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Derivators, pointed derivators
and stable derivators

MORITZ GROTH

We develop some aspects of the theory of derivators, pointed derivators and stable
derivators. Stable derivators are shown to canonically take values in triangulated
categories. Similarly, the functors belonging to a stable derivator are canonically
exact so that stable derivators are an enhancement of triangulated categories. We
also establish a similar result for additive derivators in the context of pretriangulated
categories. Along the way, we simplify the notion of a pointed derivator, reformulate
the base change axiom and give a new proof that a combinatorial model category has
an underlying derivator.
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0 Introduction and plan

The theory of stable derivators was initiated by Heller [16; 17] and Grothendieck [14].
It was studied further, at least in similar settings and among others, by Franke [12],
Keller [24] and Maltsiniotis [32]. One way to motivate it is by saying that it provides
an enhancement of triangulated categories. Triangulated categories suffer the well-
known defect that the cone construction is not functorial. A consequence of this
nonfunctoriality of the cone construction is the fact that there is no good theory of
homotopy (co)limits for triangulated categories. One can still define these notions, at
least in some situations where the functors are defined on categories which are freely
generated by certain graphs. This is for example the case for the cone construction
itself, the homotopy pushout and the homotopy colimit of a sequence of morphisms.
But in all these situations, the “universal objects” are only unique up to noncanonical
isomorphism. The slogan used to describe this situation is the following one: diagrams
in a triangulated category do not carry sufficient information to define their homotopy
(co)limits in a canonical way.

But in the typical situations, as in the case of the derived category of an abelian category
or in the case of the homotopy category of a stable model or .1; 1/–category, the
“model in the background” allows for such constructions in a functorial manner. So, the
passage from the model to the derived or homotopy category truncates the available
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information too strongly. To be more specific, let A be an abelian category such that
the derived categories which occur in the following discussion exist. Moreover, let
us denote by C.A/ the category of chain complexes in A. As usual, let Œ1� be the
ordinal 0 � 1 considered as a category .0! 1/. Hence, for an arbitrary category
C , the functor category CŒ1� of functors from Œ1� to C is the arrow category of C .
With this notation, the cone functor at the level of abelian categories is a functor
CW C.AŒ1�/ Š C.A/Œ1� ! C.A/. But to give a construction of the cone functor in
terms of homotopical algebra only, one has to consider more general diagrams. For
this purpose, let f W X ! Y be a morphism of chain complexes in A. Then the cone
Cf of f is the homotopy pushout of the following diagram:

X

��

f
// Y

0

At the level of derived categories, the cone construction is again functorial when
considered as a functor D.AŒ1�/!D.A/. The important point is that one forms the
arrow categories before passage to the derived categories. Said differently, at the level
of derived categories, we have, in general, D.AŒ1�/©D.A/Œ1� . Moreover, as we have
mentioned, to actually give a construction of this functor one needs apparently also
the derived category of diagrams in A of the above shape and a homotopy pushout
functor. More systematically, one should not only consider the derived category of an
abelian category but also the derived categories of diagram categories and restriction
and homotopy Kan extension functors between them. This is the basic idea behind the
notion of a derivator.

In this paper we give a complete and self-contained proof that the values of a stable
derivator can be canonically endowed with the structure of a triangulated category
(Theorem 4.16). Similarly, we show that the functors which are part of the deriva-
tor can be canonically turned into exact functors with respect to these structures
(Proposition 4.18). This is in a sense the main work and will occupy the bulk of this
paper. We build on ideas of Franke [12] from his theory of systems of triangulated
diagram categories and adapt them to this alternative set of axioms.

These two results reveal certain advantages of the language of stable derivators over
the language of triangulated categories. A triangulated category T is, by the very
definition, a triple consisting of a category T together with a functor †W T ! T and a
class of distinguished triangle as additionally specified structure. These are then subject
to a list of axioms. One advantage of the stable derivators is that this structure does not
have to be specified but instead is canonically available. Once the derivator is stable,
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ie has some easily motivated properties, triangulated structures can be canonically
constructed. In particular, the octahedron axiom does not have to be made explicit.

Similarly, the fact that a morphism F of triangulated categories is exact means, by
the very definition, that the functor is endowed with an additional structure given by
a natural isomorphism � W F ı†! † ıF which behaves nicely with respect to the
two chosen classes of distinguished triangles. But, in fact, the exactness of such a
morphism should only be a property and not a structure. In most applications, the exact
functors under consideration are “derived functors” of functors defined “on certain
models in the background”. And in this situation, the exactness then reflects the fact
that this functor preserves (certain) finite homotopy (co)limits. In the setting of stable
derivators this is precisely the notion of an exact morphism. In particular, the exactness
of a morphism is again a property and not the specification of an additional structure.

But the theory of derivators is more than “only an enhancement of triangulated cate-
gories”. In fact, it gives us an alternative axiomatic approach to an abstract homotopy
theory. As in the theory of model categories and .1; 1/–categories, there is a certain
hierarchy of such structures: the unpointed situation, the pointed situation and the
stable situation. In the classical situation of topology, this hierarchy corresponds to the
passage from spaces to pointed spaces and then to spectra. In classical homological
algebra, the passage from the derived category of nonnegatively graded chain complexes
to the unbounded derived category can be seen as a second example for passing to
the stable situation. In the theory of derivators this threefold hierarchy of structures
is also present and the corresponding notions are then derivators, pointed derivators
and stable derivators. Franke [12] has introduced a theory of systems of triangulated
diagram categories which is similar to the notion of a stable derivator. The fact that the
theory of derivators admits the mentioned threefold hierarchy of structures is one main
advantage over the approach of Franke.

Along the way we give a simplification of the axioms of a pointed derivator. The
usual definition of a pointed derivator (see Cisinski and Neeman [9]), here called
a strongly pointed derivator, is formulated using the notion of cosieves and sieves.
One usually demands that the homotopy left Kan extension functor i! along a cosieve
i has itself a left adjoint i ? , and similarly that the homotopy right Kan extension
functor j� along a sieve j has a right adjoint j ! . Motivated by algebraic geometry,
these additional adjoints are then called exceptional and coexceptional inverse image
functors respectively. We show that this definition can be simplified. It suffices to
ask that the underlying category of the derivator is pointed, ie has a zero object. This
definition is more easily motivated, more intuitive for topologists and, of course,
simpler to check in examples. We give a proof of the equivalence of these two notions
in Section 3.
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The theory described in this paper is not completely new. In particular, it owes a lot to
Maltsiniotis who exposed and expanded the foundations of the theory originating with
Grothendieck. The first two sections can be considered as a review of these foundations,
although our exposition deviates somewhat from existing ones. In particular, we
make systematic use of the calculus of mates from the very beginning, resulting in a
streamlined development of the theory. The more original part of the paper lies in the
remaining three sections in which we use a simplified notion of pointed derivators as
we discussed above.

The author is aware of the fact that there will be a written up version of a proof of the
existence of these canonical triangulated structures in a future paper by Maltsiniotis. In
fact, Maltsiniotis presented an alternative, unpublished variant of Franke’s theorem in a
seminar in Paris in 2001. He showed that this notion of stable derivators is equivalent
to a variant thereof (as used in the thesis of Ayoub [1; 2]) where the triangulations are
part of the notion. Nevertheless, we give this independent account. The construction of
the suspension functor by Cisinski and Neeman [9] and the axioms of Maltsiniotis [32]
indicate that that proof will use the (co)exceptional inverse image functors. But one
point here is to show that these functors are not needed for these purposes.

We now turn to a short description of the content of the paper. In Section 1, we
give the central definitions and deduce some immediate consequences of the axioms.
The existence of certain very special (co)limits can be explained using the so-called
(partial) underlying diagram functors. We recall some aspects of the “calculus of mates”
(Section 1.2) which is the main tool in most of the proofs in this paper. Using that
calculus we are able to characterize derivators by saying that they satisfy base change
for Grothendieck (op)fibrations. This in turn is the key ingredient to establish the
theoretically important class of examples, that for a derivator D the prederivator DM

(see Example 1.3) is also a derivator (Theorem 1.25). As a further class of examples,
we give a simple, ie completely formal, proof that combinatorial model categories have
underlying derivators.

In Section 2, we introduce morphisms and natural transformations in the context of
derivators which leads to the 2–category Der of derivators. We then turn to homotopy-
colimit preserving morphisms and establish some basic facts about them. In particular,
again using the fact that derivators satisfy base change for Grothendieck (op)fibrations,
we show that homotopy Kan extensions in a derivator of the form DM are calculated
pointwise (Proposition 2.5) which will be of some importance in Section 4. Moreover,
we study in some detail the notion of an adjunction between derivators.

In Section 3, we consider pointed derivators and give the typical examples. We prove
that our “weaker” definition of a pointed derivator is equivalent to the “stronger” one
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using the (co)exceptional inverse image functors (Corollary 3.8). Moreover, in the
pointed context homotopy right Kan extensions along sieves give “extension by zero
functors” and dually for cosieves (Proposition 3.6). We briefly talk about (co)cartesian
squares in a derivator and deduce some properties about them. An important example
of this kind of results is the composition and cancellation property of (co)cartesian
squares (Proposition 3.13). Another one is a “detection result” for (co)cartesian squares
in larger diagrams (Proposition 3.10) which is due to Franke [12]. We close the section
by a discussion of the important suspension, loop, cone and fiber functors.

In Section 4, we stick to stable derivators for which, by definition, the classes of
cocartesian and cartesian squares coincide. Some nice consequences of this are that
the suspension and the loop morphisms define inverse equivalences, that bicartesian
squares satisfy the 2-out-of-3 property and that we are working in the additive context
(Proposition 4.7 and Corollary 4.14). The main aim of the section is to establish the
canonical triangulated structures on the values of a stable derivator (Theorem 4.16).
These are preserved by exact morphisms of stable derivators (Proposition 4.18) and, in
particular, by the functors belonging to the stable derivator itself (Corollary 4.19).

In the last section, we introduce additive derivators and show that the values of an
additive derivator can be endowed with the structure of a pretriangulated category
(Theorem 5.6) in the sense of Beligiannis [3]. Moreover, these pretriangulations are
preserved by an adapted class of morphisms (Proposition 5.7 and Corollary 5.8). The
results of this sections follow to a large extent from an adaptation of the techniques of
Section 4.

There are two remarks in order before we begin with the paper. The first remark
concerns duality. Many of the statements in this paper have dual statements which also
hold true by the dual proof (the reason for this is Example 1.11). In most cases, we
will not make these statements explicit and we will hardly ever give a proof of both
statements. Nevertheless, we allow ourselves to refer to a statement also in cases where,
strictly speaking, the dual statement is needed.

The second remark concerns the terminology employed here. In the existing literature
on derivators, the term “triangulated derivator” is used instead of “stable derivator”.
We preferred to use this different terminology for two reasons: First, the terminology
“triangulated derivator” (introduced by Maltsiniotis in [32]) is a bit misleading in that no
triangulations are part of the initial data. One main point of this paper is to give a proof
that these triangulations can be canonically constructed. Thus, from the perspective of
the typical distinction between structures and properties the author does not like the
former terminology too much. Second, in the related theories of model categories and
.1; 1/–categories, corresponding notions exist and are called stable model categories
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and stable .1; 1/–categories respectively. So, the terminology stable derivator reminds
us of the related theories.
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1 Derivators

1.1 Basic definitions

As we mentioned in the introduction, the basic idea behind a derivator is to consider
simultaneously derived or homotopy categories of diagram categories of different
shapes. So, the most basic notion in this business is the following one.

Definition 1.1 A prederivator D is a strict 2–functor DW Catop
! CAT.

Here, Cat denotes the 2–category of small categories, Catop is obtained from Cat by
reversing the direction of the functors, while CAT denotes the “2–category” of not
necessarily small categories. There are the usual set-theoretical problems with the
notion of the “2–category” CAT in that this will not be a category enriched over Cat.
Since we will never need this nonfact in this paper, we use slogans as the “2–category
CAT” as a convenient parlance and think instead of a prederivator as a function D as
we describe it now. Given a prederivator D and a functor uW J !K , an application of
D to u gives us two categories D.J /, D.K/ and a functor

D.u/D u�W D.K/ �!D.J /:

Similarly, given two functors u; vW J !K and a natural transformation ˛W u! v , we
obtain an induced natural transformation ˛� as depicted in the next diagram:

J

u
''

v

77

�� ��
�� ˛ K D.K/

u�
++

v�
33

�� ��
�� ˛�D.J /

This datum is compatible with compositions and identities in a strict sense, ie we have
equalities of the respective expressions and not only coherent natural isomorphisms
between them. For the relevant basic 2–categorical notions, which were introduced by
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Ehresmann in [11], we refer to Kelly and Street [28] or Borceux [6, Chapter 7], but
nothing deep from that theory is needed here.

The following examples give an idea of how such prederivators arise. The third example
assumes some knowledge about model categories (see Quillen [36]). See Dwyer and
Spaliński [10] for a well written, leisurely introduction while much more material is
treated in the monographs Hovey [19] and Hirschhorn [18]. Similarly, the last example
uses the theory of .1; 1/–categories (also known as 1–categories, quasi-categories,
weak Kan complexes), ie of simplicial sets satisfying the inner horn extension property.
These were originally introduced by Boardman and Vogt in their work [5] on homotopy
invariant algebraic structures. Detailed accounts of this theory are given in the tomes
due to Joyal [20; 21; 22; 23] and Lurie [29; 30]. A short exposition of many of the
central ideas and also of the philosophy of this theory can be found in the author’s [13].

Example 1.2 (1) Every category C gives rise to the prederivator represented by C :

y.C/D CW J 7! CJ

(2) Let A be a sufficiently nice abelian category, ie such that we can form the derived
categories occurring in this example without running into set-theoretical problems.
Recall that, by definition, the derived category D.A/ is the localization of the category
of chain complexes at the class of quasi-isomorphisms. Since weak equivalences in
diagram categories are defined pointwise, we have the prederivator DA associated to
an abelian category A:

DAW J 7!DA.J /DD.AJ /

(3) Let M be a cofibrantly generated model category. Recall that this assumption
implies that diagram categories MJ can be endowed with the so-called projective
model structure (in which fibrations and weak equivalences are defined levelwise). The
universal property of the localization functors guarantees that we obtain the prederivator
DM underlying a model category M by setting

DMW J 7!DM.J /D Ho.MJ /:

(4) Let C 2 Set be an .1; 1/–category and let K 2 Set be a simplicial set. Since the
Joyal model structure [22] on the category of simplicial sets is cartesian it follows that
the simplicial mapping space CK

� D homSet.�
� �K; C/ is again an .1; 1/–category

(as opposed to a more general simplicial set). Using the nerve functor N W Cat! Set ,
we thus obtain the prederivator DC underlying an .1; 1/-category C :

DC W J 7!DC.J /D Ho
�
CN.J /

�
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The functoriality of this construction follows from [21, Theorem 5.14].

Anticipating the fact that we have a 2–category PDer of prederivators (see Section 2
and in particular Example 2.1) we want to mention that Example 1.2(1) extends to a
(2–categorical) Yoneda embedding yW CAT! PDer . In this paper we introduce many
notions for derivators which are analogs of well-known notions from category theory.
Then it will be important to see that these notions are extensions of the classical ones
in that both notions coincide on represented (pre)derivators.

The last example which we are about to mention now does not seem to be too interesting
in its own right. But as we will see later it largely reduces the amount of work in many
proofs (see Theorem 1.25).

Example 1.3 Let D be a prederivator and let M be a fixed category. Then the
assignment

DM
W Catop

! CAT; J 7!DM .J /DD.M �J /

is again a prederivator. This example extends to an action on PDer (see Example 2.1).

Let now D be a prederivator and let uW J !K be a functor. Motivated by the above
examples we call the induced functor D.u/ D u�W D.K/ ! D.J / a restriction of
diagram functor or precomposition functor. As a special case of this, let J D e be the
terminal category, ie the category with one object and identity morphism only. For an
object k of K , we denote by kW e!K the unique functor sending the unique object
of e to k . Given a prederivator D , we obtain, in particular, for each object k 2K an
associated functor k�W D.K/!D.e/ which takes values in the underlying category
D.e/. Let us call such a functor an evaluation functor. For a morphism f W X ! Y

in D.K/ let us write fk W Xk ! Yk for its image under k� .

Definition 1.4 Let D be a prederivator and let uW J !K be a functor.

(1) The prederivator D admits homotopy left Kan extensions along u if the induced
functor u� has a left adjoint:

.u! D HoLanu;u
�/W D.J /�D.K/

(2) The prederivator D admits homotopy right Kan extensions along u if the induced
functor u� has a right adjoint:

.u�;u� D HoRanu/W D.K/�D.J /
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In the case of homotopy left Kan extensions along pJ W J ! e we also speak of homo-
topy colimits of shape J and write pJ ! D HocolimJ .

Let us recall from classical category theory that right Kan extensions in complete
categories can be calculated pointwise by certain limits and dually. More precisely,
consider uW J !K and F W J ! C , where C is a complete category. Then the right
Kan extension Ranu.F /W K! C of F along u exists and can be described as follows.
The slice category Jk= has objects pairs .j ; f / consisting of an object j 2 J together
with a morphism f W k ! u.j / in K . Morphisms are morphisms in J making the
obvious triangles commute. The slice category comes with an obvious forgetful functor
prW Jk=! J . In this notation there is the following natural isomorphism:

Ranu.F /k Š lim
Jk=

pr�.F /D lim
Jk=

F ı pr; k 2K

The corresponding property for homotopy Kan extensions holds in the case of model
categories (see Section 1.3) and will be demanded axiomatically for a derivator. For
this purpose, let D be a prederivator and consider a natural transformation of functors
˛W w ıu! u0 ı v .

Let us assume that D admits homotopy right Kan extensions along u and u0 . The
calculus of mates applied to ˛� gives us a natural transformation ˛�W w�ıu0�!u�ıv

� .

Dually, if we have a natural transformation ˛W u0 ı v! w ıu and if the prederivator
admits homotopy left Kan extensions along u and u0 the calculus of mates gives rise
to a natural transformation ˛!W u! ı v

�! w� ıu0
!

(a precise definition in the relevant
case will be given in the next paragraph).

This calculus of mates [28] will be studied a bit more systematically in Section 1.2.
At the very moment, we are interested in the following situation. Let uW J !K be
a functor and k 2K an object. Identifying k again with the corresponding functor
kW e!K , we have the following natural transformation ˛ in the context of the slice
constructions:

J=k
pr
//

pDpJ=k

��

����|�

J

u

��

D.e/

������

D.J=k/

				��

p!
oo D.J /

������

pr�
oo

e
k

// K D.e/
D

WW

p�

OO

D.K/
k�
oo

u�

OO

D.J /
u!

oo

D
kk

The component of ˛ at .j ; f W u.j /! k/ is f . Assuming D to be a prederivator
admitting the necessary homotopy Kan extensions, the calculus of mates gives a natural
transformation:

HocolimJ=k
ı pr�.X /! HoLanu.X /k ; X 2D.J /:

Algebraic & Geometric Topology, Volume 13 (2013)



322 Moritz Groth

It is obtained from the diagram on the right by pasting of ˛� with the undecorated
adjunction morphisms. There is a dual such construction in the context of the slice
category Jk= .

Definition 1.5 A prederivator D is called a derivator if it satisfies the following
axioms:

(Der1) D sends coproducts to products. In particular, D.∅/ is trivial.

(Der2) A morphism f W X!Y in D.J / is an isomorphism if and only if fj W Xj!Yj

is an isomorphism in D.e/ for every object j 2 J .

(Der3) For every functor uW J!K , there are homotopy left and right Kan extensions
along u:

.u!;u
�/W D.J /�D.K/ and .u�;u�/W D.K/�D.J /

(Der4) For every functor uW J !K and every k 2K , the canonical morphisms

HocolimJ=k
pr�.X /! u!.X /k and u�.X /k ! HolimJk=

pr�.X /

are isomorphisms for all X 2D.J /.

The last two axioms of course encode a “homotopical bicompleteness property” together
with the pointwise formulas. One could easily develop a more general theory of
prederivators which are only homotopy (co)complete or even only have a certain class
of homotopy (co)limits.

Example 1.6 Let C be a category. The represented prederivator y.C/W J 7! CJ is a
derivator if and only if C is bicomplete. Thus, the 2–category of bicomplete categories
is embedded into the 2–category of derivators.

The idea is of course that the derivator encodes additional structure on its values and in
particular on its underlying category D.e/. One nice feature of this approach is that
this structure does not have to be chosen but its existence can be deduced from the
axioms. Note that all axioms are of the form that they demand a property; the only
actual structure is the given prederivator. As a first example of this “higher structure”
we give the following result. We will pursue this more systematically from Section 1.2
on.

Proposition 1.7 Let D be a derivator and let J be a category.

(1) The category D.J / admits an initial object ∅ and a terminal object �.

(2) The category D.J / admits coproducts and products.
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We want to emphasize that, in general, the values of a derivator only have very few
categorical (co)limits. In order to relate this to the homotopical variants, let us introduce
the underlying diagram functors and their partial variants. This discussion will also
give a proof of the proposition. We saw already that an object m 2M induces an
evaluation functor m�W D.M /! D.e/. Similarly, a morphism ˛W m1! m2 in M

can be considered as a natural transformation of the corresponding classifying functors
and thus gives rise to ˛�W m�

1
!m�

2
. Under the categorical exponential law we hence

obtain an underlying diagram functor

diaM W D.M /!D.e/M :

Similarly, given a product M �J we obtain a partial underlying diagram functor

diaM;J W D.M �J /!D.J /M :

The natural isomorphism M ŠM � e induces an identification of diaM and diaM;e .
Now, the functor pM W M ! e gives rise to the following diagram

D.M /
diaM

//

HocolimM

��

HolimM

��

D.e/M

�� ��

D.e/

p�
M

OO

id
// D.e/;

�M

OO

which commutes in the sense that we have

diaM ıp
�
M D�M W D.e/!D.e/M :

If the underlying diagram functor diaM happens to be an equivalence for a certain
category M , then also �M has adjoints on both sides, ie the category D.e/ has then
(co)limits of shape M . Similar remarks apply to the case of the partial underlying
diagram functor diaM;J , where we would then deduce a conclusion about the category
D.J /. Now, axiom (Der1) implies that the partial underlying diagram functors

dia∅;J W D.∅/!D.J /∅ D e and diaS;J W D.S �J /!D.J /S

are equivalences. In the second case, S denotes a set considered as a discrete category, ie
with identity morphisms only. This explains why we are able to deduce Proposition 1.7
from the axioms but, in general, do not have other categorical (co)limits.

Although, in general, we do not want to assume that also other partial underlying
diagram functors are equivalences, the following definition is very important. This
definition again emphasizes the importance of the distinction between the categories
D.K/ and D.e/K .
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Definition 1.8 A derivator D is called strong if it satisfies the following axiom:

(Der5) The partial underlying diagram functor diaŒ1�;J W D.Œ1��J /!D.J /Œ1� is full
and essentially surjective for each category J .

This axiom is a bit harder to motivate. Derivators associated to bicomplete categories or
model categories are strong (see the next lemma). In this paper, (Der5) will play a key
role in the construction of the triangulated structures on the values of a stable derivator.
The point is that it allows one to lift morphisms in the underlying category D.e/ to
objects in the category D.Œ1�/ where we can apply certain constructions to it. Similarly,
in the context of pointed derivators it allows us to construct fiber and cofiber sequences
associated to a morphism in the underlying category. One might expect that in later
developments of the theory this property will also be useful in the unpointed context.
Nevertheless, we follow Maltsiniotis in not including this property as an axiom of the
basic notion of a derivator.

Let us already give the argument needed later to show that the underlying derivators
of model categories are strong. Given an arbitrary model category M the arrow
category MŒ1� can be endowed with projective model structure. In fact, this the
Reedy model structure in the special case of the direct index category Œ1�D .0 < 1/

[19]. The fibrations and weak equivalences are defined levelwise. Given two objects
X D .X0 ! X1/ and Y D .Y0 ! Y1/ a morphism f D .f0; f1/W X ! Y is a
cofibration (respectively acyclic cofibration) if and only f0 and the pushout product
map Y0tX0

X1! Y1 are cofibrations (respectively acyclic cofibrations). In particular,
the bifibrant objects are cofibrations X0!X1 between bifibrant objects.

Lemma 1.9 Let M be a model category. The underlying diagram functor

Ho.MŒ1�/! Ho.M/Œ1�

is full and essentially surjective.

Proof As model for the homotopy categories we use the category given by the bifibrant
objects and homotopy classes of morphisms. The essential surjectivity is immediate.
The fullness follows from the following mapping cylinder argument. Let uX W X0!X1

and uY W Y0! Y1 be bifibrant objects and let us consider a morphism Œf �W X ! Y

in Ho.M/Œ1� . Thus the following diagram

X0

uX
//

f0

��

X1

f1

��

Y0 uY

// Y1
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commutes up to a homotopy H . Choose a cylinder object Cyl.X / of X in MŒ1� .
Evaluation yields a cylinder object Cyl.Xi/ D Cyl.X /i for Xi for i D 0; 1 and we
choose our homotopy H to be with respect to Cyl.X0/. The acyclic cofibration
X ! Cyl.X / yields an acyclic cofibration Cyl.X0/tX0

X1! Cyl.X1/. A solution to
the lifting problem

Cyl.X0/tX0
X1

Htf1
//

��

Y1

Cyl.X1/

CC

g l q
x

�
�

allows us to rigidify the above homotopy commutative diagram concluding the proof.

Let us quickly recall the dualization process for derivators. The point is that given
a 2–category C we obtain a new 2–category Cop by inverting the direction of the
1–morphisms and we get a further 2–category Cco by inverting the direction of the
2–morphisms. Moreover, these operations can be combined so that given a 2–category
using the various dualizations we obtain 4 different 2–categories (more generally, an
n–category has 2n different dualizations).

Definition 1.10 Let D be a prederivator. Then we define the dual prederivator Dop

by the following diagram:

Catop Dop
//

.�/op

��

CAT

Catop;co
D
// CATco

.�/op

OO

Example 1.11 A prederivator D is a derivator if and only if its dual Dop is a derivator.

This result implies that in many general statements about derivators and morphisms
between derivators we only have to prove claims about, say, homotopy left Kan
extensions while the corresponding claim for homotopy right Kan extensions follows
by duality.

We close this subsection by a brief discussion of admissible shapes of diagrams.
Depending on the context it might be useful to consider “derivators defined on certain
sub-2–categories of Cat”. The theory as developed in this paper and the sequels works
equally well as soon as the subcategory satisfies the following closure properties.
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Definition 1.12 A full 2–subcategory Dia� Cat is called a category of diagrams if it
satisfies the following axioms:

(1) All finite posets considered as categories belong to Dia.

(2) Dia is closed under finite coproducts and under pullbacks.

(3) For every J 2 Dia and every j 2 J , the slice constructions Jj= and J=j belong
to Dia.

(4) If J 2 Dia then also J op 2 Dia.

(5) For every Grothendieck fibration uW J ! K , if all fibers Jk ; k 2 K , and the
base K belong to Dia then also J lies in Dia.

Given such a category of diagrams there is the corresponding notion of a (pre)derivators
of type Dia. The reader is invited to replace “(pre)derivator” by “(pre)derivator of
type Dia” throughout this paper and to check that all results we establish here also
work for that notion. Depending on Dia, it might be the case that derivators of type Dia

only admit finite (co)products (Proposition 1.7).

Example 1.13 The full 2–subcategory of finite posets is the smallest category of
diagrams, Cat itself is the largest one. Further examples are given by the full 2–
subcategories spanned by the finite categories or the finite-dimensional categories.
Moreover, the intersection of a family of categories of diagrams is again a category of
diagrams.

1.2 Homotopy exact squares and some properties of homotopy Kan ex-
tensions

Let us collect some basic facts about the calculus of mates [28] which will be of
constant use in the remainder of this paper. Although this calculus is available in any
2–category we restrict attention to the case of CAT. The choice of notation is motivated
by our later applications to derivators so that functors are decorated by .�/� , while
adjoint functors to, say, u� will be denoted by u! and u� respectively.

In this discussion we assume all necessary adjoint functors to exist. Given a nat-
ural transformation ˛W v�u0� ! u�w� there is a canonical natural transformation
˛!W u!v

� ! w�u0
!
. Similarly, given a natural transformation ˛W u�w� ! v�u0� we

obtain canonically ˛�W w�u0�! u�w
� . Both natural transformations ˛! and ˛� are

referred to as mates of ˛ .
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Lemma 1.14 (1) The calculus of mates is compatible with pasting.

(2) The two different formations of mates ˛ 7! ˛! and ˛ 7! ˛� are inverse to each
other, ie we have ˛ D .˛!/� D .˛�/! .

(3) Given a natural transformation ˛W v�u0�! u�w� then the mates ˛!W u!v
�!

w�u0
!

and ˛�W u0�w�! v�u
� are conjugate. In particular, ˛! is an isomorphism

if and only if ˛� is an isomorphism.

For the convenience of the reader and because of its central importance later on we
give a proof of the first fact. For this purpose, let us consider the pasting ˛1ˇ˛2 of ˛1

and ˛2 in CAT:

C1

����}�

C2

����}�

v�
1

oo C3

v�
2

oo

D1

u�
1

OO

D2

u�
2

OO

w�
1

oo D3
w�

2

oo

u�
3

OO

By definition the pasting ˛2!ˇ˛1! is given by

D1

����}�

C1

����}�

u1!
oo C2

����}�

v�
1

oo

D1

D

TT

u�
1

OO

D2

����}�

w�
1

oo

u�
2

OO

C2

����}�

D
ll

u2!

oo C3

����}�

v�
2

oo

D2

D

TT

u�
2

OO

D3
w�

2

oo

u�
3

OO

C3;

D
ll

u3!

oo

where the additional undecorated 2–cells are given by adjunction morphisms. Now,
by a triangular identity for adjunctions the two triangles in the middle cancel and we
obtain .˛1ˇ˛2/! as intended. The proof of the compatibility of vertical pasting and
also for the assignment ˛ 7! ˛� is similar. Note, that we only have a compatibility with
respect to pasting and not “a functoriality”. In particular, it can (and will) be the case
that we start with a commutative square but that the mates of the identity transformation
are even not isomorphisms. Nevertheless, this compatibility with respect to pasting
combined with the 2-out-of-3-property for isomorphisms will be a key ingredient in
many proofs of this paper.

Let us now apply this formalism to derivators. Given a derivator D and a natural
transformation ˛W u0v! wu in Cat we will abuse notation by setting ˛! D .˛

�/! and
˛� D .˛

�/� .
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Definition 1.15 Let D be a derivator and let us consider a natural transformation ˛
as indicated in the following square in Cat:

J1
v
//

u1

��

����}�

J2

u2

��

K1 w
// K2

The square is D -exact if the natural transformation ˛!W u1! ı v
�! w� ı u2! (or, by

Lemma 1.14, equivalently ˛�W u�2 ıw�! v� ıu�
1

) is an isomorphism. The square is
called homotopy exact if it is D–exact for all derivators D .

We will also apply the terminology of D–exact squares in the context of a prederivator D
admitting the necessary homotopy Kan extensions. For a derivator D it follows
immediately from Lemma 1.14 that D–exact squares are stable under horizontal and
vertical pasting.

Warning 1.16 We want to include a warning on a certain risk of ambiguity if the
natural transformation ˛ under consideration happens to be an isomorphism. In that
case it can (and will) happen that, say, ˛! is an isomorphism without this being the
case for .˛�1/! (see for example Section 2.2). In particular, this can happen for
commutative squares. Thus, in case there is a risk of ambiguity we will always give a
direction to natural isomorphisms and even to identity transformations (see for example
Proposition 1.24).

We will next illustrate the notion of homotopy exact squares by giving some examples
which are central to the development of the theory of derivators (for a more systematic
discussion we refer to [33]). Using the 2–functoriality of prederivators, the following
is immediate.

Lemma 1.17 Let D be a prederivator and let .L;R/W J �K be an adjunction. Then
we obtain an adjunction

.R�;L�/W D.J /�D.K/:

Moreover, if L (respectively R) is fully faithful, then so is R� (respectively L� ).

A related result using the notion of homotopy exact squares can be formulated as
follows. This result expresses the cofinality of right adjoints.
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Proposition 1.18 For a right adjoint functor RW J ! K the following square is
homotopy exact:

J
R
//

pJ

��

����|�

K

pK

��

e
id
// e

Proof We have to show that the natural transformation pJ!R
�! pK ! is an isomor-

phism for an arbitrary derivator. But this transformation is conjugate to idW p�
K
!

L�p�
J
D .pJ L/� D p�

K
by Lemma 1.14.

Thus, for a derivator D , a right adjoint functor RW J !K , and an object X 2D.K/
we have a canonical isomorphism

HocolimJ R�.X / ��!Š HocolimK X:

For later reference, let us spell out the important special case where the right adjoint
RD t W e!K just specifies a terminal object in K . The second part of the lemma
follows immediately by passing to the conjugate of the natural transformation showing
up in the first part.

Lemma 1.19 Let D be a derivator and let K be a category admitting a terminal
object t .

(1) For X 2D.K/ we have a natural isomorphism Xt �!
Š HocolimK X .

(2) We have a canonical isomorphism of functors p�
K
�!Š t� . The essential image

of t� consists of precisely those objects for which all structure maps in the
underlying diagram are isomorphisms.

Here is another important result about homotopy Kan extensions.

Proposition 1.20 Let uW J !K be a fully faithful functor. Then the following square
is homotopy exact:

J
id
//

id
��

J

u

��

J u
// K

Thus, the adjunction morphisms �W id! u�u! and �W u�u�! id are isomorphisms, ie
homotopy Kan extension functors along fully faithful functors are fully faithful.
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Proof Since isomorphisms can be detected pointwise we can reduce our task to
showing that the following pasting is homotopy exact for all j 2 J :

J=j
pr
//

p

��

����|�

J
id
//

id
��

~~~~{�

J

u

��

e
j
// J u

// K

But, the fully faithfulness of u implies that we have an isomorphism J=u.j/! J=j so
that it suffices (by Proposition 1.18) to show that the next pasting is homotopy exact:

J=u.j/ //

p

��

������

J=j
pr
//

p

��

����|�

J
id
//

id
��

~~~~{�

J

u

��

e // e
j
// J u

// K

But this is guaranteed by axiom (Der4).

Since we now know that, for fully faithful uW J !K , the homotopy Kan extension
functors u!;u�W D.J /!D.K/ are fully faithful, we would like to obtain a characteri-
zation of the objects in the essential images. The point of the next lemma is that one
only has to control the adjunction morphisms at arguments k 2K�u.J /.

Lemma 1.21 Let D be a derivator, uW J !K a fully faithful functor and X 2D.K/.

(1) X lies in the essential image of u! if and only if the adjunction counit �W u!u
�!

id induces an isomorphism �k W u!u
�.X /k !Xk for all k 2K�u.J /.

(2) X lies in the essential image of u� if and only if the adjunction unit �W id!u�u
�

induces an isomorphism �k W Xk ! u�u
�.X /k for all k 2K�u.J /.

Proof We give a proof of (2), so let us consider the adjunction .u�;u�/W D.K/�
D.J /. By Proposition 1.20, u� is fully faithful. Thus, X 2D.K/ lies in the essential
image of u� if and only if the adjunction unit �W X ! u�u

�X is an isomorphism.
Since isomorphisms can be tested pointwise, this is the case if and only if we have an
isomorphism �k W Xk ! u�u

�.X /k for all k 2K . For the converse direction, one of
the triangular identities for our adjunction reads as idD �u� �u��. Thus like � , u�� is
an isomorphism so that it suffices to check at points which do not lie in the image.

There are two important classes of fully faithful functors where the essential image
of homotopy Kan extensions can be characterized more easily. So let us give their
definition.
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Definition 1.22 Let uW J!K be a fully faithful functor which is injective on objects.

(1) The functor u is called a cosieve if whenever we have a morphism u.j /! k in
K then k lies in the image of u.

(2) The functor u is called a sieve if whenever we have a morphism k! u.j / in
K then k lies in the image of u.

The next proposition and a variant for the case of pointed derivators (see Proposition 3.6)
will be frequently used throughout this paper.

Proposition 1.23 Let D be a derivator.

(1) Let uW J !K be a cosieve. Then the homotopy left Kan extension u! is fully
faithful and X 2D.K/ lies in the essential image of u! if and only if Xk Š∅
for all k 2K�u.J /.

(2) Let uW J !K be a sieve. Then the homotopy right Kan extension u� is fully
faithful and X 2D.K/ lies in the essential image of u� if and only if Xk Š �

for all k 2K�u.J /.

Proof We give a proof of the first statement. The functor u! is fully faithful by
Proposition 1.20. To describe the essential image we use the criterion of Lemma 1.21.
But for k 2K�u.J / we have

u!u
�.X /k Š HocolimJ=k

pr� u�.X /D Hocolim∅ pr� u�.X /D∅:

Thus for k 2K�u.J / the map �k W u!u
�.X /k !Xk is an isomorphism if and only

if Xk Š∅.

1.3 Examples

The first aim is to show that given a derivator D and a small category M then DM is
again a derivator. The harder part is to establish (Der4) for DM . In order to achieve
this we include a short detour and establish some reformulations of this axiom which
are of independent interest and will be used further below. For this purpose let us
consider a pullback diagram in Cat:

J1
v
//

u1

��

J2

u2

��

K1 w
// K2

����
=E

For the notion of Grothendieck (op)fibrations we refer to [7, Section 8.1] or [41].
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Proposition 1.24 Using the above notation, a pullback diagram is homotopy exact, if
u2 is a Grothendieck fibration or if w is a Grothendieck opfibration.

Proof We give the proof in the case where u2 is a Grothendieck fibration. For a
derivator D we thus have to show that the canonical map id�W w�u2� ! u1�v

� is
a natural isomorphism. Since isomorphisms can be tested pointwise, (Der4) implies
that it suffices to show that the following pasting is a homotopy exact square for all
k1 2K1 :

.J1/k1=
pr

//

p

��

J1
v
//

u1

��

J2

u2

��

e
k1

// K1 w
//

����
?G

K2

����
=E

Since our diagram in Cat is a pullback diagram, we deduce that like u2 also u1 is
a Grothendieck fibration. Let us denote by .J1/k1

the fiber of u1 over k1 , ie the
subcategory of J1 consisting of all objects sent to k1 and all morphisms sent to idk1

.
It then follows that the canonical functor

cW .J1/k1
! .J1/k1=; j1 7! .j1; k1

id
�! u1.j1//

is a left adjoint functor [37]. Now, Lemma 1.14 and Proposition 1.18 imply that the
above pasting is homotopy exact if and only if this is the case for the following top
pasting:

.J1/k1

c
//

p

��

.J1/k1=
pr

//

p

��

J1
v
//

u1

��

J2

u2

��

e // e
k1

//






AI

K1 w
//

����
?G

K2

����
=E

.J1/k1

w
//

p

��

.J2/w.k1/
c
//

p

��

.J2/w.k1/=
pr

//

p

��

J2

u2

��

e // e //

����
AI

e
w.k1/

//

����
CK

K2

				
@H

It is easy to check that the above two pastings define the same natural transformation.
Thus, by exactly the same arguments again it suffices to show that the square

.J1/k1

w
//

p

��

.J2/w.k1/

p

��

e // e

����
BJ
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is homotopy exact. But, since we started with a pullback diagram, w restricted
in this way is an isomorphism of categories so that our claim follows (again by
Proposition 1.18).

We will refer to this proposition by saying that a “derivator satisfies base change for
Grothendieck (op)fibrations”. This proposition allows us to establish the next theorem.

Theorem 1.25 Let D be a derivator and let M be a small category. Then the pred-
erivator DM

W Catop
! CATW K 7!D.M �K/ is a derivator.

Proof The axioms (Der1)–(Der3) are immediate so we only have to establish axiom
(Der4) for DM . By duality, it suffices to give the proof for the case of homotopy right
Kan extensions. In other words, we have to show that the following square on the left
is D–exact:

M �Jk=
//

��

�����


M � e

��

M �Jk=
//

��

�


M �Kk=
//

��

�����


M � e

��

M �J // M �K M �J // M �K // M �K

But this 2–cell can be obtained as the pasting of the diagram on the right in which
the square on the left is a pullback diagram such that the right vertical arrow is a
Grothendieck opfibration. Thus, by Proposition 1.24 it suffices to show that the square
on the right is D–exact. Using the isomorphism Mm= �Kk= Š .M �Kk=/m= and
again that isomorphisms are detected pointwise it suffices to show that the pasting
obtained by the following left diagram is D–exact for every m 2M :

Mm= �Kk=
//

��

M �Kk=
//

��

M �K

��

.M �K/.m;k/= //

��

M �K

��

e
m

// M � e //

����
CK

M �K

����
BJ

e
.m;k/

// M �K

����
CK

Now we conclude by observing that this pasting is naturally isomorphic to the square
on the right-hand side which is D–exact by (Der4).

Thus, whenever we want to establish a general result about the values D.M / of a
derivator D we may assume that we are considering the underlying category of a
derivator since we can always pass from D to DM .

We now show that the conclusion of Proposition 1.24 is actually equivalent to (Der4).
Moreover, there is a further reformulation using the squares of the following form
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in Cat:

.u1=u2/
pr1

//

pr2

��

������

J1

u1

��

J2 u2

// K2

Here, the category .u1=u2/ is the comma category where an object is a triple

.j1; j2; ˛W u1.j1/! u2.j2//; j1 2 J1; j2 2 J2;

and the functors pri are the obvious projection functors. The arrow component of such
an object defines the natural transformation depicted in the diagram. If we specialize to
J1 D e or J2 D e we get back the diagrams showing up in the pointwise calculation
of Kan extensions.

Proposition 1.26 Let D be a prederivator which satisfies the axioms (Der1)–(Der3).
Then the following three statements are equivalent:

(1) The prederivator D is a derivator, ie it also satisfies (Der4).

(2) The prederivator D satisfies base change for Grothendieck fibrations and opfi-
brations.

(3) The prederivator D satisfies base change for comma categories, ie the squares
associated to comma categories are D–exact.

Proof By Proposition 1.24 we already know that (2) is implied by (1). The converse
direction follows by similar but simpler arguments than the ones we used in the proof of
Theorem 1.25. Since comma categories specialize to slice categories it is obvious that
(3) implies (1). So we only have to prove that (1) implies (3). Using similar reduction
arguments as in the last proof (including the behavior of base change with respect to
pasting and the fact that isomorphisms are detected pointwise) it suffices to show that
the following pasting is D–exact for all objects j2 2 J2 :

.u1=u2/=j2

pr
//

p

��

�


.u1=u2/
pr1

//

pr2

��

������

J1

u1

��

e
j2

// J2 u2

// K

Now, there is a canonical functor RW J1=u2.j2/! .u1=u2/=j2
which is defined by:

.j1;u1.j1/! u2.j2// 7�!
�
.j1;u1.j1/! u2.j2/; j2/; j2

id
�! j2

�
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This functor can be checked to be a right adjoint so that by Proposition 1.18 it suffices
to show that the pasting in the following diagram is D–exact:

J1=u2.j2/
R
//

p

��

������

.u1=u2/=j2

pr
//

p

��

�


.u1=u2/
pr1

//

pr2

��

������

J1

u1

��

e // e
j2

// J2 u2

// K

But this pasting is precisely the square used to calculate homotopy Kan extensions
along u1 at u2.j2/ so that we can conclude by (Der4).

Let us now turn to the second important class of examples of derivators, namely the
ones associated to nice model categories. This is included not only for the sake of
completeness but also because our proof differs from the one given in [8]. Our proof is
completely self-dual and is simpler in that it does not make use of the explicit description
of the generating (acyclic) projective cofibrations of a diagram category associated to a
cofibrantly generated model category. We restrict attention to the following situation.

Definition 1.27 A model category M is called combinatorial if it is cofibrantly
generated and if the underlying category is locally presentable.

All we need from the theory of combinatorial model categories is the validity of the next
theorem so that we could also work axiomatically with the conclusion of this theorem.
Recall that the projective model structure on a diagram category is determined by the fact
that the weak equivalences and the fibrations are defined levelwise. In the injective model
structure this is the case for the weak equivalences and the cofibrations. We will denote
the functor categories MJ endowed with the corresponding model structures by MJ

proj
and MJ

inj respectively. The following statement about the projective model structures
is a consequence of the lifting theorem of cofibrantly generated model structures along
a left adjoint while the statement about the injective model structure was only proved
more recently. Both results are for example established in [29, Proposition A.2.8.2].

Theorem 1.28 Let M be a combinatorial model category and let J be a small
category. The category MJ can be endowed with the projective and with the injective
model structure.

One point of these model structures is that certain adjunctions are now Quillen adjunc-
tions for trivial reasons.
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Lemma 1.29 Let M be a combinatorial model category and let uW J ! K be a
functor. Then we have the following Quillen adjunctions

.u!;u
�/WMJ

proj!MK
proj and .u�;u�/WMK

inj!MJ
inj:

We now have almost everything at our disposal needed to establish the following result.

Proposition 1.30 Let M be a combinatorial model category. Then the assignment

DMW Cat
op
! CATW J 7! Ho.MJ /

defines a strong derivator.

Proof The first two axioms are immediate while the existence of the homotopy Kan
extension functors is guaranteed by the last lemma. Let us establish Kan’s formula for
homotopy right Kan extensions. For this purpose, let uW J !K be a functor and let
k 2K be an object. Consider the following diagram, which commutes up to natural
isomorphism:

MJk=

lim
��

Š

MJ
pr�
oo

u�
��

M MK
k�

oo

By the last lemma, the functors lim and u� are right Quillen functors with respect to
the injective model structures so it suffices to show the same for k� and pr� . Since
weak equivalences are defined pointwise it suffices to show that in both cases injective
fibrations are preserved. In the case of k� we can use the adjunction .k!; k

�/ and show
that k!WM!MK preserves acyclic cofibrations. But an easy calculation with left
Kan extensions shows that we have k!.X /l Š

`
homK .k;l/

X . From this description it
is immediate that k! preserves acyclic cofibrations. Similarly, it is enough to show that
pr! preserves injective acyclic cofibration which a special case of the following lemma.
Finally, the derivator is strong by Lemma 1.9.

Lemma 1.31 Let uW J !K be a Grothendieck opfibration with discrete fibers and let
M be a combinatorial model category. Then the functor u�WMK !MJ preserves
injective fibrations.

Proof By adjointness, it is enough to show that the left adjoint u!WMJ !MK

preserves acyclic injective cofibrations. For this purpose, let X 2MJ and let k 2K .
Then we make the following calculation:

u!.X /k Š colimJ=k
X ı prŠ colimJk

X ı pr ıc Š
a

j2Jk

Xj
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The first isomorphism is the pointwise formula for Kan extensions while the second one
is given by the cofinality of right adjoints (Proposition 1.18) applied to the canonical
functor cW Jk! J=k . Finally, the last isomorphism uses the fact that the Grothendieck
opfibration has discrete fibers. From this explicit description of u! the claim follows
immediately.

The proof of the above theorem actually shows a bit more. Given a cofibrantly gener-
ated model category M, the prederivator DM is what could be called a cocomplete
prederivator (with the obvious meaning). But by far more is true. There is the following
more general result which is due to Cisinski [8].

Theorem 1.32 Let M be a model category and let J be a small category. Denote by
WJ the class of levelwise weak equivalences in MJ . Then the assignment

DMW Cat
op
! CAT; J 7!MJ ŒW �1

J �

defines a derivator.

2 The 2–category of derivators

2.1 Morphisms and natural transformations

Let D and D0 be prederivators. A morphism of prederivators F W D!D0 is a pseudo-
natural transformation between the 2–functors D and D0 (see [6, Definition 7.5.2]).
Spelling out this definition such a morphism is a pair .F�; F

� / consisting of a collection
of functors

FJ W D.J /!D0.J /; J 2 Cat;

and a family of natural isomorphisms F
u W u

�ıFK!FJ ıu
�;uW J!K , as indicated in

D.K/
FK
//

u�

��

Š

D0.K/

u�

��

D.J /
FJ

// D0.J /

satisfying certain coherence conditions. We will frequently suppress some indices to
avoid awkward notation. Moreover, we will be sloppy and not distinguish between 
and �1 notationally. If all natural transformations  are identities, we speak of a strict
morphism. In general, given a morphism F W D!D0 the functor FeW D.e/!D0.e/
is called the underlying functor.
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Finally, natural transformations are given by modifications (see [6, Definition 7.5.3]).
As an upshot we obtain the 2–category PDer of prederivators. The full sub-2–category
spanned by derivators is denoted by Der , ie a morphism is just a morphism of
prederivators whose domain and codomain is a derivator and similarly for natural
transformations. Given two (pre)derivators D and D0 let us denote the category of
morphisms by Hom.D;D0/.

Example 2.1 (1) The formation of represented prederivators defines a fully faithful
2–functor yW CAT!PDerstrict . In fact, this is a special case of the 2–categorical
Yoneda lemma.

(2) The assignment which sends a prederivator D and a category M to DM extends
to a 2–functor which is part of an action on PDer :

.�/.�/W Catop
�PDer! PDer; .M;D/ 7!DM

(3) Given a prederivator D and a small category M let us denote by D.�/M

the prederivator which sends K to D.K/M . The partial underlying diagram
functors then assemble into a strict partial underlying diagram morphism of
prederivators diaM;�W D

M
!D.�/M .

2.2 Homotopy (co)limit preserving morphisms

Let F W D!D0 be a morphism of derivators and let uW J !K be a functor. We thus
have a natural transformation Fu�! u�F together with its inverse u�F!Fu� . The
calculus of mates hence gives rise to canonical natural transformations F

u !W u!F!Fu!

and F
u �W Fu�! u�F .

Definition 2.2 A morphism of derivators F W D! D0 preserves homotopy left Kan
extensions along uW J !K if the canonical natural transformation u!F ! Fu! is an
isomorphism. Similarly, F preserves homotopy Kan extensions if this is the case for
all u.

Similarly, we speak of a morphism of derivators which preserves certain homotopy
colimits and of course there are dual notions. In the case of represented derivators, the
above comparison morphism is exactly the usual comparison morphism for colimits,
so we recover the usual notion of a colimit-preserving functor. Axiom (Der4) implies
that the following is true.

Proposition 2.3 A morphism F W D!D0 of derivators preserves homotopy left Kan
extensions if and only if it preserves homotopy colimits.
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Proof Let us assume that F preserves homotopy colimits and let us consider a functor
uW J!K . We obtain the following pasting diagram in which the natural transformation
on the right is the one we want to show to be an isomorphism:

D0.J=k/

p!

��

D0.J /
pr�
oo

u!

��

D.J /
F
oo

u!

��

D0.e/

4444
��

D0.K/
k�

oo

6666
��

D.K/
F
oo

Using axiom (Der4) and the fact that isomorphisms are detected pointwise it suffices
to show that the pasting is an isomorphism. Lemma 1.14 implies that we have to show
that the mate associated to the following left diagram is an isomorphism:

D0.J=k/





�	

D0.J /
pr�
oo

������

D.J /
F
oo D0.J=k/





�	

D.J=k/
F
oo

				��

D.J /
pr�
oo

D0.e/

p�

OO

D0.K/

u�

OO

k�
oo D.K/

F
oo

u�

OO

D0.e/

p�

OO

D.e/

p�

OO

F
oo D.K/

k�
oo

u�

OO

But, using the isomorphisms F
pr and F

k
, this is equivalent to showing that the mate

associated to the diagram on the right is an isomorphism which follows from our
assumption on F and (Der4).

For convenience let us collect some closure properties of homotopy Kan extensions
preserving morphisms all of which follow almost immediately from Lemma 1.14.

Proposition 2.4 Let D;D0 , and D00 be derivators, let uW I ! J and vW J ! K be
functors.

(1) The identity morphism idDW D!D preserves homotopy left Kan extensions.

(2) If F W D!D0 and GW D0!D00 preserve homotopy left Kan extensions along
u then so does the composition G ıF W D!D00 .

(3) If F W D! D0 preserves homotopy left Kan extensions along u and v then it
preserves homotopy left Kan extensions along v ıu.

(4) If � W F !G is a natural isomorphism of morphisms of derivators D!D0 then
F preserves homotopy left Kan extensions along u if and only if G does.

Given two derivators D and D0 , denote by Hom!.D;D
0/ (respectively Hom�.D;D

0/)
the full subcategory of Hom.D;D0/ spanned by the morphisms which preserve ho-
motopy colimits (respectively homotopy limits). By the above proposition, these are
replete subcategories giving rise to 2–categories Der! and Der� .
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Proposition 2.5 Let D be a derivator and let vW L!M be a functor. The morphism
of derivators v�W DM

!DL preserves homotopy Kan extensions. In particular, this is
the case for the evaluation morphisms m�W DM

!D .

Proof By duality and Proposition 2.3 it is enough to show that v� preserves homotopy
limits. Thus, we have to show that for an arbitrary small category J the following
square is D–exact,

L�J
v�id

//

pr
��

M �J

pr
��

L v
// M;


BJ

which follows from Proposition 1.24.

Thus, this proposition tells us, in particular, that homotopy Kan extensions in the
derivator DM are calculated pointwise: For a functor uW J ! K and an object
X 2DM .J / the canonical maps

HoLanu.Xm/ ��!
Š .HoLanu X /m and .HoRanu X /m ��!

Š HoRanu.Xm/

are isomorphisms. There is a similar result in the absolute case, ie for homotopy
(co)limits. These isomorphisms are well-behaved in the sense that the following
diagram commutes

u!m
�u�

D
��

u!

Š
// m�u!u

�

�
��

u!u
�m�

�
// m�

and dually for right Kan extensions. In fact, we just have to apply Lemma 1.14 to:

J
m�id

//

u
��

M �J

id�u
��

id�u
// M �K

id
��

D

J

u
��

u
// K

id
��

m�id
// M �K

id
��

K
m�id

// M �K
id
// M �K K

id
// K

m�id
// M �K

This compatibility implies that, for X 2 DM .K/, the counit �W u!u
�.X / ! X is

an isomorphism in DM .K/ if and only if the counit �W u!u
�.Xm/ ! Xm is an

isomorphism in D.K/ for all objects m 2 M . For later reference, we collect the
following convenient consequence for the case of a fully faithful functor uW J !K .

Corollary 2.6 Let D be a derivator, M a category and let uW J!K be a fully faithful
functor. An object X 2DM .K/ lies in the essential image of u!W D

M .J /!DM .K/

if and only if Xm lies in the essential image of u!W D.J /!D.K/ for all m 2M .
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The fact that homotopy Kan extensions in the derivator DM are calculated pointwise
(Proposition 2.5) can also be used to establish the following convenient result.

Corollary 2.7 Let F W D ! D0 be a morphism of derivators and let uW J ! K be
a functor. Then F preserves homotopy left Kan extensions along u if and only if
FM W DM

!D0M preserves homotopy left Kan extensions along u for all small
categories M .

Proof We have to show that like F
u ! also FM

u ! D 
F
idM �u!

is an isomorphism. Since
isomorphisms can be detected pointwise and since m� preserves homotopy left Kan
extensions (by Proposition 2.5) this is equivalent to the fact that the pasting in the left
diagram is a natural isomorphism:

D0.J /

u!

��

D0M .J /
m�
oo

u!
��

DM .J /
F M
oo

u!
��

D0.J /

u!

��

D.J /
F
oo

u!

��

DM .J /
m�
oo

u!
��

D0.K/

11 11
��

D0M .K/
m�
oo

00 00
��

DM .K/
F M

oo D0.K/

3333
��

D.K/
F
oo

2222
��

DM .K/
m�
oo

By the natural isomorphism m� ıFM ŠF ım� (and strictly speaking Proposition 2.4)
this is equivalent to the fact that the pasting in the right diagram is a natural isomorphism.
But this follows from our assumption that F preserves homotopy left Kan extensions
along u and the fact that m� lies in Hom!.D

M ;D/.

As a special case a morphism preserves initial objects or coproducts if and only if
this is the case for the underlying functor. Let us briefly discuss adjunctions between
derivators. As a first step there is the following result [27].

Lemma 2.8 Let LW D!D0 be a morphism of prederivators such that LK W D.K/!
D0.K/ has a right adjoint RK for each K 2 Cat. Then, there is a unique way to extend
the fRK g to a lax morphism of prederivators RW D0 ! D such that the following
diagram commutes for all functors uW J !K , X 2D.K/, and Y 2D0.K/:

homD0.K /.LX;Y / //

u�
��

homD.K /.X;RY /

u�
��

homD0.J /.u
�LX;u�Y /

L

��

homD.J /.u
�X;u�RY /

R

��

homD0.J /.Lu�X;u�Y / // homD.J /.u
�X;Ru�Y /
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Proof If we choose X DRY and if we trace around the adjunction counit �W LRY !

Y we see that we necessarily have R
u D .

L
u /
�1
� . This actually defines a lax morphism

of prederivators RW D!D0 by Lemma 1.14.

In general, we cannot deduce that the R
u are isomorphisms, ie that RW D0! D is

a pseudo-natural transformation. However, in the context of derivators we can again
use Lemma 1.14 which guarantees that the transformations u! ı L ! L ı u! and
u� ıR!R ıu� are conjugate. From this we obtain the following result.

Proposition 2.9 Let LW D!D0 be a morphism of derivators which admits levelwise
right adjoints and let RW D0!D be a lax morphism as in Lemma 2.8. The morphism L

is a left adjoint morphism of derivators if and only if L preserves homotopy left Kan
extensions if and only if R is a morphism of derivators. In particular, a morphism of
derivators is an equivalence if and only if it is levelwise an equivalence of categories.

Thus, together with Proposition 2.5 we obtain the following two classes of examples of
adjunctions.

Example 2.10 (1) Let D be a derivator and let vW L!M be a functor. Then we
have two adjunctions of derivators .v!; v

�/W DL�DM and .v�; v�/W DM �DL .

(2) Let .F;U /WM ! N be a Quillen adjunction between combinatorial model
categories. Then the formation of derived Quillen functors gives us two (in general
nonstrict) morphisms of derivators LF W DM!DN and RU W DN !DM . These are
part of an adjunction of derivators .LF;RU /W DM�DN . In particular, LF preserves
homotopy left Kan extensions and RU preserves homotopy right Kan extensions.

In particular, a Quillen equivalence gives rise to a derived equivalence of derivators. This
already makes more precise the statement that in addition to inducing an equivalence
of homotopy categories a Quillen equivalence respects the entire “homotopy theory”.
Renaudin [38] has shown that the 2–category of locally presentable derivators and
adjunctions is a bicategorical localization of the 2–category of combinatorial model
categories and Quillen adjunctions at the class of Quillen equivalences.

3 Pointed derivators

3.1 Definition and basic examples

Since we are mainly interested in stable derivators, we turn immediately to the next
richer structure, namely to pointed derivators. There are at least two ways to axiomatize
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a notion of a pointed derivator. From these two notions, we turn the “weaker one” into
a definition. The “stronger one” will be referred to as a strongly pointed derivator, but
we will show that these two notions actually coincide.

Definition 3.1 A derivator is pointed if the underlying category is pointed, ie admits
a zero object.

Note that the pointedness is again only a property and not an additional structure. For a
prederivator one would impose a slightly stronger condition: a prederivator is pointed
if and only if all of its values and all restriction of diagram functors are pointed. In the
case of a derivator these stronger properties follow immediately from the definition.

Proposition 3.2 Let D be a pointed derivator and let uW J ! K a functor in Cat.
Then D.K/ is also pointed and the functors u!;u

�;u� are pointed. In particular, if a
derivator D is pointed then this is also the case for DM for every M 2 Cat.

Thus a (pre)derivator is pointed if and only if it factors over the forgetful functor
CAT�! CAT from pointed categories to categories.

Example 3.3 (1) The represented prederivator y.C/ is pointed if and only if C is
pointed.

(2) The derivator DM underlying a pointed combinatorial model category M is
pointed.

(3) A derivator is pointed if and only if its dual is pointed. Similarly, a derivator D
is pointed if and only if all of its shifts DM , M 2 Cat, are pointed.

We now mention the stronger axiom as used by Maltsiniotis in [32].

Definition 3.4 A derivator D is strongly pointed if it has the following two properties:

(1) For every sieve j W J !K the functor j� has a right adjoint j ! :

.j�; j
!/W D.J /�D.K/

(2) For every cosieve i W J !K the functor i! has a left adjoint i ? :

.i ?; i!/W D.K/�D.J /

It is an immediate corollary of the definition that a strongly pointed derivator is pointed.
In fact, one of the two additional properties is enough to ensure this. The converse will
be established as Corollary 3.8.
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Corollary 3.5 If D is a strongly pointed derivator, then D is pointed.

Proof It is enough to consider the cosieve ∅eW ∅! e . For an initial object ∅e!.0/

in D.e/ and an arbitrary X 2D.e/, we then deduce

homD.e/.X;∅e!.0//Š homD.∅/.∅?
eX; 0/D �;

so that ∅e!.0/ is also terminal.

We follow Heller [17] by introducing the following notation. Let D be a pointed
derivator and let uW J !K be the inclusion of a full subcategory. The full, replete
subcategory of D.K/ spanned by the objects X vanishing on J , ie such that u�.X /D0,
is denoted by D.K;J /�D.K/.

Proposition 3.6 Let D be a pointed derivator.

(1) Let uW J !K be a cosieve. Then u! induces an equivalence

D.J / ��!' D.K;K�J /:

(2) Let uW J !K be a sieve. Then u� induces an equivalence

D.J / ��!' D.K;K�J /:

This follows immediately from Proposition 1.23 and shows that the respective Kan
extension functors are “extension by zero functors”. We will make constant use of this
result in the remainder of this paper.

Lemma 3.7 Let D be a pointed derivator.

(1) Let uW J ! K be a cosieve. Then the subcategory D.K;J / � D.K/ is core-
flective, ie the inclusion functor � admits a right adjoint.

(2) Let uW J !K be a sieve. Then the subcategory D.K;J /�D.K/ is reflective,
ie the inclusion functor � admits a left adjoint.

Proof We will give the details for the proof of (2) and mention the necessary modifi-
cations for (1). So, let uW J !K be a sieve and let us construct the mapping cylinder
category cyl.u/. By definition, cyl.u/ is the full subcategory of K � Œ1� spanned by
the objects .u.j /; 1/ and .k; 0/. Thus, it is defined by the following pushout diagram,
where i0 is the inclusion at 0:

J
u

//

i0

��

K

��

J � Œ1� // cyl.u/
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There are the natural functors

i W J ! cyl.u/; j 7! .u.j /; 1/ and sW K! cyl.u/; k 7! .k; 0/:

Moreover, idW K!K and J � Œ1�
pr
! J

u
!K induce a unique functor qW cyl.u/!K .

These functors satisfy the relations q ı i D u, q ı s D idK .

Consider now an object X 2D.cyl.u/; i.J // and let us calculate the value of q!.X /

at some u.j / 2K . For this purpose, we show that the following pasting is homotopy
exact:

e
.i.j/;1/

//

id
��

�����	

i.J /=i.j/ � Œ1�
Š
//

p

��

������

cyl.u/=u.j/
pr

//

p

��

�����


cyl.u/

q

��

e // e // e
u.j/

// K

Since u is a sieve we have an isomorphism as depicted in the diagram. Moreover,
i.J /=i.j/ � Œ1� has a terminal element so that the left two squares are homotopy exact
by Proposition 1.18. Thus, we can conclude by (Der4) that the above pasting is
homotopy exact and obtain q!.X /u.j/ ŠXi.j/ D 0. The adjunction .q!; q

�/ restricts
to an adjunction .q!; q

�/W D.cyl.u/; i.J //�D.K;u.J //.

Moreover, sW K! cyl.u/ is a sieve. Hence, by Proposition 3.6, we have an induced
equivalence .s�; s�/W D.K/�!' D.cyl.u/; cyl.u/� s.K//DD.cyl.u/; i.J //.

Putting these two adjunctions together we obtain the adjunction

.q! ı s�; s
�
ı q�/W D.K/�D.cyl.u/; i.J //�D.K;u.J //:

The relation q ı s D id implies that the right adjoint of this adjunction is the inclusion
� as intended and the reflection is given by r D q! ı s� .

The proof of (1) is similar. Instead of using cyl.u/ one uses this time the mapping
cylinder category cyl0.u/, which is obtained by a similar pushout but using the inclu-
sion i1 instead of i0 . Let us denote the corresponding functors again by i; q , and s .
Using a similar calculation of q� and the fact that s is now a cosieve, we can construct
a coreflection c .

Corollary 3.8 Let D be a pointed derivator. Then D is also strongly pointed.

Proof Given a sieve uW J ! K we have to show that u� has a right adjoint. The
inclusion vW K�u.J /!K of the complement is a cosieve. The above lemma applied
to v thus gives us a coreflection .�; c/W D.K;K�u.J //�D.K/. Putting this together
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with the equivalence induced by u� (guaranteed by Proposition 3.6) we obtain the
desired adjunction:

.u�;u
!/W D.J /

u�
// D.K;K�u.J //

u�
oo

�
// D.K/

c
oo

The proof in the case of a cosieve is, of course, the dual one.

The proofs of the last two results were constructive. So, for later reference, let us give
precise formulas for these additional adjoint functors. Let D be a pointed derivator and
let uW J !K be a cosieve. Let us denote by vW J 0 DK�u.J /!K the sieve given
by the complement. The adjunctions .u?;u!/W D.K/�D.J / and .v�; v!/W D.J /�
D.K/ are given by the following composite adjunctions respectively:

u?
W D.K/

s�
//
D.cyl.v/; i.J 0//

q!
//

s�
oo D.K; v.J 0//

u�
//

q�
oo D.J /

u!

oo Wu!

v�W D.J 0/
v�
// D.K;u.J //

q0�
//

v�
oo D.cyl0.u/; i 0.J //

s0�
//

q0�

oo D.K/
s0

!

oo Wv!

Here, cyl.v/ is the mapping cylinder obtained from identifying the bottom J 0 � f0g of
J 0 � Œ1� with the image of v , i is the inclusion in the cylinder, q is the projection and
s is the canonical section of q . The notation in the second decomposition is similar,
where the roles of 0 and 1 are interchanged.

3.2 Cocartesian and cartesian squares

We denote the category Œ1�� Œ1� by �, ie � is the following poset considered as a
category where we draw the first coordinate horizontally:

.0; 0/ //

��

.1; 0/

��

.0; 1/ // .1; 1/

For the treatment of cartesian and cocartesian squares, it is important to consider the
following two inclusions of subcategories ip W p!� and iyW y!� which are given
by the respective subposets:

.0; 0/ //

��

.1; 0/

.0; 1/

and

.1; 0/

��

.0; 1/ // .1; 1/
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Definition 3.9 Let D be a derivator and let X 2D.�/.

(1) The square X is cocartesian if it lies in the essential image of ip !W D. p /!
D.�/.

(2) The square X is cartesian if it lies in the essential image of iy�W D. y /!D.�/.

Lemma 1.21 implies that a square X 2D.�/ is cocartesian if and only if the canonical
morphism �.1;1/W ip ! ip

�.X /.1;1/!X.1;1/ is an isomorphism. There is a dual statement
for cartesian squares. Our first aim in this section is to establish a “detection result” for
(co)cartesian squares in larger diagrams [12] which will be used frequently later on. A
square in a category J is a functor �! J which is injective on objects.

Proposition 3.10 Let i W �! J be a square in J and let f W K! J be a functor.

(1) Assume that the induced functor p
zi
!
�
J � i.1; 1/

�
=i.1;1/

has a left adjoint and
that i.1; 1/ does not lie in the image of f . Then for all X D f!.Y / 2 D.J /,
Y 2D.K/, the induced square i�.X / is cocartesian.

(2) Assume that the induced functor y
zi
!
�
J � i.0; 0/

�
i.0;0/=

has a right adjoint and
that i.0; 0/ does not lie in the image of f . Then for all X D f�.Y / 2 D.J /,
Y 2D.K/, the induced square i�.X / is cartesian.

Proof We give a proof of (1). By assumption, f factors as K
xf
! .J � i.1; 1//

j
! J

so that our setup can be summarized by:�
J � i.1; 1/

�
=i.1;1/

pr

��

p

zß
88

//

ip
��

J � i.1; 1/

j

��

K
xf

oo

f
ww�

i
// J

We want to show that the adjunction counit �W ip ! ip
�
! id is an isomorphism when

applied to i�f!.Y /;Y 2 D.K/. But by Lemma 1.21 and Lemma 1.14 this is equiv-
alent to showing that the base change morphism associated to the top pasting is an
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isomorphism when evaluated at f!.Y /:

pŠ p=.1;1/ //

p

��

				��

p
ip
//

ip
��

����{�

� i
//

id
��

~~~~{�

J

id
��

e
.1;1/

// �
id
// �

i
// J

p
zß
//

p

��

�


J � i.1; 1/=i.1;1/
pr

//

p

��

������

J � i.1; 1/
j

//

j

��

				��

J

id
��

e
id

// e
i.1;1/

// J
id

// J

Using Lemma 1.14 again, this is equivalent to showing that the base change morphism
associated to the bottom pasting gives an isomorphism when evaluated at f!.Y /. But
this is the case by (Der4) and Proposition 1.18, since f!.Y / Š j!

xf!.Y / lies in the
essential image of j! .

Typical applications of this proposition will be given when the categories under con-
sideration are posets. For n � 0, we denote by Œn� the ordinal number 0 < � � � < n

considered as a category. Let d i W Œn� 1�! Œn�, 0 � i � n, be the unique monotone
injection omitting i while sj W ŒnC 1� ! Œn�, 0 � j � n, is the unique monotone
surjection hitting j twice. As usual, the images of these cosimplicial structure maps
under a contravariant functor will be written as di and sj respectively.

Lemma 3.11 For every 0� i � n� 1 we have an adjunction .si ; d i/W Œn�� Œn� 1�.
In particular, we thus obtain the adjunctions

.s0; d0/W Œ2�� Œ1�� Œ1�� Œ1� and .s1; d1/W Œ2�� Œ1�� Œ1�� Œ1�:

In the next proposition, we will consider squares in a derivator and some of its associated
subdiagrams. To establish some short hand notation, let us denote by d i

vW Œ1�! �
the face maps id�d i W Œ1�! Œ1� � Œ1� D � in the “vertical direction” giving rise to
“horizontal faces” and similarly in the other case. Images of these morphisms under
contravariant functors will be written as dh

i and dvi respectively.

Proposition 3.12 Let D be a derivator.

(1) An object of D.Œ1�/ is an isomorphism if and only if it lies in the essential image
of the homotopy left Kan extension functor 0!W D.e/!D.Œ1�/.
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(2) Let X 2 D.�/ be a square such that dv
1
.X / is an isomorphism, ie we have

X0;0 �!
Š X1;0 . The square X is cocartesian if and only if also dv

0
.X / is an

isomorphism.

Proof Statement (1) is a special case of Lemma 1.19 so let us establish (2). By (1) our
assumption on X is equivalent to the adjunction counit 0!0

�dv
1
.X /! dv

1
.X / being

an isomorphism. Using Lemma 1.21 and (Der4), we can reformulate this by saying
that the base change morphism associated to the following pasting is an isomorphism
when evaluated on X :

e Š e=1
pr

//

p

��





�	

e
0
//

0
��

����~�

Œ1�
d1

v
//

id
��

����~�

�
id
��

D

e
.0;0/

//

id
��

����}�

�
id
��

e
1

// Œ1�
id
// Œ1�

d1
v

// � e
.1;0/

// �

We want to reformulate this in a way which is more convenient for this proof. For this
purpose let us consider the following factorization of the horizontal face map:

d1
h D ip ıj W Œ1�

j
�! p

ip
�!�

Now, our assumption that dv
1
.X / is an isomorphism is equivalent to the counit

j!j
� ip
�X ! ip

�X being an isomorphism. In fact, using Lemma 1.21 and (Der4), the
claim about the counit can be equivalently restated by saying that the base change of
the following pasting is an isomorphism when evaluated at X :

e Š Œ1�=.0;1/
pr

//

p

��

�


Œ1�
j
//

j
��

����}�

p
ip
//

id
��

����}�

�
id
��

D

e
.0;0/

//

id
��

����}�

�
id
��

e
.0;1/

// p
id
// p

ip

// � e
.1;0/

// �

Thus, the claim follows from our previous reasoning. This in turn can be used to show
that under our assumption the square X is cocartesian if and only if the base change
associated to

Œ1�
j
//

j
��

����~�

p
ip
//

id
��

����~�

�
id
��

D

Œ1�
d1

h
//

d1
h
��

����~�

�
id
��

p
id
//

ip
��

������

p
ip

//

ip
��

����~�

�
id
��

�
id
// �

�
id
// �

id
// �
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is an isomorphism at X . By Lemma 1.21 this is the case if and only if it is the case
at .1; 1/ which in turn is equivalent (by similar arguments as in the beginning of this
proof) to the fact that dv

0
.X / is an isomorphism.

We now discuss the composition and cancellation property of (co)cartesian squares.
Recall from classical category theory that for a diagram in a category of the shape

X0;0
//

��

X1;0

��

// X2;0

��

X0;1
// X1;1

// X2;1

the following holds: if the square on the left is a pushout, then the square on the right
is a pushout if and only if the composite square is. The corresponding result in the
theory of derivators is the content of the next proposition. The methods are similar to
the ones used in the proof of Proposition 3.12 and the proof will hence be left to the
reader. Moreover, since we only use horizontal face maps this time we again drop the
additional index.

Proposition 3.13 Let D be a derivator and let X 2D.Œ2�� Œ1�/.

(1) If d2.X / 2D.�/ is cocartesian, then d0.X / is cocartesian if and only if d1.X /

is cocartesian.

(2) If d0.X / 2 D.�/ is cartesian, then d2.X / is cartesian if and only if d1.X / is
cartesian.

Let us say that a morphism of derivators preserves cocartesian squares if it preserves
homotopy left Kan extensions along ip W p!�. There is the dual notion of a morphism
which preserves cartesian squares. As an immediate consequence of Corollary 2.7 and
Corollary 2.6 we have the following result.

Corollary 3.14 Let F W D ! D0 be a morphism of derivators. Then F preserves
cocartesian squares if and only if F W DM

! D0M preserves cocartesian squares for
all categories M . Moreover, an object X 2 DM .�/ is cocartesian if and only if the
squares Xm 2D.�/ are cocartesian for all objects m 2M .

Definition 3.15 Let F W D!D0 be a morphism of derivators.

(1) The morphism F is left exact if it preserves cartesian squares and final objects.

(2) The morphism F is right exact if it preserves cocartesian squares and initial
objects.

(3) The morphism F is exact if it is left exact and right exact.
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It follows that a left exact morphism preserves, in particular, finite products and dually
for a right exact morphism. In fact this follows from Proposition 1.23 together with an
alternative description of products as pullbacks of diagrams which have the final object
as value in the lower right corner. Of course left adjoint morphisms are right exact and
dually for right adjoint morphisms.

3.3 Suspensions, loops, cones and fibers

Let D be a pointed derivator and let J be a category. In this subsection we want to
construct the suspension and loop functors on D.J / and the cone and fiber functors on
D.J � Œ1�/. By Proposition 3.2, we can assume J D e .

Let us begin with the suspension functor † and the loop functor �. The “extension
by zero functors” as given by Proposition 3.6 will again be crucial. Let us consider the
following sequences of functors:

e
.0;0/

// p
ip
// � e;

.1;1/
oo e

.1;1/
// y iy

// � e:
.0;0/
oo

Since .0; 0/W e! p is a sieve the homotopy right Kan extension functor .0; 0/� gives
us an “extension by zero functor” by Proposition 3.6 and similarly for the homotopy
left Kan extension .1; 1/! along the cosieve .1; 1/W e! y.

Definition 3.16 Let D be a pointed derivator.

(1) The suspension functor † is given by

†W D.e/
.0;0/�

// D. p /
ip !
// D.�/

.1;1/�
// D.e/:

(2) The loop functor � is given by

�W D.e/
.1;1/!

// D. y /
iy�
// D.�/

.0;0/�
// D.e/:

The motivation for these definitions should be clear from topology. Recall that given a
pointed topological space X , the suspension †X is constructed by first taking two
instances of the canonical inclusion into the (contractible!) cone CX and then forming
the pushout:

X //

��

CX X //

��

CX

��

CX CX // †X

We can consider this diagram as a homotopy pushout. The above definition abstracts
precisely this construction.
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Proposition 3.17 If D is a pointed derivator, then we have an adjunction

.†;�/W D.e/�D.e/:

Proof Let us denote by M� D.�/;Mp � D. p / and My � D. y / the respective
full subcategories spanned by the objects X with X1;0 Š 0ŠX0;1 . The suspension
and the loop functor can then be factored as:

†W D.e/
.0;0/�

'
//Mp

ip !
//M

iy�
//My

.1;1/�

'
// D.e/

D.e/ Mp
.0;0/�

'
oo M

ip
�

oo My
iy�
oo D.e/

'

.1;1/!
oo W�

The existence of the factorization is clear and the fact that the functors .0; 0/� and
.1; 1/! restricted this way are equivalences follows from their fully faithfulness and
Proposition 3.6. From this description, one sees immediately that we have an adjunction
.†;�/ which is, in fact, given as a composite adjunction of four adjunctions among
which two are equivalences.

Using similar constructions, one can introduce cone and fiber functors for pointed
derivators. Again, the definition is easily motivated from topology. If we consider a
map of pointed spaces f W X ! Y then the mapping cone Cf of f is constructed by
forming a pushout as indicated in the next diagram:

X
f
//

��

Y X
f
//

��

Y

��

CX CX // Cf

To axiomatize this in the context of a pointed derivator, let us consider the following
morphisms of posets:

Œ1�
i
// p

ip
// � yiy
oo Œ1�

j
oo

Here, i is the sieve classifying the horizontal arrow while j is the cosieve classifying
the vertical arrow. In particular, by Proposition 3.6, we have again extension by zero
functors i� and j! .
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Definition 3.18 Let D be a pointed derivator.

(1) The cone functor ConeW D.Œ1�/!D.Œ1�/ is defined as the composition:

ConeW D.Œ1�/
i�
�!D. p /

ip!
�!D.�/

j�

�!D.Œ1�/

(2) The fiber functor FiberW D.Œ1�/!D.Œ1�/ is defined as the composition:

FiberW D.Œ1�/
j!
�!D. y /

iy�
�!D.�/ i�

�!D.Œ1�/

(3) Let CW D.Œ1�/!D.e/ be the functor obtained from the cone functor by evaluation
at 1 and, similarly, let FW D.Œ1�/!D.e/ be the functor obtained from the fiber
functor by evaluation at 0.

Proposition 3.12 shows that the cone Cf of an isomorphism f is the zero object 0.
In general, the converse is only true in the stable situation (see Proposition 4.5). There
is the following counterexample to the converse in the unstable situation.

Counterexample 3.19 Let E be an exact category in the sense of Quillen (see [37]).
Moreover, let us assume E to have enough injectives but also that E is not Frobenius, ie
the classes of injectives and projectives do not coincide. The stable category E which
is obtained from E by dividing out the maps factoring over injectives is a “suspended
category” in the sense of [26]. Let now X be an object of E of injective dimension
1 and let 0! X ! I0 D I ! I1 D †X ! 0 be an injective resolution of X . By
definition of the suspended structure on E (see [26] or [15, Chapter I]) the diagram

X
u
//

id
��

I

id
��

v
// †X

id
��

X // I // †X

gives rise to the distinguished triangle X
u
! I

v
!†X

id
!†X . Since †X is trivial in

the stable category E the morphism u is an example of a morphism which is not an
isomorphism but still has a vanishing cone. In the stable situation, ie in the Frobenius
case, this counterexample cannot exist. In fact, the above resolution of X would split
because †X is by assumption injective, hence projective, showing that the injective
dimension of X is zero.

By methods similar to the ones in the proof of Proposition 3.17 one establishes the
following result.
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Proposition 3.20 Let D be a pointed derivator. Then we have an adjunction:

.Cone; Fiber/W D.Œ1�/�D.Œ1�/

The above definitions can easily be extended (using Example 2.1) to morphisms of
derivators. Thus, given a pointed derivator D we obtain, in particular, adjunctions of
derivators

.†;�/W D�D and .Cone; Fiber/W DŒ1��DŒ1� :

Since the construction of the above functors is based only on certain extension by zero
functors and the formation of some (co)cartesian squares the following proposition is
immediate.

Proposition 3.21 Let GW D!D0 be a morphism of pointed derivators.

(1) If G is left exact then there are canonical isomorphisms

G ı�!� ıG and G ı Fiber! Fiber ıG:

(2) If G is right exact then there are canonical isomorphisms

† ıG!G ı† and Cone ıG!G ıCone :

In [9] there is also an alternative description of some of the functors we just introduced.
Using our explicit construction of the (co)exceptional inverse image functors at the
end of Section 3.1 we can show the two approaches to be equivalent. So, let D be a
pointed derivator and let us consider the cosieve 1W e! Œ1� and the sieve 0W e! Œ1�.
Corollary 3.8 implies that we have adjunctions:

.1?; 1!/W D.Œ1�/�D.e/ and .0�; 0
!/W D.e/�D.Œ1�/

The formulas via the mapping cylinder constructions can be made very explicit in this
case so that we have the following descriptions of the additional adjoints 1? and 0! :

1?
W D.Œ1�/

j�
�!
'

D. p; .0; 1//
pr1!
�!D.Œ1�; 0/

1�

�!
'

D.e/

0!
W D.Œ1�/

j!
�!
'

D. y ; .1; 0//
pr1�
�!D.Œ1�; 1/

0�

�!
'

D.e/

In both formulas, j denotes the functor classifying the horizontal arrow and the
functors pr1 are suitable restrictions of the projection on the first component �! Œ1�.
It follows from Lemma 1.19 that in both cases the composition of the last two functors is
naturally isomorphic to the homotopy colimit and homotopy limit functor respectively.
A final application of (Der4) then implies the following result.
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Proposition 3.22 Let D be a pointed derivator then we have the following natural
isomorphisms:

CŠ 1?; †Š 1?
ı 0�; FŠ 0! and �Š 0!

ı 1!

In particular, we have adjunctions .C; 1!/W D.Œ1�/�D.e/ and .0�; F/W D.e/�D.Œ1�/.

4 Stable derivators

4.1 The additivity of stable derivators

In this subsection, we come to the central notion of a stable derivator. Similarly to the
situation of a stable model category or a stable .1; 1/–category, one adds a “linearity
condition” to the pointed situation. This notion was introduced by Maltsiniotis in [32]
by forming a combination of the axioms of Grothendieck’s derivators [14] and Franke’s
systems of triangulated diagram categories [12]. More details on the history can be
found in Cisinski and Neeman [9].

Definition 4.1 A strong derivator is stable if it is pointed and if a square is cocartesian
if and only if it is cartesian. These squares are called bicartesian.

The assumption on the derivator to be strong will be crucial in two situations in the
construction of the canonical triangulated structures.

Example 4.2 (1) The derivator underlying a stable (combinatorial) model category
is stable.

(2) Given an exact category E in the sense of Quillen [37] then the assignment

Db
E W Dir

op
f
! CAT; J 7!Db.EJ /

defines a stable derivator. Here, Dirf is the 2–category of finite direct categories
and Db.�/ denotes the formation of the bounded derived category (see [25]).

(3) A derivator D is stable if and only if the dual derivator Dop is stable.

Let us begin with the following convenient result.

Proposition 4.3 Let D be a stable derivator and let M be a category. Then DM is
again stable.

Algebraic & Geometric Topology, Volume 13 (2013)



356 Moritz Groth

Proof It is immediate that a derivator D is strong if and only if DM is strong for all
categories M . Moreover, we know that DM is pointed by Proposition 3.2. Thus, let us
consider the (co)cartesian squares. For an object X 2DM .�/, using Corollary 3.14,
we have that X is cocartesian if and only if Xm 2D.�/ is cocartesian for all m 2M .
Using the stability of D and the corresponding result for cartesian squares in DM .�/
we are done.

We give immediately the expected result on the suspension and loop functors in
this stable situation. Recall the definition of the categories M;My;Mp , and the
factorization of .†;�/ in the case of a pointed derivator. Let us denote, in addition, by
M† �M (respectively M� �M) the full subcategory spanned by the cocartesian
(respectively cartesian) squares. With this notation, in the case of a pointed derivator,
there is the following additional factorization of .†;�/:

†W D.e/
.0;0/�

'
//Mp

ip !

'
//M†

iy�
//My

.1;1/�

'
// D.e/

D.e/ Mp
.0;0/�

'
oo M�

ip
�

oo My
iy�
'
oo D.e/

'

.1;1/!
oo W�

In this diagram, all but possibly the two restriction functors in the middle are equiva-
lences. In the case of a stable derivator, we have M† DM� and these two restriction
functors are also equivalences:

†W D.e/
.0;0/�

'
//Mp

ip !

'
//M†

iy�

'
//My

.1;1/�

'
// D.e/

D.e/ Mp
.0;0/�

'
oo M�

ip
�

'
oo My

iy�
'
oo D.e/

'

.1;1/!
oo W�

This proves the first half of the next result. The second half can be proved in a similar
way.

Proposition 4.4 Let D be a stable derivator. Then we have equivalences of derivators

.†;�/W D ��!' D and .Cone; Fiber/W DŒ1� ��!' DŒ1� :

The following result is immediate from Proposition 3.12.

Proposition 4.5 Let D be a stable derivator and let X 2 D.�/. If two of the three
following statements hold for the square X then so does the third one:

(1) The square X is cocartesian.
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(2) The arrow dv
0

X is an isomorphism.

(3) The arrow dv
1

X is an isomorphism.

In particular, an object f 2 D.Œ1�/ is an isomorphism if and only if the cone Cf is
zero.

Let us mention the following result which is immediate from Proposition 3.13 on the
composition and the cancellation properties of (co)cartesian squares.

Proposition 4.6 Let D be a stable derivator and let X 2 D.Œ2�� Œ1�/. If two of the
squares d0.X /; d1.X /, and d2.X / are bicartesian, then so is the third one.

The next aim is to establish the semiadditivity in the stable case, ie we want to show
that the values admit finite biproducts. By Proposition 4.3, we can assume that J D e .
We know already from Proposition 1.7 that the values of an arbitrary derivator admit
finite coproducts and finite products.

Proposition 4.7 Let D be a stable derivator and consider a functor uW J !K . Then
finite coproducts and finite products in D.J / are canonically isomorphic. Moreover,
these are preserved by u�;u! , and u� .

Proof For the first part, it is again enough to show the result for the case J D e . Let
us consider the inclusion j2W L2!L3 of the left poset L2 in the right poset L3 :

.1; 0/ // .2; 0/ .0; 0/

��

// .1; 0/ // .2; 0/

.0; 1/

��

.0; 1/

��

.0; 2/ .0; 2/

Moreover, let j1W ete!L2 be the map .1; 0/t .0; 1/ and let j3W L3! Œ2�� Œ2�DL

be the obvious inclusion. Since j1 is a sieve the homotopy Kan extension functor j1�

is an “extension by zero functor” by Proposition 3.6 and similarly for the homotopy
Kan extension functor j2! associated to the cosieve j2 . Let us consider the functor:

D.e/�D.e/'D.e t e/
j1�
�!D.L2/

j2!
�!D.L3/

j3!
�!D.L/
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The image Q 2 D.L/ of a pair .X;Y / 2 D.e/ � D.e/ under this functor has as
underlying diagram:

0 //

��

X //

��

0

��

diaL.Q/W Y //

��

B //

��

Y 0

��

0 // X 0 // Z

Let us denote the four inclusions of the smaller squares in L by ik ; k D 1; : : : ; 4, ie
let us set

i1 D d2
� d2; i2 D d0

� d2; i3 D d2
� d0 and i4 D d0

� d0:

An application of Proposition 3.10 to these inclusions ik W � ! L; k D 1; : : : ; 4,
and f D j3 allows us to deduce that all squares are bicartesian. In fact, in all four
cases, ik.1; 1/ 62 Im.j3/ and we only have to check that the induced functors zik W p!
L� ik.1; 1/=ik.1;1/

are right adjoints. For k D 1, this functor is an isomorphism while
in the other three cases Lemma 3.11 applies. By Proposition 4.6, also the composite
squares .d2 � d1/.Q/ and .d1 � d2/.Q/ are bicartesian. Hence, Proposition 3.12
ensures that we have isomorphisms X Š X 0 and Y Š Y 0 . Similarly, the square
.d1 � d1/.Q/ is bicartesian and we obtain an isomorphism Z Š 0. Thus, we see that
B is simultaneously a coproduct of X and Y and a product of X 0 ŠX and Y 0 Š Y .

The fact that these biproducts are preserved by u�;u! , and u� follows immediately
since each of the three functors has an adjoint functor on at least one side.

A standard fact about (semi)additive categories thus implies the following.

Corollary 4.8 Let D be a stable derivator and let J be a category. Every object of
D.J / is canonically a commutative monoid object and a cocommutative comonoid ob-
ject. In particular, the morphism set homD.J /.X;Y /;X;Y 2D.J /, carries canonically
the structure of an abelian monoid.

We will use the standard notation ˚ for the biproduct. The next aim is to show that
objects of the form �X are even abelian group objects and dually for †X . We give
the proof in the case of �X in which case the constructions can be motivated by the
process of concatenation of loops in topology. Let us begin with some preparations.
Since the aim is to “model categorically” the concatenation and inversion of loops
we have to consider finite direct sums of “loop objects”. For the construction of the
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finite sums of loop objects there is the following conceptual approach which admits
an obvious dualization. Let yn be the poset with objects e0; : : : ; en and t and with
ordering generated by ei � t; i D 0; : : : ; n. Let Fin denote the category of the finite
sets hni D f0; : : : ; ng with all set-theoretic maps as morphisms between them. The
assignment hni 7! yn can be extended to a functor Fin!Cat if we send f W hki! hni
to yf W yk ! yn with yf .ei/ D ef .i/ and yf .t/ D t . Since t W e ! yn is a cosieve,
t!W D.e/!D. yn/ gives us an “extension by zero functor”. Define Pn as

Pn D Holimyn
ıt!W D.e/!D. yn/!D.e/

and note that we have a canonical isomorphism P1X Š�X .

Lemma 4.9 Let D be a pointed derivator. The above construction defines a bifunctor:

P W Finop
�D.e/!D.e/; .hni;X / 7! PnX

Proof The functoriality of P in the second variable is obvious so let us assume we are
given a morphism f W hki ! hni. From such a morphism f we obtain the following
diagram given on the left-hand side:

e

t

��

// e

t

��

D.e/

t!

��

D.e/

t!

��

oo

yk
yf
//

p

��

yn
p

��

D. yk/

Holim
��

5555
��

D. yn/

Holim
��

y�
f

oo

5555V^

e // e D.e/ D.e/oo

The formation of the corresponding mates gives rise to the pasting diagram on the right
(note that we had to use both variants here). Using the fact that isomorphisms can be
detected pointwise and (Der4) it is easy to check that the upper 2–cell is invertible.
Thus we can define Pf as the following composition:

Pf W Pn D Holimyn
ıt! �! Holimyk

ı y�f ıt! �! Holimyk
ıt! D Pk

The functoriality of this construction follows from Lemma 1.14.

Let us fix notation for some morphisms in Fin. Given a .kC 1/–tuple .i0; i1; : : : ; ik/
of elements of hni let us denote by .i0i1 : : : ik/ the corresponding morphism hki !
hni which sends j to ij . For n � 1 and 1 � k � n, we have thus the morphism
.k � 1; k/W h1i ! hni. So, for a pointed derivator D and an object X 2 D.e/, we
obtain maps .k � 1; k/�W PnX ! P1X Š �X . These maps taken together define
Segal maps and satisfy the “usual” Segal condition [40].
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Lemma 4.10 Let D be a pointed derivator and let X 2 D.e/. For n � 1 the Segal
map is an isomorphism:

s D snW PnX ��!Š
nY

kD1

P1.X /Š

nY
kD1

�X

Proof We only check the case of n D 2. Let J be the poset obtained from y2 by
adding two new elements !0 and !1 such that !0� e0; e1 and !1� e1; e2 . Moreover,
let us denote the resulting inclusion by j W y2! J . Under the obvious isomorphism
J Š Œ1��y, we can consider the adjunction .d1�id; s0�id/W y� Œ1��y as an adjunction
.L;R/W y� J . By Proposition 1.18 we have a natural isomorphism between P2 and

D.e/
t!
// D. y2/

j�
// D.J /

L�
// D. y / Holim

// D.e/:

But it is easy to see that the composition of the first three functors evaluated on X

yields a diagram which vanishes at t and is isomorphic to �X at the two remaining
arguments. It thus follows that we have an isomorphism P2.X /Š�X ��X induced
by the Segal map.

It is a standard fact that Segal objects admit an associative concatenation map defined
by:

?W �X ��X P2.X /
Š

s
oo

.02/�
// �X

Lemma 4.11 Let D be a pointed derivator and let X be an object of D.e/. The
concatenation map ?W �X ��X !�X is an associative pairing on �X .

Heading for the additive inverse of the identity on loop objects, let us consider the only
nontrivial automorphism � W h1i ! h1i in Fin. Then y� W y! y is the isomorphism
interchanging the vertices .1; 0/ and .0; 1/. There is thus an induced automorphism
�� D .10/�W �X !�X , which we call the inversion of loops.

Proposition 4.12 Let D be a stable derivator and let X 2 D.e/. The inversion of
loops map ��W �X !�X is an additive inverse to id�X . In particular, �X 2D.e/
is an abelian group object.

Proof By functoriality of the construction P�X , there is a right action of the symmetric
group on three letters on P2X . We want to describe the corresponding action on
�X ˚�X obtained by conjugation with the Segal map s . The strategy of the proof is
then to use this action in order to relate the concatenation product and the addition of
morphisms.
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For different elements i; j 2 h2i let us denote by �ij the associated transposition. One
checks that the following diagram commutes

P2X

s

��

��
02

// P2X

s

��

�X ˚�X �
0 ��

�� 0

� // �X ˚�X;

where the arrows labeled by s are again Segal maps. From the equality of the maps

�01 ı .01/D .01/ ı � W h1i �! h2i

we conclude that the endomorphism of �X ˚�X corresponding to �01 is a lower
triangular matrix

s ı ��01 ı s�1
D

�
�� 0

˛ ˇ

�
W �X ˚�X �!�X ˚�X

for some maps ˛; ˇW �X ! �X . The fact that �01 is an involution implies the
relations:

˛��Cˇ˛ D 0 and ˇ2
D id

The aim is now to show that both maps ˛ and ˇ are identities which would in particular
imply that �� is an additive inverse of id�X .

From the relation .02/D �01 ı .12/ we immediately get .02/�D .12/� ı��
01
W P2X !

�X . Using the matrix description of the map induced by �01 we see that for two
maps f;gW �X !�X there is the following formula for the concatenation product:

f ?g D f̨ CˇgW �X �!�X

By Lemma 4.11 we know that the concatenation pairing is associative. If we compare
the two expressions for .0? 0/ ? id�X and 0? .0? id�X / we already obtain the first
intended relation ˇ D id�X .

Instead of using .02/D�01ı.12/, we can also use the relation .02/D�12ı.01/W h1i!

h2i to obtain a further description of the concatenation product. First, since

�12 D �02 ı �01 ı �02W h2i �! h2i

we obtain that the endomorphism on �X ˚�X induced by ��
12

has the following
matrix description:

s ı ��12 ı s�1
D

�
cc��ˇ�� ��˛��

0 ��

�
W �X ˚�X �!�X ˚�X
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From this and the formula .02/� D .01/� ı ��
12

we see that the concatenation product
can also be written as:

f ?g D ��ˇ��f C ��˛��gW �X �!�X

A comparison of these two descriptions concludes the proof since we obtain ˛ D
��ˇ�� D id�X .

Remark 4.13 Although we will not make use of this remark we want to emphasize
the following. The proof of the last proposition shows that the addition on mapping
spaces into loop objects coincides with the pairing induced by the concatenation of
loops. Similarly, additive inverses are given by the inversion of loops. Thus for maps
f;gW U !�X we have:

f Cg D f ?g and �f
def
D ��f

A combination of this proposition, Proposition 4.7 on the semiadditivity of D.J / and
the fact that .†;�/ is a pair of inverse equivalences in the stable situation gives us
immediately the following corollary.

Corollary 4.14 If D is a stable derivator then D.J / is an additive category for an
arbitrary J . Moreover, for an arbitrary functor uW J !K , the induced functors u�;u! ,
and u� are additive.

4.2 The canonical triangulated structures

We can now attack the main result of this section, namely, that given a stable derivator D
then the categories D.J / are canonically triangulated categories. Using Proposition 4.3,
we can again assume without loss of generality that we are in the case JDe . The suspen-
sion functor of the triangulated structure will be the suspension functor †W D.e/!D.e/
we constructed already. Thus, let us construct the class of distinguished triangles. For
this purpose, let K denote the poset:

.0; 0/

��

// .1; 0/ // .2; 0/

.0; 1/

Moreover, let i0W Œ1�! K be the map classifying the left horizontal arrow and let
i1W K! Œ2�� Œ1� be the inclusion. Let us denote the composition by

i W Œ1�
i0
�!K

i1
�! Œ2�� Œ1�:
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Again, since i0 is a sieve, i0� gives us an extension by zero functor. Let us consider
the functor:

T W D.Œ1�/
i0�
�!D.K/

i1!
�!D.Œ2�� Œ1�/

We claim that the squares d0T .f /; d1T .f /, and d2T .f /2D.�/ are then bicartesian
for an arbitrary f 2 D.Œ1�/. Moreover, if the underlying diagram of f is X ! Y

then we have canonical isomorphisms T .f /2;1 Š †X and T .f /1;1 Š C.f /. In
fact, by Proposition 4.6, it is enough to show the bicartesianness of d0T .f / and
d2T .f /. This can be done by two applications of the detection result Proposition 3.10
to i1W K! J D Œ2�� Œ1�. It is easy to check (using Lemma 3.11 in one of the cases)
that the assumptions of that proposition are satisfied. Since i0 is a sieve, the underlying
diagram of d1T .f / and d2T .f / respectively look like:

X //

��

0

��

X //

��

Y

��

0 // T .f /2;1 0 // T .f /1;1

Moreover, by the proof of Proposition 4.4, d1T .f / lies in the essential image of

D.e/
.0;0/�

// D. p /
ip !
// D.�/:

Hence, we have a canonical isomorphism T .f /2;1 Š †X . Similarly, if we let
j W Œ1� ! p denote the functor classifying the upper horizontal morphism d2T .f /

then lies in the essential image of

D.Œ1�/
j�
// D. p /

ip !
// D.�/:

Hence, we also have a canonical isomorphism T .f /1;1 Š C.f / as intended.

Thus, for f 2 D.Œ1�/, by first restricting T .f / to Œ3� in the expected way and then
forming the underlying diagram in D.e/, we obtain a triangle .Tf / in D.e/ which is
of the following form:

.Tf / W X �! Y �! C.f / �!†X

Call a triangle in D.e/ distinguished if it is isomorphic to .Tf / for some f 2D.Œ1�/.
Before we come to the main theorem let us recall the definition of a triangulated
category. For more background on this theory see for example [35] or [39]. The form
of the octahedron axiom given here is sufficient in order to obtain the usual form of the
octahedron axiom. This observation was made in [26] (for a proof of it see [39]).
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Definition 4.15 Let T be an additive category with a self-equivalence †W T ! T and
a class of so-called distinguished triangles X ! Y !Z!†X . The pair consisting
of † and the class of distinguished triangles determines a triangulated structure on
T if the following four axioms are satisfied. In this case, the triple consisting of the
category, the endofunctor and the class of distinguished triangles is called a triangulated
category.

(T1) For every X 2 T , the triangle X
id
! X ! 0! †X is distinguished. Every

morphism in T occurs as the first morphism in a distinguished triangle and the
class of distinguished triangles is replete, ie is closed under isomorphisms.

(T2) If the triangle X
f
!Y

g
!Z

h
!†X is distinguished then also the rotated triangle

Y
g
!Z

h
!†X

�f
! †Y is distinguished.

(T3) Given two distinguished triangles and a commutative solid arrow diagram

X //

u

��

Y //

v

��

Z //

w

��
�
�
� †X

†u
��

X 0 // Y 0 // Z0 // †X 0

there exists a dashed arrow wW Z ! Z0 as indicated such that the extended
diagram commutes.

(T4) For every pair of composable arrows f3W X
f1
! Y

f2
!Z there is a commutative

diagram in which the rows and columns are distinguished triangles:

X
f1
// Y

g1
//

f2

��

C1

h1
//

��

†X

X
f3

// Z

g2

��

g3

// C3
h3

//

��

†X

†f1

��

C2

h2

��

C2

†g1ıh2

��

h2

// †Y

†Y
†g1

// †C1

Here is the important theorem about the canonical triangulated structures on the values
of a stable derivator. The fact that these triangulations are compatible with the restriction
and homotopy Kan extension functors will be discussed in Corollary 4.19.
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Theorem 4.16 Let D be a stable derivator and let J be a category. Endowed with the
suspension functor †W D.J /! D.J / and the above class of distinguished triangles,
D.J / is a triangulated category.

Proof It suffices to do this for the case J D e . The additivity of D.e/ is already given
by Corollary 4.14. Moreover, in this stable setting, the suspension functor † is an
equivalence.

(T1) The first part of axiom (T1) is settled by Proposition 4.5. Since D is strong every
morphism in D.e/ is up to isomorphism the underlying diagram of an object in D.Œ1�/.
The triangle associated to this object settles the second part of (T1). The last part of
(T1) holds by definition of the class of distinguished triangles.

(T3) Axiom (T3) is settled similarly by reducing first to the situation of triangles of
the form .Tf / for f 2D.Œ1�/ and then applying the strength again.

(T2) We can again reduce to the case where the given distinguished triangle is .Tf /
for some f 2 D.Œ1�/. Let us consider the category J given by the following full
subposet of Œ2�� Œ2�,

.0; 0/ //

��

.1; 0/ //

��

.2; 0/

.0; 1/

++ .1; 2/;

and let i W Œ1�! J be the functor classifying the upper left horizontal morphism. Then
i is a sieve and i� gives us thus an extension by zero functor. Moreover, let us denote
by j the canonical inclusion of J in KD Œ2�� Œ2��f.0; 2/g. For a given f 2D.Œ1�/ let
us consider j!i�.f /. Again, by a repeated application of Proposition 3.10 all squares
in j!i�.f / are bicartesian. If the diagram of f is f W X ! Y then the underlying
diagram of j!i�.f / looks like:

X
f
//

��

Y //

g

��

0

��

0 // Cf
h
//

��

†X

��

0 // †Y
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In fact, the inclusion .d1 � d2/W p!K allows us to identify the value at .2; 1/ with
†X while the inclusion .d0 � d1/W p! K gives us an identification of the lower
right corner with †Y . However, this last inclusion differs from the usual one by the
automorphism � W p! p. By Proposition 4.12, the induced map ��W †Y ! †Y is
� id†Y . Hence, using moreover the unique natural transformation of the two inclusions
.d0 � d1/! .d1 � d2/W p!K , we can identify the morphism †X !†Y as �†f
and this shows that the triangle .Tg/ is as stated in the claim.

(T4) It remains to give a proof of the octahedron axiom. The proof of this will be split
into two parts.

(1) In this part, we show that every “first half of an octahedron diagram” comes up
to isomorphism from an object F 2D.Œ2�/. Let us restrict attention to the upper left
square

X
f1
// Y

f2

��

X
f3

// Z

of such a diagram. The strength of D guarantees that there is an object F1 2 D.Œ1�/
and an isomorphism diaF1Š .f1W X ! Y /. Moreover, let us consider p�Z 2D.Œ1�/,
where pW Œ1�! e is the unique functor. Then, we obtain a morphism �W F1! p�Z

as the image of f2 under the two natural isomorphisms (we applied Lemma 1.19 to
obtain the second one):

homD.e/.Y;Z/Š homD.Œ1�/.F1; 1�Z/Š homD.Œ1�/.F1;p
�Z/

Considering this map �W F1! p�Z as an object of D.Œ1�/Œ1� , a further application of
the strength guarantees the existence of an object Q 2D.�/ such that diaŒ1�;Œ1�QŠ
.�W F1! p�Z/:

diaQW X

f1

��

�0
// Z

��

Y
�1

// Z

If i W Œ2�!� classifies the nondegenerate pair of composable arrows passing through
the lower left corner .0; 1/ then let us set F D i�Q 2D.Œ2�/. This F does the job.

(2) In this second part, given an object F 2 D.Œ2�/, we construct an associated
octahedron diagram in D.e/. The pattern of this part of the proof is by now quite
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familiar. Consider the category J given by the following full subposet of Œ4�� Œ2�,

.0; 0/ //

��

.1; 0/ //

��

.2; 0/ // .3; 0/

��

.0; 1/ //

++

.4; 1/

.1; 2/;

and let i W Œ2�! J classify the two composable upper left morphisms. Moreover, let

j W J �!K D Œ4�� Œ2��f.4; 0/; .0; 2/g

be the canonical inclusion. Since i is a sieve, the homotopy right Kan extension functor
i� is an extension by zero functor. For F 2D.Œ2�/ let us consider DD j!i�.F /2D.K/.
If the underlying diagram of F is

X
f1
�! Y

f2
�!Z

then the underlying diagram of D is:

X
f1
//

��

Y
f2
//

��

Z

��

// 0

��

0 // bC 1
//

��

bC 3
//

��

SX //

��

0

��

0 // bC 2
// SY // SbC 1

A repeated application of Proposition 3.10 guarantees that all squares in D are bicarte-
sian. Hence the same is also true for all compound squares one can find in D . This
allows us to find canonical isomorphisms bC k Š C.fk/ if we set f3 D f2 ıf1 . More
precisely, the cone functor C has of course to be applied to f1 D d2.F /; f2 D d0.F /,
and f3 D d1.F / 2D.Œ1�/. Similarly, we obtain isomorphisms SX Š†X;SY Š†Y ,
and S bC 1 Š †bC 1 . Thus, one can extract an octahedron diagram in D.e/ from the
object D .

The next aim is to show that the functors belonging to a stable derivator can be
canonically made into exact functors with respect to these structures. In the stable
setting, Corollary 4.14 induces immediately the following one.
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Corollary 4.17 Let F W D!D0 be a morphism of stable derivators, then

F is left exact () F is exact () F is right exact.

In particular, the components FJ W D.J /!D0.J / of an exact morphism are additive
functors.

Exact morphisms are the “correct” morphisms for stable derivators. Some evidence for
this is given by the next result.

Proposition 4.18 Let F W D!D0 be an exact morphism of stable derivators and let
J be a category. The functor FJ W D.J /! D0.J / can be canonically endowed with
the structure of an exact functor of triangulated categories.

Proof By Proposition 4.3, we can assume without loss of generality that J D e .
Moreover, by Proposition 3.21 we know that there is a canonical isomorphism F ı†Š

† ı F . The morphism F preserves composites of two cocartesian squares and in
particular those which vanish at .2; 0/ and .0; 1/. Since these were used to define
the class of distinguished triangles it follows that F together with the canonical
isomorphism F ı†Š† ıF is exact.

Corollary 4.19 Let D be a stable derivator and let uW J ! K be a functor. The
induced functors u�W D.K/! D.J / and u!;u�W D.J /! D.K/ can be canonically
endowed with the structure of exact functors.

Proof Since we have adjunctions .u!;u
�/ and .u�;u�/, it suffices to show that u� can

be canonically endowed with the structure of an exact functor (see [34, page 463]). But
u�W D.K/!D.J / is the underlying functor of the exact morphism u�W DK

!DJ .

5 Additive derivators as enhancement of pretriangulated cat-
egories

In this short section we introduce additive derivators and show that they can be consid-
ered as an enhancement of pretriangulated categories.

Definition 5.1 A derivator D is additive if the underlying category D.e/ is additive.

Proposition 5.2 If a derivator D is additive, then all categories D.J / are additive
and for any functor uW J �!K the induced functors u�;u! , and u� are additive. In
particular, D is additive if and only if DM is additive for all M . Moreover, D is
additive if and only if Dop is.
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In contrast to the above definition, let us call a prederivator additive if all values and all
precomposition functors are additive. Thus the prederivator represented by a category
is additive if and only if the representing category is additive.

Example 5.3 (1) Stable derivators are additive by Corollary 4.14.

(2) Let R be a ring and let Ch�0.R/ denote the category of nonnegative chain
complexes of left R–modules. Using the model structure from [10, Section 7] we
obtain the derivator:

D�0
R
WDDCh�0.R/W Cat

op
! CAT; J 7! Ho.Ch�0.R/

J /DD�0.R�ModJ /

Here, D�0.�/ denotes the formation of the nonnegative derived category of an abelian
category. This derivator is additive but not stable.

For convenience let us sketch the definition of a right triangulated category (see [26;
4]). A right triangulated category consists of an additive category A, an additive
endofunctor † (which is not an equivalence in general!) and a class of so-called
distinguished right triangles X �! Y �! Z �! †X . This structure has to satisfy
four axioms (RT1)–(RT4). The last three of them being precisely the same as for
triangulated categories let us only recall the first one:

(RT1) For every X 2A, the right triangle 0!X
id
!X ! 0 is distinguished. Every

morphism in A occurs as the first morphism in a distinguished right triangle
and the class of distinguished right triangles is replete, ie is closed under
isomorphisms.

Let D be an additive derivator and let X 2D.J / for some small category J . Then the
concatenation of loops �W �X˚�X!�X and the inversion of loops ��W �X!�X

turn �X into a group object of D.J /. Moreover, given an object U 2 D.J / and
morphisms f;gW U !�X then we have:

f Cg D f �g and �f D ��f

The proof from the stable context also applies to additive derivators. This result is
slightly nicer in the additive context: given an additive derivator we already had both
an addition and a multiplication by �1 on the set of morphisms from U to �X and
both of them can be interpreted geometrically by some “loop manipulation”.

Now, given an additive derivator then the suspension functor †W D.J /! D.J / is
additive since it is a left adjoint. Using precisely the same reasoning as in Section 4.2
we define a replete class of distinguished right triangles in D.J /.
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Theorem 5.4 Let D be a strong, additive derivator and let J be a small category.
Then the pair consisting of †W D.J /! D.J / and the above class of distinguished
right triangles defines a right triangulated structure on D.J /. Dually, the pair consist-
ing of �W D.J /! D.J / and the dually defined class of distinguished left triangles
turns D.J / into a left triangulated category.

The right triangle associated to an object f 2D.Œ1�/ is denoted by T†.f / and dually.
There is a stronger result since the left and the right triangulations are compatible in
the sense of the following definition [3].

Definition 5.5 Let A be an additive category and let .†;�/W A�A be an adjunction
such that † and � are part of a right and left triangulation on A respectively. This
quadruple is called a pretriangulation on A if the following properties are satisfied:
(PT1) Let us be given a right triangle and a left triangle in A as indicated in the next

diagram. If we have morphisms ˛ and ˇ such that the square on the left is
commutative then there is a morphism  W Z! Y 0 such that the entire diagram
commutes:

X
f
//

˛

��

Y
g
//

ˇ
��

Z
h
//



��
�
�
� †X

�ı†˛
��

�Z0
f 0
// X 0

g0
// Y 0

h0
// Z0

(PT2) Let us be given a right triangle and a left triangle in A as indicated in the next
diagram. If we have morphisms ˛ and ˇ such that the square on the right is
commutative then there is a morphism  W Y !X 0 such that the entire diagram
commutes:

X
f
//

�˛ı�

��

Y
g
//



��
�
�
� Z

h
//

ˇ
��

†X

˛

��

�Z0
f 0
// X 0

g0
// Y 0

h0
// Z0

A pretriangulated category is an additive category together with a pretriangulation.

We have the following nice theorem about the values of a strong, additive derivator. In
the proof we use the same notation as in the stable case (see Section 4.2).

Theorem 5.6 Let D be a strong, additive derivator and let J be a small category.
Then the adjunction .†;�/W D.J /�D.J / together with the right and the left triangu-
lated structure on D.J / guaranteed by Theorem 5.4 turn D.J / into a pretriangulated
category.

Algebraic & Geometric Topology, Volume 13 (2013)



Derivators, pointed derivators and stable derivators 371

Proof By Proposition 5.2 we can assume J D e . Moreover, by duality it suffices to
establish (PT1). We can assume that the first row is the underlying diagram of T� .f /

and that the second one is the underlying diagram of T�.h
0/. Let us not distinguish

notationally between f 2D.Œ1�/ and its underlying diagram f W X ! Y in D.e/ and
similarly for other morphisms. We will construct the morphism  in two steps. First,
by the strength of our derivator D we can find a morphism �W f ! f 0 in D.Œ1�/
such that the underlying diagram of � is precisely .˛; ˇ/. From this we get a mor-
phism T� .�/W T� .f /! T� .f

0/ and it is easy to verify that under our identifications
the morphism T� .�/2;1 is just †˛ .

For the second step observe that we have an isomorphism T� .f
0/ jŒ1�Š T�.h

0/ jŒ1�
which induces by homotopy right Kan extension along i0 a further isomorphism
T� .f

0/ jKŠ T�.h
0/ jK . Now combining the adjunction .i1!; i1

�/ together with the
canonical isomorphism i1!.T� .f

0/jK /Š T� .f
0/ we obtain a morphism:

T� .f
0/ ��!Š i1!.T� .f

0/jK / ��!
Š i1!.T� .h

0/jK /
�
�! T�.h

0/

This morphism evaluated at .2; 1/ can be identified with �W †�Z0!Z0 , the adjunction
counit. Thus, if we define  W Z!Y 0 to be the morphism T� .f /!T� .f

0/!T�.h
0/

evaluated at .1; 1/ then we can conclude the proof.

These pretriangulations are canonical in the following sense. A right exact morphism be-
tween right triangulated categories is a pair consisting of an additive functor F W A!A0
and a natural isomorphism F ı† Š † ıF which together send distinguished right
triangles to distinguished right triangles. There is the obvious dual notion of a left
exact morphism of left triangulated categories. Moreover, an exact morphism between
pretriangulated categories is an additive functor which is endowed both with a right
exact and a left exact structure. Finally, a morphism of pretriangulated categories A
and A0 is an adjunction .L;R/W A�A0 such that the left adjoint is right exact and the
right adjoint is left exact in the above sense. In the context of pretriangulated categories
the exactness assumptions on L and R are not formal consequences of the adjointness
since some choices where made earlier in the construction of the pretriangulations.
However, for derivators the corresponding statement is true.

Proposition 5.7 Let D and D0 be strong, additive derivators and let F W D ! D0

be a morphism which preserves homotopy colimits. Then FJ W D.J /! D0.J / can
be canonically turned into a right exact functor with respect to the canonical right
triangulated structures on D.J / and D.J /0 .
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Corollary 5.8 Let .L;R/W D�D0 be an adjunction between strong, additive deriva-
tors. Then we obtain canonically morphisms .LJ ;RJ /W D.J /�D0.J / of pretriangu-
lated categories. Moreover, given a functor uW J ! K between small categories,
we obtain morphisms of pretriangulated categories .u!;u

�/W D.J / � D.K/ and
.u�;u�/W D.K/ � D.J /. In particular, u�W D.K/ ! D.J / is naturally an exact
morphism of pretriangulated categories.
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