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Topological K –(co)homology of classifying spaces of discrete
groups

MICHAEL JOACHIM

WOLFGANG LÜCK

Let G be a discrete group. We give methods to compute, for a generalized (co)ho-
mology theory, its values on the Borel construction EG �G X of a proper G –CW–
complex X satisfying certain finiteness conditions. In particular we give formulas
computing the topological K–(co)homology K�.BG/ and K�.BG/ up to finite
abelian torsion groups. They apply for instance to arithmetic groups, word hyperbolic
groups, mapping class groups and discrete cocompact subgroups of almost connected
Lie groups. For finite groups G these formulas are sharp. The main new tools we use
for the K–theory calculation are a Cocompletion Theorem and Equivariant Universal
Coefficient Theorems which are of independent interest. In the case where G is a
finite group these theorems reduce to well-known results of Greenlees and Bökstedt.

55N20; 55N15, 19L47

0 Introduction

One of our main goals in this paper is to compute for a discrete group G , a proper
G–CW–complex X and a generalized cohomology theory H� and a generalized
homology theory H� the groups H�.EG �G X / and H�.EG �G X /. In particular
the case is interesting, where X can be chosen to be non-equivariantly contractible
because then EG �G X is a model for the classifying space BG . The main results
are Theorem 3.6 and Theorem 4.1. In the introduction we will concentrate on the case,
where H� and H� are topological K–theory K� and K� and on classifying spaces
BG .

Throughout the paper H�.Y IM / and H�.Y IM / denote singular (co-)-homology of
Y with coefficients in the abelian group M , and we omit M from the notation in the
case M D Z. Let Zyp be the ring of p–adic integers, which is the inverse limit of the
inverse system of projections

Z=p
pr2
 �� Z=p2

pr3
 �� Z=p3

pr4
 �� � � � :
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2 Michael Joachim and Wolfgang Lück

Denote by Z=p1 the quotient ZŒ1=p�=Z which is isomorphic to the colimit of the
directed system of inclusions

Z=p
p
�! Z=p2 p

�! Z=p3 p
�! � � � :

The proof of the following result will be given in Section 5.

Theorem 0.1 (Topological K–theory of classifying spaces) Let G be a discrete
group. Let X be a finite proper G–CW–complex. Suppose for every k 2 Z that
zHk.X /D 0 vanishes. Given a prime number p and k 2 Z, define the natural number

rk
p .G/ WD

X
.g/2conp.G/

X
i2Z

dimQ
�
H kC2i.BCGhgiIQ/

�
;

where conp.G/ denotes the set of conjugacy classes of non-trivial elements of p–power
order and CGhgi is the centralizer in G of the cyclic subgroup hgi generated by g .
Let P.G/ be the set of primes p which divide the order H of some finite subgroup
H �G . Then:

(i) There is an exact sequence

0 �!A �!Kk.GnX / �!Kk.BG/ �! B �
Y

p2P.G/

�
Zyp
�rk

p .G/
�! C �! 0;

where A, B and C are finite abelian groups with

A˝Z Z
�

1
P.G/

�
D B˝Z Z

�
1

P.G/
�
D C ˝Z Z

�
1

P.G/
�
D 0I

(ii) Dually there is an exact sequence

0�! C 0 �!
a

p2P.G/

.Z=p1/r
kC1
p .G/

�B0 �!Kk.BG/�!Kk.GnX /�!A0 �! 0;

where A0 , B0 and C 0 are finite abelian groups with

A0˝Z Z
�

1
P.G/

�
D B0˝Z Z

�
1

P.G/
�
D C 0˝Z Z

�
1

P.G/
�
D 0I

(iii) If we invert all primes in P.G/, then we obtain isomorphisms

Kk.BG/˝Z Z
�

1
P.G/

�
ŠKk.GnX /˝Z Z

�
1

P.G/
�
�

Y
p2P.G/

�
Qyp
�rk

p .EG/
I

Kk.BG/˝Z Z
�

1
P.G/

�
ŠKk.GnX /˝Z Z

�
1

P.G/
�
:
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Topological K–(co)homology of classifying spaces of discrete groups 3

Under the conditions appearing in Theorem 0.1 the sets conp.G/ and P.G/ are finite
and the dimension of BCGhgi is bounded by the finite dimension of X . Hence the
numbers rk

p .X / are well-defined.

The exact sequences of assertions (i) and (ii) of Theorem 0.1 are in fact dual to each
other when working in the category of topological groups. Namely, recall that skeletal
filtration on BG imposes the structure of a pro-discrete group on K�.BG/, while the
p–adic integers can be equipped with the pro-finite topology. With these topologies
the exact sequence of Theorem 0.1(ii) is the Pontryagin dual of the exact sequence of
Theorem 0.1(i) and vice versa. Moreover both exact sequence of Theorem 0.1 are also
exact sequences in the category of topological groups in the sense of Yoneda [39].

A model EG for the classifying space for proper G–actions is a proper G–CW–
complex, whose H –fixed point sets are contractible for all finite subgroups H �G . It
is unique up to G –homotopy. It is a good candidate for X in Theorem 0.1, provided
that there exists a finite G –CW–complex model for EG . Examples, for which this is
true, are arithmetic groups in a semisimple connected linear Q–algebraic group (see
Borel–Serre [11] and Serre [33]), mapping class groups (see Mislin [30]), groups which
are hyperbolic in the sense of Gromov (see Meintrup [28] and Meintrup–Schick [29]),
virtually poly-cyclic groups, and groups which are cocompact discrete subgroups of
Lie groups with finitely many path components (see Abels [1, Corollary 4.14]). On the
other hand, for any CW–complex Y there exists a group G such that Y and GnEG

are homotopy equivalent (see Leary–Nucinkis [18]). More information about these
spaces EG can be found for instance in Baum–Connes–Higson [8], Lück [20] and
tom Dieck [14, Section I.6].

In order to apply Theorem 0.1 one needs to understand the CW–complex GnX . This is
often possible using geometric input, in particular in the case X DEG for the groups
mentioned above. Notice that q–torsion in Kk.BG/ and Kk.BG/ for a prime number
q which does not belong to P.G/ must come from the q–torsion in Kk.GnX / and
Kk.GnX /.

The rational version of our formula for K–cohomology has already been proved using
equivariant Chern characters in Lück [21, Theorem 0.1], see also Adem [3, Theorem
6.3].

If G is finite, a model for EG is f�g and one gets a complete answer integrally, see
for instance Lück [21, Theorem 0.3].

We will recall the Completion Theorem 2.4 of Lück–Oliver [22, Theorem 6.5] and
deduce from it in Section 2. We denote by K�

G
.X / and KG

� .X / the equivariant
topological K–cohomology and K–homology of a G –CW–complex X .

Algebraic & Geometric Topology, Volume 13 (2013)



4 Michael Joachim and Wolfgang Lück

Theorem 0.2 (Cocompletion Theorem) Let G be a discrete group. Let X be a finite
proper G–CW–complex and let L be a finite dimensional proper G–CW–complex
whose isotropy subgroups have bounded order. Fix a G–map f W X !L and regard
K�

G
.X / as a module over KG.L/. Moreover, let I D IG.L/ be the augmentation ideal

(see Definition 2.1).

Then there is a short exact sequence

0 �! colim
���!n�1 ext1Z.K

�C1
G

.X /=In
�K�C1

G
.X /;Z/ �!K�.EG �G X /

�! colim
���!n�1 homZ.K

�
G.X /=I

n
�K�G.X /;Z/ �! 0:

When working in the category of topological abelian groups and continuous homomor-
phisms the sequence can be written in the following more compact form

0 �! ext1cts.K
�C1
G

.X /yI ;Z/ �!K�.EG �G X / �! homcts.K
�
G.X /yI ;Z/ �! 0:

Theorem 0.2 is closely related to the local cohomology approach to equivariant K–
homology of Greenlees [16] (see Remark 2.8 below).

In Section 5 we prove

Theorem 0.3 (Equivariant Universal Coefficient Theorem for K–theory) Let G be
a discrete group. Let X be a finite proper G –CW–complex X .

Then there are short exact sequences, natural in X ,

0 �! extZ.KG
��1.X /;Z/ �!K�G.X / �! homZ.K

G
� .X /;Z/ �! 0I(0.4)

0 �! extZ.K�C1
G

.X /;Z/ �!KG
� .X / �! homZ.K

�
G.X /;Z/ �! 0;(0.5)

where the homomorphisms on the right hand sides are given by (5.19) and (5.20)
respectively. The sequence splits unnaturally.

Theorem 0.3 reduces for finite groups to the corresponding results of Bökstedt [10] as
in explained in Remark 5.21.

Acknowledgements The work was financially supported by Sonderforschungsbereich
878 Groups, Geometry and Actions in Münster, and the Leibniz-Preis of the second
author.
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Topological K–(co)homology of classifying spaces of discrete groups 5

1 Some preliminaries about pro-modules

It will be crucial to handle pro-systems and pro-isomorphisms and not to pass directly
to inverse limits. Otherwise we would lose important information which is for instance
needed in order to pass from K–cohomology to K–homology using universal coeffi-
cients theorems. In this section we fix our notation for handling pro–R–modules for
a commutative ring R, where ring always means associative ring with unit. For the
definitions in full generality see for instance Artin–Mazur [5, Appendix] or Atiyah–
Segal [7, Section 2]. This exposition agrees with the one in Lück [21, Section 2] and is
repeated for the reader’s convenience.

For simplicity, all pro–R–modules dealt with here will be indexed by the positive
integers. We write fMn; ˛ng or briefly fMng for the inverse system

M0

˛1
 �M1

˛2
 �M2

˛3
 �M3

˛4
 � � � � :

and also write ˛m
n WD ˛mC1ı� � �ı˛nW Gn!Gm for n>m and put ˛n

n D idGn
. For the

purposes here, it will suffice (and greatly simplify the notation) to work with “strict” pro-
homomorphisms ffngW fMn; ˛ng ! fNn; ˇng, that is, a collection of homomorphisms
fnW Mn!Nn for n� 1 such that ˇn ıfn D fn�1 ı˛n holds for each n� 2. Kernels
and cokernels of strict homomorphisms are defined in the obvious way.

A pro–R–module fMn; ˛ng will be called pro-trivial if for each m � 1, there is
some n � m such that ˛m

n D 0. A strict homomorphism f W fMn; ˛ng ! fNn; ˇng

is a pro-isomorphism if and only if ker.f / and coker.f / are both pro-trivial, or,
equivalently, for each m � 1 there is some n �m such that im.ˇm

n / � im.fm/ and
ker.fn/� ker.˛m

n /. A sequence of strict homomorphisms

fMn; ˛ng
ffng
���! fM 0

n; ˛
0
ng

gn
�! fM 00

n ; ˛
00
ng

will be called exact if the sequence of R–modules Mn

fn
�!Nn

gn
�!M 00

n is exact for each
n� 1, and it is called pro-exact if gn ıfnD 0 holds for n� 1 and the pro–R–module
fker.gn/= im.fn/

	
is pro-trivial.

The following results will be needed later.

Lemma 1.1 Let 0�!fM 0
n; ˛
0
ng
ffng
���! fMn; ˛ng

fgng
���! fM 00

n ; ˛
00
ng�! 0 be a pro-exact

sequence of pro–R–modules. Then there is a natural exact sequence

0! lim
 �n�1M 0

n

lim
 �n�1

fn

������! lim
 �n�1Mn

lim
 �n�1

gn

������! lim
 �n�1M 00

n

ı
�!

lim
 �

1
n�1M 0

n

lim
 �

1
n�1

fn

������! lim
 �

1
n�1Mn

lim
 �

1
n�1

gn

������! lim
 �

1
n�1M 00

n ! 0:
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6 Michael Joachim and Wolfgang Lück

In particular a pro-isomorphism ffngW fMn; ˛ng ! fNn; ˇng induces isomorphisms

lim
 �n�1fnW lim

 �n�1Mn
Š
��! lim
 �n�1NnI

lim
 �

1
n�1fnW lim

 �

1
n�1Mn

Š
��! lim
 �

1
n�1Nn:

Proof If 0! fM 0
n; ˛
0
ng
ffng
���! fMn; ˛ng

gn
�! fM 00

n ; ˛
00
ng ! 0 is exact, the construction

of the six-term sequence is obvious (see for instance Switzer [35, Proposition 7.63 on
page 127]). Hence it remains to show for a pro-trivial pro–R–module fMn; ˛ng that
lim
 �n�1

Mn and lim
 �

1
n�1

Mn vanish. This follows directly from the standard construction
for these limits as the kernel and cokernel of the homomorphismY

n�1

Mn!

Y
n�1

Mn; .xn/n�1 7! .xn�˛nC1.xnC1//n�1:

Lemma 1.2 Let 0�!fM 0
n; ˛
0
ng
ffng
���! fMn; ˛ng

fgng
���! fM 00

n ; ˛
00
ng�! 0 be a pro-exact

sequence of pro–R–modules. Then there is a natural exact sequence

0 �! colim
���!n�1 homZ.M

00
n ;Z/ �! colim

���!n�1 homZ.Mn;Z/

�! colim
���!n�1 homZ.M

0
n;Z/ �! colim

���!n�1 ext1Z.M
00
n ;Z/

�! colim
���!n�1 ext1Z.Mn;Z/ �! colim

���!n�1 ext1Z.M
0
n;Z/ �! 0:

In particular a pro-isomorphism ffngW fMn; ˛ng ! fNn; ˇng induces isomorphisms

colim
���!n�1 homZ.Nn;Z/

Š
��! colim
���!n�1 homZ.Mn;Z/I

colim
���!n�1 ext1Z.Nn;Z/

Š
��! colim
���!n�1 ext1Z.Mn;Z/:

Proof The proof is analogous to the one of the previous Lemma 1.1 using the fact
that colim
���!n�1

is an exact functor.

2 Completion and cocompletion theorems

Let G be a discrete group. Denote by K�
G

equivariant topological K–theory. This is
a multiplicative G–cohomology theory for proper G–CW–complexes which comes
with various extra structures such as induction, restriction and inflation. It is defined in
terms of classifying spaces for G –vector bundles over proper G –CW–complexes (see
Lück–Oliver [22, Theorem 2.7 and Section 3]).

Recall that a G –CW–complex X is proper if and only if its isotropy groups are finite
(see Lück [19, Theorem 1.23 on page 18]) and is finite if and only if X is cocompact,

Algebraic & Geometric Topology, Volume 13 (2013)



Topological K–(co)homology of classifying spaces of discrete groups 7

that is, GnX is compact. If one considers only finite proper G –CW–complexes, then
K�

G
.X / has other descriptions which are all equivalent. There is a construction due

to Phillips [31] in terms of infinite dimensional vector bundles. In Lück–Oliver [23,
Theorem 3.2] it is shown that it suffices to use finite dimensional G–vector bundles
and that one can give a definition in terms of the Grothendieck group KG.X / of the
monoid of isomorphism classes of G–vector bundles over X . In case where G is
the trivial group, we just write K.X /. One can also define for a finite proper G–
CW–complex X the equivariant topological K–theory as the topological K–theory
K�.C0.X / Ì G/ of the crossed product C �–algebra C0.X / Ì G (see Phillips [31,
Theorem 6.7 on page 96]), while equivariant topological K–homology of X (by the
dual of the Green–Julg theorem, see Blackadar [9, Theorem 20.2.7 (b)]) also can be
defined as the equivariant KK–group KKG

� .C0.X /;C/. Here C0.X / denotes the
C �–algebra of continuous function on X vanishing at infinity.

For any proper G –CW–complex X the is a natural ring homomorphism

G.X /W KG.X /!K0
G.X /

which allows to regard K
p
G
.X / as a KG.X /–module in the sequel.

Definition 2.1 (Augmentation ideal) The augmentation ideal IG.Y / � KG.Y / is
given by the set of elements in KG.Y / represented by virtual G–vector bundles of
dimension zero on all components of Y .

If G is trivial we just write I.Y /.

We have the following easy but crucial lemma (see Lück–Oliver [23, Lemma 4.2]).

Lemma 2.2 Let Z be a CW–complex of dimension n� 1. Then the n–fold product
of elements in I.Z/�K.Z/ is zero.

Now fix a finite proper G –CW–complex X , and a map f W X !L to a finite dimen-
sional proper G –CW–complex L whose isotropy subgroups have bounded order. We
obtain a ring homomorphism f �W KG.L/! KG.X / by the pullback construction.
Hence we can regard K�

G
.X / as a module over the ring KG.L/. Put I D IG.L/. For

any natural number n� 1, consider the composite

In
�K�G.X /�K�G.X /

pr�
��!K�G.EG �X /

Š
�!K�.EG �G X /

K�.in�1/
������!K�..EG �G X /n�1/;

Algebraic & Geometric Topology, Volume 13 (2013)



8 Michael Joachim and Wolfgang Lück

where prW EG�X!X is the projection, in�1W .EG�G X /n�1!EG�G X is the in-
clusion of the .n�1/–skeleton and the isomorphism K�

G
.EG�X /

Š
��!K�.EG�G X /

comes from dividing out the (free proper) G–action (see Lück–Oliver [22, Propo-
sition 3.3]). This composite is trivial, since the image is contained in the ideal
which is generated by the set I..EG �G X /n�1/n , and the latter is trivial, since
I..EG �G X /n�1/n D 0 by Lemma 2.2. The composites therefore define a pro-
homomorphism

�X ;f
W fK�G.X /=I

n
�K�G.X /g �! fK

�..EG �G X /n�1/g;(2.3)

where the structure maps on the left side are given by the obvious projections and on
the right side are induced by the various inclusions of the skeletons. The following
theorem is taken from Lück–Oliver [22, Theorem 6.5; 23, Theorem 4.3].

Theorem 2.4 (Completion Theorem) Let G be a discrete group. Let X be a finite
proper G–CW–complex and let L be a finite dimensional proper G–CW–complex
whose isotropy subgroups have bounded order. Fix a G–map f W X !L and regard
K�

G
.X / as a module over KG.L/. Moreover, let I D IG.L/ be the augmentation

ideal.

Then
�X ;f

W fK�G.X /=I
n
�K�G.X /g ! fK

�..EG �G X /n�1/g

is a pro-isomorphism of pro–Z–modules.

The inverse system fK�
G
.X /=In �K�

G
.X /g satisfies the Mittag-Leffler condition. In

particular
lim
 �

1
n�1K��1.EG �G X /n/D 0;

and �X ;f and the various inclusions inW .EG �G X /n! EG �G X induce isomor-
phisms

K�G.X /yI
Š
��!K�.EG �G X /

Š
��! lim
 �n�1K�..EG �G X /n/;

where K�
G
.X /yI D lim

 �n�1
K�

G
.X /=In �K�

G
.X / is the I –adic completion of K�

G
.X /.

Remark 2.5 In the case where G is finite and L is a point, Theorem 2.4 above
coincides with the Atiyah–Segal completion theorem for finite groups (see Atiyah–
Segal [7, Theorem 2.1]). The classical Atiyah–Segal completion theorem is stated for
compact Lie groups. However, the theorem above does not hold if G is replaced by a
Lie group of positive dimension (see Lück–Oliver [23, Section 5]).

We now pass to K–homology.

Algebraic & Geometric Topology, Volume 13 (2013)



Topological K–(co)homology of classifying spaces of discrete groups 9

Lemma 2.6 If X is a finite proper G–CW–complex, then EG �G X is homotopy
equivalent to a CW–complex of finite type.

Proof We use induction over the dimension and subinduction over the number of
equivariant cells of top dimension in X . The induction beginning X D∅ is trivial. In

the induction step we write X as a pushout of a diagram G=H �Dn i
 �G=H �Sn�1!

Y , where i is the inclusion, Y a G–CW–subcomplex of X and n D dim.X /. We
obtain a pushout of CW–complexes

EG �G G=H �Sn�1 //

idEG �G i

��

EG �G Y

��
EG �G G=H �Dn // EG �G X

with idEG �Gi a cofibration. Hence EG �G X has the homotopy type of a CW–
complex of finite type if EG �G G=H � Sn�1 , EG �G Y and EG �G G=H �Dn

have this property. This is true for the first two by the induction hypothesis and for the
third one since it is homotopy equivalent to BH .

Now we can give the proof of the Cocompletion Theorem 0.2

Proof of Theorem 0.2 Because of Lemma 2.6 we can choose a CW–complex Y of
finite type and a cellular homotopy equivalence f W Y !EG �G X . Let f nW Y n!

.EG�G X /n be the map induced on the n–skeletons. Notice that f n is not necessarily
a homotopy equivalence and K�.f n/ is not necessarily an isomorphism. Nevertheless,
one easily checks that we obtain a pro-isomorphism of pro–Z–modules

fK�.f n/gW fK�..EG �G X /n/g ! fK�.Y n/g:

Thus we obtain from the Completion Theorem 2.4 a pro-isomorphism of pro–Z–
modules

fK�.f n/g ı�X ;f
W fK�G.X /=I

n
�K�G.X /g ! fK

�.Y n/g:

From the K–homology version of the universal coefficient theorem for topological
K–theory for finite CW–complexes (Theorem 5.1) and the fact that colim

���!n�1
is an

exact functor, we get the exact sequence

0! colim
���!n�1 ext1Z.K

�C1.Y n/;Z/!K�.Y /! colim
���!n�1 homZ.K

�.Y n/;Z/! 0:

Algebraic & Geometric Topology, Volume 13 (2013)



10 Michael Joachim and Wolfgang Lück

The map f and the pro-isomorphism fK�.f n/g ı �X ;f induce isomorphisms (see
Lemma 1.2)

K�.f /W K�.Y /
Š
��!K�.EG �G X /I

colim
���!n�1 ext1Z.K

�
G.X /=I

n
�K�G.X /;Z/

Š
��! colim
���!n�1 ext1Z.K

�C1.Y n/;Z/I

colim
���!n�1 homZ.K

�
G.X /=I

n
�K�G.X /;Z/

Š
��! colim
���!n�1 homZ.K

�.Y n/;Z/:

Combining these isomorphisms with the exact sequence above proves the Cocompletion
Theorem 0.2.

Remark 2.7 The Cocompletion Theorem 0.2 can be formulated elegantly within the
category of abelian topological groups and continuous homomorphisms. If we equip
the completion K�

G
.X /yI with the I –adic topology and Z with the discrete topology

then the set of continuous homomorphisms homcts.K
�
G
.X /yI ;Z/ is isomorphic to

colim
���!n�1

homZ.K
�
G
.X /=In �K�

G
.X /;Z/. On the other hand, although the category

of topological abelian groups is not exact one can introduce a notion of exact sequences
(in the sense of Yoneda [39, Section 1.1]) and correspondingly a notion of a group of
isomorphisms classes of extensions [39, Corollary, page 537]. In the case at hand we get
that the group of isomorphisms classes of extensions extcts.K

�
G
.X /yI ;Z/, the continuous

ext-group in the sense of [39], is isomorphic to colim
���!n�1

ext1Z.K
�
G
.X /=In �K�

G
.X /;Z/.

With these identifications the exact sequence of the Cocompletion Theorem 0.2 reads

0! ext1cts.K
�C1
G

.X /yI ;Z/!K�.EG �G X /! homcts.K
�
G.X /yI ;Z/! 0:

Remark 2.8 The Cocompletion Theorem 0.2 is closely related to the local cohomology
approach to equivariant K–homology due to Greenlees [16]. If G is a finite group it
follows from [16, (4.2) and (5.1)] that there is a short exact sequence

(2.9) 0!H 1
I .K

G
ı .X //�C1!K�.EG �G X /!H 0

I .K
G
ı .X //�! 0;

where H k
I
.Mı/ denotes the k th local cohomology of the graded R.G/–module Mı

with respect to the augmentation ideal I � R.G/. A precise definition of the local
cohomology groups occuring in (2.9) can be found in [16, Section 2]. By a Theorem
of Grothendieck in [17] (quoted as [16, Theorem 2.5(ii)]) one has

H n
I .K

G
ı .X //� Š colim

���!n�1 extnR.G/.R.G/=I
n;KG

� .X //:

Using the exact sequence of the Equivariant Universal Coefficient Theorem for K–
homology as stated in Remark 5.21, the adjunction

homR.G/.M; homR.G/.C;N //Š homR.G/.M ˝R.G/ C;N //

Algebraic & Geometric Topology, Volume 13 (2013)
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for R.G/–modules M;C;N with C being finitely generated, and the R.G/–module
isomorphism exti

R.G/
.M;R.G// Š extiZ.M;Z/ (emphasized in Remark 5.21) one

can see that the exact sequence of the Cocompletion Theorem 0.2 is exact if and only
if (2.9) is. In particular the Cocompletion Theorem yields an alternative proof for the
exactness of (2.9).

3 Borel cohomology

Let H� be a (generalized) cohomology theory with values in the category of Z–modules
which satisfies the disjoint union axiom for arbitrary index sets, that is, for any family
fXi j i 2 Ig the map Y

i2I

Hk.ji/W Hk

�a
i2I

Xi

�
Š
�!

Y
i2I

Hk.Xi/

is an isomorphism, where ji W Xi !
`

i2I Xi is the canonical inclusion. Any such
theory H� is given by an �–spectrum E and, vice versa, any cohomology theory
given by an �–spectrum satisfies the disjoint union axiom. Given a CW–complex X ,
let zHk.X / be the cokernel of the map Hk.f�g/!Hk.X / induced by the projection
X ! f�g. Our main example for H� will be topological K–theory K� . If M is an
abelian group, we define the cohomology theory H�.�IM / by the �–spectrum which
is the fibrant replacement of the smash product of the spectrum associated with H�
with the Moore spectrum associated to M . If M is a ring R, then H�.�IR/ takes
values in the category of R–modules.

Lemma 3.1 Let X be a CW–complex such that its reduced singular cohomology
zH k.X IHl.f�g// with coefficients in the abelian group Hl.f�g/ vanishes for all k � 0

and l 2 Z. Then

(i) The inclusion X n�1!X n of the .n�1/–skeleton into the n–skeleton induces
the zero-map zHk.X n/! zHk.X n�1/ for all k 2 Z and n � 2. The pro–Z–
module f zHk.X n/g is pro-trivial;

(ii) We have zHk.X /D 0 for all k 2 Z.

Proof (i) Since X n is finite dimensional, the reduced Atiyah–Hirzebruch spectral
cohomology sequence converges to zHkCl.X n/. It has as E2 –term E

k;l
2
.X n/ D

zH k.X nIHl.f�g//. Since zH k.X IHl.f�g//D 0 for all k , we have E
k;l
2
.X n/D 0 for

k 6D n. This implies E
k;l
1 .X n/ D 0 for k 6D n. We have the descending filtration

Fk;m�kHm.X n/ of Hm.X n/ such that

Fk;lHm.X n/=FkC1;l�1Hm.X n/ŠEk;l
1 .X n/:

Algebraic & Geometric Topology, Volume 13 (2013)
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Hence Fk;lHm.X n/D 0 for k � n and Fk;lHm.X n/DHm.X n/ for k < n. Since
the map Hm.X n/!Hm.X n�1/ respects this filtration, it must be trivial.

(ii) Recall Milnor’s exact sequence (see Whitehead [38, Theorem 1.3, Section XIII.1,
page 605])

0! lim
 �

1
n!1

zHk�1.X n/! zHk.X /! lim
 �n!1

zHk.X n/! 0:

Since f zHk.X n/g is pro-trivial for all k 2 Z, we conclude from Lemma 1.1

lim
 �

1
n!1

zHk�1.X n/D 0I lim
 �n!1

zHk.X n/D 0:

This finishes the proof of Lemma 3.1.

Lemma 3.2 Let Y be a finite CW–complex Let R be a commutative associative ring
which is flat over Z. Then the canonical R–map

Hk.Y /˝Z R
Š
�!Hk.Y IR/

is an isomorphism.

Proof Since R is flat over Z, the map Hk.Y /˝ZR
Š
��!Hk.Y IR/ is a transformation

of homology theories. It is bijective for Y Df�g. Hence by a Mayer–Vietoris argument
it is bijective for every finite CW–complex Y .

Lemma 3.3 Let X be a finite proper G –CW–complex. Let P.X / be the set of primes
p which divide the order of some isotropy group of X . Let Z� Z

�
1

P.X /
�
�Q be the

ring obtained from Z by inverting the elements in P.X /. Let q.X /W EG�GX!GnX

be the projection. Then there is for k 2 Z a R–map, natural in X ,

rk.X /W Hk.EG �G X /˝Z Z
�

1
P.X /

�
!Hk.GnX /˝Z Z

�
1

P.X /
�

such that

rk.X / ıHk.q.X //˝Z idW Hk.GnX //˝Z Z
�

1
P.X /

�
!Hk.GnX //˝Z Z

�
1

P.X /
�

is an isomorphism.

Proof Put ƒD Z
�

1
P.X /

�
. Consider the commutative diagram

Hk.GnX /˝Zƒ
Hk.q.X //˝Zƒ //

��

Hk.EG �G X /˝Zƒ

��

Hk.GnX Iƒ/
Hk.q.X /Iƒ/ // Hk.EG �G X Iƒ/:

Algebraic & Geometric Topology, Volume 13 (2013)
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The left vertical arrow is an isomorphism by Lemma 3.2. Hence it suffices to show that
the lower horizontal map is an isomorphism. Since X is finite proper, a Mayer–Vietoris
argument shows that it suffices to treat the case X DG=H for some finite group H �G

such that jH j is invertible in ƒ. Since zH k.BH IHq.f�gIƒ//D 0 vanishes for all k by
Brown [13, Corollary 10.2, Chapter III, page 84], this follows from Lemma 3.1(ii).

Lemma 3.4 Let H be a finite group. Let P.H / be the set of primes dividing jH j.
The canonical map of pro–Z–modules

f zHk.BH n�1/g
Š
��!

Y
p2P.H /

f zHk.BH n�1
IZyp/g

is a pro-isomorphism for k 2 Z. The pro-moduleY
p prime

p 62P.H /

f zHk.BH n�1
IZyp/g

is pro-trivial.

Proof We have the exact sequence of abelian groups

0 �! Z
i
�!

Y
p2P.H /

Zyp �! coker.i/ �! 0

where i is the product of the canonical embeddings Z! Zyp . It induces a long exact
sequence

� � � �! zHk�1.BH n�1
I coker.i// �! zHk.BH n�1/

�! zHk

�
BH n�1

I

Y
p2P.H /

Zyp

�
�! zHk.BH n�1

I coker.i// �! � � �

and thus an exact sequence of pro–Z–modules

f zHk�1.BH n�1
I coker.i//g �! f zHk.BH n�1/g

�!

�
zHk

�
BH n�1

I

Y
p2P.H /

Zyp

��
�! f zHk.BH n�1

I coker.i//g

Multiplication with the order of jH j induces an isomorphism

jH j � idW coker.i/
Š
��! coker.i/:

Algebraic & Geometric Topology, Volume 13 (2013)
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Hence zH k.BH IHl.f�gI coker.i/// vanishes for all k; l 2 Z by [13, Corollary 10.2,
Chapter III, page 84]. We conclude from Lemma 3.1(i) that the pro–Z–module
f zHk.BH n�1I coker.i/g is trivial. This shows that the obvious map of pro–Z–modules

f zHk.BH n�1/g
Š
��!

�
zHk

�
BH n�1

I

Y
p2P.H /

Zyp

��
is bijective. The canonical map

zHk

�
Y I

Y
p2P.H /

Zyp

�
!

Y
p2P.H /

zHk.Y IZyp/

is a natural transformation of cohomology theories satisfying the disjoint union axiom
and is an isomorphism for Y D f�g since the set P.H / is finite. Hence it is an
isomorphism for every finite-dimensional Y and in particular for Y D BH n�1 . We
conclude that the obvious map of pro–Z–modules

f zHk.BH n�1/g
Š
�!

Y
p2P.H /

f zHk.BH n�1
IZyp/g

is bijective.

If p does not divide jH j, then H k.BH I zHq.f�gIZyp// D 0 by [13, Corollary 10.2,
Chapter III, page 84]. We conclude from Lemma 3.1(i) that the map induced by the
inclusion

f zHk.BH n
IZyp/g ! f zHk.BH n�1

IZyp/g

is trivial for all k 2 Z and n� 2. This implies thatY
p 62P.H /

f zHk.BH n�1
IZyp/g

is pro-trivial.

Lemma 3.5 Let X be a proper G –CW–complex. Let P be a set of primes containing
P.X /. Then the canonical map

Hk.q.X /W EG �G X !GnX /
Š
�!

Y
p2P

Hk.q.X /W EG �G X !GnX IZyp/

is an isomorphism.

Proof We conclude from the Milnor’s exact sequence (see Whitehead [38, Theo-
rem 1.3, Section XIII.1, page 605]) and the Five Lemma that it suffices to treat the
case, where X is finite dimensional. Using Mayer–Vietoris sequences the claim can
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be reduced to the case X DG=H for some finite group H such that P contains the
set P.H / of primes dividing the order of H . So we must show the canonical map

zHk.BH /
Š
�!

Y
p2P

zHk.BH IZyp/

is bijective for any finite group H with .H / � P . By Milnor’s exact sequence [38,
Theorem 1.3, Section XIII.1, page 605] and the Five Lemma, it remains to show the
bijectivity of

lim
 �n!1

zHk.BH n�1/ �! lim
 �n!1

Y
p2P

zHk.BH n�1
IZyp/I

lim
 �

1
n!1

zHk.BH n�1/ �! lim
 �

1
n!1

Y
p2P

zHk.BH n�1
IZyp/:

This follows from Lemma 1.1 and Lemma 3.4.

For a map f W X!Y and a cohomology theory H� define Hk.f / to be Hk.cyl.f /;X/,
where cyl.f / is the mapping cylinder of f .

Theorem 3.6 (Cohomology of the Borel construction) Let H� be a cohomology
theory which satisfies the disjoint union axiom. Let X be a proper G–CW–complex.
Let P.X / be the set of primes p for which p divides the order jGxj of the isotropy
group Gx of the some x 2X .

(i) There is a natural long exact sequence

� � � �!Hk.GnX /
Hk.q.X //
�������!Hk.EG �G X / �!Y

p2P.X /

HkC1.q.X /W EG �G X �!GnX IZyp/
ık

�!HkC1.GnX /
HkC1.q.X //
���������! � � �

(ii) Suppose that X is a finite proper G –CW–complex.
Then for all k 2 Z the map Hk.q.X // appearing in assertion (i) becomes split
injective after applying �˝Z Z

�
1

P.X /
�

and we obtain a natural isomorphism

Hk.EG �G X /˝Z Z
�

1
P.X /

� Š
��!

Hk.GnX /˝Z Z
�

1
P.X /

�
�

Y
p2P.X /

HkC1.q.X /W EG �G X �!GnX IZyp/˝Z Z
�

1
P.X /

�
I
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(iii) Suppose that X is a finite proper G–CW–complex. Suppose that Hk.f�g/ is
finitely generated as abelian groups for all k 2 Z. Assume that zHk.BH IZyp/ is
a finitely generated Zyp –module for all k 2 Z and all isotropy groups H of X .
Then for all k 2 Z the abelian group Hk.GnX / is finitely generated, and for
appropriate natural numbers rk

p .X / there is an exact sequence

0 �! A �!Hk.GnX / �!Hk.EG �G X / �! B �
Y

p2P.X /

�
Zyp
�rk

p .X /
�! C �! 0;

where A, B and C are finite abelian groups with

A˝Z Z

�
1

P.X /

�
D B˝Z Z

�
1

P.X /

�
D C ˝Z Z

�
1

P.X /

�
D 0:

Proof (i) This follows from Lemma 3.5 and the long exact sequence associated to
q.X /W EG �G X !GnX .

(ii) This follows from assertion (i) and Lemma 3.3.

(iii) Since by assumption X is a finite proper G –CW–complex and the Zyp –module
Hk.q.G=H / WEG �G G=H ! Gn.G=H /IZzp/D zHk.BH IZyp/ is finitely generated
for all k 2Z and all isotropy groups H of X , the Zyp –module Hk.q.X / WEG�G X!

GnX IZzp/ is finitely generated for all k 2 Z. Since Hk.f�g/ is a finitely generated
abelian group by assumption for all k 2 Z and GnX is a finite CW–complex, the
abelian group Hk.GnX / is finitely generated for k 2 Z.

Recall that Zyp is a principal ideal domain and for each prime ideal I there is l 2N0

such that I is isomorphic to .pl/ and Zyp=I is isomorphic to Z=pl . Hence for any
k 2 Z we have an isomorphism

HkC1.q.X /W EG �G X �!GnX IZyp/Š Bp � .Zyp/
r

p

k
.X /

for some finite abelian p–group Bp and some natural number rk
p .X /. Taking the

product over the primes p 2 P.X /, we get from Lemma 3.5

HkC1.q.X /W EG �G X �!GnX /Š
Y

p2P.X /

Bp � .Zyp/
rk
p .X /:

Since P.X / is finite, B WD
Q

p2P.X /Bp is a finite abelian group which vanishes after
inverting the primes in P.X / and we have

HkC1.q.X /W EG �G X �!GnX /Š B �
Y

p2P.X /

.Zyp/
rk
p .X /:
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We obtain from assertion (i) the long exact sequence

0 �! A �!Hk.GnX / �!Hk.EG �G X / �! B �
Y

p2P.X /

�
Zyp
�rp

k
.X /
�! C �! 0;

where A and C can be identified with the image of boundary operators

AŠ image.ık�1
W Hk�1.EG �G X !GnX /!Hk.GnX //I

C Š image.ık
W Hk.EG �G X !GnX /!HkC1.GnX //:

We conclude from assertion (ii) that the image of the boundary operators vanishes
after applying �˝Z Z

�
1

P.X /
�
. Since we have already shown that the abelian group

Hk.GnX // is finitely generated for all k 2Z, A and C are finite abelian groups which
vanish after inverting all primes in P.X /. This finishes the proof of Theorem 3.6.

Theorem 3.7 Let X be a finite proper G –CW–complex. If we take H� to be topolog-
ical K–theory K� in Theorem 3.6, then the numbers rk

p .X / appearing in assertion (iii)
of Theorem 3.6 are given by

rk
p .X /D

X
.g/2conp.G/

X
i2Z

dimQ
�
H kC2i

�
CGhginX

hgi
IQ
��
:

Proof Consider the equivariant cohomology theory with values in Qyp (in the sense
of Lück [21, Section 1] which is given for a proper G –CW–complex Y by

Hk
G.Y / WDKkC1.q.Y /W EG �Y !GnY IZyp/˝Zyp Qyp:

Notice that it does not satisfy the disjoint union axiom (for arbitrary index sets) since
infinite products are not compatible with �˝Zyp Qyp , but this will not matter since we
will finally consider a finite proper G–CW–complex X . Let F.X / be the family of
subgroups H of G with X H 6D ∅. We obtain from [21, Theorem 4.2]) (using the
notation from that paper) an isomorphism of Qyp –modules

Hk
G.X /

Š
�!

Y
pCqDk

H
p

QypSub.GIF.X //
.X IHq

G
.G=?//:(3.8)

We get from the Atiyah–Segal Completion Theorem (see Atiyah–Segal [7, Theo-
rem 2.1]) and [21, Theorem 3.5] (using the notation of [21, Theorem 3.5]) pro-
isomorphism of pro–Z–modules

f zKq.BH n�1/g
Š
��!

(Q
p2P.H /

˚
im
�

resHp

H

�
=pn � im

�
resHp

H

�	
q D 0I

f0g q D 1:
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Hence we obtain from Lemma 3.4 a pro-isomorphism of pro–Z–modulesY
p2P.H /

f zKn.BH n�1
IZyp//g

Š
��!

Y
p2P.H /

˚
im
�

resHp

H

�
=pn
� im

�
resHp

H

�	
:

One easily checks that it induces for each prime p 2 P.H / an isomorphism of pro-
isomorphism of pro–Z–modules

f zK0.BH n�1
IZyp//g

Š
��!

˚
im
�

resHp

H

�
=pn
� im

�
resHp

H

�	
:

This implies that the two functors from Sub.GIF.X // to the category of Qyp –modules,
which send a an object H 2 F.X / to Hq.G=H / D zKq.BH IZyp/˝Zyp Qyp and to
im
�

resHp

H

�
˝Zyp Qyp respectively, agree for even q . If q is odd, the functor given

by Hq.G=H / D zKq.BH IZyp/˝Zyp Qyp is trivial. Hence we obtain from (3.8) the
Qyp –isomorphism

Hk
G.X /

Š
�!

Y
i2Z

H kC2i
QypSub.G/

.X I im.res?p

?
/˝Zyp Qyp/:(3.9)

Now one shows analogous to the argument in [21, Section 4] using [21, Theorem 5.2(c)
and Example 5.3] that there is an isomorphism of Qyp –modules

(3.10) H kC2i
QypSub.G/

�
X I im

�
res?p

?

�
˝Zyp Qyp

�
Š

Y
.g/2conp.G/

Y
i2Z

H kC2i.CGhginX
hgi
IQyp//:

Now we conclude from (3.9) and (3.10).

dimQyp .HG.X //D
X

.g/2conp.G/

X
i2Z

dimQyp

�
H kC2i.CGhginX

hgi
IQyp/

�
D

X
.g/2conp.G/

X
i2Z

dimQ
�
H kC2i.CGhginX

hgi
IQ/

�
:

Since Hk
G
.X /DKkC1.q.Y /W EG�X!GnX IZyp/ is Zyp –isomorphic to .Zyp/r

k
p .X /

by definition of rk
p .X /, Theorem 3.7 follows.

4 Borel homology

The material of Section 3 has analogues for Borel homology. We begin with the
analogue of Theorem 3.6. Let H� be a (generalized) homology theory with values in
the category of Z–modules which satisfies the disjoint union axiom for arbitrary index
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sets, that is, for any family fXi j i 2 Ig the mapM
i2I

Hk.ji/W
M
i2I

Hk.Xi/
Š
��!Hk

�a
i2I

Xi

�
is an isomorphism, where ji W Xi !

`
i2I Xi is the canonical inclusion. Given a

CW–complex X , let zHk.X / be the kernel of the map Hk.X /!Hk.f�g/ induced by
the projection X ! f�g. We define for any abelian group A

Hk.X IA/ WDHk�d .X �M.A; d/;X � f�g/

where d is some positive integer and M.A; d/ is the Moore space associated to A in
degree d .

Theorem 4.1 (Homology of the Borel construction) Let H� be a homology theory
which satisfies the disjoint union axiom. Let X be a proper G–CW–complex. Let
P.X / be the set of primes p for which p divides the order jGxj of the isotropy group
Gx of the some x 2X . Then:

(i) There is a long exact sequence

� � � �!HkC1.GnX / �!
M

p2P.X /

HkC1.q.X /W EG �G X �!GnX IZ=p1/

�!Hk.EG �G X /
Hk.q.X //
�������!Hk.GnX / �! � � � I

(ii) The map Hk.q.X // appearing in assertion (ii) induces after applying �˝Z

Z
�

1
P.X /

�
a natural isomorphism

Hk.q.X //˝Z idW Hk.EG �G X /˝Z Z
�

1
P.X /

� Š
��!Hk.GnX /˝Z Z

�
1

P.X /
�
I

(iii) Suppose that X is a finite proper G–CW–complex. Suppose that Hk.f�g/ is
finitely generated as abelian groups for all k 2Z. Assume that zHk.BH IZ=p1/
can be embedded into .Z=p1/r for some r D r.k;H / for all k 2 Z and all
isotropy groups H of X .
Then, for appropriate natural numbers r

p

k
.X /, there is an exact sequence

0�!C �!
M

p2P.X /

.Z=p1/r
p

k
.X /
�B�!Hk.EG�GX/

Hk.q.X //
������!Hk.GnX/�!A�!0;

where A, B and C are finite abelian groups with

A˝Z Z
�

1
P.X /

�
D B˝Z Z

�
1

P.X /
�
D C ˝Z Z

�
1

P.X /
�
D 0:
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Proof (i) There is a canonical isomorphismM
p2P.X /

Z=p1
Š
��!

M
p2P.X /

ZŒ1=p�=Z
Š
��! Z

�
1

P.X /
�
=Z:

Thus we obtain a short exact sequence of abelian groups

1 �! Z �! Z
�

1
P.X /

�
�!

M
p2P.X /

Z=p1 �! 1:

The boundary of the associated Bockstein sequence yields a natural transformation of
equivariant homology theories for proper G–CW–complexes satisfying the disjoint
union axiom

@k.X /W
M

p2P.X /

Hk.q.X /W EG �G X �!GnX IZ=p1/

�!Hk�1.q.X /W EG �G X �!GnX /:

If H is a finite subgroup and P a set of primes which contains all primes dividing the
order of H , then

zHk.BH;M /˝Z Z
�

1
P
�
D zHk

�
BH;M ˝Z Z

�
1
P
��
D 0

holds for all k2Z and all abelian groups M (see Brown [13, Corollary 10.2, Chapter III,
page 84]). By the Atiyah–Hirzebruch spectral sequence we conclude that

zHk�1

�
BH IZ

�
1

P.X /
��
ŠHk

�
EG �G G=H �!Gn.G=H /IZ

�
1

P.X /
��

vanishes for all k 2 Z and all subgroups H � that appear as isotropy group of X .
This implies that Hk

�
q.X /W EG �G X ! GnX IZ

�
1

P.X /
��

vanishes for all k 2 Z.
Hence @k.X / is an isomorphism.

(ii) Notice that the functor �˝Z Z
�

1
P.X /

�
is exact. We have already shown that

Hk.q.X /W EG �G X �!GnX /˝Z Z
�

1
P.X /

�
ŠHk

�
EG �G X �!GnX IZ

�
1

P.X /
��

vanishes for all k 2 Z. Now the claim follow from the long exact homology sequence
associated to q.X W EG �G X !GnX /.

(iii) The proof is analogous to the proof of Theorem 4.1(iii), as long one has Lemma 4.2
available which we explain next.

Fix a prime p . For an abelian group A define A� WD homZ.A;Q=Z/. If A is a finite
abelian p–group, then A and A� are abstractly isomorphic as abelian groups. If A

is an abelian p–group, then A is the colimit colim
���!n!1 ker.pn � idAW A!A/ and

hence A� D lim
 �n!1.ker.pn � idA/

� . Hence A� is the inverse limit of a system of
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finite abelian p–groups and therefore carries a canonical Zyp –module structure and a
canonical structure of a totally disconnected compact topological Hausdorff group.

Lemma 4.2

(i) The following assertions are equivalent for an abelian p–group A:

(a) A can be embedded into .Z=p1/r for some r D r.A/;
(b) AŠ .Z=p1/r �T for some r D r.A/ and some finite abelian p–group T ;
(c) A� is a finitely generated Zyp –module;

(ii) The category of groups A that embed into .Z=p1/r for some r D r.A/ form
a Serre category, that is, given an exact sequence of abelian groups 0! A!

B! C ! 0, then B belongs to the category if and only if both A and C do.

Proof Since the Z–module Q=Z is divisible and hence injective, an exact sequence

0 �!A
i
�! B

p
��! C �! 0

of abelian p–groups induces an exact sequence of totally disconnected compact topo-
logical groups

0 �! C �
p�

���! B�
i�

��!A� �! 0:

For a topological group G let �G be its Pontryagin dual, that is, the abelian group of
continuous homomorphisms from G to S1 . Given an exact sequence

0 �!G
j
��!H

q
��!K �! 0

of totally disconnected compact topological Hausdorff groups, we obtain an induced
exact sequence

0 �! �K yq
��! �H yj

��! �G:
For an abelian p–group A we obtain a canonical homomorphism �AW A! �A� sending
a to the continuous group homomorphism homZ.A;Q=Z/!S1; f 7! exp.2� if .a//.
Thus we obtain for any short exact sequence

0 �!A
i
�! B

p
��! C �! 0

of abelian p–groups and commutative diagram with exact rows

0 // A

�A

��

i // B

�B

��

p // C

�C

��

// 0

0 // �A� yi� // �B� yp� // �C �
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One easily checks that for a finite abelian p–group A the canonical map �A is bijective.
Next we show that for any abelian p–group B the map �B is injective. Consider any
element b 2B . Let A�B be the finite cyclic subgroup generated by b . We conclude
from the commutative diagram above that �B.b/ D 0 implies that �A.b/ D 0 and
hence b D 0.

Now suppose that 0 �!A
i
�! B

p
��! C �! 0 is an exact sequence of abelian p–

groups. Recall that Zyp is a principal ideal domain. Hence B� is a finitely generated
Zyp –module, if and only if both A� and C � are finitely generated Zyp –modules. This
shows that the category of abelian p–groups B for which B� is a finitely generated
Zyp –module is a Serre category.

Let A be an abelian group which can be embedded into B D .Z=p1/r . Let

0 �!A
i
�! B

p
��! C �! 0

be the exact sequence of abelian p–groups with B D .Z=p1/r and C D B=A. We
want to show that yp� is surjective. Recall that Zyp is a principal ideal domain and
the prime ideals different from f0g and Zyp look like .pn/ for n running through the
positive integers. We can find isomorphisms of Zyp –modules B� Š .Zyp/a˚ .Zyp/b

and C � Š .Zyp/a such that the map p�W C �! B� looks under these identifications
like

.Zyp/
a
�! .Zyp/

a
˚ .Zyp/

b;

.x1;x2; : : : ;xa/ 7�! .pn1x1;p
n2x2; : : : ;p

naxa; 0; : : : ; 0/

for appropriate positive integers n1 , n2 , . . . na . Hence it suffices to show for each
positive integers n that the map pn � idW Zyp! Zyp induces epimorphism between the
Pontryagin duals. This induced map on the Pontryagin duals can be identified with
pn � idW Z=p1! Z=p1 which is indeed surjective. Hence we obtain a commutative
diagram with exact rows

0 // A

�A

��

i // B

�B

��

p // C

�C

��

// 0

0 // �A� yi� // �B� yq� // �C � // 0

Since �B is bijective for B D .Z=p1/r and �C is injective, we conclude that �A is
bijective. Since A� is a finitely generated Zyp module, �A� and hence A is isomorphic
to .Z=p1/r �T for some finite abelian p–group T and integer r � 0.

If A is isomorphic to .Z=p1/r �T for some finite abelian p–group and integer r � 0,
then A� is a finitely generated Zyp –module.
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Suppose that A is an abelian p–group such that A� is a finitely generated Zyp –module,
then A embeds into �A� which is isomorphic to Z=p1/s �T for an integer s � 0 and
a finite abelian p–group T . Hence A embeds into Z=p1/r for some integer r � 0.
This finishes the proof of Lemma 4.2 and thus of Theorem 4.1.

5 Universal coefficient theorems for K –theory

A proof of the following Universal Coefficients Theorem can be found in Anderson [4]
and Yosimura [40, (3.1)], the homological version then follows from Adams [2, Note 9
and 15].

Theorem 5.1 (Universal Coefficient Theorem for K–theory) For any CW–complex
X there is a short exact sequence

0 �! extZ.K��1.X /;Z/ �!K�.X / �! homZ.K�.X /;Z/ �! 0:

If X is a finite CW–complex, there is also the K–homological version

0 �! extZ.K�C1.X /;Z/ �!K�.X / �! homZ.K
�.X /;Z/ �! 0:

Corollary 5.2 For any G –CW–complex X there is a short exact sequence

0 �! extZ.K��1.EG �G X /;Z/ �!K�.EG �G X /

�! homZ.K�.EG �G X /;Z/ �! 0:

Also the homological version of the Universal Coefficient Theorem has an equivariant
counterpart.

Remark 5.3 Recall that the Completion Theorem 2.4 for a finite proper G–CW–
complex X yields an isomorphism K�.EG �G X /

Š
��!lim
 �n�1

K�..EG �G X /n/.
Hence K�.EG �G X / can be regarded as a pro-discrete group. Thus it carries a
topology, the so-called skeletal topology. In terms of topological abelian groups the main
statement of the Completion Theorem 2.4 says that there is a canonical isomorphism of
topological groups K�.EG �G X /ŠK�

G
.X /yI , where K�

G
.X /yI carries the I –adic

topology. The exact sequence introduced in Remark 2.7 then provides an Equivariant
Universal Coefficient Theorem for K–homology for finite proper G –CW–complexes
X , which says that the following sequence is exact

0 �! ext1cts.K
�C1.EG �G X /;Z/ �!K�.EG �G X /

�! homcts.K
�.EG �G X /;Z/ �! 0:
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The following lemma will be needed for the proof of Theorem 0.1, which we will give
below.

Lemma 5.4 Suppose that X is a finite proper G –CW–complex. Then the two numbers
rk
p .X / and r

p

k�1
.X / defined in Theorem 3.6(iii) and Theorem 4.1(iii) coincide for all

primes p and all k 2 Z.

Proof For an abelian group A let Ayp be its p–adic completion, that is, the inverse
limit lim

 �n!1A=pnA. There is a canonical Zyp –module structure on Ayp . Define

dimyp.A/ WD dimQyp .Ayp˝Zyp Qyp/:

One easily checks

dimyp.Z/D 1I(5.5)

dimyp.Zyp/D 1I(5.6)

dimyp.Zyq/D 0; if p 6D qI(5.7)

dimyp.A/D 0; if A is finite:(5.8)

Next we want to show for an exact sequence of abelian groups

0 �!A
i
�! B

p
��! C �! 0

that

dimyp.B/D dimyp.A/C dimyp.C /:(5.9)

We obtain an exact sequence of Zyp –modules

0 �!Ayp
iyp
��! Byp

pyp
���! Cyp �! 0

from Atiyah–MacDonald [6, Corollary 10.3]. The induced sequence of Qyp –modules

0 �!Ayp˝Zyp Qyp
iyp˝Zyp id
�������! Byp˝Zyp Qyp

pyp˝Zyp id
�������! Cyp˝Zyp Qyp �! 0

is exact. Now (5.9) follows. We conclude from (5.5), (5.8) and (5.9) for any finitely
generated abelian group A

dimyp.A/D dimZ.A/;(5.10)

where dimZ.A/ is the dimension of the rational vector space A˝Z Q.

Let C� be a finite dimensional chain complex of abelian groups such that dimyp.Ck/ is
finite and Hk.C�/ is finite for each k 2 Z. Then we conclude from (5.8) and (5.9)X

k2Z

.�1/k � dimyp.Ck/D 0:(5.11)
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Theorem 3.6(iii) implies that there is a 2–dimensional chain complex

� � � �! 0 �!Kk.GnX / �!Kk.EG �G X / �!
Y

p2P.X /

�
Zyp
�rk

p .X /
�! 0 �! � � � ;

whose homology is finite, and that Kk.GnX / is a finitely generated abelian group.
We conclude from (5.10) and (5.11) for any prime p

dimyp.Kk.EG �G X //D rk
p .X /C dimZ.K

k.GnX //;(5.12)

where rk
p .X / is defined to be 0 for p 62 P.X /.

We conclude from Theorem 4.1(iii) that there is a 2–dimensional chain complex with
finite homology

� � � �! 0 �! extZ.Kk.GnX /;Z/ �! extZ.Kk.EG �G X /;Z/

�! extZ

� M
p2P.X /

.Z=p1/r
p

k
.X /;Z

�
�! 0 �! 0 �! � � �

Since Kk.GnX /;Z/ is finitely generated abelian, extZ.Kk.GnX /;Z/ is finite. The
Zyp –module ext.Z=p1;Z/D ext.Z=p1;Z/yp is isomorphic to Zyp (see Weibel [37,
Example 3.3.3, page 73]). We conclude from (5.8) and (5.11) for any prime p

dimyp.extZ.Kk.GnX /;Z//D r
p

k
.X /:(5.13)

Theorem 4.1(iii) implies that the map

homZ.Kk.q.X //;Z/W homZ.Kk.GnX /;Z/! homZ.Kk.EG �G X /;Z/

is injective and has finite cokernel. Since Kk.GnX / is a finitely generated abelian
group, we conclude from (5.9), (5.10) and the Universal Coefficient Theorem for
non-equivariant K–theory (Theorem 5.1) applied to GnX

dimyp.homZ.Kk.EG �G X;Z//D dimZ.Kk.GnX //

D dimZ.K
k.GnX //:(5.14)

We conclude from Corollary 5.2 and equations (5.9), (5.13) and (5.14)

dimyp.Kk.EG �G X //D r
p

k�1
.X /C dimZ.K

k.GnX /:(5.15)

Now (5.12) and (5.15) imply rk
p .X /D r

p

k�1
.X /. This completes the proof.

Lemma 5.16 Let f W X ! Y be a map of CW–complexes which induces isomor-

phisms Hn.X IZ/
Š
�!Hn.Y IZ/ for all n � 0. Then for any cohomology theory H�
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and any homology theory H� (satisfying the disjoint union axiom) and any n 2 Z, the
maps Hn.f /W Hn.Y /!Hn.X / and Hn.f /W Hn.X /!Hn.Y / are isomorphisms.

Proof Because of the excision and the suspension axiom for the cohomology theory
H� if suffices to establish the result for the twofold suspension of f . Since the twofold
suspension of a CW–complex is simply-connected it follows from the Hurewicz theorem
that the twofold suspension of f is a homotopy equivalence. The claim then follows
from the homotopy invariance axiom for the cohomology theory H� .

Now we can give the proof of Theorem 0.1.

Proof of Theorem 0.1 This follows from Theorem 3.6, Theorem 3.7, Theorem 4.1,
Lemma 5.4 and Lemma 5.16, as soon as we have shown that for every prime p ,
every element g 2G of p–power order and every k 2 Z we have an isomorphism of
Q–modules

H k.BCGhgiIQ/ŠH k.X hgi=CGhgiIQ/:(5.17)

We have zHk.X IZ/D 0 for all k 2 Z by assumption. Hence we get zHk.X IFp/D 0

for all k 2Z, where Fp is the field with p elements. By Smith theory (see Bredon [12,
Theorem 5.2, Section III.5, page 130]) we conclude that X hgi is non-empty and
zHk.X

hgiIFp/D 0 for all k 2 Z. Hence zHk.X
hgiIQ/D 0 for all k 2 Z and hgi is

subconjugated to an isotropy group of X . Since X is a finite G–CW–complex, we
conclude that the sets conp.G/ and P.G/ are finite.

Let Y be any proper CGhgi–CW–complex with zHk.Y IQ/D 0 for all k 2Z. Choose
a CGhgi–map f W Y !ECGhgi. The QŒCGhgi�–chain map

C�.f /˝Z idQW C�.Y /˝Z Q! C�.ECGhgi/˝Z Q

is a QŒCGhgi�–chain map of projective QŒCGhgi�–chain complexes which induces
an isomorphism on homology. Hence it is a QŒCGhgi�–chain homotopy equivalence.
It induces a chain homotopy equivalence of Q–chain complexes C�.f /˝ZŒGhgi�Q.

Hence we obtain a Q–isomorphism H k.Y=CGhgiIQ/
Š
�!H k.ECGhgi/=CGhgiIQ/.

If we apply this to Y DX and Y DECGhgi, we get (5.17). This finishes the proof
of Theorem 0.1.

Next we deal with the equivariant universal coefficient theorem. For a finite proper
G–CW–complex its equivariant K–homology KG

k
.X / can be identified with the

expression Kk.C;C0.X / Ì G/ given by Kasparov’s KK–theory. The Kasparov
intersection pairing yields for a finite proper G –CW–complex a pairing

Kk
G.X /˝KG

k .X /!KK0.C;C/Š Z:(5.18)
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Taking adjoints gives homomorphisms

K�G.X /! homZ.K
G
� .X /;Z/I(5.19)

KG
� .X /! homZ.K

�
G.X /;Z/:(5.20)

Now we give the proof of the Equivariant Universal Coefficient Theorem for K–theory.

Proof of Theorem 0.3 Assume first that X is a proper orbit G=H . Green’s imprimi-
tivity theorem [15, Section 2] in this case says that C0.G=H /ÌG and CH are Morita
equivalent, and therefore they are also KK–equivalent. Hence

K�G.G=H /ŠK�.C0.G=H /Ì G/ŠK�.CH /;

and KG
� .G=H /ŠKK.C0.G=H /Ì G;C/ŠKK.CH;C/:

Since CH is a finite C �–algebra K�
G
.G=H / and KG

� .G=H / are both finitely generated
(projective) Z–modules it follows by induction over the dimension and a subinduction
over the number of cells of top dimension that K�

G
.X / and KG

� .X / are finitely
generated for all finite proper G –CW–complexes X . In particular (0.4) is exact if and
only if (0.5) is.

By a result of Rosenberg–Schochet [32, Theorem 1.17 and Theorem 7.10] the sequence
(0.4) is exact and splits unnaturally if C0.X / Ì G is contained in the category of
C �–algebras N , introduced in [32]. We shall prove that C0.X /ÌG 2N by induction
over the number of cells of X .

Since C0.G=H /Ì G is KK–equivalent to CH and the category N contains all C �–
algebras which are KK–equivalent to finite C �–algebras (see Blackadar [9, 22.3.5(b)])
we conclude that the C �–algebras C0.G=H /Ì G for all proper orbits G=H are in
N . A second property of the category N is that it is closed under extensions [9,
22.3.4 (N3)]. If X is a finite proper G –CW–complex for which C0.X /Ì G is in N ,
and Y is obtained from X by attaching a proper n–dimensional G –cell ZDG=H�en

we obtain an exact sequence

0 �! C0.Z/ �! C0.Y / �! C0.X / �! 0:

Taking the crossed product with G we obtain an exact sequence

0 �! C0.Z/Ì G �! C0.Y /Ì G �! C0.X /Ì G �! 0:

The extension property of N yields that C0.Y /Ì G is in N .

Remark 5.21 Let G be a finite group. The isomorphism of abelian groups

�W R.G/! homZ.R.G/;Z/
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which sends ŒV � to the map �.V /W R.G/! Z; ŒW � 7! dimC..V ˝C W /G/, is the
special case X D f�g of the Equivariant Universal Coefficient Theorem for K–theory
(Theorem 0.3). It is in fact an isomorphism of R.G/–modules and we get for any
RC.G/–module M a natural isomorphism of RC.G/–modules

extiRC.G/
.M;RC.G//

Š
��! extiZ.M;Z/

for i � 0 (see Madsen [27, 2.5 and 2.10]). Using change of ring isomorphisms, the
Equivariant Universal Coefficient Theorem for K–theory (Theorem 0.3) is equivalent
to the exactness of the short exact sequences

0 �! extR.G/.K
G
��1.X /;R.G// �!K�G.X / �! homR.G/.K

G
� .X /;R.G// �! 0;

0 �! extR.G/.K
�C1
G

.X /;R.G// �!KG
� .X / �! homR.G/.K

�
G.X /;R.G// �! 0:

The exactness of these sequences has been proved by Bökstedt [10] using the concept
of Anderson duality. Bökstedt’s technique also can be used to prove the Equivariant
Universal Coefficient Theorem for K–theory (Theorem 0.3) for a finite group G .

6 Examples

Example 6.1 Consider the group G D SL3.Z/. We conclude from Soulé [34, Corol-
lary, page 8] that for G D SL3.Z/ the quotient space GnEG is contractible. Hence
the long exact sequence in Theorem 3.6(i) reduces to an isomorphism

zHk.BG/
Š
�!

Y
p2P.G/

zHk.BGIZyp/

and the one of Theorem 4.1(i) to the isomorphismM
p2P.G/

zHkC1.BGIZ=p1/
Š
�! zHk.BG/:

From the classification of finite subgroups of SL3.Z/ we see that SL3.Z/ contains
up to conjugacy four subgroups of order 2 and two cyclic subgroups of order 3. The
cyclic subgroups of order 3 have finite normalizers and the action of the normalizer
on each of this group is non-trivial. There are no cyclic subgroups of order p for a
prime p different from 2 and 3. Hence we see that con2.G/ contains four elements
and con3.G/ contains two elements. The rational homology of all the centralizers of
elements in con2.G/ and con3.G/ agree with the one of the trivial group (see Adem [3,
Example 6.6]). We get in the notation of Theorem 0.1 that r0

2
.G/ D 4, r0

3
.G/ D 2,
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r1
2
.G/ D 0, r0

3
.G/ D 1 and rk

p .G/ D 0 for p 6D 2; 3 and all k . We conclude from
Theorem 0.1 that there is an exact sequence

0! zK0.BG/! .Zy2/
4
˚ .Zy3/

2
˚B0! C0! 0

and an isomorphism
zK1.BG/ŠD1

for finite abelian groups B0 , C0 and D1 which vanish after applying �˝Z Z
�

1
6

�
.

Actually the computation using Brown–Petersen cohomology and the Conner–Floyd
relation in Tezuka–Yagita [36] show that one can choose the groups B0 , C0 and D1

to be zero.

The next result shall illustrate that the knowledge of the spaces EG allows to reduce
the computation of the (co-)homology of BG to the one of its finite subgroups. Let G

be a discrete group. Let MFIN be the subfamily of FIN consisting of elements in
FIN which are maximal in FIN . Consider the following assertions concerning G :

(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite
subgroup;

(NM) M 2MFIN !NM DM ;

For such a group there is a nice model for EG with as few non-free cells as possible.
Let f.Mi/ j i 2 Ig be the set of conjugacy classes of maximal finite subgroups of
Mi � Q. By attaching free G–cells we get an inclusion of G–CW–complexes
j1W

`
i2I G�Mi

EMi!EG , The we obtain by Lück–Weiermann [25, Corollary 2.11]
a G –pushout `

i2I G �Mi
EMi

j1 //

u1

��

EG

f1

��`
i2I G=Mi

k1 // EG

(6.2)

where u1 is the obvious G –map obtained by collapsing each EMi to a point.

Here are some examples of groups Q which satisfy conditions (M) and (NM):

� Extensions 1!Zn!G!F! 1 for finite F such that the conjugation action
of F on Zn is free outside 0 2 Zn .
The conditions (M), (NM) are satisfied by Lück–Stamm [24, Lemma 6.3]. There
are models for EG whose underlying space is Rn . The quotient GnEG looks
like the quotient of T n by a finite group.
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� Fuchsian groups F .
The conditions (M), (NM) are satisfied. (see for instance [24, Lemma 4.5]).
In [24] the larger class of cocompact planar groups (sometimes also called
cocompact NEC-groups) is treated. The quotients GnEG are closed orientable
surfaces.

� One-relator groups G .
Let G be a one-relator group. Let G D h.qi/i2I j ri be a presentation with one
relation. We only have to consider the case, where Q contains torsion. Let F

be the free group with basis fqi j i 2 Ig. Then r is an element in F . There
exists an element s 2 F and an integer m � 2 such that r D sm , the cyclic
subgroup C generated by the class s 2Q represented by s has order m, any
finite subgroup of G is subconjugated to C and for any q 2Q the implication
q�1C q\C 6D 1) q 2C holds. These claims follows from Lyndon–Schupp [26,
Propositions 5.17, 5.18 and 5.19, Section II.5, pages 107–108]. Hence Q satisfies
(M) and (NM). There are explicit two-dimensional models for EG with one
0–cell G=C �D0 , as many free 1–cells G�D1 as there are elements in I and
one free 2–cell G �D2 (see Brown [13, Exercise 2(c), Section II.5, page 44]).

Theorem 6.3 Suppose that the discrete group G satisfies conditions (M) and (NM).
Let pW BG!GnEG be the map induced by the canonical G –map EG!EG and
Bji W BMi! BG be the map induced by the inclusion ji W Mi!G . Then

(i) Let H� be a cohomology theory satisfying the disjoint union axiom. Then there
is a long exact sequence

� � �

Q
i2I
zHk�1.Bji /

�����������!

Y
i2I

zHk�1.BMi/
ık�1

���! zHk.GnEG/

zHk.p/
����! zHk.BG/

Q
i2I
zHk.Bji /

����������!

Y
i2I

zHk.BMi/
ık

�! zHkC1.GnEG/! � � �

The map zHk.p/ is split injective after applying �˝Z Z
�

1
P.G/

�
, provided that I

is finite;
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(ii) Let H� be a homology theory satisfying the disjoint union axiom. Then there is
a long exact sequence

� � �
zHkC1.p/
������! zHkC1.GnEG/

@kC1

���!

M
i2I

zHk.BMi/

L
i2I
zHk.Bji /

����������! zHk.BG/

zHk.p/
����! zHk.GnEG/

@k
�!

M
i2I

zHk�1.BMi/

L
i2I
zHk�1.Bji /

������������! � � �

The map zHk.p/ is split surjective after applying �˝Z Z
�

1
P.G/

�
.

Proof These long exact sequences come from the Mayer–Vietoris sequences associated
to the pushout which is obtained from the G–pushout (6.2) by dividing out the G–
action. For the splitting after applying �˝Z Z

�
1

P.G/
�

see Lemma 3.3 and its obvious
homological version.

Example 6.4 Let F be a cocompact Fuchsian group with presentation

ha1; b1; � � � ; ag; bg; c1; � � � ; ct j c
1

1
D � � � D c

t

t D c�1
1 : : : c�1

t Œa1; b1� : : : Œag; bg�D 1i

for integers g; t � 0 and i > 1. Then GnEG is an orientable closed surface Sg of
genus g . Since Sg is stably a wedge of spheres, we have

Hn.Sg/ŠHn.f�g/˚Hn�1.f�g/2g
˚Hn�2.f�g/:

If we suppose that Hn.f�g/ is torsion-free for all n 2 Z, then from Theorem 6.3(i) we
obtain for every n 2 Z the exact sequence

0!Hn.Sg/! zHn.BG/!

tY
iD1

zHn.BZ=i/! 0:
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