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A surgery triangle for lattice cohomology

JOSHUA EVAN GREENE

Lattice cohomology, defined by Némethi in [10], is an invariant of negative definite
plumbed 3–manifolds which conjecturally computes their Heegaard Floer homol-
ogy HFC . We prove a surgery exact triangle for the lattice cohomology analogous to
the one for HFC . This is a step towards relating these two invariants.

57R58; 57M27, 53D40, 11H55

1 Introduction

1.1 Context and previous work

In this article, we study a model for the Heegaard Floer homology HFC of a neg-
ative definite plumbed manifold. Heegaard Floer homology is a powerful invariant
in low-dimensional topology, and much research has gone into its algorithmic com-
putability, from the seminal works by Sarkar and Wang [15] and Manolescu, Ozsváth
and Sarkar [6] to the formidable paper by Manolescu and Ozsváth [5]. However,
there lacks a transparent, efficient means of calculating the invariant in general, and
negative definite plumbed manifolds are one family for which calculation seems feasible.
Moreover, calculations in this case are useful in applications to knot concordance (see
the author and Jabuka [4]), unknotting number (see Ozsváth and Szabó [14]) and
smoothings of rational surface singularities (see Stipsicz [16]). In this setting, Némethi
has given an elegant construction of an invariant called the lattice cohomology HC

which conjecturally computes HFC in [10], and this is the invariant we study here.

We first describe the family of manifolds at hand. Let GD .V;E/ denote a finite planar
graph with an integer weight m.v/ for each vertex v 2 V and a sign ˙ for each edge
e 2E . Associated to G is a compact 4–manifold with boundary X.G/. To describe
it, center a round unknot at each vertex of G with framing m.v/, and introduce a
right-hand (resp. left-hand) clasp between neighboring unknots for each positive (resp.
negative) edge e 2 E . Let L denote the resulting framed link in S3 D @D4 , and
let X.G/ denote the result of attaching 2–handles to D4 along L. When G is acyclic
(ie a disjoint union of trees), X.G/ admits an alternative description: form the disk
bundle over S2 with Euler number m.v/ for each v 2 V , and plumb together the
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bundles of neighboring vertices for each edge e 2E . Note the signs on the edges of G

become immaterial in this case. We let Y .G/ denote the oriented boundary of X.G/.

The graph G defines a free Z–module LDL.G/ which is freely generated by classes
Ev , v 2 V . There is a symmetric bilinear form on this module which is defined by
setting .Ev;Ew/ equal to the signed number of edges between v and w , when v¤w
and .Ev;Ev/ D m.v/. The quadratic module .L.G/; . � ; � // defined in this way is
isomorphic to the module H2.X.G/IZ/ equipped with its intersection pairing. The
isomorphism is set up by identifying a class Ev with ŒSv �, where Sv is the sphere
obtained by taking the union of a Seifert disk for Kv with the core of the corresponding
handle attachment. In the case of the plumbing description, Sv may be alternately
viewed as the base sphere in the disk bundle associated to v 2 V .

Definition 1.1 A graph G is negative definite if it is acyclic and the pairing . � ; � / is
negative definite, and the resulting space Y .G/ is a negative definite plumbed manifold.

The spaces X.G/ associated to negative definite graphs are precisely the diffeomor-
phism types of good resolutions of normal surface singularities as by Grauert [2] and
Mumford [7]; for a good summary, see Némethi [8, pages 282–283].

Ozsváth and Szabó undertook the determination of HFC of a negative definite plumbed
manifold under an additional assumption on the graph G [13]. Namely, they call
a vertex v 2 V bad if m.v/C d.v/ > 0; here d.v/ denotes the number of edges
incident v . Their result is a calculable description of the invariant HFC.�Y .G// under
the assumption that G has at most one bad vertex. Additionally, they describe the
“even half” of this invariant HFCeven.�Y .G// when G has two bad vertices. Using their
result, Ozsváth and Szabó calculated the invariant for many spaces of interest, and gave
a useful formula for the correction terms of such a space.

However, it remained a problem to find a suitable generalization of their algorithm
which would apply to any negative definite plumbed 3–manifold Y . This was taken up
by Némethi, who proposed the lattice cohomology HC.Y /. He proved that the lattice
cohomology is a diffeomorphism invariant of Y (independent of the negative definite
graph used to present it), reduces to Ozsváth’s and Szabó’s model in the domain for
which they defined it, and also agrees with HFC for the boundaries of rational and
elliptic surface singularities [9; 10]. As a result, Némethi was able to show that rational
surface singularities are L–spaces; and his conjecture HC.Y / Š HFC.Y / would
imply that these are all the L–spaces amongst negative definite plumbed manifolds. At
present there is no purely topological characterization of L–spaces, and this remains a
fascinating problem.
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1.2 The main result

A key feature of the Floer homology groups is that they obey a surgery exact triangle:
if K � Y is a framed knot, then there is a long exact sequence

� � � ! HFC.Y /! HFC.Y0.K//! HFC.Y1.K//! HFC.Y /! � � � I

here Yr .K/ denotes the result of r –framed surgery on K . As a first step towards
proving Némethi’s conjecture, it is desirable to know that the lattice cohomology obeys
an analogous exact triangle.

The purpose of this article is to prove Theorem 3.1, which establishes the existence of
the surgery exact triangle for the lattice cohomology over the coefficient ring Z=2Z.
Moreover, we describe a version of the lattice cohomology which applies to the family
of manifolds Y .G/ without any additional assumption on the graph G , and show
that the triangle holds in this setting. Indeed, the proof of the triangle is a matter of
fairly straightforward (if somewhat involved) algebra once we have suitably defined
the invariant HC for arbitrary Y .G/.

Finally, and what is perhaps most intriguing, the lattice cohomology comes equipped
with an additional integer grading which has no obvious counterpart in the Floer
homology. If L� S3 is a link, then the double cover of S3 branched along L takes
the form Y .G/ for some G , and conversely all negative definite plumbed manifolds
arise in this way. For branched double-covers there is a conjectural ı–grading described
by Baldwin in [1] and by the author in [3, Conjecture 8.1]. Indeed, these two quantities
agree (up to an overall shift) in the limited domain where they have both been computed.
In light of the way we expect the ı–grading to arise from [1], it is compelling to search
for a more direct relationship between Khovanov homology and lattice cohomology.

1.3 Update

Since this article first appeared as a preprint, Némethi reproved Theorem 3.1, found
the sign assignment required to establish it over Z, and established a related exact
triangle which does not mix spinc structures [11]. Ozsváth, Stipsicz and Szabó also
reproved Theorem 3.1 and used it to establish the existence of a spectral sequence
HC HFC , which is a further step towards establishing the conjectured isomorphism
between them [12].

Acknowledgments Thanks to my advisor Zoltán Szabó for encouraging me to pursue
this project and to András Némethi for helpful correspondence.
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2 The lattice cohomology

The pairing on L.G/ gives rise to a quadratic form q.x/ D �1
8
.x;x/, and extends

to a pairing on L˝ R. We say that a vector K 2 Hom.L;Z/ is characteristic if
.K;x/� .x;x/ .mod 2/ for all x 2L.G/; and the set of all characteristic vectors is
denoted Char.G/. Let

CC.G/� HomF .Char.G/�P.V /; T C
0
/

consist of the maps with finite support. Here F denotes either Z or Z=2Z; P.V /,
the power set of V ; and T C

0
, the F ŒU �–module F ŒU;U�1�=U � F ŒU �. The latter is

a graded F –module, with grading given by gr.U�d /D 2d , and makes CC.G/ into
an F ŒU �–module. The group CC.G/ has an additional grading, where � 2 CC.G/ is
homogeneous of degree s if it is supported on pairs .K;S/ with jS j D s .

Consider the affine lattice KC2L�L˝R. Associated to a pair .K0;S/2.KC2L/�P.V /
is an s–dimensional cube in L˝R with vertex set fK0C2

P
j2T Ej jT �Sg. In this

way we obtain a cubical decomposition of L˝R, and in turn a chain complex .Cs; @/.
Under the identification between pairs .K;S/ and cubes, we can express the boundary
operator as

@.K;S/D
X

.K 0;S 0/

�.K0;S 0/ � .K0;S 0/;

where �.K0;S 0/D˙1 for pairs of the form .K;S�w/ or .KC2Ew;S�w/, w 2S ,
and �.K0;S 0/D 0 otherwise. Lastly, we extend the quadratic form q to a function on
Char.G/�P.V / by setting

q.K;S/Dmax
�

q

�
KC 2

X
j2T

Ej

� ˇ̌̌̌
T � S

�
:

We define a differential ı on the group CC.G/ by setting

ı.�/.K;S/D
X

.K 0;S 0/

�.K0;S 0/ �U q.K ;S/�q.K 0;S 0/
��.K0;S 0/:

It is straightforward to verify ı2D 0, making use of the fact @2D 0 [10, Lemma 3.1.5].
The following definition is in essence [10, Definition 3.2.5].

Definition 2.1 The homology of CC.G/, regarded as a graded F ŒU �–module, is the
lattice cohomology of G . It is denoted by HC.G/.

Observe that this definition makes sense for any finite graph G , with no assumption on
planarity; however, it is unclear what significance it has in this more general setting.
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In the case that G is negative definite, there is a more topological description of the
invariant HC.G/ [10, Definition 3.1.11], though we do not use it here. This is the
invariant we wish to compare to HFC.�Y .G//. In fact, [10, Conjecture 5.2.4] proposes
in a precise form the conjecture that HC.G/Š HFC.�Y .G// in the case that G is
negative definite.

3 Statement of the triangle

The invariant HFC obeys an exact triangle. For the case of interest, this triangle takes
the following form. Set Y D Y .G/, select v 2 V , and let K denote a meridian for
the link component Kv . The knot K inherits a natural framing when viewed as an
unknotted curve in S3 . Then Y0.K/Š Y .G � v/ and Y�1.K/Š Y .GC1.v//, where
G � v denotes the graph gotten by deleting v and all its incident edges, and GC1.v/

denotes the graph gotten by increasing m.v/ by one. Thus the triangle reads

� � � ! HFC.�Y .GC1.v///! HFC.�Y .G//! HFC.�Y .G � v//

! HFC.�Y .GC1.v///! � � � :

Our purpose here is to prove an analogous result for the lattice cohomology.

Theorem 3.1 Let F denote the coefficient ring Z=2Z. There is a short exact sequence
of complexes

0! CC.GC1.v//
A
�! CC.G/ B

�! CC.G � v/! 0;

which gives rise to an F ŒU �–equivariant exact triangle of lattice cohomology groups

� � � !HC.GC1.v//!HC.G/!HC.G � v/!HC.GC1.v//! � � � :

The rest of this article is devoted to the proof of Theorem 3.1, which we break into
several pieces.

4 Definition of maps appearing in the short exact sequence

There is a canonical identification between L.G � v/ and the sublattices of L.G/ and
L.GC1.v// spanned by the classes Ew , w ¤ v . We denote a characteristic vector
for G or GC1.v/ by a pair .K; t/, where K denotes the restriction to L.G�v/ and t

is the pairing of the vector with Ev . Denote by . � ; � /0 the pairing on L.GC1.v// and
by q0 the associated function on Char.GC1.v//�P.V /.
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The definition of the maps A and B on the 0–th level of the short exact sequence is
taken from [13]. We set

A.�/.K; t/D

C1X
iD�1

U i.iC1/=2
��.K; t C 2i C 1/;(1)

B.�/.K/D

C1X
iD�1

�.K;m.v/C 2i/:(2)

(We suppress S D ∅ from the notation.) Both sums are finite, since � has finite
support. Observe that ADAC ıR and B D BC , where the maps AC and BC appear
in [13, Lemma 2.9, Proposition 2.5].

Let us attempt to extend this definition to a pair of F ŒU �–equivariant chain maps
AW CC.GC1.v// ! CC.G/ and BW CC.G/ ! CC.G � v/. We focus on the defi-
nition of A first. The condition ıA D Aı and a straightforward induction on jS j
show that the value of A.�/..K; t/;S/ is an F ŒU �–linear combination of terms
�..K; tC2iC1/;S/. Moreover, the coefficient on �..K; tC2iC1/;S/ is a monomial
U c.i;.K ;t/;S/ , for some c.i; .K; t/;S/� 0. We determine the value of this exponent by
comparing the coefficients on �..K; t C 2i C 1/;S �w/ on both sides of the identity
ıA.�/..K; t/;S/DAı.�/..K; t/;S/, for w 2S . An induction on jS j shows that this
value is uniquely determined by the expression

(3)
c.i; .K; t/;S/D Œq..K; t/;S/� q..K; t//�

� Œq0..K; t C 2i C 1/;S/� q0.K; t C 2i C 1/�C i.i C 1/=2:

However, both sides of the identity ıA.�/..K; t/;S/DAı.�/..K; t/;S/ also involve
terms of the form �..K; t C 2i C 1/C 2Ew;S �w/. It stands to check that the stated
definition of c.i; .K; t/;S/ makes the coefficients on these terms agree as well. This is
easily confirmed for the case when w¤ v . In the case wD v , there is one small wrinkle.
Namely, we must be careful to recognize the class .K; tC2i�1/C2Ev 2Char.GC1.v//

is the one whose evaluation on Ew with respect to the pairing . � ; � /0 is given by
.K C 2Ev;Ew/ when w ¤ v and .K C 2Ev;Ev/C 2i C 1 when w D v . This is
due to the fact that .Ev;Ev/

0 D .Ev;Ev/C 1. Having observed this, the case w D v
follows as well.

Next, we need to verify that c.i; .K; t/;S/� 0, so that A is a bona fide F ŒU �–module
map, rather than just an F ŒU;U�1�–module map. The value of q..K; t/;S/�q.K; t/ is
the maximum of the values q..K; t/C2ET /�q.K; t/, where ET WD

P
j2T Ej ;T �S .
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It is easy to check that

q0..K; tC2iC1/C2ET /�q0.K; tC2iC1/D

(
q..K; t/C2ET /�q.K; t/; v 62T ;

q..K; t/C2ET /�q.K; t/� i�1; v 2 T:

It follows that if v 62 S , then

q0..K; t C 2i C 1/;S/D q.K;S/;

and if v 2 S , then

q0..K; t C 2i C 1/;S/Dmaxfq..K; t/;S � v/; q..K; t/C 2Ev;S � v/� i � 1g:

Denote by r..K; t/;S/ the difference q..K; t/;S �v/�q..K; t/C2Ev;S �v/ when
v 2 S . We conclude that if v 62 S , then

(4) c.i; .K; t/;S/D i.i C 1/=2I

and if v 2 S , then

(5) c.i; .K; t/;S/D

8̂̂̂̂
<̂
ˆ̂̂:

i.i C 1/=2; r..K; t/;S/�maxf0; i C 1g;

.i C 1/.i C 2/=2; r..K; t/;S/�minf0; i C 1g;

i.i C 1/=2C r.K;S/; 0� r..K; t/;S/� i C 1;

.i C 1/.i C 2/=2� r.K;S/; i C 1� r..K; t/;S/� 0:

Observe that in any case, c.i; .K; t/;S/� 0, so that A is indeed an F ŒU �–module map.
Moreover, we see that for all ..K; t/;S/, the value c.i; .K; t/;S/ is 0 for i D�1 and
positive for i > �1 and i < �2.

The extension of B to a chain map CC.G/! CC.G � v/ proceeds similarly, but is
simpler. The result is summarized as follows.

Proposition 4.1 There is a unique way to extend the maps A and B in Equa-
tions (1) and (2) to F ŒU �–equivariant chain maps AW CC.GC1.v// ! CC.G/ and
BW CC.G/! CC.G � v/. They are defined by setting

(6) A.�/..K; t/;S/D

C1X
iD�1

U c.i;.K ;t/;S/
��..K; t C 2i C 1/;S/;

where c.i; .K; t/;S/ is defined by Equation (3), and

(7) B.�/..K; t/;S/D

C1X
iD�1

�..K;m.v/C 2i C 1/;S/:
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5 Proof of exactness

5.1 A is injective

Select a nonzero element � 2 CC.G/. There is a filtration F on T C
0

induced by
the grading gr.U�d / D 2d , and where by convention F.0/ D �1. Choose a pair
..K; t/;S/ such that

(a) F.�..K; t/;S// is maximal,
(b) t is minimal subject to condition (a).

We have

F.A.�/..K; t � 1/;S//D F
� C1X

iD�1

U c.i;.K ;t�1/;S/
��..K; t C 2i/;S/

�
:

By condition (a) and the remarks following Equation (5), the i D�1 term in the sum
has larger filtration grading than all the terms with i > �1; by condition (b), it has
larger filtration grading than all those with i < �1 as well. Therefore, the value of
F.A.�/..K; t�1/;S// simply reduces to F.�..K; t/;S/, and this is nonzero, since �
is. It follows that A.�/¤ 0, so A is injective.

5.2 B is surjective

Denote by .K;S/_ the Hom–dual to the pair .K;S/. Thus CC.G � v/ is freely
generated as an F –module by the maps U�m � .K;S/_ , m� 0. It is clear that

B.U�m
� ..K; t/;S/_/D U�m

� .K;S/_

for any .K;S/ and t �m.v/ .mod 2/. Hence B is surjective.

5.3 im A � ker B

We compute

B ıA.�/.K;S/D

C1X
iD�1

C1X
jD�1

U c.j;.K;m.v/C2iC1/;S/
��..K;m.v/C2iC2j C1/;S/

D

C1X
kD�1

C1X
jD�1

U c.j;.K;m.v/C2.k�j/C1/;S/
��..K;m.v/C2kC1/;S/:

Since S �V .G�v/, we have by Equation (4) that c.j ; .K;m.v/C2.k�j /C1/;S/D

j .j C 1/=2 for all k and j . For fixed k , the multiplier U j.jC1/=2 annihilates
�..K;m.v/C 2k C 1/;S/ for jj j � 0. Those which do not annihilate this term
cancel in pairs since j .j C1/=2 is symmetric in j and �1� j . Hence B ıA.�/D 0.
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5.4 ker B DD

We define D1 � CC.G/ to be the submodule freely generated over F by the mappings

U�m
� ..K; t/;S/_; v 2 S;

D2 � CC.G/ to be the submodule freely generated over F by

U�m
� Œ..K; t/;S/_C ..K; t C 2/;S/_�; v 62 S;

and D D D1˚D2 . It is easy to see that � 2 D if and only if in the expansion of �
with respect to the basis fU�m � ..K; t/;S/_g of CC.G/, there are an even number of
terms U�m � ..K; t C 2i/;S/_ as i varies and m, .K; t/ and v 62 S remain fixed. On
the other hand, ker B clearly fulfills this description as well. Hence ker B DD .

5.5 D � im A

Filter CC.G/ by letting C.m/ consist of those maps whose image lies in the m–th filtered
piece of T C

0
, and set D.m/

1
DD1\ C.m/;D.m/

2
DD2\ C.m/ , and D.m/ DD\ C.m/ .

We prove by induction on m that D.m/ � im A.

Fix a pair ..K; t/;S/ with v 62S , and consider the map ..K; tC1/;S/_2CC.GC1.v//.
Observe that in this case Equation (4) computes the value of c.i; .K; t/;S/. From
this it is clear that A...K; t C 1/;S/_/ vanishes on all pairs ..K0; t 0/;S 0/ not of the
form ..K; t C 2i/;S/, and for this pair it takes the value 1 if i D 0 or 1, and 0

otherwise. In other words, A...K; t C 1/;S/_/ D ..K; t/;S/_ C ..K; t C 2/;S/_ .
Hence D.0/

2
� im A.

Next, fix a pair ..K; t/;S/ with v 2 S , and consider the map ..K; t C 2i C 1/;S/_ 2

CC.GC1.v//. Once again, the image of this map under A will vanish on all pairs
not of the form ..K; t C 2j /;S/, and for a pair of this form it takes the value
U c.i�j ;.K ;tC2j/;S/ . This value vanishes unless c.i � j ; .K; t C 2j /;S/ D 0, and
we can determine when this occurs by way of Equation (5). First, observe that
r..K; t C 2j /;S/ D r.K;S/ C j (recall the definition just before Equation (4)).
Therefore, in working with the family of pairs ..K; t C 2j /;S/ as j varies, we may
assume that K is chosen so that r..K; t/;S/D 0. With this choice made, Equation (5)
implies that c.i � j ; .K; t C 2j /;S/D 0 if and only if (a) j D i � 0, (b) j D i C 1,
or (c) j D i C 2; i � �2. It follows that

A...K; tC2iC1/;S/_/D

8̂<̂
:
..K; t C 2i/;S/_C ..K; t C 2i C 2/;S/_ i � 0;

..K; t/;S/_ i D�1;

..K; t C 2i C 2/;S/_C ..K; t C 2i C 4/;S/_ i � �2:

Algebraic & Geometric Topology, Volume 13 (2013)



450 Joshua Evan Greene

By taking linear combinations of these terms, we see at once ..K; tC2i/;S/_ 2 im A

for all i . Hence D.0/
1
� im A, and so D.0/ � im A.

Now suppose that we have shown that D.m�1/ � im A for some m� 1, and choose
� 2 D.m/ � D.m�1/ . Then U � � 2 D.m�1/ � im A: say A. / D U � � . Then
A.U�1 � /D �C � for some � 2 C.0/ . Since im A�D by Sections 5.3 and 5.4, we
have A.U�1 � / 2 D , and so � D A.U�1 � /� � 2 D.0/ . On the other hand, we
have just seen that D.0/ � im A. Hence � DA.U�1 � /� � 2 im A, completing the
induction step. In conclusion, D � im A.

Collecting the results of the previous subsections, we conclude that the chain maps A

and B appearing in Proposition 4.1 provide the desired maps for the short exact
sequence in Theorem 3.1. The resulting exact triangle of lattice cohomology groups
follows directly.
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