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The Arone–Goodwillie spectral sequence for †1�n

and topological realization at odd primes
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We employ the Goodwillie spectral sequence for the iterated loop space functor in
order to provide realizability conditions on certain unstable modules over the Steenrod
algebra at an odd prime.
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1 Introduction

A basic task of algebraic topology is to construct meaningful algebraic invariants of
topological spaces. Singular cohomology can be viewed as such an invariant, but in
many different ways. In order to specify the algebraic natures of singular cohomology
appearing in this article, fix a finite prime field Fp as coefficients. A rather elementary
view is to consider H�.X /, the direct sum of all cohomology groups of a topological
space X , as a graded Fp –vector space. Via cup product, it in addition becomes an
Fp –algebra. Furthermore, H�.X / is a module over the Steenrod algebra Ap , the
algebra of all stable operations in singular cohomology with Fp –coefficients. The
realization question under consideration is whether a given algebraic structure, for
example an Ap –module M or an Ap –algebra A, is isomorphic to H�.X / for some
topological space. There are some obvious restrictions (the module should be unstable),
but also more delicate ones. Nick Kuhn formulated the following realization conjecture
in [16].

Conjecture 1.1 For any topological space X such that H�.X / is a finitely generated
Ap –module, H�.X / is already a finite-dimensional Fp –vector space.

Kuhn proved Conjecture 1.1 under an additional assumption on the behaviour of
the Bockstein. He employed Lannes’ T –functor to construct from a hypothetical
counterexample to Conjecture 1.1 an even more hypothetical topological space Y
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whose cohomology H�.Y / has a specific finite composition series. Further ingredients
in his proof that such a space Y cannot exist are the mod p solution of the Hopf
invariant one problem, and results of Ravenel and Mahowald on the mod p Kervaire
invariant problem.

Lionel Schwartz proved the general case of Conjecture 1.1 for p D 2 (without as-
sumptions on the Bockstein) in [23]. Continuing with Kuhn’s dubious space Y , his
key idea was to analyze the induced unstable Ap –algebra structure of H�.�nY / for
an appropriate n via an iterated use of the Eilenberg–Moore spectral sequence. The
article [23] contains a brief discussion of the odd primary case as well; an erratum by
Schwartz [24] pointing to a complete proof by Gaudens and Schwartz in [9] appeared
recently.

As explained by Kuhn in [18], the iterated Eilenberg–Moore spectral sequences may be
replaced with a single spectral sequence, defined by the Goodwillie tower of the functor
X 7!†1�nX . This approach lead him to a streamlined proof of Conjecture 1.1 at
the prime 2 via nonrealization theorems for certain finite unstable modules over the
Steenrod algebra A2 .

The present paper is rooted in our attempt to generalize Kuhn’s approach in [18] to
odd primes. Our study of the Arone–Goodwillie spectral sequence at an odd prime is
parallel to Smith’s classical investigation of the Eilenberg–Moore spectral sequence
in [25]. In order to state our main theorem, let ˆ.k; k C 2/ be the quotient of the
sub-Ap –module of H�.K.Z=p; 1// generated by an element t ¤ 0 with jt j D 2,
having Fp –basis ftpk

; tpkC1

; tpkC2

g. The module ˆ.k; kC 2/ is closely related to
the free unstable module F.1/ on a one-dimensional class described in [16]. The
notion of a desuspension class of even origin is given in Definition 5.2.

Theorem 5.3 Let M be an unstable Ap –module of finite type, concentrated in degrees
Œ`;m�. Suppose M contains a desuspension class of even origin. If X is a topological
space with

zH�.X /ŠM ˝ˆ.k; kC 2/

as Ap –modules, then 2pk � .p2� 1/mCp.m� `/.

Theorem 5.3 generalizes Kuhn’s nonrealization theorems mentioned above only in
roughly half of all the cases. The reason for this may be traced back to the fact that, at
odd primes, the parity of certain elements determines the type of operation detecting
the desuspension behaviour of a given unstable Ap –module M . Only in the case the
Bockstein is not involved, a direct relation to an unstable algebra structure on M can
be made. The arguments leading to the nonrealization theorems use this relation in the
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Topological realization at odd primes 129

unstable algebra H�.�nX / in an essential way. Theorem 5.3 implies a new proof of
Kuhn’s Conjecture 1.1 in the case that the Bockstein acts trivially in high degrees.

Gaudens and Schwartz gave a proof of a generalized form of Kuhn’s Conjecture 1.1 for
all primes [9]. However, contrary to Theorem 5.3, their argument gives no information
about topologically realizing finite modules by its very nature.

The paper is organized as follows. Section 2 recalls some facts about the spectral
sequence from work of Goodwillie, Arone, Ahearn and Kuhn. Besides the right Ap –
action, the homology spectral sequence comes with an action of Dyer–Lashof and
Browder operations. The interplay between these structures is essential to our proofs.
In order to employ algebra structures, we switch to cohomology. This forces us to
define and study operations dual to the corresponding homology operations, which is
presented in Section 3. The first nontrivial differentials are investigated and related
to the operational structure in Section 4. We prove our nonrealization theorems in
Section 5. They improve on the existing results in the literature.

Finally there are two appendices. In Appendix A the cohomology of a free algebra over
a suitable En operad in spectra is computed by reduction to the unstable calculation
by Cohen, Lada and May [8]. This result is needed in Section 5. Appendix B mainly
consists of a proof for cohomological Nishida relations on the dual operations defined
in Section 3, again needed in Section 5.

1.1 Notation and conventions

All (co)homology groups have coefficients in the prime field Fp , where p is an odd
prime. The corresponding Eilenberg–Mac Lane spectrum is denoted HZ=p . Unless
stated otherwise, topological spaces have the homotopy type of cell complexes. From
Section 3 on all spectra or topological spaces X are bounded below with H�.X /

of finite type, ie, finite-dimensional in each degree. The n–fold shift of a graded
module M is denoted shnM and satisfies .shnM /k DM k�n . Tensor products are
over Fp , unless stated otherwise.

Acknowledgements We are grateful to Nick Kuhn for several discussions, and for
providing us with the Thom isomorphism argument which is central to the results in
Appendix A. We also thank Gerald Gaudens and Lionel Schwartz for sending us an
early draft of [9], as well as for stimulating discussions we had with them in Osnabrück
and Paris.
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2 The Arone–Goodwillie spectral sequence

Goodwillie’s calculus of homotopy functors, as developed in [10; 11; 12], provides an
interpolation between unstable and stable phenomena in homotopy theory. The layers
of this interpolation carry a surprisingly rich structure. The purpose of this section is to
describe the interpolation in the examples relevant to us, following work of Goodwillie,
Johnson and Arone.

Let Top� be a convenient category of pointed topological spaces (for example, com-
pactly generated spaces), and let Spt be a convenient category of S1 –spectra in Top�
(for example, orthogonal spectra). Suppose F W C! Spt is a functor preserving weak
equivalences, where C is either the category Top� or Spt. Goodwillie’s calculus
of functors provides a sequence of functors PnF W C ! Spt and a natural tower of
fibrations for any X 2 C :

��
PkC1F.X /

pkC1F

��
PkF.X /

pkF

��

p1F
��

F.X /
f0 //

fk

??

fkC1

DD

P0F.X /

The transformation F ! PkF is universal among k –excisive approximations of F .
The fiber DkF of pkF W PkF ! Pk�1F is called the k –th differential of F and
may be thought of as the degree-k homogeneous part of the polynomial functor PkF .
Applying any cohomology functor h� to the Goodwillie tower produces an exact couple
and hence a spectral sequence .E; d/ with

(1) E
�j ;k
1

D

(
hk�j .Dj F.X // j � 0;

0 j < 0:

This Goodwillie spectral sequence will be exploited for the functors

†1�n
W Top�! Spt; †1�1W Spt! Spt;

Algebraic & Geometric Topology, Volume 13 (2013)



Topological realization at odd primes 131

composed with h� D H�.�IFp/. Arone gave an explicit model of the Goodwillie
tower for the functor

†1Map�.K;�/W Top�! Spt

with K a finite (pointed) cell complex in [2]. This model was used by Ahearn and
Kuhn in [1] to describe the k –th differential

Dn;k W DDk†
1�n

of the Goodwillie tower of †1�n D†1Map�.S
n;�/ via the operad of little cubes

introduced by Boardman and Vogt in [4]. In order to present this description, let C.n; k/
be the space of k disjoint little n–cubes in a bigger n–cube (cf May [21]), with the
obvious action of the symmetric group †k .

Theorem 2.1 Let 1� n 2N .

(1) For any pointed topological space X , there is a natural weak equivalence of
spectra

Dn;k.X /' C.n; k/C ^h†k
.†�n†1X /^k :

(2) For any spectrum X , there is a natural weak equivalence of spectra

D1;k.X /' C.1; k/C ^h†k
X^k :

Proof The first weak equivalence is stated as [1, Equations (1,2)] and is obtained as a
consequence of [1, Theorem 7.1]. The second weak equivalence is [1, Corollary 1.3].

The special cases D1;k.X / ' X^k , D1;k.X / ' X^k
h†k

, Dn;1.X / ' †�n†1X

follow from various properties of the spaces C.n; k/. Furthermore, by convention
Dn;0.X /D S is the sphere spectrum. The case nD1 is used for universal examples
in upcoming proofs. In order to simplify the exposition, it will sometimes be included
without explicit notational changes.

Note that convergence of the Goodwillie tower requires further assumptions on the
variable X . For example, in the first case of Theorem 2.1, convergence holds by [2] on
n–connected pointed topological spaces, whereas in the second case, convergence holds
on 0–connected spectra [1, Corollary 1.3]. The Arone–Goodwillie spectral sequence
arising from †1�n in singular cohomology with Fp coefficients will simply be
referred to as ‘the spectral sequence for n’, infinity included. Connectivity assumptions
on X alone do not necessarily imply strong convergence of the spectral sequence
for n. However, in case of finiteness assumptions on the cohomology of X , results
of Bousfield on an analogous homology spectral sequence [6] imply the following
statement.
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Theorem 2.2 The spectral sequence for n converges strongly to H�.�nX / if X is an
n–connected pointed cell complex (n<1) respectively a connected spectrum (nD1)
such that H�.X / is dimensionwise finite. Furthermore, it is a spectral sequence of
Ap –modules, where Ap acts columnwise on each page and the Ap –module structure
on the E1 –page is the obvious one. The spectral sequence converges to the usual
Ap –module structure on H�.�nX /.

These spectral sequences are tied together as n varies. More precisely, there are natural
maps

(2) �r;nW †
r†1�nCr X !†1�nX

induced by the evaluation †�X !X for any pointed topological space X , as well
as natural equivalences

(3) 'nW †
1�n�1†nX !†1�1X

for any spectrum X . These maps induce maps on the Goodwillie towers, hence, of
the associated spectral sequences. In particular, they induce maps on the differentials,
which will be of use later on.

3 Operations

In this section, following Kuhn’s treatment for the case p D 2, we define and study
operations in the cohomology of Cn –extended powers Dn;j X in the category of
spectra which are closely related to the Browder operations, Dyer–Lashof operations
and Pontryagin products in homology. The standard references for these homology
operations are [8] and Bruner, May, McClure and Steinberger [7], with some corrections
to be found by Wellington in [28]. We refer to these sources for the properties of
and relations between the homology operations. To be more precise, the reindexed
operations Qr are studied in loc.cit., but the operations which appear as Qr or Pr in
the literature are more convenient in our setup. We employ the Dyer–Lashof notation
Q.n�1/.p�1/;Q.n�1/.p�1/�1 for the two top operations denoted by � and � in [8]. Of
course one should keep in mind that � is the single nonlinear operation among these.
Furthermore, the Bockstein of � is � only up to a term consisting of a sum of p–fold
Browder operations if n> 1.

3.1 Definitions

We have to fix notation for the structure maps which show up in the definitions of the
operations.
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Definition 3.1 In the following, Dn;k.X / is equipped with the Cn –operad action via
the weak equivalence given in Theorem 2.1.

(1) Let
�W †r DnCr;j X !Dn;j†

r X

denote the map induced by the evaluation map †r†1�nCr X ! †1�nX

from (2).

(2) Let
�W Dn;iX ^Dn;j X !Dn;iCj X

be the map induced by the operad action � of some fixed element c2 2 Cn;2

�.c2;�;�/W Cn;i � Cn;j �! Cn;iCj

(see Lewis, May, Steinberger and McClure [19, Chapter VII] for details).

(3) Let
� W Dn;iCj X !Dn;iX ^Dn;j X

denote the composition of the maps

.C.n; i C j /C ^X^iCj /h†iCj
! .C.n; i C j /C ^X^iCj /h†i�†j ;

.C.n; i C j /C ^X^iCj /h†i�†j ! .C.n; i/C ^ C.n; j /C ^X^iCj /h†i�†j ;

of homotopy orbits, where the first map is the transfer associated to †i �†j �

†iCj and the second map is induced by the †i �†j –equivariant inclusion of
spaces C.n; i C j /� C.n; i/� C.n; j /.

(4) Let
!W Dn;pj X !D1;pDn;j X

denote the composition of maps

.C.n;pj /C ^X^pj /h†pj
! .C.n;pj /C ^X^pj /h†po†j ;

.C.n;pj /C ^X^pj /h.†po†j /! .C.n; j /pC ^X^pj /h.†po†j /;

of homotopy orbits, where the first map is the transfer associated to †po†j �†pj

and the second map is induced by the †p o†j –equivariant inclusion of spaces
C.n;pj /� C.n; j /p .

In the following, the notion of naturality has to be understood in the context of En –
spectra, or more generally of Hn –spectra. Note that the corresponding definition in
the case p D 2 is less involved, as then 0D p� 2.
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Definition 3.2 Let 1� n� 1 and n� r � 0 be given. Let � 2Hd .†
d HZ=p/ be the

fundamental class given by the inclusion of the bottom cell. The natural operation

Qr
W H d .Dn;j X /!H pdCr .Dn;pj X /

is defined as follows.

Q0 For d even and x 2H d .X /, let Q0.x/ 2H pd .D1;pX / be the composition

D1;pX
D1;p.x/
������!D1;p†

d HZ=p
y�0
�!†pd HZ=p;

where y�0 represents the dual of Q0.�/ 2Hpd .D1;p†
d HZ=p/, ie the Dyer–Lashof

operation evaluated at the fundamental class. For d even and x 2 H d .Dn;j X /, let
Q0.x/ 2H pd .Dn;pj X / be the composition

Dn;pj X
!
�!D1;pDn;j X

Q0.x/
����!†pd HZ=p;

with ! introduced in Definition 3.1(4). For x 2H d .Dn;j X / with d odd, Q0.x/ is
defined to be zero.

Qp�2 For x 2 H d .X / with d odd, let Qp�2.x/ 2 H pdC.p�2/.D1;pX / be the
composition

D1;pX
D1;p.x/
������!D1;p†

d HZ=p
y�p�2

���!†pdC.p�2/HZ=p;

where y�p�2 represents the dual of the evaluation of the Dyer–Lashof operation Qp�2.�/2

HpdC.p�2/.D1;p†
d HZ=p/ at the fundamental class. For x 2H d .Dn;j X / with d

odd, let Qp�2.x/ 2H pdC.p�2/.Dn;pj X / be the composition

Dn;pj X
!
�!D1;pDn;j X

Qp�2.x/
������!†pdC.p�2/HZ=p;

with ! introduced in Definition 3.1(4). For x 2H d .Dn;j X / with d even, Qp�2.x/

is defined to be zero.

Qs.p�1/ Let 0 < s � n � 1 and x 2 H d .Dn;j X /, with d C s even. Define
Qs.p�1/.x/ 2H pdCs.p�1/.Dn;pj X / to be the composition

Dn;pj X
�
�!†�sDn�s;pj†

sX
†�sQ0.†sx/
���������!†pdCs.p�1/HZ=p;

with � introduced in Definition 3.1(1). For x2H d .Dn;j X / with dCs odd, Qs.p�1/.x/

is defined to be zero.

Algebraic & Geometric Topology, Volume 13 (2013)



Topological realization at odd primes 135

Qs.p�1/�1 Let 0 < s � n � 1 and x 2 H d .Dn;j X /, with d C s even. Define
Qs.p�1/�1.x/ 2H pdCr.p�1/�1.Dn;pj X / to be the composition

Dn;pj X
�
�!†1�sDnC1�s;pj†

.s�1/X
†1�sQp�2.†.s�1/x/
��������������!†pdCs.p�1/�1HZ=p;

with � introduced in Definition 3.1(1). For x 2 H d .Dn;j X / with d C s odd, we
define Qs.p�1/�1.x/ to be zero.

Qr All other Qr are defined to be zero.

Thus the only (possibly) nonzero dual Dyer–Lashof operations are

Q0;Qp�2;Qp�1;Q2p�3;Q2p�2; : : : ;Q.n�1/.p�1/:

The dual Browder operations are obtained as follows.

Definition 3.3 Let d D
Pj

iD1
di . The dual Browder operation is the homomorphism

Ln�1
W H d1.X /˝ � � �˝H dj .X /!H dC.j�1/.n�1/.Dn;j X /

induced by the map

�n�1
W Dn;j X !†1�nD1;j†

n�1X D†.j�1/.n�1/X^j ;

with � introduced in Definition 3.1(1).

Note that L0 coincides with the Künneth isomorphism. Our final definition in this
section describes a “product” resp. a “coproduct” structure on

L
k H�.Dn;kX /.

Definition 3.4 The map t introduced in Definition 3.1(3) induces a pairing

?W H�.Dn;iX /˝H�.Dn;j X /!H�.Dn;iCj X /:

The map � introduced in Definition 3.1(2) induces a copairing

‰W H�.Dn;iCj X /!H�.Dn;iX /˝H�.Dn;j X /:

3.2 Properties

This section summarizes some properties of the operations and pairings defined in
Section 3.1.
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Proposition 3.5 The map ��W H�.Dn;j†X /! sh1H�.DnC1;j X / commutes with
the dual Dyer–Lashof and dual Browder operations. More precisely, the following
equalities hold:

��.Qr .�x//DQrCp�1.x/;

��.Ln�1.˝�.xi//D Ln.˝xi/:

Proof This is a direct consequence of Definitions 3.2 and 3.3.

Fix 1� n 2N . In order to recall some properties of the Dyer–Lashof operations

Qr W H�.Dn;j X /!H�.Dn;pj X /;

the Browder operations

Ln�1W H�.Dn;iX /˝H�.Dn;j X /!H�.Dn;iCj X /

and the Pontryagin product

�W H�.Dn;iX /˝H�.Dn;j X /!H�.Dn;iCj X /

from the literature, let q 2N and r D t.p� 1/C k with 0� k < p� 1. Set

 .q; r/D

t�1Y
iD0

.�1/
.p�1/.qCi/

2
��p�1

2

�
!
�t
;(4a)

�.q/D .�1/
.p�1/q

2
�p�1

2

�
!;(4b)

�.q/D

n�2Y
iD0

�.qC i/:(4c)

The (co)homological degree of a homogeneous (co)homology class y is denoted jyj.

Proposition 3.6 The map ��W sh1H�.DnC1;j X /! H�.Dn;j†X / satisfies the fol-
lowing:

(1) The equation ��
�
�Qr .y/

�
D �.jyj/Qr�.p�1/

�
�.y/

�
holds, where Qi is under-

stood to be trivial for negative i .

(2) For all x;y 2H�.Dn;iX / one has ��
�
�Ln.x;y/

�
DLn�1.�x; �y/.

(3) All Pontryagin products of elements in positive degrees are in the kernel of �� .
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Proof The sources quoted above consider the operations in the homology of loop
spaces, not Cn –spectra. As explained in Appendix A., one can reduce to this situation
via a suitable Thom isomorphism. For parts (1) and (2) see [8, III.1.4.], which discusses
all cases except Q.n�1/.p�1/ D � . The remaining case is treated via the equality
�.x/D ˇ�.x/� adp�1.x/

�
ˇ.x/

�
, where ˇ 2Ap is the Bockstein. The assertion in

part (3) is classical and can be found for example by Whitehead in [29].

Proposition 3.7 The following hold for ��W H�.Dn;kX /!H�.X /
˝k :

��.Qr .y//D 0;(5a)

��.�
k
iD1yi/D

X
�2†k

kO
iD1

y�.i/;(5b)

��.Ln�1.y; z//D 0:(5c)

Proof This follows immediately from the definitions.

In the following Ln�1.y1;y2; : : : ;yk/ denotes any k –fold iteration of Browder oper-
ations on elements y1; : : : ;yn 2H�.X /.

Proposition 3.8 Let k 2 N , x;x1; : : : ;xk 2 H�.X /, y;y1; : : : ;yk 2 H�.X /,
w 2 H�.Dn;kX /, z 2 H�.Dn;kX / and z1; : : : ; zk 2

L
j H�.Dn;j X /, satisfying

�k
jD1

zj 2H�.Dn;kX /. Under the Kronecker pairing the cohomology and the homology
operations pair as follows:

(1) hQr .w/;Qs.z/i D

(
 .jwj; r/hw; zi r D s D t.p� 1/� �; � 2 f0; 1g;

0 otherwiseI

(2) hQr .x/;Ln�1.y1;y2; : : : ;yk/i D 0;

(3) hQr .x/;�k
iD1

yii D

(Qk
iD1hx;yii r D 0 and k D p;

0 otherwiseI

(4) hLn�1.˝k
iD1

xi/;Qs.y/iD

(
�.jyj/

Qp
iD1
hxi ;yi k D p; s D .n� 1/.p� 1/;

0 otherwiseI

(5) hLn�1.˝k
iD1

xi/;Ln�1.y1;y2; : : : ;yk/i D h˝
k
iD1

xi ;L0.y1;y2; : : : ;yk/i;

(6) hLn�1.˝k
iD1

xi/;�
k
jD1

zj i D 0;

(7) h?p
iD1

xi ;Qs.y/i D 0;

(8) h?k
iD1

xi ;Ln�1.y1;y2; : : : ;yk/i D 0;

(9) h?k
iD1

xi ;�
k
iD1

yii D
P
�2†k

Qk
iD1hxi ;y�.i/i.
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Proof (1) This follows from the definitions and Proposition 3.6(1), together with the
congruence .m!/2 D .�1/mC1 mod p , which is a consequence of Wilson’s theorem.

(2) The morphism of operads

�nW Cn! CnC1

from [21, page 31] induces an Hn –map

s.n/W Dn;iX !DnC1;iX

by [7]. Any x 2 H�.X / Š H�.Dn;1X / can be written as x D s.n/�x0 for
x0 2H�.DnC1;1X /ŠH�.X /. Then

hQr .x/;Ln�1.y1;y2; : : : ;yk/i D hQr .s.n/�x0/;Ln�1.y1; : : : ;yk/i

D hs.n/�Qr .x0/;Ln�1.y1; : : : ;yk/i

D hQr .x0/; s.n/�Ln�1.y1; : : : ;yk/i

D hQr .x0/;Ln�1.s.n/�y1; : : : ; s.n/�yk/i

D hQr .x0/; 0i D 0;

because the Browder operations Ln�1 vanish on CnC1 –spectra by their very nature.

(3) For r different from 0 or p�2 the assertion follows from the definition of Qr and
Proposition 3.6(3). Since Q0 is essentially the dual of the p–fold Pontryagin product
operation, the assertion holds for r D 0. For r D p� 2 it suffices to consider classes
of odd degree. Since �2 D 0 for any generator � 2Hd .D1;p†

d HZ=p/ if d is odd,
the group HpdCp�2.D1;p†

d HZ=p/ is generated by the indecomposable element
Qp�2.�/. The assertion for r D p� 2 follows.

(4) This follows from Proposition 3.6(1) and the fact that Q0 is the Frobenius.

(5) This follows from Proposition 3.5, Proposition 3.6(2) and the definition of a graded
commutator, which describes L0 .

The assertions in (6), (7), (8) and (9) follow from Proposition 3.6(3), (5a), (5c) and
(5b) respectively.

Proposition 3.9 Let x;y 2H�.Dn;j X / and r 2N . Then

Qr .xCy/D

(
Qr .x/CQr .y/ r > 0;

Q0.x/CQ0.y/C
Pp�1

kD1
1

.p�1/!k!
x?k ?y?.p�k/ r D 0:

In particular, Qr .u �x/D u �Qr .x/ for every u 2 Fp .
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Proof The proof is similar to the proof of Proposition 3.11 and will be given in
Appendix B.

In order to interpret the following proposition for all n including 1, note that
Ln�1.x/D x for any x , and that L1

�Nk
iD1xi

�
D 0 whenever k > 1.

Proposition 3.10 Let 0 � j < p2 . The cohomology H�.Dn;j X / is generated as
an algebra by elements QrLn�1

�Nk
iD1xi

�
and Ln�1

�Nk
iD1xi

�
where r; k 2N and

x1; : : : ;xk 2H�.X /. The degrees of these generators are

ˇ̌̌̌
Ln�1

� kO
iD1

xi

�ˇ̌̌̌
D .k � 1/.n� 1/C

kX
iD1

jxi j;

ˇ̌̌̌
QrLn�1

� kO
iD1

xi

�ˇ̌̌̌
D p

�
.k � 1/.n� 1/C

kX
iD1

jxi j

�
C r:

Proof This follows from Corollary A.7 which describes H�.Dn;�X / as a free algebra
with divided powers, generated by the duals of a generating set of H�.Dn;�X /. This
generating set is given by Dyer–Lashof operations applied to iterated Browder products
of generators of H�.X /. The dualities described in Proposition 3.8 guarantee that
all generators in this generating set are detected by the elements given above. The
statement about the degrees follows from the definition.

The discussion of the dual operations concludes with Nishida-type relations. Due to its
length, the proof is deferred to Appendix B.

Proposition 3.11 Let s 2N and 0< r < .p� 1/.n� 1/. The equation

(6)

PsQr .x/D

�
s
pX̆

iD0

ar;s;jxj.i/cr;s;jxj.i/QrC2.s�pi/.p�1/Pi.x/

C ır

�
s�1

p

˘X
iD0

br;s;jxj.i/dr;s;jxj.i/QrC2.s�pi/.p�1/�pPiˇ.x/

C �r
X
n2N

1
en

�
?

p
iD1

Pni .x/
�
;

Algebraic & Geometric Topology, Volume 13 (2013)



140 S Büscher, F Hebestreit, O Röndigs and M Stelzer

holds, where

ır
D

(
0 r � 1 mod 2;

1 r � 0 mod 2;
�r
D

(
0 r > 0;

1 r D 0;

ar;s;jxj.i/D

�� r
2

˘
C
.jxj�2i/.p�1/

2

s�pi

�
;

br;s;jxj.i/D .�1/
p�1

2
.jxjC1/C1

�p�1
2

�
!

�� r
2

˘
C
.jxj�2i/.p�1/

2
� 1

s�pi � 1

�
;

cr;s;jxj.i/D
 .jxj; r/

 .jxjC 2.p� 1/i; r � 2.pi � s/.p� 1//
;

dr;s;jxj.i/D
 .jxj; r/

 .jxjC 1C 2.p� 1/i; r �p� 2.pi � s/.p� 1//
;

N D
˚
n 2Np

W ni � niC1;
X

ni D s; 9j W nj < njC1

	
;

and en is the residue class in Fp of the order of the isotropy group of n 2 N , where
†p acts on Np by permuting coordinates.

The point of the following lemma is that—contrary to a naive guess—every summand
appearing in the right hand side contains less than p factors Ppk

. This fact is essential
to the proof of Theorem 5.6.

Lemma 3.12 For k 2N , let Ap.k/�Ap be the subalgebra generated by the elements
1;P1;Pp; : : : ;Ppk

. There is a decomposition

Ppk

P.p�1/pk

D

rX
jD1

Aj1Ppk

Aj2Ppk

� � �Ajej

with Aji 2Ap.k � 1/ and 0� ej � p for all 1� j � r .

Proof To provide the decomposition, note that

(7) Ppk

P.p�1/pk

D

pk�1X
iD0

.�1/p
kCi

�
.p� 1/

�
.p� 1/pk � i

�
� 1

pk �pi

�
PpkC1�iPi

by the Adem relations. The binomial coefficient for i D 0 vanishes, because�
.p� 1/2pk � 1

pk

�
�

kC1Y
jD0

�
aj

bj

�
mod p;
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where .p�1/2pk�1D
PkC1

jD0 aj pj and pkD
Pk

jD0 bj pj are the p–adic expansions.
However,

aj D

8̂<̂
:

p� 1 j < k;

0 j D k;

p� 2 j D kC 1;

whereas bk ¤ 0. Thus the first summand in (7) vanishes. If Pi 2Ap is indecomposable,
then i is a power of p . In particular, PpkC1�i 2Ap.k/ for i > 0. For degree reasons,
there is a decomposition of PpkC1�i 2 Ap.k/ which does not contain a summand
A1Ppk

A2Ppk

� � �Aj with Ai 2 Ap.k � 1/ and j > p . Since Pi 2 Ap.k � 1/ for
i � pk�1 , the assertion follows.

4 Some differentials

Recall the Goodwillie spectral sequence

E
�j ;k
1

D

(
H k�j .Dn;j X / j � 0;

0 j < 0;

from (1) for the n–fold loop space functor. In this chapter we will compute its first
nontrivial differentials on certain classes, namely dual Dyer–Lashof operations with
input from the �1–st column. Furthermore we show that dual Browder operations
define permanent cycles in the cohomology of a suspension.

Proposition 4.1 Let 1� n<1, r � n and i < p� 1 be given. Then

diQr .x/D 0

for all x 2 E
�1;kC1
1

Š H kCn.X /. Furthermore, for all k; s 2 N with k C s � 0

mod 2 there are elements uk;s; vk;s 2 .Fp/
� such that the equations

dp�1Qs.p�1/.x/D uk;s
�ˇP

kCs
2 .x/;(8a)

dp�1Qs.p�1/�1.x/D vk;s
�P

kCs
2 .x/;(8b)

hold for every x 2E
�1;kC1
1

ŠH kCn.X /.

Proposition 4.1 completely describes all differentials on classes of the form Qr .x/

with x 2E�1;� , since the mentioned ones are the only nontrivial dual Dyer–Lashof
operations and higher differentials leave the second quadrant. In the proof given below,
the formulae are reduced to nD1 and s 2 f0; 1g, and to the universal case described
in the following lemma.
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Lemma 4.2 Let � 2 H 0.HZ=p/ be a generator. For every k 2 N there exists an
element uk 2 .Fp/

� such that in the Goodwillie spectral sequence for †kHZ=p and
nD1 one has

dp�1Q0.�k �/D uk �ˇP
k
2 .�k �/; if k is even;

dp�1Qp�2.�k �/D uk �P
kC1

2 .�k �/; if k is odd:

All other differentials on these classes are zero.

Proof The spectral sequence for †kHZ=p converges to H�
�
K.Z=p; k/

�
. Sup-

pose that k D 2i is even. Then ˇPi.�2i/ D 0, where �2i is the image of � in
H 2i

�
K.Z=p; 2i/

�
under the canonical map

†1†2iK.Z=p; 2i/! HZ=p:

Hence the element 0 ¤ ˇPi.�2i�/ 2 H 2piC1.†2iHZ=p/ D E�1;2piC2 lies in the
image of some differential by Theorem 2.2. The possibilities for this differential are

dr W E
�.rC1/;2piCrC1
r �!E�1;2piC2

r ;

for varying r . Since the �1–column (a shift of the Steenrod algebra Ap ) consists
entirely of permanent cycles and the differentials are derivations, all products of
elements in the �1–column are permanent cycles. For degree reasons, the first p� 1

columns solely consist of such products, whence the differentials are zero in this range.
Consider the column E

�p;�
p�1

. Again for degree reasons, only the dual Dyer–Lashof
operations Qj .x/ with x 2E�1;� can be mapped nontrivially by any differential dr .
If r > p� 1, then

E
�.rC1/;2piCrC1
1

DH 2pi.D1;rC1/D 0;

because 2pi < 2.r C 1/i and D1;rC1.†
2iHZ=p/ is .2i.r C 1/ � 1/–connected.

Therefore ˇPi.�2i�/ lies in the image of

dp�1W E
�p;2piCp
p�1

�!E
�1;2piC2
p�1

and a killer of ˇPi.�2i�/ is a sum of elements of the form Qj .x/ for degree reasons.
In order for all degrees to match, such a nonzero x has to be an element in E�1;k D

H k�1.†2iHZ=p/ with pk C j D 2pi C p , which is only possible if k D 2i C 1

and j D 0 by connectivity. Now H 2i.†2iHZ=p/ is generated by �2i�, so for some
u 2 .Fp/

� the equality

ˇPi.�2i�/D dp�1.uQ0.�2i�//
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holds by Proposition 3.9. With u2i D
1
u

one obtains

dp�1

�
Q0.�

2i�/
�
D u2iˇPi.�2i�/;

which finishes the universal case for an even dimensional class. The other case is
similar and left to the reader.

Proof of Proposition 4.1 Let k 2N and 1� n<1. The natural equivalence

†1�nK.Z=p; kC n/ �!†1�1†kHZ=p

induces maps

Dn;j .†
�n†1K.Z=p; kC n// �!D1;j .†

kHZ=p/

which for j D1 coincide with the canonical map †�n†1K.Z=p; kCn/�!†kHZ=p
sending �k � to ��n�kCn in cohomology. Any class in E

�1;kC1
1

DH k.†�n†1X /

may be represented as ��nf �.�kCn/ for some map f W X �!K.Z=p; kC n/. The
naturality of the spectral sequences, the Dyer–Lashof and the Steenrod operations
with respect to these maps then supply (8a) and (8b) in Proposition 4.1 for s D 0.
Proposition 3.5 relates Q.sC1/.p�1/.x/ in the spectral sequence for n to Qs.p�1/.�x/

in the spectral sequence for n� 1. By hypothesis, the latter is just ˇPkC1Cs=2.�x/.
This proves (8a) by induction, since the evaluation induces the identity map on the first
column. Equation (8b) follows by the same argument.

The next statement shows that all differentials vanish on dual Browder operations
originating in the �1–st column, provided the topological space in question is a
suspension.

Proposition 4.3 Let 1 � n <1 and yi 2 E
�1;�
1

for all 1 � i � m in the spectral
sequence for †X . Then

dsLn�1.y1˝ � � �˝ym/D 0

for all s .

Proof The spectral sequence for nD 1 converges to H�.�†X /. By a theorem of
Bott and Samelson [5], the homology of �†X is—as a graded algebra with Pontryagin
product—isomorphic to the tensor algebra over the homology of X :

H�.�†X /Š TH�.X /:

Thus H�.�†X / Š TH�.X / at least as vector spaces (and coalgebras). However,
already

E
�j ;�
1
D shj H�.D1;j†

1X /Š shj H�.X^j /Š shj H�.X /˝j ;
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and since these isomorphisms are compatible with the filtration, E1 has to be equal
to E1 . In particular, all differentials are zero. This can be used as the start of an
induction (along n this time) using Proposition 3.5.

The following consequence of Proposition 4.3 uses the notion of desuspension index,
which is introduced in Definition 5.2.

Corollary 4.4 Let 1� n<1. Suppose that H�.X / has desuspension index at least
n� 1. Then all elements in the spectral sequence for †X and n contained in the first
2p� 1 columns are permanent cycles.

Proof Proposition 3.10 implies that all indecomposable base elements in the range in
question are those appearing in Propositions 4.1 and 4.3, together with a copy of Fp in
the 0–column. The assumption on the desuspension index of H�.X / implies that dp�1

vanishes on Dyer–Lashof operations and higher differentials do also (see the comment
below Proposition 4.1).

5 Nonrealization results

In [23] Schwartz reduced Kuhn’s Conjecture to the nonrealizability of certain modules
over the Steenrod algebra. For p D 2, a very readable account of this reduction is
given at the end of [18]. In order to describe these modules, consider the tensor product
Fp Œt �˝ƒFp

Œs� of a polynomial Fp –algebra on a generator of degree jt j D 2, and an
exterior Fp –algebra on a generator jsj D 1, with the following Ap –action:

ˇ � .tn
˝ 1/D 0;

ˇ � .tn
˝ s/D tnC1

˝ 1;

Pi
� .tn
˝ 1/D

�
n

i

�
tnCi.p�1/

˝ 1;

Pi
� .tn
˝ s/D

�
n

i

�
tnCi.p�1/

˝ s:

With this structure Fp Œt �˝ƒFp
Œs�ŠH�

�
K.Z=p; 1/

�
as an Ap –module. We identify

the submodule fa˝ 1W a 2 Fp Œt �g with Fp Œt �. Let

ˆ.k/ WD htpk

iAp
� Fp Œt �
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be the submodule generated by tpk

. The module structure of ˆ.k/ simplifies to

ˇ � tpj
D 0;

Pi
� tpj
D

8̂<̂
:

tpj i D 0;

tpjC1

i D pj ;

0 otherwise;

whence the set ftpi

W i � kg is a Fp –basis for ˆ.k/. Because Ppk

� tpk

D tpkC1

, ˆ.`/
is a submodule of ˆ.k/ for k < `.

Definition 5.1 Let k < `. Then ˆ.k; `/ WD ˆ.k/=ˆ.`C 1/ is the quotient in the
category of graded Ap –modules.

The module ˆ.k; `/ admits the residue classes of ftpi

W k � i � `g as an Fp –basis.
Only the module ˆ.k; kC2/ will occur in the sequel. It consists of three vector spaces
Fp � t

pk

, Fp � t
pkC1

and Fp � t
pkC2

. The operation Ppk

maps the first vector space iso-
morphically onto the second, and PpkC1

maps the second vector space isomorphically
onto the third.

As mentioned in the introduction, our methods only suffice for roughly half the cases
needed to provide a full proof of Kuhn’s Conjecture 1.1. A precise formulation requires
the notion of a desuspension class.

Definition 5.2 Let M be an unstable Ap –module. The desuspension index of M

is the largest natural number n such that the shift shn.M / is unstable. If M has
desuspension index n, an element x 2M with(

P
jxj�n

2 �x ¤ 0 jxj � n even ;

ˇP
jxj�n�1

2 �x ¤ 0 jxj � n odd ;

is called desuspension class of even resp. odd origin.

Every nonzero unstable Ap –module contains a desuspension class. Note that in the
odd primary cohomology of a topological space

P
jyj
2 .y/D yp

holds for cohomology classes of even degree only, whereas the equation

Sqjyj.y/D y2

holds for every cohomology class in H�.X;F2/. Recall Theorem 5.3 from the intro-
duction.
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Theorem 5.3 Let M be an unstable Ap –module concentrated in degrees Œ`;m�.
Suppose M contains a desuspension class of even origin. If X is a pointed topological
space with

H�.X /ŠM ˝ˆ.k; kC 2/

as Ap –modules, then 2pk � .p2� 1/mCp.m� `/.

The idea of the proof of Theorem 5.3 is to consider the cohomology of �nX , where n

is the desuspension index of M , by means of the spectral sequence developed above.
In the easiest case (nD 0), no loop space (hence no spectral sequence and—as it turns
out—not even a space) is necessary. The following result proves the strong realization
conjecture from [18] in the special case nD 0.

Proposition 5.4 Let M be an unstable Ap –module with jM j � Œ`;m�, and let x 2M

be an element of degree 2i such that Pi � x ¤ 0. Then M ˝ˆ.k; k C 1/ admits an
unstable algebra structure only if 2.p� 2/pkC1 � pmCm�p`.

The conditions on x precisely say that M has desuspension index 0 and that x is a
desuspension class of even origin.

Proof Since jPi �xj D 2pi and jxj D 2i , and both these elements are nonzero, one
deduces 0� `�2i �2pi �m. Let M1 WDM˝.Fp �t

pk

/ and M2 WDM˝.Fp �t
pkC1

/

as sub-Fp –modules in M˝ˆ.k; kC1/DM1˚M2 . Then jM1j� Œ`C2pk ;mC2pk �

and jM2j � Œ`C 2pkC1;mC 2pkC1�. Assume M ˝ˆ.k; k C 1/ is equipped with
an unstable algebra structure, and that 2.p � 2/pkC1 > pmCm� p` holds. This
inequality implies in particular

mC 2pk < `C 2pkC1;

whence there is a gap between the sub-Fp –modules M1 and M2 . Let b D x˝ tpk

with jbj D 2i C 2pk . On the one hand, PpkCi � b D bp ¤ 0. In fact,

PpkCi
� b D PpkCi

�
�
x˝ tpk �

D

pkCiX
jD0

�
Pj
�x
�
˝
�
PpkCi�j

� tpk �
D
�
Pi
�x
�
˝ tpkC1

C
�
PpkCi

�x
�
˝ tpk

D
�
Pi
�x
�
˝ tpkC1

is nonzero because neither Pi �x nor tpkC1

is zero. On the other hand, the sequence
b; b2; : : : ; bp�1; bp starts in M1 and ends in M2 and so has to pass the gap. Let j
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denote the largest number such that bj 2 M1 . The inequality 2.p � 2/pkC1 >

pmCm�p` implies

jbjC1
jD 2.jC1/iC2.jC1/pk

�mC2pk
C2iC2pk

�mC4pk
C

m

p
<`C2pkC1;

whence bjC1 lies in the gap. Therefore also bp D 0. This contradiction shows that
there can be no unstable algebra structure on M ˝ˆ.k; kC 1/.

In the case p D 2, the first half of the proof of Proposition 5.4 leads to 0 ¤ b2 .
However, the sequence b; : : : ; bp from the second half of the proof consists only
of b and b2 which lie in M1 and M2 respectively, and therefore b2 has no reason
to be trivial. The remedy for this is to include a third direct summand, ie study
M ˝ˆ.k�1; kC1/DM0˚M1˚M2 . The class aD x˝ tk�1 2M0 then satisfies
b2 D Sq2k�1

.ab/ by the Cartan formula and the observation that all summands but
one vanish due to either instability or gaps. However, the element ab lying halfway
between b and b2 may be forced to fall into the gap between M1 and M2 . This is
exactly Kuhn’s argument in [18]. In the case p odd, the corresponding statement is as
follows.

Proposition 5.5 Let M be an unstable Ap –module with jM j � Œ`;m� and let x 2M

be an element of (even) degree 2i , such that Pi �x ¤ 0. Then M ˝ˆ.k; kC2/ admits
an unstable algebra structure only if 2pk �m.

Proof Let a D x ˝ tpk

, b D x ˝ tpkC1

and c D x ˝ tpkC2

. The argument just
described for pD 2 works, provided ab is replaced with abp�1 as follows. The proof
of Proposition 5.4 applies to give 0 ¤ PpkCi � b D bp . This element may also be
expressed as

bp
D PpkCi

� b D

iX
jD0

.Pj
�x/˝ .Pi�j

� tpkC1

/D .Pi
�x/˝ tpkC1

D Pi
� c;

because i < pkC1 . Furthermore Ppk

�
�
abp�1

�
D bp by the following calculation:

Ppk

� .abp�1/D

pkX
jD0

.Ppk�j
� a/.Pj

� bp�1/

D .Ppk

� a/bp�1
C

pkX
jD1

.Ppk�j
� a/.Pj

� bp�1/:
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The second summand in this expression is zero, because either Ppk�j � a is zero by
instability, or Pj � bp�1 is in the gap between M1 and M2 . The equality Ppk

� aD b

follows by essentially the same computation as in the proof of Proposition 5.4. However,
assuming 2pk >m, the element abp�1 lies in the gap between M1 and M2 , giving a
contradiction.

Note that Proposition 5.5 is also a corollary of Proposition 5.4 (except for p D 3,
where the conclusion is a little bit stronger). In fact, an unstable algebra structure on
M ˝ˆ.k; kC2/ induces one on the quotient M ˝ˆ.k; kC1/. The reason for giving
a proof of Proposition 5.5 is that it may be carried through the Goodwillie spectral
sequence for higher desuspension indices.

Theorem 5.6 Let M be an unstable Ap –module with jM j � Œ`;m�, and let x 2M

be an element of (even) degree 2i , such that Pi � x ¤ 0. Suppose that X is a locally
finite pointed cell complex with

H�.X /Š
�
shnM

�
˝ˆ.k; kC 2/

as graded Ap –modules. Then 2pk � .p2� 1/mCp.m� `/C .p2� 2/nC 1.

Proof In order to trivialize several differentials which would otherwise become a
nuisance later in the proof, let X 0 DX=X2iCnC2pk�1 be the quotient collapsing the
2iCnC2pk�1–skeleton. The proof employs the spectral sequence for Y D†2iC1X 0

and n0 WDnC2iC1, which converges to the cohomology of �nC2iC1†2iC1X 0 instead
of �nX 0 . Note that the passage from X to X 0 appears already in [18]. The projection
X !X 0 induces a surjection 'W H j .X 0/ �!H j .X / for j D 2i C nC 2pk and an
isomorphism for j > 2iCnC2pk . Let Nj D '

�1.M ˝.Fp � t
pkCj

// for j 2 f0; 1; 2g

and N D
L2

jD0Nj . Then shnN � D H�.Y / and jN0j � Œ2i C 2pk ;m C 2pk �,
jNj j � Œ`C 2pkCj ;mC 2pkCj � for j 2 f1; 2g. Let a; b; c 2 N be elements which
satisfy '.a/D x˝ tpk

, '.b/D x˝ tpkC1

and '.c/D x˝ tpkC2

. Note that b and c

are uniquely determined, because ' is an isomorphism in high degrees. Suppose that

(9) 2pk > .p2
� 1/mCp.m� `/C .p2

� 2/nC 1:

Then in the spectral sequence for Y and n0

E
�r;�
1
D shr H�.Dn0;r†

�n0†1Y /Š shr H�.Dn0;r†
�n†1X 0/;

hence every element in the �1–st column

E
�1;�
1
D sh1�nH�.X 0/D sh1N
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is a permanent cycle, since the 0–column consists of a Fp in degree 0 only. Thus there
are (unique) elements

(10) ˛ 2H 2iC2pk

.�n0Y /; ˇ 2H 2iC2pkC1

.�n0Y /;  2H 2iC2pkC2

.�n0Y /

representing a 2 E
�1;2iC2pkC1
1 ; b 2 E

�1;2iC2pkC1C1
1 and c 2 E

�1;2iC2pkC2C1
1

respectively. Before proceeding to the actual argument, observe that by Proposition 3.10,

E
�r;�
1
D

X
.u;v;w/2N3

uCvCwDr

shr .N u
0 �N

v
1 �N

w
2 /;

where N u
0
�N v

1
�Nw

2
�H�.Dn0;uCvCw†

�n0†1Y / is the Fp –vector space generated
by ‘products’ with u factors coming from N0 , v from N1 and w from N2 . Here
‘products’ refers to Pontryagin products, Dyer–Lashof operations (which count as
p–fold ‘products’) and Browder operations with s inputs (which count as s–fold
‘products’). Then

jN u
0 �N

v
1 �N

w
2 j � Œ2ui C .vCw/`C 2.uC vpCwp2/pk ;

.uC vCw/mC 2.uC vpCwp2/pk
C .uC vCw� 1/.n0� 1/�

with the lower bound coming from true products and the upper bound stemming from
pure Browder operations. This concludes the preliminaries of the proof. The aim is to
show that the element Ppk

.˛[ˇp�1/ is both zero and nonzero under the assumption (9).
This requires a few auxiliary computations, listed in (11), (12) and (13):

(11) Ppk

.˛/D ˇ; PpkC1

.ˇ/D :

The equations in (11) hold for a; b; c 2E
�1;�
1

by the same computation as in the proof
of Proposition 5.4. They carry over to cohomology, because the lower filtrations (ie the
0–column) are trivial away from degree 0. Furthermore,

(12) Ppk

.˛[ˇp�1/D ˇp:

In fact, the equation

Ppk

.˛[ˇp�1/D
X

j1C���CjpDpk

Pj1.˛/[Pj2.ˇ/[ � � � [Pjp .ˇ/

simplifies to the expression Ppk

.˛ [ ˇp�1/ D Ppk

.˛/ [ ˇp�1 which implies (12)
by (11). One may simplify, because Pj1 � aD 0 once pk > j1 > i , and because in the
case j1 � i there exists 2� r � p with jr � .p

k � i/=.p� 1/, which in turn implies
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that Pjr � b is in the gap between N1 and N2 by the numerical assumption (9). The
conclusion for ˛ and ˇ follows as in the case of (11). Finally,

(13) Pi. /D ˇp:

Here the calculation from the proof of Proposition 5.5 translates immediately to
PpkC1Ci � b D Pi � c , which extends to ˇp D PpkC1Ci.ˇ/D Pi. / as before. The next
calculation, formulated as a lemma, is the first step significantly different from the easy
case. A priori Pi � c ¤ 0 does not imply Pi. / ¤ 0, because Pi � c might lie in the
image of some differential. In fact, passing from X to Y is needed precisely to ensure
this is not the case.

Lemma 5.7 The element Pi. / is nonzero.

Proof The computation from the proof of Proposition 5.4 and (13) shows Pi.c/¤ 0 as
before. Thus the claim holds if Pi � c 2E�1;2piC2pkC2C1 is not hit by any differential

dr W E
�.rC1/;2piC2pkC2Cr
r �!E�1;2piC2pkC2C1

r :

As E
�.rC1/;2piC2pkC2Cr
r is a subquotient of

E
�.rC1/;2piC2pkC2Cr
1

DH 2piC2pkC2�1.Dn0;rC1†
�n†1X 0/

and Dn0;rC1†
�n†1X 0 is .rC1/.2iC2pk/�1–connected, this group is trivial once

r � p2� 1. If r < p2� 1,

H�.Dn0;rC1†
�n†1X 0/D

X
uCvCwDrC1

N u
0 �N

v
1 �N

w
2 ;

with no iterated Dyer–Lashof operations appearing. If furthermore the inequality
uC vpCwp2 < p2 holds, the top degree of N u

0
�N v

1
�Nw

2
is too low:

.uC vCw/mC 2.uC vpCwp2/pk
C .uC vCw� 1/.n0� 1/

� .p2
� 1/mC 2.p2

� 1/pk
C .p2

� 2/.nC 2i/

� 2pkC2
� 2pk

C .p2
Cp� 1/mC .p2

� 2/n

< 2pi C 2pkC2
� 1:

Here the last step is the numerical assumption (9). The case uCvpCwp2�p2 is a little
more complicated, since different algebra generators do not hit Pi �c for different reasons.
Elements in E

�.rC1/;2piC2pkC2Cr
r represented by (sums of) products of Browder

operations and elements from the �1–column are permanent cycles by Proposition 4.3
and the fact that products of cycles are again cycles. A potential killer of Pi � c
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therefore has to be represented by a sum of products with some Dyer–Lashof operation
appearing. If y 2E

�s;s0

1
is the input for this operation, then 1� s < p by the above

discussion. Furthermore, Proposition 4.1 rules out sD1. By Proposition 3.10 it remains
to consider classes represented by sums of products with at least one Dyer–Lashof
operation applied to a Browder operation appearing. For such an element the lower
bound may be sharpened slightly: its degree in N u

0
�N v

1
�Nw

2
is greater than or equal to

2ui C .vCw/l C .uC vpCwp2/pk
Cp.n0� 1/;

because a Browder operation with s inputs raises degree by .s�1/.n0�1/ in comparison
to a simple product, and then applying a Dyer–Lashof operation adds at least p.n0�1/.
This sharpened bound in the case uC vpCwp2 � p2 implies

2ui C .vCw/l C .uC vpCwp2/pk
Cp.n0� 1/� l C 2pkC2

Cp.nC 2i/

> 2pi C 2pkC2
� 1;

which was the reason for suspending the space 2i C 1 times. With all the differentials
covered, Pi. / is nonzero as claimed.

Equations (12), (13) and Lemma 5.7 imply that

(14) Ppk �
˛[ˇp�1

�
¤ 0:

However, in the current situation there is no obvious reason for ˛[ˇp�1 to be zero.
The gap into which one might hope a product of this type would fall is filled by its
corresponding Pontryagin product, at least on the E1 –page. However, by Corollary 4.4,
the element Q0.a/ 2E

�p;2piC2pkC1Cp
1

is a permanent cycle. Hence there is a class
ı 2H 2piC2pkC1

.�n0Y / representing Q0.a/ 2E
�p;2piC2pkC1Cp
1 with the following

property.

Lemma 5.8 The equation P.p�1/pk

.ı/D�˛[ˇp�1 holds.

Proof The first step is a calculation in the spectral sequence. The equality

P.p�1/pkQ0.a/D

.p�1/pk�1X
jD0

a0;.p�1/pk;jaj.j/c0;.p�1/pk;jaj.j/Q2..p�1/pk�pj/.p�1/Pj.a/

C

.p�1/pk�1�1X
jD0

b0;.p�1/pk ;jaj.j /d0;.p�1/pk ;jaj.j /Q2..p�1/pk�pj/.p�1/�pPjˇ.a/

C

X
t2N

1

et
Pt1.a/ ? � � �?Ptp .a/
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holds by the Nishida relations, Proposition 3.11 (we apologize for the two-fold use
of the letters ‘a’ and ‘ˇ ’). In the first and second summands, Pj � a and Pjˇ � a are
zero if j > i by instability. However, if j � i , then the index for the Dyer–Lashof
operation exceeds .n� 1/.p� 1/, so both summands vanish entirely. The third sum
reduces to the term indexed by t WD .0;pk ; : : : ;pk/. In fact, if t2� i , then tj > iCpk

for some j with 2< j � p , which in turn yields zero in the product by instability. If
i < t2 < pk , then Pt2.a/D 0, whence the only element in N that contributes to the
sum nontrivially is .0;pk ; : : : ;pk/. Thus

P.p�1/pkQ0.a/D�a� bp�1;

and both P.p�1/pk

.ı/ and �˛ [ ˇp�1 represent the same element in E
�p;qCp
1 D

F
�p
q =F

�.p�1/
q , where q WD 2pi C 2pk � 2pkC1C 2pkC2 . Proving F

�.p�1/
q D 0 is

equivalent to proving E
�r;qCr
1 D 0 for all 0 � r < p . However, for 0 � r < p , the

group E
�r;qCr
1

lies in a gap by the following argument. If w D 0, then the top degree
of N u

0
�N v

1
�Nw

2
is too low, because

.uC vCw/mC 2.uC vpCwp2/pk
C .uC vCw� 1/.n0� 1/

� .p� 1/mC 2.p� 1/pkC1
C .p� 2/.nC 2i/

� 2.p� 1/pkC1
Cpm� `C .p� 2/n

< p`C 2pk
C 2.p� 1/pkC1

� q:

If w ¤ 0, its bottom degree is too high, because 2.p� 1/pk >m� ` and

2ui C .vCw/`C 2.uCpvCp2w/pk
� `C 2pkC2

>m� 2.p� 1/pk
C 2pkC2

� q:

It follows that F
�.p�1/
q D 0. Therefore P.p�1/pk

.ı/ and �˛ [ ˇp�1 coincide in
F
�p
q �H q.�n0Y /.

Introducing this element ı goes back to Schwartz’ paper [23]. The inequality (14)
and Lemma 5.8 combine to give Ppk

P.p�1/pk

.ı/ ¤ 0. However, the operation
Ppk

P.p�1/pk

can be decomposed using the Adem relations in the form of Lemma 3.12,
which then implies the following computation.

Lemma 5.9 The equation Ppk

P.p�1/pk

.ı/D 0 holds.

Proof The idea is to find p gaps in the filtration F�p which are large enough.
Unfortunately, there are only two obvious such gaps, but Ppk

P.p�1/pk

.ı/ is shown to

Algebraic & Geometric Topology, Volume 13 (2013)



Topological realization at odd primes 153

have nontrivial contribution outside F�.p�1/ before performing its final ‘jump’. In
F�p=F�.p�1/ we then find the required p� 2 additional gaps. To this end define

V0 D

X
.u;v/2N2;uCv�p

.0;p/¤.u;v/¤.1;p�1/

N u
0 �N

v
1 ;

V1 DN0 �N
p�1
1

;

V2 DN
p
1
C

X
.u;v;w/2N3

uCvCw�p;w¤0

N u
0 �N

v
1 �N

w
2 ;

and recall that shifted versions of these modules assemble to the first p columns of E1

in such a way that
F

p
� D V10 CV11 CV12 ;

where V1j denote the subquotients of Vj in E1 . By definition, the degrees of elements
are distributed as follows:

jV0j � Œ2i C 2pk ; .p�1/mC 2.p�1/pkC1
C .p�2/.n0�1/�;

jV1j � Œ2i C .p�1/`C .p2
�pC 1/2pk;pmC .p2

�pC 1/2pk
C .p�1/.n0�1/�;

jV2j � Œ`C 2pkC2;pmC 2pkC3
C .p�1/.n0�1/�:

Hence both between V0 and V1 and between V1 and V2 there is a gap spanning at
least 2.p� 1/pk�1 . Moreover, the distance between V0 and V2 is strictly larger than
2.p� 1/pk .

V0 V1 V2

filtration

degree

�1

�pC1

�p

�p�1

ı
�˛[ˇp�1

ˇp

P.p�1/pk

Ppk
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Lemma 3.12 provides a decomposition of the form

Ppk

P.p�1/pk

D

rX
jD1

Aj1Ppk

Aj2Ppk

� � �Ajej ;

with Ajj 0 2 Ap.k � 1/ and 0 � ej � p for all 1 � j � r . If Ppk

P.p�1/pk

.ı/ ¤ 0,
there exists 1 � j � r such that

�
Aj1Ppk

Aj2Ppk

� � �Ajej

�
.ı/ ¤ 0. Expressing the

Ajj 0 via indecomposables yields (as a summand) a product

(15) Pp�1
� � � Pp�t

; with 1� �j � k;
�
Pp�1

� � � Pp�t
�
.ı/¤ 0;

where �j D k for at most p�1 indices. The gap between V0 and V2 is too large to be
passed by any single Pp

�j . Since ı 2 .N p
0
/1 � V1

0
(or rather a subquotient of N0 )

and Ppk

P.p�1/pk

.ı/ D ˇp 2 .N
p
1
/1 � V1

2
, there exists a number 1 � s � t such

that .Pp�s
� � � Pp�t

/.ı/ 2 V1 . The only indecomposable operation appearing in (15)
which can pass the gap between V1 and V2 is Ppk

. Hence there exists 1 � r < s

with �r D k . In particular, �j D k for at most p� 2 indices j � s . The same degree
calculation appearing in the proof of Lemma 5.8 yields V1

1
\F�.p�1/ D f0g on the

infinity page, so �
Pp�s

� � � Pp�t
�
.ı/¤ 0 in F�p=F�.p�1/:

However, the image of V0˚V1 in F�p=F�.p�1/ is a subquotient of the module

N
p
0
˚
�
N

p�1
0
�N1

�
˚
�
N

p�2
0
�N 2

1

�
˚ � � �˚

�
N0 �N

p�1
1

�
;

which contains at least .p � 1/ gaps. More precisely, between any N u
0
� N v

1
and

N u�1
0
�N vC1

1
there is a gap spanning at least 2.p� 1/pk�1 . Similarly, the distance

between N u
0
�N v

1
and N u�2

0
�N vC2

1
spans more than 2.p� 1/pk .

N
p

0 N
p�1

0
�N1 N

p�2

0
�N 2

1
N0 �N

p�1

1
� � �

subquotient of

degree

2.p�1/pk�1 2.p�1/pk�1

2.p�1/pk

2.p�1/pk�1 2.p�1/pk�1

� � �
ı

Since no indecomposable operation in (15) can pass across two gaps at once, the
product .Pp�s

� � � Pp�t
/.ı/ has to factor through a trivial module in F�p=F�.p�1/ . It

follows that Ppk

P.p�1/pk

.ı/D 0.
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The element Ppk

P.p�1/pk

.ı/D�Pk.˛[ˇp�1/ is both zero and nonzero, as shown
by inequality (14) and Lemmas 5.8 and 5.9. Hence the assumption (9) is wrong, which
proves Theorem 5.6.

The theorem as stated in the beginning can now be obtained by a simple reindexing
using some obvious estimates. Note that M has a desuspension class of even origin if
the Bockstein acts trivially on M . Following Kuhn’s observations in [16], we recover
a theorem of his.

Theorem 5.10 If H�.X / is finitely generated over the Steenrod algebra Ap and the
Bockstein acts trivially on it in high degrees, then H�.X / is finite.

Proof The proof proceeds as in [18]. Let ST be the reduced Lannes functor and
�.X / D Map.BZ=p;X /=X where X is embedded as the space of constant maps.
Iterated applications of � produce a space Y which still has finitely generated, but
infinite dimensional, cohomology and whose cohomology satisfies ST 2

�
H�.Y /

�
D 0.

Structure theorems of Kuhn and Schwartz imply that in large degrees, H�.Y / is
isomorphic to the module M˝ˆ.k;1/ with M Š ST H�.Y /. By a result of Winstead
recorded in [16, Theorem 1.3], the Bockstein still acts trivially on M in large degrees,
forcing all desuspension classes to have even origin. For large k one can produce a
subquotient space Z with H�.Z/ŠM ˝ˆ.k; kC 2/, which is a contradiction of
Theorem 5.6.

The case of a desuspension class of odd origin remains unsolved. The operation ˇPi

has an interpretation in terms of p–fold symmetric Massey products

ˇPi.x/D hx; : : : ;xis

by work of Kraines [15]. A similar formula holds for Qp�2 by a result of Kochman [14].
Consequently, one may try to replace p–fold cup products in the arguments for the
even case by p–fold Massey products. This attempt works if the module M does not
desuspend at all (the case nD 0), via a Cartan formula for Massey products. If n> 0,
one may try to replace Q0 by Qp�2 and use the interpretation in terms of Massey
products mentioned above. Currently we do not know how to make this work. Another
strategy is to introduce an extra looping to reduce to the even case. This strategy
already appears in the K–theoretical Adams–Atiyah proof of the Hopf invariant one
theorem at odd primes, and it was also used in [23]. However, in that situation the
element dp�1Q0.˛/ is possibly nonzero. There are several ways to deal with this. One
approach is to bring the projective plane into play, as was done in [23]. As noted in [24],
it is unclear whether Q0.˛/ still survives in the spectral sequence for the projective
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plane. Another approach is to switch to the homotopy fibre F of ˇPi.˛/. Here the
class corresponding to Q0.˛/ surely survives, but an extension problem related to the
H –deviation of the splitting map for �F as a product of the loop space on X and
the appropriate Eilenberg–Mac Lane space prevents the argument to go through. In
both approaches, one uses the fact that ˇPi loops down to zero. Harper shows that the
problems in both approaches are closely related in [13].

Appendix A Homology of free algebras over En–operads

Our aim in this section is to compute the (co)homology of the free algebra on a
spectrum E over a suitable En –algebra. The case of an E1–operad was already treated
in [7]. The homology of the free Cn –algebra CnX on a space X has been computed
in [8]. More precisely, he defined a category of so called allowable ARn�1ƒn�1 –Hopf
algebras and constructed (among other things) a free functor Wn�1 from a category
of coalgebras to this category of allowable ARn�1ƒn�1 –Hopf algebras. Cohen then
proved that the homology H�CnX of the free algebra over the operad of little n–cubes
on a space X is isomorphic to Wn�1H�X as an ARn�1ƒn�1 –Hopf algebra. Besides
the Hopf algebra structure, the action of the Steenrod reduced powers, the Dyer–Lashof
and the Browder operations are encoded in the ARn�1ƒn�1 –Hopf algebra structure.
The precise definition is given in the first few pages of [8].

Building on Cohen’s calculation, most of the axioms where shown to hold for the
homology of a suitable En –spectrum (or even an Hn –spectrum) in [7]. The part of the
structure which was not studied there is the comultiplication and its interaction with
the operational structure. In the papers [1; 17], Kuhn studied a natural coproduct on
the homology of a free operad algebra on a spectrum, and we rely very much on these
results. The unstable case of an En –operad was treated already in [8], and Strickland
and Turner considered the E1 case in [26; 27].

Let C be a topological operad augmented over the operad L of linear isometries, let E

be a spectrum and EC D E _ S , where S is the sphere spectrum. Then the free
C–algebra on EC is defined in [19]. Let Dk denote the k –th extended powers with
respect to C . Write �W EC! EC _EC for the stable pinch map and consider the
map � given by the composition

CEC
C�
��!C.EC_EC/'

1_
kD0

Dk.EC_EC/
�
�!

1_
kD0

_
iCjDk

DiEC^Dj EC'CEC^CEC;

where � is induced by the degeneracies of the operad (see [21, page 12]). Roughly, it
associates to a labeled “configuration” all partitions of the configuration. Following
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Kuhn, we choose

 �W H�C†1X !H�C†1X ˝H�C†1X

as coproduct. The homomorphism induced by � on homology can be described by
suitable transfer homomorphisms. It is part of the main result in [17] that, for a
co-H –space X ,  coincides with the usual coproduct. Here the isomorphism

C†1X Š†1CX

enters. Since Cn is not augmented over the operad L of linear isometries, the free
Cn –algebra CnE on a spectrum E in the sense of [19, Chapter VII] cannot be formed.
However, a cofibrant model xC! Cn in the model category of topological operads is
augmented over L; see Berger and Moerdijk [3]. Alternatively, one can choose the
operad Cn �L instead. Moreover, functorial cellular approximation leads to a cellular
operad, still denoted xC , because it commutes with products.

Remark A.1 There is a notion of naive (MIT) C–ring spectra, for which one does not
need to assume that the operad C is augmented over L. No operadic internalization of
external smash products is needed, instead one uses the symmetric monoidal smash
product in S –modules and the fact that the model category of S –modules is tensored
over topological spaces. However, we have to rely on certain results in [19] and there
is no comparison between these two notions of operad ring spectra in the literature as
far as we know (but see May [22]).

We remind the reader how Dk†
dX can be viewed as a relative Thom complex in the

case where X is a pointed space. Consider the bundle

pW xCk �†k
.Rd /k ! xCk=†k D

xBk

and let pX the pullback along the map

qW xCk �†k
X k
! xBk :

Then Dk†
dX is the quotient of Thom complexes T .pX /=Tp� , where � is the base

point in X . Extended powers of spectra do not commute with suspension. However,
there is a Thom isomorphism ˆ�1 for a spectrum E and d even whose inverse

ˆW H�Dk†
dE!H�DkE

is more convenient for us. In the E1–case, such a Thom isomorphism is provided
in [7, Theorem VII.3.3] (see also [8, Chapter VII]), and the proof generalizes. The
homomorphism ˆ is induced by the composite

H�Dk†
dE

ı�
�!H�DkSd

^DkE ŠH�DkSd
˝H�DkE

�˝id
���!H�DkE;
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where ıW Dk†
dE!DkSd ^DkE is induced by the diagonal in xC and � is evaluation

at the orientation class e0˝ �
k 2H�DkSd . Here � is the fundamental class of Sd and

e0D1 is the image of the bottom class of the standard free acyclic Z=p–complex W in
H 0 xCk ; see [19, page 403] and [7, pages 244-247] for details. The isomorphism ˆ is the
colimit of a compatible system of isomorphisms ˆs of (inverse) Thom isomorphisms
for a system of bundles defined by the augmentation to L, followed by suitable
desuspension isomorphisms. Snaith’s splitting assembles these isomorphisms ˆ for
various k to an isomorphism

ˆW H�C†dEC!H�CEC:

Lemma A.2 The isomorphism

ˆW H� xC†dEC!H� xCEC

is compatible with the comultiplication  .

Proof This follows from naturality of ˆ applied to �C.�/, just as in [26, 7.1].

The next lemma shows that ˆ is also compatible with Browder operations, Dyer–Lashof
operations and the Pontryagin product. A version of it is proved for cyclic powers in
[19, Lemma VIII.3.3.]. The arguments given there generalise once one replaces the
standard acyclic Z=p complex W [20] by the spaces in xC . Before we state the lemma,
recall that [19, VIII 2.9.] supplies an isomorphism

C�.DkE/Š C�. xCk/˝†k
C�.E/

˝k

for a cellular operad C and a cellular spectrum E , where C� denotes the cellular chain
complex. The chain complex C�.E/

˝k is equivariantly chain homotopy equivalent
to H�.E/

˝k . Thus, any class in H�DkE may be represented as Œc˝x1˝ � � �˝xk �

with c 2 C�. xCk/ and Œxi � 2H�E .

Lemma A.3 The equality

ˆ.Œc˝ �dx1˝ � � �˝ �
dxk �/D Œc˝x1˝ : : :xk �

holds.

Proof Consider a class z 2H�†
d DkE and represent it as

z D Œc˝ �dx1˝ � � �˝ �
dxk �:
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Express z�cD
P

iD1c0i˝c00i , where z� is a diagonal approximation for xCk . By definition
of z�, the class z is mapped toX

iD1

.c0i ˝ � ˝ � � �˝ �/˝ .c
00
i ˝x1˝ � � �˝xk/;

where � is interpreted as the generator of H�S
d . Evaluating the orientation class

1˝ ik ˝ id on that cycle yields Œc˝x1˝ � � �˝xk �, which finishes the proof.

Corollary A.4 The Thom isomorphism ˆ commutes with Browder operations, Dyer–
Lashof operations Qi and the Pontryagin product.

Proof The operations are defined to be the image of a class Œc˝x1˝� � �˝xk � under the
algebra structure map, where c is either one of Cohen’s classes ei , or the fundamental
class � for xC2 ' Sn�1 , or a class in H0

xC2 [21, page 66]. Moreover, it suffices to
consider free xC–algebras. The assertion then follows directly from Lemma A.3.

The coproduct  on the homology of a xC–algebra on a space X is related to the other
operations by diagonal Cartan formulas [8]. These read

 Qk.x/D
X

iCjDk

X
r

Qi.x0r /˝Qj .x00r /;(16)

 �n�1.x;y/D
X
r;s

.�1/.n�1/jx0r jCjx
00
r jjy
0
s j�n�1.x

0
r y0s/˝x00r y00s

C

X
r;s

.�1/.n�1/jy0s jCjx
00
r jjy
0
s jx0r y0s˝�n�1.x

00
r ;y
00
s /;

(17)

if  .x/D
X

r

x0r ˝x00r ;  .y/D
X

s

y0s˝y00s :(18)

The nonlinear top operation � satisfies a diagonal formula only up to an error term
consisting of p–fold Browder operations in the elements x0;x00 . This fact was
overlooked in [8] and corrected by Wellington [28]. The diagonal formula for the
operation � follows from the formulae for � and �n�1 , together with the relation
�.x/D ˇ�.x/� adp�1.x/.ˇx/.

Corollary A.5 The diagonal Cartan formulas hold in H� xCE .
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Proof This assertion is proven in [8] for a suspension spectrum †1X . By [19, I.4.7]
there is a natural isomorphism E Š colimm†

�m†1Em . Since extended powers
commute with colimits by [7, Proposition I.1.2] it suffices to prove the assertion
for a shifted suspension spectrum †�m†1X , where X is a pointed cell complex.
Furthermore, one can restrict to the case where X is connected and m is even because
of the natural isomorphism

†�m†1X Š†�.mC1/†1†X

(see [19, I.4.2]). Then the assertion follows from Lemma A.3.

The following is now immediate.

Proposition A.6 Let E D†�m†1X for a connected cell complex X and m even.
Then the composition

Wn�1H�†
mE

�
�!H� xCn�1†

mE
ˆ

m
2

���!H� xCn�1E

is an isomorphism of ARn�1ƒn�1 –Hopf algebras.

Note that the isomorphism in Proposition A.6 does not preserve the degree. As an alge-
bra, Wn�1H�†

mE is isomorphic to a free commutative graded algebra ƒMn�1 . The
vector space Mn�1 has a basis which consists of classes QI y , where I runs through
certain admissible sequences and y runs through basic products in the �n�1 –algebra
underlying Wn�1H�E (see [8, page 227] for precise definitions). This information
and Proposition A.6 imply the next result, which is the raison d’être of this appendix.

Corollary A.7 Let E D†�m†1X for a connected cell complex X and m even. As
an algebra, H� xCn�1E is the free algebra �shkM �

n�1
with divided powers on the dual

of a shifted copy shkMn�1 of Mn�1 .

Proof The assertion follows from Proposition A.6 and [28, 3.13].

Appendix B Nishida relations

This final section presents the proofs of Proposition 3.9 and the Nishida relations in
cohomology, Proposition 3.11. The standard Nishida relations in homology given by
May ([20, page 209, Theorem 9.4]) are a major ingredient in this proof. The modified
version of the two top operations from [8] is not required here.
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Proposition B.1 (Nishida relations) Let s 2 N and 0 � r < .p � 1/.n� 1/. Then
the equality

Ps.Qr .x//D

�
s
pX̆

iD0

ar;s;jxj.i/QrC2.pi�s/.p�1/Pi.x/

C ır

�
s�1

p

˘X
iD0

br;s;jxj.i/QrCpC2.pi�s/.p�1/ˇPi.x/

holds, where

ır D

(
0 r � 0 mod 2;

1 r � 1 mod 2;

ar;s;jxj.i/D

�
s�psC

�
r
2

˘
C

p�1
2
jxj

s�pi

�
;

br;s;jxj.i/D .�1/
p�1

2
jxjC1

�p�1
2

�
!

�
s�ps� 1C

�
rC1

2

˘
C

p�1
2
jxj

s�pi � 1

�
:

We turn now to the proof of Proposition 3.11.

Proof Let †p act on Np by permuting coordinates, set

N WD
˚
n 2Np

W ni � niC1;
X

ni D s; 9j W nj < njC1

	
�Np

and choose n 2 N . To justify that the residue class en of the order of the isotropy
group is invertible in Fp , observe that the prime p divides en if and only if ni D nj

for all i; j for the following reason. In fact, if all coordinates of n 2Np are equal, the
isotropy group of n has order p!, being †p . If p divides en , there exists an element �
of order p in the isotropy group of n by Cauchy’s theorem from group theory. The
only elements of order p in †p are p–cycles. Thus � � nD n implies ni D nj for all
i; j . It follows that 1

en
is well defined.

The proof is basically a computation of pairings with generating elements of the
corresponding homology, together with references to Proposition B.1. Pairing (6) with
the Dyer–Lashof operations yields as left hand side

hPsQr .x/;Qj .y/i D hQr .x/;PsQj .y/i;
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whereas the right hand side will be considered separately for each of the three summands
(with the third only appearing if r D 0). The first summand is�

s
pX̆

iD0

ar;s;jxj.i/cr;s;jxj.i/QrC2.s�pi/.p�1/Pi.x/:

On the cohomological side, the pairing hQrC2.s�pi/.p�1/Pi.x/;Qj .y/i is nonzero
only if j D r C 2.s�pi/.p� 1/ and either

2.p� 1/ j .p� 1/jyjC j or 2.p� 1/ j .p� 1/jyjC j C 1:

For this proof, we call such an index j good. Let q WD .r�jC2s.p�1//=.2.p�1/p/,
then

� � s
pX̆

iD0

ar;s;jxj.i/cr;s;jxj.i/QrC2.s�pi/.p�1/Pi.x/;Qj .y/

�

D

(
ar;s;jxj.q/ .jxj; r/hPq.x/;yi q 2N; j good;

0 else:

On the homological side, we have hQr .x/;QjC2.pi�s/.p�1/Pi.x/i is nonzero only if
j D r C 2.s�pi/.p� 1/ and either

2.p� 1/ j j C 2.pi � s/.p� 1/C .p� 1/.jyj � 2.p� 1/i/

or

2.p� 1/ j j C 2.pi � s/.p� 1/C .p� 1/.jyj � 2.p� 1/i/C 1

which reduces to j being good. As above

�
Qr .x/;

�
s
pX̆

iD0

aj ;s;jyj.i/QjC2.pi�s/.p�1/Pi.y/

�

D

(
aj ;s;jyj.q/ .jxj; r/hx;Pq.y/i q 2N; j good;

0 else:
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Both these terms are nonzero only if jPq.x/j D jyj, and then a simple calculation
shows aj ;s;jyj.q/D ar;s;jxj.q/. The equality

(19)

� � s
pX̆

iD0

ar;s;jxj.i/cr;s;jxj.i/QrC2.s�pi/.p�1/Pi.x/;Qj .y/

�

D

�
Qr .x/;

�
s
pX̆

iD0

aj ;s;jyj.i/QjC2.pi�s/.p�1/Pi.y/

�

follows. The second summand is

ır

�
s�1

p

˘X
iD0

br;s;jxj.i/dr;s;jxj.i/QrC2.s�pi/.p�1/�pPiˇ.x/:

On the cohomological side, the term ır hQr�pC2.s�pi/.p�1/Piˇ.x/;Qj .y/i is nonzero
only if r is even, j D r �pC 2.s�pi/.p� 1/ and either

2.p� 1/ j .p� 1/jyjC j or 2.p� 1/ j .p� 1/jyjC j C 1:

Note that j is odd if r is even, so 2.p� 1/ − .p� 1/jyjC j , eliminating the first of
these two cases. Let q WD .r � j �pC2.p�1/s/=2.p�1/p and call an index j bad
if j D r �pC2.s�pi/.p�1/ and 2.p�1/ j .p�1/jyjC j C1. Then the equality

(20)

�
ır

�
s�1

p

˘X
iD0

br;s;jxj.i/dr;s;jxj.i/Qr�pC2.s�pi/.p�1/Piˇ.x/;Qj .y/

�

D

(
ır br;s;jxj.q/ .jxj; r/hPqˇ.x/;yi q 2N; j bad;

0 else;

holds. On the homological side, ıj hQr .x/;QjCpC2.pi�s/.p�1/ˇPi.y/i is nonzero
only if j is odd, r D j CpC 2.pi � s/.p� 1/ (implying r even) and either

2.p� 1/ j .p� 1/.jyj � 2.p� 1/i � 1/C j CpC 2.pi � s/.p� 1/

or

2.p� 1/ j .p� 1/.jyj � 2.p� 1/i � 1/C j CpC 2.pi � s/.p� 1/C 1:
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Note that the second divisibility cannot occur if j is odd, thereby reducing these
conditions on j simply to being bad. The equality

�
Qr .x/; ıj

�
s�1

p

˘X
iD0

bj ;s;jyj.i/QjCpC2.pi�s/.p�1/ˇPi.y/

�

D

(
ıj bj ;s;jyj.q/ .jxj; r/hx; ˇPq.y/i q 2N; j bad;

0 else;

follows. Since jPqˇ.x/j D jyj and ır D ıj imply br;s;jxj.q/D bj ;s;jyj.q/,

(21)

�
ır

�
s�1

p

˘X
iD0

br;s;jxj.i/dr;s;jxj.i/Qr�pC2.s�pi/.p�1/Piˇ.x/;Qj .y/

�

D hQr .x/; ıj

�
s�1

p

˘X
iD0

bj ;s;jyj.i/QjCpC2.pi�s/.p�1/ˇPi.y/i

results. Adding (19) and (21) yields the desired result for r > 0, since the sum of the
right sides is just PsQj .y/ by Proposition B.1. The extra term in cohomology for
r D 0 does not contribute, since� X

n2N

1
en
.?

p
iD1

Pni .x//;Qj .y/

�
is always zero by Proposition 3.8 (7). Consider now parings with Browder operations.
The left hand side is

hPsQr .x/;Ln�1.y; z/i D hQr .x/;PsLn�1.y; z/i

D

sX
iD0

hQr .x/;Ln�1.Pi.y/;Ps�i.z//i

D 0;

and thus coincides with the right hand side, because hQr .x/;Ln�1.y; z/i D 0 D

h?
p
iD0

xi ;Ln�1.y; z/i.

Finally, pairings with products have to be treated. Proposition 3.8 (3) implies that only
p–fold products may contribute. Let N 00 D fn 2 NpW n1C � � � C np D sg. The left
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hand side equals

hPsQr .x/;�
p
iD1

yii D hQr .x/;Ps.�
p
iD1

yi/i

D

X
n2N 00

hQr .x/;�
p
iD1

Pni
.yi/i;

which is zero unless r D 0. In the case r D 0, the result is

hPsQ0.x/;�
p
iD1

yii D

X
n2N00

pY
iD1

hx;Pni
.yi/i:

The right hand side hQrC2.s�pi/.p�1/Pi.x/;�
p
iD0

yii is zero unless we have that
r C 2.s�pi/.p� 1/D 0. In that case

s

p
�

j s

p

k
� i D

r C 2.p� 1/s

2.p� 1/p
;

which implies r D 0 (and then also i D s
p

). It follows that

� � s
pX̆

iD0

ar;s;jxj.i/cr;s;jxj.i/QrC2.s�pi/.p�1/Pi.x/;�
p
iD1

yi

�

D

(Qp
iD1
hP

s
p .x/;yii r D 0;p j s;

0 else;

because a0;s;jxj.s=p/D c0;s;jxj.s=p/D 1. By the same reasoning, a nonzero pairing
hQr�pC2.s�pi/.p�1/Piˇ.x/;�

p
iD1

yii can only occur if r �pC2.s�pi/.p�1/D 0.
But then ır D 0, so the second term

�
ır

�
s�1

p

˘X
iD0

br;s;jxj.i/dr;s;jxj.i/Qr�pC2.s�pi/.p�1/Piˇ.x/;�
p
iD1

yi

�
D 0
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vanishes completely. Again, this proves the claim in the case r > 0, as both sides of
the claimed equation pair to zero. In the case r D 0 one additionally calculates� X

n2N

1
en
.Pn1.x/ ? � � �?Pnp .x//;�

p
iD1

yi

�
D

X
n2N

1
en

X
�2†p

pY
iD1

hPni .x/;y�.i/i

D

X
n2N

1
en

X
�2†p

pY
iD1

hP.� �n/i .x/;yii

D

X
�2†p

X
n2� �N

e�1
��1�n

pY
iD1

hPni .x/;yii

D

X
�2†p

X
n2� �N

e�1
n

pY
iD1

hPni .x/;yii;

since e��1�n D en , where .� � n/i D n��1.i/ for � 2 †p . Let N 0 D fn 2 N 00W 9 1 �

i; j � pW ni ¤ nj g. For every n 2 � �N there exist i; j with ni ¤ nj by the definition
of N , thus the sums may be combined to give� X

n2N

1
en

�
?

p
iD1

Pni .x/
�
;�

p
iD1

yi

�
D

X
n2N 0

jf� 2†pW n 2 t �N gj

en

pY
iD1

hPni .x/;yii;

because en¤ 0 for all such n, as mentioned at the beginning of the proof. If � �nD� �m
for n;m 2 N and �; � 2 †p , then nDm, since n and m are ascending. Hence for
every n 2Np there exists an m 2N such that

(22) f� 2†pW n 2 t �N g D f� 2†pW nD � �mg;

and m is unique if this set is nonempty. In that case, it is a coset of the isotropy group
of n. By the definition of N , the set (22) is empty exactly if

P
ni ¤ s , whereas its

cardinality is just en if it is nonempty. Hence� X
n2N

1
en
.?

p
iD1

Pni .x//;�
p
iD1

yi

�
D

X
n2N 0

pY
iD1

hPni .x/;yii

D

(P
n2N 00

Qp
iD1
hPni .x/;yii �

Qp
iD1
hP

s
p .x/;yii p j s;P

n2N 00
Qp

iD1
hPni .x/;yii p − s:

Summing these equations finishes the proof.

It remains to supply the proof of the (non)linearity statement 3.9.
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Proof The second equality follows from the first and Corollary A.7. The proof of
the first equation proceeds as the proof of Proposition 3.11 given above. It suffices
to prove the equations for homogeneous elements, so let x;y 2 H d .Dn;j X / and
z 2Hd .Dn;j X /. Pairing the equation

Qr .xCy/DQr .x/CQr .y/

with Qs.z/ yields

hQr .xCy/;Qs.z/i D

(
 .d; r/hxCy; zi r D s D t.p� 1/� �; � 2 f0; 1g;

0 otherwise;

hQr .x/CQr .y/;Qs.z/i D hQr .x/;Qs.z/iC hQr .y/;Qs.z/i

D

(
 .d; r/hxCy; zi r D s D t.p� 1/� �; � 2 f0; 1g;

0 otherwise;

by Proposition 3.8(1), since jxj D jyj D d . In the case r D 0, the summandPp�1

kD1
1

.p�1/!k!
x?k ?y?.p�k/ pairs trivially with Qs.z/ by Proposition 3.8(7). Pairing

each of these summands with the value of a homological Browder operation also yields
zero by Proposition 3.8 parts (2) and (8).

It remains to check pairings with products. Let z1; : : : ; zk 2H�.Dn;�X /. If r > 0 or
k ¤ p ,

hQr .xCy/;�k
iD1zii D hQr .x/CQr .y/;�k

iD1zii D 0

by Proposition 3.8(3), and if r D 0 and k D p ,

hQ0.xCy/;�
p
iD1

zii D

pY
iD1

hxCy; zii

D

pY
iD1

.hx; ziiC hy; zii/

D

pY
iD1

hx; ziiC

pY
iD1

hy; ziiC

p�1X
jD1

1

.p�j/!j!
hx?j y?.p�j/;�

p
iD1

zii

holds by a calculation. Computing the pairing�
Q0.x/CQ0.y/C

p�1X
jD1

1

.p� j /!j !
x?j y?.p�j/;�

p
iD1

zi

�
yields the same result, which provides the desired equation.

Algebraic & Geometric Topology, Volume 13 (2013)



168 S Büscher, F Hebestreit, O Röndigs and M Stelzer

References
[1] S T Ahearn, N J Kuhn, Product and other fine structure in polynomial resolutions of

mapping spaces, Algebr. Geom. Topol. 2 (2002) 591–647 MR1917068

[2] G Arone, A generalization of Snaith-type filtration, Trans. Amer. Math. Soc. 351 (1999)
1123–1150 MR1638238

[3] C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv.
78 (2003) 805–831 MR2016697

[4] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological
spaces, Lecture Notes in Mathematics 347, Springer, Berlin (1973) MR0420609

[5] R Bott, H Samelson, On the Pontryagin product in spaces of paths, Comment. Math.
Helv. 27 (1953) 320–337 MR0060233

[6] A K Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J.
Math. 109 (1987) 361–394 MR882428

[7] R R Bruner, J P May, J E McClure, M Steinberger, H1 ring spectra and their
applications, Lecture Notes in Mathematics 1176, Springer, Berlin (1986) MR836132

[8] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes
in Mathematics 533, Springer, Berlin (1976) MR0436146

[9] G Gaudens, L Schwartz, Applications depuis K.Z=p; 2/ et une conjecture de
N. Kuhn, preprint (2010) arXiv:1005.0567v1

[10] T G Goodwillie, Calculus, I: The first derivative of pseudoisotopy theory, K -Theory 4
(1990) 1–27 MR1076523

[11] T G Goodwillie, Calculus, II: Analytic functors, K -Theory 5 (1992) 295–332
MR1162445

[12] T G Goodwillie, Calculus, III: Taylor series, Geom. Topol. 7 (2003) 645–711
MR2026544

[13] J R Harper, Secondary cohomology operations, Graduate Studies in Mathematics 49,
American Mathematical Society (2002) MR1913285

[14] S O Kochman, Symmetric Massey products and a Hirsch formula in homology, Trans.
Amer. Math. Soc. 163 (1972) 245–260 MR0331388

[15] D Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966) 431–449
MR0202136

[16] N J Kuhn, On topologically realizing modules over the Steenrod algebra, Ann. of Math.
141 (1995) 321–347 MR1324137

[17] N J Kuhn, Stable splittings and the diagonal, from: “Homotopy methods in algebraic
topology”, (J P C Greenlees, R R Bruner, N Kuhn, editors), Contemp. Math. 271, Amer.
Math. Soc. (2001) 169–181 MR1831353

Algebraic & Geometric Topology, Volume 13 (2013)



Topological realization at odd primes 169

[18] N Kuhn, Topological nonrealization results via the Goodwillie tower approach to
iterated loopspace homology, Algebr. Geom. Topol. 8 (2008) 2109–2129 MR2460881

[19] L G Lewis, Jr, J P May, M Steinberger, J E McClure, Equivariant stable homotopy
theory, Lecture Notes in Mathematics 1213, Springer, Berlin (1986) MR866482

[20] J P May, A general algebraic approach to Steenrod operations, from: “The Steenrod
algebra and its applications”, (F P Peterson, editor), Lecture Notes in Mathematics 168,
Springer, Berlin (1970) 153–231 MR0281196

[21] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271,
Springer, Berlin (1972) MR0420610

[22] J P May, What precisely are E1 ring spaces and E1 ring spectra?, from: “New
topological contexts for Galois theory and algebraic geometry”, (A Baker, B Richter,
editors), Geom. Topol. Monogr. 16, Geom. Topol. Publ., Coventry (2009) 215–282
MR2544391

[23] L Schwartz, À propos de la conjecture de non-réalisation due à N. Kuhn, Invent. Math.
134 (1998) 211–227 MR1646599

[24] L Schwartz, Erratum to: La conjecture de non réalisation due à N. Kuhn, Invent. Math.
182 (2010) 449–450 MR2729273

[25] L Smith, Lectures on the Eilenberg–Moore spectral sequence, Lecture Notes in Mathe-
matics 134, Springer, Berlin (1970) MR0275435

[26] N P Strickland, Morava E -theory of symmetric groups, Topology 37 (1998) 757–779
MR1607736

[27] N P Strickland, P R Turner, Rational Morava E -theory and DS0 , Topology 36
(1997) 137–151 MR1410468

[28] R J Wellington, The unstable Adams spectral sequence for free iterated loop spaces,
Mem. Amer. Math. Soc. 36 (1982) viii+225 MR646741

[29] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61,
Springer, New York (1978) MR516508

SB, OR, MS: Institut für Mathematik, Universität Osnabrück
D-D-49069, Osnabrück, Germany

Mathematisches Institut, Universität Münster
D-D-48149, Münster, Germany

sbuesche@uos.de, f.hebestreit@uni-muenster.de, oroendig@math.uos.de,
mstelzer@uos.de

Received: 11 November 2011 Revised: 9 August 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp




