai D

A.E0
1
=E1/.E

0
2
=E2/ � � � .E

0
i=Ei/. Then�

T I
A0

A

�
D

k�1X
iD0

�
T

�
Ai

A

�
I
AiC1

Ai

�
D

k�1X
iD0

�
T

�
Ai

A

�
I
E0

iC1

EiC1

�
:

Now, for any ŒT IE0=E� 2 F1.†1/, we have ŒT IE0=E�D�ŒT .E0=E/IE=E0�.

We shall get rid of the elementary surgeries of genus 1 with the help of the following
two lemmas.

Lemma 5.5 Let E be a framed standard torus. Let E0 be a framed d –torus. Assume
`.E0/D d
 in H1.E

0IZ/ for a curve 
 in E0 . Embed two disjoint copies E1 and E2

of E in Int E so that `.E1/ D `.E2/ D `.E/ in H1.E n Int.E1 [E2/IZ/. Let E0
1

and E0
2

be two copies of E0 . Set ADE.E0
1
=E1;E

0
2
=E2/. Then there is a QHS M

such that A can be obtained from E0 ]M by a finite sequence of Borromean surgeries.

Proof For i D 1; 2, denote by 
i the copy of 
 in E0i , so that `.E0i/ D d
i in
H1.E

0
i IZ/. Note that, in H1.A/, `.A/ D `.E01/ D `.E

0
2
/, and m.A/ D m.E0

1
/C

m.E0
2
/. We have

H1.AIZ/D hm.E
0
1/;m.E

0
2/; 
1; 
2 j dm.E01/D 0; dm.E02/D 0; d
1 D d
2i

D hm.E01/;m.A/; 
1; 
2� 
1 j dm.E01/D 0; dm.A/D 0; d.
2� 
1/D 0i

D Zd m.A/˚Z 
1˚Zd m.E01/˚Zd .
2� 
1/:
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Note that `.A/D d
1 . Consider a tunnel C around 
1 . Set B D A nC . There is a
surface S �B such that @S � @B is homologous to `.A/�d`Ckm in @B , where m

is a meridian of 
1 , ` is a longitude of 
1 , and k is an integer. Consider simple closed
curves �1 , �2 , �1 and �2 in @B such that �1 Dm�dm.A/, �2 D `.A/�d`Ckm,
�1 D �`C km.A/ and �2 D �m.A/ in H1.@B/. The curves �1 and �2 bound
embedded surfaces in B , and .�1; �1; �2; �2/ is a symplectic basis of H1.@BIZ/.
Thus B is a genus 2 QHH with LT

B
=LZ

B
D 0. By Corollary 2.12, there are a standard

genus 2 handlebody H2 and a QHS M such that B is obtained from H2 ]M by a
finite sequence of Borromean surgeries.

Now consider the d –torus E0 . It is homeomorphic to E.E0
1
=E1/. Consider a tunnel

C 0 around 
 in E0 . We can choose a meridian m0 and a longitude `0 of 
 in such a
way that there are curves � 0

1
and � 0

2
on the boundary of B0 DE0 nC 0 which bound

surfaces in B0 and which are respectively homologous to m0�d˛ and ˇ�d`0Ckm0

in H1.@B
0IZ/. Thus the LP–identification @E0 Š @A extends to an LP–identification

@B0 Š @B Š @H2 . Since H1.B
0IZ/D Z.`0� k˛/˚Zm0 , B0 and H2 are two ZHH

whose boundaries are LP–identified. By [1, Lemma 4.11], H2 can be obtained from
B0 by a finite sequence of Borromean surgeries. Thus H2 ]M , and B , can be obtained
from B0]M by a finite sequence of Borromean surgeries. Gluing back the cylinders, we
see that A can be obtained from E0]M by a finite sequence of Borromean surgeries.

Lemma 5.6 The quotient G1.†1/ is generated by the ŒT IE0=E�, where .E0=E/ is
an elementary surgery of genus 0 (connected sum) or 3 (Borromean surgery).

Proof Consider a framed rational homology torus T and an elementary surgery E0=E

of genus 1 in T , ie, E is an embedded standard torus, and E0 is a d –torus. Fix a
longitude `.E0/ such that `.E0/D d
 in H1.E

0IZ/ for a curve 
 in E0 . Choose the
longitude `.E/ which is identified with `.E0/ by the LP–identification @E Š @E0 .

Consider the copies E1 and E2 of E in Int E , the copies E0
1

and E0
2

of E0 , the
rational homology torus A, and the QHS M , defined in Lemma 5.5. Set T 0 D

T .E0
1
=E1;E

0
2
=E2/Š T .A=E/. Write

ADE0
�

B.M /

B3

��
B0

1

B1

��
B0

2

B2

�
� � �

�
B0

k

Bk

�
;

where B.M / is the rational homology ball obtained by removing a ball B3 from M ,
and the .B0i=Bi/ are Borromean surgeries. On the one hand, we have�

T I
E0

1

E1

;
E0

2

E2

�
D 2

�
T I

E0

E

�
�T CT 0;
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thus

T �T 0 D 2

�
T I

E0

E

�
mod F2.†1/:

On the other hand,

T �T 0 D

�
T I

A

E

�
D

�
T I

E0

E

�
C

�
T

�
E0

E

�
I
B.M /

B3

�

C

kX
iD1

�
T

�
E0

E

��
B.M /

B3

��
B0

1

B1

�
� � �

�
B0

i�1

Bi�1

�
I
B0i
Bi

�
:

Thus,�
T I

E0

E

�
D

�
T

�
E0

E

�
I
B.M /

B3

�

C

kX
iD1

�
T

�
E0

E

��
B.M /

B3

��
B0

1

B1

�
� � �

�
B0

i�1

Bi�1

�
I
B0i
Bi

�
mod F2.†1/:

We shall now restrict the set of generators ŒT IE0=E�, where .E0=E/ is an elementary
surgery of genus 0.

Lemma 5.7 Let T be a framed rational homology torus and let B be a rational
homology ball. Then ŒT IB=B3� 2

L
p prime QŒT0IBp=B

3�� G1.†1/.

This result follows from the next two sublemmas.

Sublemma 5.8 Let T be a framed rational homology torus and let B be a rational ho-
mology ball. Then, in G1.†1/, ŒT IB=B3� is a linear combination of the ŒT IBp=B

3�.

Proof Set M DB
S
@BD�@B3 B3 . We have T .B=B3/D T ]M and T .Bp=B

3/D

T ]Mp . Now use that .Mp �S3/p prime generates G1 (see Section 4.1).

Sublemma 5.9 For any framed rational homology torus T , and any rational homology
ball B , �

T I
B

B3

�
D

�
T0I

B

B3

�
mod F2.†1/:

Proof Define T 0
0

as T0 minus a regular open neighborhood of its boundary. We can
suppose that T 0

0
and B3 are disjoint in T0 . We have T Š T0.T=T

0
0
/, and�

T0I
T

T 0
0

;
B

B3

�
D

�
T0I

B

B3

�
�

�
T I

B

B3

�
:
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Proof of Proposition 5.1 By Lemmas 5.6 and 5.7, the quotient G1.†1/ is generated by
the ŒT0IBp=B

3� and the ŒT IA0=A� where .A0=A/ is a Borromean surgery. Consider
� 2 .G1.†1//

� . For all prime integer p , set cp D �.ŒT0IBp=B
3�/. Set z� D � �P

p prime cp�p . The invariant z� is determined by its values on the terms ŒT IA0=A�,
where .A0=A/ is a Borromean surgery. Let � denote the Y–graph associated with the
Borromean surgery .A0=A/. By Lemma 3.13, if T is fixed, z�.ŒT IA0=A�/ only depends
on the rational homology classes of the three leaves of � , and this dependance is trilinear
and alternating. Since H1.T IQ/ŠQ, we have z�D0. Hence �D

P
p prime cp�p . This

implies that G1.†1/ is generated by the ŒT0IBp=B
3�. Conclude with Corollary 5.3.

Corollary 5.10 If � is a degree 1 invariant of framed rational homology tori, such
that �.T0/D 0 and �.T0 ]Mp/D 0 for any prime p , then �D 0.

5.2 The quotients Ic
n=Ic

n�1

The main point of this subsection will be the proof of the next proposition. We will
end the subsection by showing that this result implies Proposition 1.11.

Proposition 5.11 If � is an additive invariant of degree n> 1, then �jFn
is determined

by �.ˆ.Ac
n=2
//. In particular, if n is odd, �jFn

D 0.

Recall the map ˆW An ! GZ
2n

has been defined in Lemma 1.2. Since we have a
canonical map GZ

2n
! G2n (we will see later that it is an embedding), �.ˆ.Ac

n// is
well defined.

We will often use the following easy formula.

Lemma 5.12 For any ŒM I .A0i=Ai/1�i�n� 2 Fn ,�
M I

�
A0i
Ai

�
1�i�n

�
D

�
M I

�
A0i
Ai

�
2�i�n

�
�

�
M

�
A0

1

A1

�
I

�
A0i
Ai

�
2�i�n

�
Lemma 5.13 The space Gn is generated by the ŒM I .E0i=Ei/1�i�n�, where the
.E0i=Ei/ are elementary surgeries.

To see this, just adapt the proof of Lemma 5.4.

Lemma 5.14 Let � be an additive invariant of degree n>1. Let ŒM I .E0i=Ei/1�i�n�2

Fn . If at least one of the surgeries .E0i=Ei/ is an elementary surgery of genus 0
(connected sum), then �.ŒM I .E0i=Ei/1�i�n�/D 0.
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Proof Assume E0
1
=E1 is a connected sum, ie, E1 is a ball B3 , and E0

1
is a rational

homology ball. Define a QHS M1 by gluing E0
1

and a ball B3 along their boundaries.
Then

�

��
M I

�
E0i
Ei

�
1�i�n

��
D �

��
M I

�
E0i
Ei

�
2�i�n

��
��

��
M ]M1I

�
E0i
Ei

�
2�i�n

��
D�

X
I�f2;:::;ng

.�1/jI j�.M1/D 0:

Lemma 5.15 Consider a QHS M , and disjoint LP–surgeries

.Td=T0/; .A0i=Ai/1�i�n�1

in M , where T0 is a standard torus, and Td is a d –torus. If � is an additive invariant
of degree n> 1, then �.ŒM ITd=T0; .A

0
i=Ai/1�i�n�1�/D 0.

Proof Fix M , the embedding of T0 , and the surgeries .A0i=Ai/1�i�n�1 . Fix a
longitude `.T0/ of T0 . For any framed rational homology torus T , set

x�.T /D �

��
M I

T

T0

;

�
A0i
Ai

�
1�i�n�1

��
:

Then x� is a degree 1 invariant of framed rational homology tori:

x�

��
T I

B0
1

B1

;
B0

2

B2

��
D �

�
�

�
M

�
T

T0

�
I
B0

1

B1

;
B0

2

B2

;

�
A0i
Ai

�
1�i�n�1

��
D 0:

We have x�.T0/D �.0/D 0, and

x�.T0 ]Mp/D �

��
M I

Bp

B3
;

�
A0i
Ai

�
1�i�n�1

��
D 0;

since � is additive, and n� 1> 0. By Corollary 5.10, x�D 0.

Proof of Proposition 5.11 By Lemmas 5.14 and 5.15, an additive invariant � of
degree n > 1 is determined on Fn by its values on the ŒM I .B0i=Bi/1�i�n�, for all
QHSs M and all sets of n disjoint Borromean surgeries .B0i=Bi/1�i�n in M . Hence,
by Corollary 3.10, � is determined on Fn by the �.ŒM I��/ for all QHS M and all
Jacobi diagram � of degree n=2.

We can write M DM ]S3 and suppose � is embedded in S3 . Hence for an additive
invariant � of degree n, we have �.ŒM I��/D �.ŒS3I��/.

If the Jacobi diagram � is not connected, we can assume that � is made of two
components �1 and �2 that are embedded in disjoint balls in S3 . Noting that .S3; �/D
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.S3; �1/ ] .S
3; �2/, it is easy to see that any additive invariant vanishes on ŒS3I�� in

this case.

Proposition 1.11 follows from Proposition 5.11 in the case of odd degrees. For even
degrees, it is a consequence of the following lemma.

Lemma 5.16 Let n> 1 be an even integer. Let .�n;i/i2Cn
be a basis of diagrams of

the finite dimensional vector space Ac
n=2

. Let .��n;i/i2Cn
be the dual basis of .Ac

n=2
/� .

Let Zn=2 denote the degree n=2 part of the KKT invariant. Let pc W An=2 ! Ac
n=2

be the projection that maps any nonconnected diagram to 0 and which restricts to the
identity on Ac

n=2
. For i 2 Cn , set �n;i D �

�
n;i ıpc ıZn=2 . Then .�n;i/i2Cn

is a basis
of Ic

n=Ic
n�1

.

Proof By [7, Theorem 1], pc ıZn=2 is an additive invariant of QHSs, thus the �n;i

are additive. By [10, Theorem 2.4] and [1, Proposition 4.1], Zn=2 is a finite type
invariant of degree n and satisfies Zn=2.ŒS

3I�n;i �/D �n;i 2An=2 . Hence �n;i 2 Ic
n ,

and �n;i.ŒS
3I�n;j �/D ıi;j . Consider � 2 Ic

n . By Proposition 5.11,

�D
X
i2Cn

�.ŒS3
I�n;i �/�n;i

in Ic
n=Ic

n�1
. Hence .�n;i/i2Cn

is a basis of Ic
n=Ic

n�1
.

6 The graded algebras G and H

6.1 The products in G and H

Extend the connected sum to F0 by bilinearity:�X
i2I

aiMi

�
]

�X
j2J

bj Nj

�
D

X
i2I

X
j2J

aibj .Mi ]Nj /;

for any finite sets I and J , any rational numbers ai , bj , and any QHSs Mi , Nj .

Lemma 6.1 Fn ]Fm � FnCm .

Proof Just check that�
M I

�
Bi

Ai

�
1�i�n

�
]

�
M 0
I

�
B0i
A0i

�
1�i�m

�
D

�
M ]M 0

I

�
Bi

Ai

�
1�i�n

;

�
B0i
A0i

�
1�i�m

�
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Thus the connected sum defines a product ]W Gn�Gm! GnCm which induces a graded
algebra structure on G .

Given two finite type invariants � and �, note that the product �� satisfies

��

�X
i2I

aiMi

�
D

X
i2I

ai�.Mi/�.Mi/;

for any finite set I , rational numbers ai , and QHSs Mi .

Lemma 6.2 If � 2 Ik and � 2 I` , then �� 2 IkC` .

Proof Consider ŒM I .Bi=Ai/i2I � with jI j D k C `C 1. We have the following
equality:

(1) ��

��
M I

�
Bi

Ai

�
i2I

��
D

X
J�I

�

��
M I

�
Bi

Ai

�
i2J

��
�

��
M

��
Bi

Ai

�
i2J

�
I

�
Bi

Ai

�
i2InJ

��
:

Indeed, the right hand side is equal toX
J�I

.�1/jJ j
�X

K�J

.�1/jK j�

�
M

��
Bi

Ai

�
i2K

����X
L�J

.�1/jLj�

�
M

��
Bi

Ai

�
i2L

���

D

X
L�I

X
K�L

.�1/jK jCjLj�

�
M

��
Bi

Ai

�
i2K

��
�

�
M

��
Bi

Ai

�
i2L

��� X
K�J�L

.�1/jJ j
�
:

Since X
K�J�L

.�1/jJ j D

�
0 if K ¨L;

.�1/jK j if K DL;

we get (1).

In (1), we have, if jJ j> k ,

�

��
M I

�
Bi

Ai

�
i2J

��
D 0;

and, if jJ j � k , then jI nJ j> ` and

�

��
M

��
Bi

Ai

�
i2J

�
I

�
Bi

Ai

�
i2InJ

��
D 0:

Thus

��

��
M I

�
Bi

Ai

�
i2I

��
D 0:
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Thus the product of finite type invariants induces a graded algebra structure on H .

6.2 Dual systems in G and H

For an even integer n> 1, consider the basis .�n;i/i2Cn
of Ac

n=2
and the associated

invariants �n;i defined in Lemma 5.16. For n > 1 odd, set Cn D ∅. For n D 1,
let C1 denote the set of all prime integers, and for any p prime, set �1;p D �p and
�1;p D �p 2A

aug
1

. Note that adding to �n;i a weighted sum of the �k;i , 0 < k < n,
i 2 Ck , does not change the values of �n;i on Fn . Thus we can (and we do) choose
the basis .�n;i/i2Cn

so that �n;i.ŒS
3I�k;j �/D ınkıij for all positive integers n and

k , all i 2 Cn , all j 2 Ck .

For a multiindex "D ."t /1�t�` , set `."/D `. For n> 0, fix a total order on Cn . Let
4 denote the lexicographic order induced on

S
n2Nnf0g.fng�Cn/. For n> 0, let T �n

denote the set of all triples .k; i ; "/ such that `.k/D `.i/D `."/, k D .kt /1�t�`.k/ ,
kt 2N and 0< kt < n for all t , i D .it /1�t�`.k/ with it 2 Ckt

for all t , .k1; i1/�

.k2; i2/ � � � � � .k`.k/; i`.k//, " D ."t /1�t�`."/ with "t 2 N n f0g for all t , andP
1�t�`.k/ "tkt D n. Define a family .�n;�/�2T �n of invariants of degree n by

�n;� D

Y
1�t�`.k/

�
"t

kt ;it
;

if � D .k; i ; "/. Set Tn D Cn t T �n . We will see in Section 6.3 that the family
.�k;i/0<k�n;i2Tk

is a basis of In=I0 . The main goal of this subsection is to construct
a family

�
G
.n/

k;i

�
0<k�n;i2Tk

of F1=FnC1 , dual to .�k;i/0<k�n;i2Tk
.

Definition 6.3 G 2 F0 is said to be multiplicative if ��.G/ D �.G/�.G/ for all
finite type invariants � and � such that �.S3/D 0 and �.S3/D 0.

For any p prime, set G
.1/
1;p
DMp � S3 . Note that the G.1/

1;p are multiplicative. Fix
n> 1. If n is even, set G.n/

n;i D ŒS
3I�n;i � for i 2Cn . Since ŒS3I�n;i �DS3.�n;i/�S3 ,

G
.n/
n;i is multiplicative for all i 2 Cn . For �D .k; i ; "/ 2 T �n , set

zG.n/
n;� D ]

1� t � `.k/

�
G
.kt /

kt ;it

�] "t :

Lemma 6.4 Consider positive integers p and q , additive invariants �1 , : : :, �p , and
elements ŒM1I .Bu=Au/u2U1

�, : : :, ŒMqI .Bu=Au/u2Uq
� of F0 , for nonempty sets Uj .

Then� pY
iD1

�i

��
]

jD1

q �
Mj I

�
Bu

Au

�
u2Uj

��
D

X
j2Epq

qY
`D1

� Y
i2j�1.f`g/

�i

���
M`I

�
Bu

Au

�
u2U`

��
;
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where Epq is the set of all surjective maps j W f1; : : : ;pg ! f1; : : : ; qg.

In particular, if p < q ,� pY
iD1

�i

��
]

jD1

q �
Mj I

�
Bu

Au

�
u2Uj

��
D 0;

and, if p D q ,� pY
iD1

�i

��
]

jD1

p �
Mj I

�
Bu

Au

�
u2Uj

��
D

X
�2Sp

pY
`D1

��.`/

��
M`I

�
Bu

Au

�
u2U`

��
;

where Sp is the set of permutations of f1; : : : ;pg.

Proof� pY
iD1

�i

��
]

jD1

q �
Mj I

�
Bu

Au

�
u2Uj

��

D

X
V1�U1

� � �

X
Vq�Uq

.�1/
Pq

`D1
jV`j

pY
iD1

�i

�
]

jD1

q

Mj

��
Bu

Au

�
u2Vj

��

D

X
V1�U1

� � �

X
Vq�Uq

.�1/
Pq

`D1
jV`j

pY
iD1

qX
jD1

�i

�
Mj

��
Bu

Au

�
u2Vj

��

D

X
j W f1;:::;pg!f1;:::;qg

X
V1�U1

� � �

X
Vq�Uq

.�1/
Pq

`D1
jV`j

pY
iD1

�i

�
Mj.i/

��
Bu

Au

�
u2Vj.i/

��

D

X
j W f1;:::;pg!f1;:::;qg

qY
`D1

� X
V`�U`

.�1/jV`j
Y

i2j�1.f`g/

�i

�
M`

��
Bu

Au

�
u2V`

���

D

X
j2Epq

qY
`D1

� Y
i2j�1.f`g/

�i

���
M`I

�
Bu

Au

�
u2U`

��

Lemma 6.5 Let n and k be positive integers. For � D .k; i ; "/ 2 T �
k

, set Tn.�/ D

f.k; i ; �/ 2 T �n j 8t; �t � "tg. For � 2 T �n , we have

�n;�

�
zG
.k/

k;�

�
¤ 0 if and only if � 2 Tn.�/:

Note that the set Tn.�/ is finite.
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Proof Set � D .`; j ; �/. We have

�n;� D

Y
1�s�`.`/

�
�s

`s ;js
; zG

.k/

k;�
D ]

1� t � `.k/

�
G
.kt /

kt ;it

�]"t :

By Lemma 6.4, we have

�n;�

�
zG
.k/

k;�

�
D

X
�2E�"

Y
.t;u/2‚."/

� Y
.s;v/2��1.f.t;u/g/

�`s ;js

��
G
.kt /

kt ;it

�
;

where ‚."/D f.t;u/ j 1� t � `."/I 8 t; 1� u� "tg and E�" is the set of all surjective
maps �W ‚.�/�‚."/. Since the G

.kt /

kt ;it
are multiplicative, we get

�n;�

�
zG
.k/

k;�

�
D

X
�2E�"

Y
.t;u/2‚."/

Y
.s;v/2��1.f.t;u/g/

�
�`s ;js

�
G
.kt /

kt ;it

��
:

Recall that �`s ;js

�
G
.kt /

kt ;it

�
D ı`skt

ıjsit
. Hence �n;�

�
zG
.k/

k;�

�
¤ 0 if and only if ` D k ,

j D i and �t � "t for all t .

For n> 1 and � 2 T �n , set G
.n/
n;� D

1

�n;�

�
zG
.n/
n;�

� zG.n/
n;� , so that �n;�

�
G
.n/
n;�

�
D 1. Note that,

for all n and all i 2 Tn , G.n/
n;i 2 Fn .

Let n and k be positive integers. For � 2 Ck , set

Tn.�/D f.k; i ; �/ 2 T �n j k D .k/; i D .�/g:

The following result is an easy generalization of Lemma 6.5.

Lemma 6.6 Let n and k be positive integers. For � 2 Tn and � 2 Tk , we have
�n;�

�
G.k/

k;�

�
¤ 0 if and only if � 2 Tn.�/.

Corollary 6.7 For n> 0, i 2 Tn , j 2 Tn , we have �n;i

�
G
.n/
n;j

�
D ıij .

For n> 1, define G
.n/

k;i
2 Fk for 0< k < n and i 2 Tk , by induction on n, by

G
.n/

k;i
DG

.n�1/

k;i
�

X
�2Tn.i/

�n;�

�
G
.n�1/

k;i

�
G.n/

n;� :

Note that G
.n/

k;i
DG

.m/

k;i
in Gm if m� n.

Lemma 6.8 Let n be a positive integer. The family
�
G
.n/

k;i

�
0<k�n;i2Tk

of F1=FnC1

is dual to the family .�k;i/0<k�n;i2Tk
of In=I0 .
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Proof We proceed by induction on n. The result is clear for nD 1. Fix n> 1. We
shall prove that �`;j

�
G
.n/

k;i

�
D ı`kıji for all 0 < ` � n, j 2 T` , 0 < k � n, i 2 Tk .

If ` D n and k D n, it is given by Corollary 6.7. If ` < n and k D n, it is clear
since G.n/

n;i 2 Fn . If ` < n and k < n, it follows from the induction hypothesis. It

remains to show that �n;j

�
G
.n/

k;i

�
D 0 if k < n. It is immediate if j 2 Tn.i/. Consider

j 2 Tn n Tn.i/. We have

G
.n/

k;i
DG

.k/

k;i
�

X
k<m�n

X
�2Tm.i/

�m;�

�
G
.m�1/

k;i

�
G.m/

m;� :

By Lemma 6.6, for k �m� n and �2 Tm.i/, �n;j

�
G
.m/
m;�

�
¤ 0 if and only if j 2 Tn.�/,

and this implies j 2 Tn.i/. Hence, for j 62 Tn.i/, �n;j

�
G.n/

k;i

�
D 0.

6.3 The coproduct on H

In the previous subsection, we have constructed dual systems�
G
.n/

k;i

�
0<k�n;i2Tk

�
F1

FnC1

; .�k;i/0<k�n;i2Tk
�

In

I0

;

that satisfy the following properties:

� �n;i is a finite type invariant of degree n;

� TnDCntT �n , �n;i is additive if i 2Cn , �n;i is a product of some �k;i , k < n,
i 2 Ck , if i 2 T �n ;

� Ic
n=Ic

n�1
D
Q

i2Cn
Q�n;i ;

� if i 2 Cn , G
.n/
n;i is multiplicative;

� G
.n/

k;i
2 Fk , and, if m� n, G

.n/

k;i
DG

.m/

k;i
in Gm .

Proposition 6.9 The family
�
G
.n/

k;i

�
0<k�n;i2Tk

is a basis of F1=FnC1 . The family
.�k;i/0<k�n;i2Tk

is the dual basis of In=I0 . Moreover,

In

In�1

D

Y
i2Tn

Q�n;i ;
I�n
I�

n�1

D

Y
i2T �n

Q�n;i ; Gn D

M
i2Tn

Q G
.n/
n;i :

This result implies Proposition 1.12.

Proof We will proceed by induction. For nD1, the result follows from Proposition 1.8
and Corollary 1.10. Fix n> 1. We will write �� " if �t � "t for all t , � < " if �� "
and �¤ ", and 0< � if �t > 0 for at least one t .
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Lemma 6.10 Consider � 2 In such that �.S3/ D 0. There are constants ˛m;� , for
1�m� n and � 2 T �m , such that

�.M1 ]M2/D �.M1/C�.M2/

C

nX
mD1

X
�D.k;i;"/2T �m

˛m;�

X
0<�<"

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
.M1/�

"t��t

kt ;it
.M2/;

for all QHSs M1 and M2 .

Remark The above expression of �.M1 ]M2/ defines a coproduct � on the algebra
H:

�.�/D �˝ 1C 1˝�C

nX
mD1

X
�D.k;i;"/2T �m

˛m;�

X
0<�<"

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
˝�

"t��t

kt ;it
:

Thus H has a Hopf algebra structure. The primitive elements associated with this
coproduct (the invariants � satisfying �.�/D �˝1C1˝�) are the additive invariants.
Milnor and Moore [14] proved that, under conditions, a Hopf algebra is generated as
an algebra by its primitive elements. Here, we give an explicit and elementary proof of
this result in our setting.

Proof of Lemma 6.10 Define a bilinear map � on F0 by

�.M1;M2/D �.M1 ]M2/��.M1/��.M2/

for all QHSs M1 and M2 . Fix M2 , and consider ŒM I .A0i=Ai/1�i�n� 2Fn . We have

�

��
M I

�
A0i
Ai

�
1�i�n

�
;M2

�
D

X
I�f1;:::;ng

.�1/jI j�

�
M

��
A0i
Ai

�
i2I

�
;M2

�

D

X
I�f1;:::;ng

.�1/jI j
�
�

�
M

��
A0i
Ai

�
i2I

�
]M2

�
��

�
M

��
A0i
Ai

�
i2I

���

D��

��
M I

�
A0i
Ai

�
1�i�n

;
B2

B3

��
D 0;

where B2 is a rational homology ball obtained from M2 by removing an open ball.
Thus �. � ;M2/ is an invariant of degree at most n� 1. Note that �.S3;M2/D 0. By
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induction, In�1=I0 is freely generated by the �k;i for 0< k < n and i 2 Tk . Hence
we can write

�.M1;M2/D
X

0<k<n

X
i2Tk

ˇk;i.M2/�k;i.M1/:

Note that the sum may be infinite. We have ˇk;i.M2/D�
�
G
.n/

k;i
;M2

�
and ˇk;i.S

3/D0.
Extend ˇk;i to F0 by linearity. Consider ŒM I .A0i=Ai/i2I �2Fn�kC1 , jI jD n�kC1,
and set G.n/

k;i
D
P

u2U cuŒNuI .B
0
j=Bj /j2Ju

�, where the cu are rational numbers and
jJuj D k for all u. We have

ˇk;i

��
M I

�
A0i
Ai

�
i2I

��
D

X
u2U

cu

X
I 0�I

X
Ku�Ju

.�1/jI
0jCjKuj�

�
Nu

��
B0j

Bj

�
j2Ku

�
;M

��
A0i
Ai

�
i2I 0

��

D

X
u2U

cu�

��
M ]NuI

�
A0i
Ai

�
i2I

;

�
B0j

Bj

�
j2Ju

��
D 0:

Thus ˇk;i is an invariant of degree at most n� k . Using the induction hypothesis, we
can decompose the invariants ˇk;i and get

�.M1;M2/D

nX
mD1

X
�D.k;i;"/2T �m

X
0<�<"

˛
.�/
m;�

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
.M1/�

"t��t

kt ;it
.M2/;

where the ˛.�/m;� are rational constants. It gives

�.M1 ]M2/D �.M1/C�.M2/

C

nX
mD1

X
�D.k;i;"/2T �m

X
0<�<"

˛
.�/
m;�

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
.M1/�

"t��t

kt ;it
.M2/:

Now, we use the commutativity and associativity of the connected sum to show that
the well-determined constants ˛.�/m;� do not depend on �. The commutativity gives
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˛."��/m;� D ˛
.�/

m;� . Consider M1 DN1 ]N2 . We have

�.N1 ]N2 ]M2/

D �.N1/C�.N2/C�.M2/

C

nX
mD1

X
�D.k;i;"/2T �m

X
0<�<"

˛
.�/
m;�

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
.N1/�

"t��t

kt ;it
.N2/

C

nX
mD1

X
�D.k;i;"/2T �m

X
0<�<"

˛
.�/
m;�

X
0����

Y
1�t�`.k/

�
"t

�t

��
�t

�t

�
��

�t

kt ;it
.N1/�

�t��t

kt ;it
.N2/�

"t��t

kt ;it
.M2/:

Consider � such that 0< � � �. The termsY
1�t�`.k/

�
�t

kt ;it
.N1/�

�t��t

kt ;it
.N2/�

"t��t

kt ;it
.M2/;

Y
1�t�`.k/

�
"t��t

kt ;it
.N1/�

�t��t

kt ;it
.N2/�

�t

kt ;it
.M2/;

must have the same coefficient. Since
�
"t

�t

��
�t

�t

�
D
�
"t

"t��t

��
"t��t

"t��t

�
, we have

˛
.�/
m;� D ˛

."��/
m;� D ˛

.�/
m;�:

Now, consider any � and � with 0< �, � < ". Either there is � > 0 with � � � and
� � � , or we have �� "� � . In both cases, we get ˛.�/m;� D ˛.�/m;� . Finally,

�.M1 ]M2/D �.M1/C�.M2/

C

nX
mD1

X
�D.k;i;"/2T �m

˛m;�

X
0<�<"

Y
1�t�`.k/

�
"t

�t

�
�
�t

kt ;it
.M1/�

"t��t

kt ;it
.M2/;

where ˛m;� is the common value of the ˛.�/m;� .

Back to the proof of Proposition 6.9, use the constants ˛m;� given by Lemma 6.10 to
define an invariant z�:

z�D ��

nX
mD1

X
�D.k;i;"/2T �m

˛m;�

Y
1�t�`.k/

�
"t

kt ;it
:

It is easy to see that z� is additive. Thus � 2 Ic
n˚I�n , and .�k;i/0<k�n;i2T �

k
is a basis

of I�n .
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It remains to show that
�
G
.n/

k;i

�
0<k�n;i2Tk

is a basis of F1=FnC1 . It suffices to show
that

�
G.n/

n;i

�
i2Tn

is a basis of Gn . Consider G 2 Gn . We shall prove that the sumP
i2Tn

�n;i.G/G
.n/
n;i is finite and equal to G in Gn . The term G is a finite linear

combination of QHSs. Let C1.G/� C1 denote the set of all prime integers p such
that �p.M / ¤ 0 for a QHS M in this combination. The set C1.G/ is finite. If an
invariant �n;i is a multiple of an invariant �p for some p 62 C1.G/, then �n;i.G/D 0.
Thus if �n;i.G/¤ 0, then �n;i is a product of invariants �p for p 2 C1.G/ and �k;j

for 1 < k � n and j 2 Ck . Recall the set Ck is finite for all k > 1. Hence the sumP
i2Tn

�n;i.G/G
.n/
n;i is well defined in Gn , and is equal to G since the �n;i generate

In=In�1 .

Lemma 6.11 Let M and N be QHSs. For n> 0,�
.M �N / 2 FnC1

�
,
�
Zk;KKT.M �N /D 0 for all k � 1

2
n and jH1.M IZ/j D jH1.N IZ/j

�
:

Proof The direct implication is clear since the Zk;KKT , k � n=2, and the �p , p

prime, are finite type invariants of degree at most n. To see that Proposition 6.9 implies
the converse implication, recall that the invariants �k;i , for 0 < k � n and i 2 Tk ,
were defined in Section 6.2 as products of linear combinations of the �p , p prime,
and the �k;i , 0 < k � n, i 2 Ck , that were defined from the Zk;KKT , k � n=2 in
Lemma 5.16.

Proof of Theorem 1.1 According to Le, Murakami and Ohtsuki [9], pc ıZLMO is
additive under connected sum, where pc is the projection defined in Lemma 5.16.
In [11], Massuyeau proved that ZLMO satisfies the same splitting formulae as ZKKT .
Thus the invariants .�n;i/i2Cn

of Lemma 5.16 could have been defined with ZLMO

instead of ZKKT . Therefore, Lemma 6.11 holds for ZLMO instead of ZKKT as well.
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