
msp
Algebraic & Geometric Topology 13 (2013) 609–624

Proof of a stronger version of
the AJ Conjecture for torus knots

ANH T TRAN

For a knot K in S3 , the sl2 –colored Jones function JK .n/ is a sequence of Laurent
polynomials in the variable t that is known to satisfy non-trivial linear recurrence
relations. The operator corresponding to the minimal linear recurrence relation is
called the recurrence polynomial of K . The AJ Conjecture (see Garoufalidis [4])
states that when reducing t D �1 , the recurrence polynomial is essentially equal
to the A–polynomial of K . In this paper we consider a stronger version of the AJ
Conjecture, proposed by Sikora [14], and confirm it for all torus knots.

57N10; 57M25

1 Introduction

1.1 The AJ Conjecture

For a knot K in S3 , let JK .n/2ZŒt˙1� be the colored Jones polynomial of K colored
by the n–dimensional simple sl2 –representation (Jones [8], and Reshetikhin and Turaev
[13]), normalized so that for the unknot U ,

JU .n/D Œn� WD
t2n�t�2n

t2�t�2
:

The color n can be assumed to take negative integer values by setting JK .�n/ D

�JK .n/. In particular, JK .0/ D 0. It is known that JK .1/ D 1, and JK .2/ is the
ordinary Jones polynomial.

Define two operators L;M acting on the set of discrete functions f W Z!R WDCŒt˙1�

by
.Lf /.n/ WD f .nC 1/; .Mf /.n/ WD t2nf .n/:

It is easy to see that LM D t2ML. Besides, the inverse operators L�1;M�1 are
well-defined. One can consider L;M as elements of the quantum torus

T WDRhL˙1;M˙1
i=.LM � t2ML/;

which is not commutative, but almost commutative.
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Let
AK D fP 2 T j PJK D 0g;

which is a left-ideal of T , called the recurrence ideal of K . It was proved by Garo-
ufalidis and Lê in [5] that for every knot K , the recurrence ideal AK is non-zero. An
element in AK is called a recurrence relation for the colored Jones polynomials of K .

The ring T is not a principal left-ideal domain, ie, not every left-ideal of T is generated
by one element. By adding all inverses of polynomials in t;M to T , one gets a principal
left-ideal domain �T ; cf [4]. The ring �T can be formally defined as follows. Let R.M /

be the fractional field of the polynomial ring RŒM �. Let �T be the set of all Laurent
polynomials in the variable L with coefficients in R.M /,

�T D �X
j2Z

fj .M /Lj

ˇ̌̌̌
fj .M / 2R.M /; fj D 0 almost everywhere

�
;

and define the product in �T by f .M /Lk �g.M /Ll D f .M /g.t2kM /LkCl .

The left-ideal extension zAK WD
�T AK of AK in �T is then generated by a polynomial

˛K .t IM;L/D

dX
jD0

˛K ;j .t;M /Lj ;

where d is assumed to be minimal and all the coefficients ˛K ;j .t;M /2ZŒt˙1;M � are
assumed to be co-prime. That ˛K can be chosen to have integer coefficients follows
from the fact that JK .n/ 2 ZŒt˙1�. The polynomial ˛K is defined up to a polynomial
in ZŒt˙1;M �. Moreover, one can choose ˛K 2AK , ie, it is a recurrence relation for
the colored Jones polynomials. We will call ˛K the recurrence polynomial of K .

Let " be the map reducing tD�1. Garoufalidis [4] formulated the following conjecture
(see also Frohman, Gelca and Lofaro [3], and Gelca [6]).

Conjecture 1 (AJ Conjecture) For every knot K , ".˛K / is equal to the A–polyno-
mial, up to a polynomial depending on M only.

The A–polynomial of a knot was introduced by Cooper, Culler, Gillet, Long and Shalen
[1]; it describes the SL2.C/–character variety of the knot complement as viewed from
the boundary torus. Here in the definition of the A–polynomial, we also allow the
factor L� 1 coming from the abelian component of the character variety of the knot
group. Hence the A–polynomial in this paper is equal to L�1 times the A–polynomial
defined in [1].
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Proof of a stronger version of the AJ Conjecture for torus knots 611

The AJ Conjecture was verified for the trefoil and figure 8 knots by Garoufalidis [4],
and was partially checked for all torus knots by Hikami [7]. It was established for
some classes of two–bridge knots and pretzel knots, including all twist knots and
.�2; 3; 6n˙ 1/–pretzel knots, by Lê and the author [9; 10]. Here we provide a full
proof of the AJ Conjecture for all torus knots. Moreover, we show that a stronger
version of the conjecture, due to Sikora, holds true for all torus knots.

1.2 Main results

For a finitely generated group G , let �.G/ denote the SL2.C/–character variety of
G ; see eg Culler and Shalen [2], and Lubotzky and Magid [11]. For a manifold Y we
use �.Y / also to denote �.�1.Y //. Suppose G D Z2 , the free abelian group with 2
generators. Every pair of generators �; � will define an isomorphism between �.G/
and .C�/2=� , where .C�/2 is the set of non-zero complex pairs .M;L/ and � is the
involution �.M;L/ WD .M�1;L�1/, as follows: Every representation is conjugate
to an upper diagonal one, with M and L being the upper left entries of � and �,
respectively. The isomorphism does not change if one replaces .�; �/ by .��1; ��1/.

For an algebraic set V (over C ), let CŒV � denote the ring of regular functions on
V . For example, CŒ.C�/2=��D t� , the � –invariant subspace of t WDCŒM˙1;L˙1�,
where �.M kLl/ WDM�kL�l .

Let K be a knot in S3 and X D S3 nK its complement. The boundary of X is a
torus whose fundamental group is free abelian of rank two. An orientation of K will
define a unique pair of an oriented meridian � and an oriented longitude � such that
the linking number between the longitude and the knot is zero. The pair provides an
identification of �.@X / and .C�/2=� that actually does not depend on the orientation
of K .

The inclusion @X ,!X induces an algebra homomorphism

� W CŒ�.@X /�� t� �!CŒ�.X /�:

We will call the kernel p of � the A–ideal of K ; it is an ideal of t� . The A–ideal was
first introduced in [3]; it determines the A–polynomial of K . In fact pD .AK � t/

� ,
the � –invariant part of the ideal AK � t� t generated by the A–polynomial AK .

The involution � acts on the quantum torus T also by �.M kLl/DM�kL�l . Let
A�

K
be the � –invariant part of the recurrence ideal AK ; it is an ideal of T � . Sikora

[14] proposed the following conjecture.

Conjecture 2 Suppose K is a knot. Then
p
".A�

K
/D p.
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Here
p
".A�

K
/ denotes the radical of the ideal ".A�

K
/ in the ring t� D ".T � /.

It is easy to see that Conjecture 2 implies the AJ Conjecture. Conjecture 2 was verified
for the unknot and the trefoil knot by Sikora [14]. In the present paper we confirm it
for all torus knots.

Theorem 1 Conjecture 2 holds true for all torus knots.

1.3 Plan of the paper

We provide a full proof of the AJ Conjecture for all torus knots in Section 2 and prove
Theorem 1 in Section 2.

1.4 Acknowledgements

This paper was done when the author was a graduate student in the School of Mathe-
matics, Georgia Institute of Technology. The author would like to thank T T Q Lê for
his guidance, S Garoufalidis for helpful discussions, and the referee for suggestions.

2 Proof of the AJ Conjecture for torus knots

We will always assume that knots have framings 0.

Let T .a; b/ denote the .a; b/–torus knot. We consider the two cases, a; b > 2 and
aD 2, separately. Lemmas 2.1 and 2.5 below were first proved in [7] using formulas
for the colored Jones polynomials and the Alexander polynomial of torus knots given
in Morton [12]. We present direct proofs here.

2.1 The case a; b > 2

Lemma 2.1 One has

JT .a;b/.nC2/D t�4ab.nC1/JT .a;b/.n/Ct�2ab.nC1/ t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2
;

where �k WD t2k C t�2k .

Proof By [12], we have

(1) JT .a;b/.n/D t�ab.n2�1/

.n�1/=2X
jD�.n�1/=2

t4bj.ajC1/Œ2aj C 1�;
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Proof of a stronger version of the AJ Conjecture for torus knots 613

where Œk� WD .t2k � t�2k/=.t2� t�2/. Hence:

JT .a;b/.nC 2/

D t�ab..nC2/2�1/

.nC1/=2X
jD�.nC1/=2

t4bj.ajC1/Œ2aj C 1�

D t�ab..nC2/2�1/

.n�1/=2X
jD�.n�1/=2

t4bj.ajC1/Œ2aj C 1�C t�ab..nC2/2�1/

�
�
tb.nC1/.a.nC1/C2/Œa.nC 1/C 1�� tb.nC1/.a.nC1/�2/Œa.nC 1/� 1�

�
D t�4ab.nC1/JT .a;b/.n/C t�2ab.nC1/ t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

Lemma 2.2 The colored Jones function of T .a; b/ is annihilated by the operator
Fa;b D c3L3C c2L2C c1LC c0 where:

c3 WD t2
�
t2.aCb/M aCb

C t�2.aCb/M�.aCb/
�
�t�2

�
t2.a�b/M a�b

C t�2.a�b/M�.a�b/
�

c2 WD �t�2ab
�
t2
�
t4.aCb/M aCb

C t�4.aCb/M�.aCb/
�

Ct�2
�
t4.a�b/M a�b

C t�4.a�b/M�.a�b/
��

c1 WD �t�8abM�2abc3

c0 WD �t�4abM�2abc2

Proof It is easy to check that c3t�4ab.nC2/C c1 D c2t�4ab.nC1/C c0 D 0 and

c3

�
t2�.aCb/.nC2/� t�2�.a�b/.nC2/

�
C c2t2ab

�
t2�.aCb/.nC1/� t�2�.a�b/.nC1/

�
D 0:
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Hence, by Lemma 2.1, Fa;bJT .a;b/.n/ is equal to:

c3JT .a;b/.nC 3/C c2JT .a;b/.nC 2/C c1JT .a;b/.nC 1/C c0JT .a;b/.n/

D c3

�
t�4ab.nC2/JT .a;b/.nC 1/C t�2ab.nC2/ t2�.aCb/.nC2/� t�2�.a�b/.nC2/

t2� t�2

�
C c2

�
t�4ab.nC1/JT .a;b/.n/C t�2ab.nC1/ t

2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

�
C c1JT .a;b/.nC 1/C c0JT .a;b/.n/

D .c3t�4ab.nC2/
C c1/JT .a;b/.nC 1/C .c2t�4ab.nC1/

C c0/JT .a;b/.n/

C t�2ab.nC1/
�
c3

t2�.aCb/.nC2/� t�2�.a�b/.nC2/

t2� t�2

C c2t2ab t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

�
D 0

This proves Lemma 2.2.

Recall that ˛T .a;b/ is the recurrence polynomial of T .a; b/.

Proposition 2.3 For a; b > 2, one has ˛T .a;b/ D Fa;b .

Proof By Lemma 2.2 it suffices to show that if an operator P D P2L2CP1LCP0 ,
where the Pj are polynomials in CŒt˙1;M �, annihilates the colored Jones polynomials
of T .a; b/ then P D 0.

Indeed, suppose P JT .a;b/.n/D 0. Then, by Lemma 2.1:

0D P2JT .a;b/.nC 2/CP1JT .a;b/.nC 1/CP0JT .a;b/.n/

D P2

�
t�4ab.nC1/JT .a;b/.n/C t�2ab.nC1/ t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

�
CP1JT .a;b/.nC 1/CP0JT .a;b/.n/

D .t�4ab.nC1/P2CP0/JT .a;b/.n/CP1JT .a;b/.nC 1/

CP2t�2ab.nC1/ t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

Let P 0
2
D t�4ab.nC1/P2CP0 and

P 00 D P2t�2ab.nC1/ t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2
:
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Proof of a stronger version of the AJ Conjecture for torus knots 615

Then,

(2) P 02JT .a;b/.n/CP1JT .a;b/.nC 1/CP 00 D 0:

Note that P 0
2

and P 0
0

are polynomials in CŒt˙1;M �. We need the following lemma.

Lemma 2.4 The lowest degree in t of JT .a;b/.n/ is

ln D�abn2
C abC 1

2
.1� .�1/n�1/.a� 2/.b� 2/:

Proof From (1), it follows easily that ln D �abn2 C ab if n is odd, and ln D

.�abn2C ab/C .ab� 2b� 2aC 4/ if n is even.

Let us complete the proof of Proposition 2.3. Suppose P 0
2
;P1 6D 0. Let rn and sn be

the lowest degrees (in t ) of P 0
2

and P1 respectively. Note that, when n is large enough,
rn and sn are polynomials in n of degrees at most 1. Equation (2) then implies that
rnC ln D snC lnC1 , ie:

rn� sn D lnC1� ln D�ab.2nC 1/� .�1/n.a� 2/.b� 2/

This cannot happen since the LHS is a polynomial in n, when n is large enough, while
the RHS is not (since .a� 2/.b� 2/ > 0). Hence P 0

2
D P1 D P 0

0
D 0, which means

P D 0.

It is easy to see that ".˛T .a;b//DM�2ab.M a�M�a/.M b �M�b/AT .a;b/ where
AT .a;b/D .L�1/.L2M 2ab�1/ is the A–polynomial of T .a; b/ when a; b> 2. This
means the AJ Conjecture holds true for T .a; b/ when a; b > 2.

2.2 The case a D 2

Lemma 2.5 One has

JT .2;b/.nC 1/D�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�:

Proof By (1), we have

JT .2;b/.n/D t�2b.n2�1/

.n�1/=2X
jD�.n�1/=2

t4bj.2jC1/Œ4j C 1�:

Hence

JT .2;b/.nC 1/D t�2b..nC1/2�1/

n=2X
kD�n=2

t4bk.2kC1/Œ4kC 1�:
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Set k D�.j C 1
2
/. Then:

JT .2;b/.nC 1/

D t�2b..nC1/2�1/

�.nC1/=2X
jD.n�1/=2

t4bj.2jC1/Œ�.4j C 1/�

D t�2b..nC1/2�1/

�
�

.n�1/=2X
jD�.n�1/=2

t4bj.2jC1/Œ4j C 1�C t2bn.nC1/Œ2nC 1�

�
D�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�

This proves Lemma 2.5.

Lemma 2.6 The colored Jones function of T .2; b/ is annihilated by the operator
G2;b D d2L2C d1LC d0 where

d2 WD t2M 2
� t�2M�2;

d1 WD t�2b
�
t�4bM�2b.t2M 2

� t�2M�2/� .t6M 2
� t�6M�2/

�
;

d0 WD �t�4bM�2b.t6M 2
� t�6M�2/:

Proof From Lemma 2.5 we have

JT .2;b/.nC 1/D�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�;

JT .2;b/.nC 2/D t�8.nC1/bJT .2;b/.n/� t�6.nC1/b Œ2nC 1�C t�2.nC1/b Œ2nC 3�:

It is easy to check that

t�8.nC1/bd2� t�.4nC2/bd1C d0 D 0;

d2

�
�t�6.nC1/b Œ2nC 1�C t�2.nC1/b Œ2nC 3�

�
C d1t�2nb Œ2nC 1�D 0:

Hence:

G2;bJT .2;b/.n/

D d2JT .2;b/.nC 2/C d1JT .2;b/.nC 1/C d0JT .2;b/.n/

D d2

�
t�8.nC1/bJT .2;b/.n/� t�6.nC1/b Œ2nC 1�C t�2.nC1/b Œ2nC 3�

�
C d1

�
�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�

�
C d0JT .2;b/.n/

D
�
t�8.nC1/bd2� t�.4nC2/bd1C d0

�
JT .2;b/.n/

C d2

�
�t�6.nC1/b Œ2nC 1�C t�2.nC1/b Œ2nC 3�

�
C d1t�2nb Œ2nC 1�

D 0
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This proves Lemma 2.6.

Proposition 2.7 One has ˛T .2;b/ DG2;b .

Proof By Lemma 2.6, it suffices to show that if an operator P D P1LCP0 , where
the Pj are polynomials in CŒt˙1;M �, annihilates the colored Jones polynomials of
T .2; b/ then P D 0.

Indeed, suppose PJT .2;b/.n/D 0. Then:

0D P1JT .2;b/.nC 1/CP0JT .2;b/.n/

D P1

�
�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�

�
CP0JT .2;b/.n/

D
�
�t�.4nC2/bP1CP0

�
JT .2;b/.n/C t�2nb Œ2nC 1�P1

Let P 0
1
D �t�.4nC2/bP1CP0 and P 0

0
D t�2nb Œ2nC 1�P1 . Then P 0

1
;P 0

0
are poly-

nomials in CŒt˙1;M � and P 0
1
J.n/CP 0

0
D 0. This implies that P 0

1
D P 0

0
D 0 since

the lowest degree in t of JT .2;b/.n/ is �2bn2 C 2b , which is quadratic in n, by
Lemma 2.4. Hence P D 0.

It is easy to see that ".˛T .2;b// D M�2b.M 2 �M�2/AT .2;b/ where AT .2;b/ D

.L� 1/.LM 2bC 1/ is the A–polynomial of T .2; b/. This means the AJ Conjecture
holds true for T .2; b/.

3 Proof of Theorem 1

As in the previous section, we consider the two cases, a; b > 2 and aD 2, separately.

3.1 The case a; b > 2

We claim that:

Proposition 3.1 The colored Jones function of T .a; b/ is annihilated by the operator
PQ where:

P WD t�10ab.L3M 2ab
CL�3M�2ab/

�.t2.a�b/
C t2.b�a//t�4ab.L2M 2ab

CL�2M�2ab/C t2ab.LM 2ab
CL�1M�2ab/

�.t2ab
C t�2ab/.LCL�1/C .t2.a�b/

C t2.b�a//.t4ab
C t�4ab/

Q WD t�6ab.L3M 2ab
CL�3M�2ab/

�.t2.aCb/
Ct�2.aCb//q�ab.L2M 2ab

CL�2M�2ab/Ct�2ab.LM 2ab
CL�1M�2ab/

�.t2ab
C t�2ab/.LCL�1/C 2.t2.aCb/

C t�2.aCb//

Algebraic & Geometric Topology, Volume 13 (2013)
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Proof We first prove the following two lemmas.

Lemma 3.2 One has

QJT .a;b/.n/D t4ab�2.�aCb ��a�b/
t2abn�.a�b/.nC1/� t�2abn�.a�b/.n�1/

t2� t�2
:

Proof Let

g.n/ WD t�2abn t2�.aCb/n� t�2�.a�b/n

t2� t�2
:

Then, by Lemma 2.1, JT .a;b/.nC 2/D t�4ab.nC1/JT .a;b/.n/Cg.nC 1/. Hence:

QJT .a;b/.n/

D t�6ab
�
t4ab.nC3/JT .a;b/.nC 3/C t�4ab.n�3/JT .a;b/.n� 3/

�
� .t2.aCb/

C t�2.aCb//t�4ab
�
t4ab.nC2/JT .a;b/.nC 2/C t�4ab.n�2/JT .a;b/.n� 2/

�
C t�2ab

�
t4ab.nC1/JT .a;b/.nC 1/C t�4ab.n�1/JT .a;b/.n� 1/

�
� .t2ab

C t�2ab/
�
JT .a;b/.nC 1/CJT .a;b/.n� 1/

�
C 2.t2.aCb/

C t�2.aCb//JT .a;b/.n/

D t�6ab
�
t4ab

�
JT .a;b/.nC 1/CJT .a;b/.n� 1/

�
C t2ab.nC5/g.nC 2/� t�2ab.n�5/g.n� 2/

�
� .t2.aCb/

C t�2.aCb//t�4ab
�
2t4abJT .a;b/.n/

C t2ab.nC4/g.nC 1/� t�2ab.n�4/g.n� 1/
�

C t�2ab
�
t4ab

�
JT .a;b/.n� 1/CJT .a;b/.nC 1/

�
C
�
t2ab.nC3/

� t�2ab.n�3/
�
g.n/

�
� .t2ab

C t�2ab/
�
JT .a;b/.nC 1/CJT .a;b/.n� 1/

�
C 2.t2.aCb/

C t�2.aCb//JT .a;b/.n/

D t�6ab
�
t2ab.nC5/g.nC 2/� t�2ab.n�5/g.n� 2/

�
�
�
t2.aCb/

C t�2.aCb/
�
t�4ab

�
t2ab.nC4/g.nC 1/� t�2ab.n�4/g.n� 1/

�
C t�2ab

�
t2ab.nC3/

� t�2ab.n�3/
�
g.n/

Using the definition of g.n/, we get:

QJT .a;b/.n/D t4ab
�
t2abn t2�.aCb/.nC2/� t�2�.a�b/.nC2/

t2� t�2

�t�2abn t2�.aCb/.n�2/� t�2�.a�b/.n�2/

t2� t�2

�
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�.t2.aCb/
C t�2.aCb//t4ab

��
t2abn t2�.aCb/.nC1/� t�2�.a�b/.nC1/

t2� t�2

�t�2abn t2�.aCb/.n�1/� t�2�.a�b/.n�1/

t2� t�2

�
Ct4ab.t2abn

� t�2abn/
t2�.aCb/n� t�2�.a�b/n

t2� t�2

Now applying the equality �kCl C�k�l D �k�l , we then obtain

Q JT .a;b/.n/D t4ab�2.�aCb ��a�b/
t2abn�.a�b/.nC1/� t�2abn�.a�b/.n�1/

t2� t�2
:

This proves Lemma 3.2.

Let h.n/ WD t2abn�.a�b/.nC1/� t�2abn�.a�b/.n�1/ .

Lemma 3.3 The function h.n/ is annihilated by the operator P , ie, Ph.n/D 0.

Proof Let c D a� b . Then:

Ph.n/

D t�10ab
�
t4ab.nC3/h.nC 3/C t�4ab.n�3/h.n� 3/

�
� .t2.a�b/

C t2.b�a//t�4ab
�
t4ab.nC2/h.nC 2/C t�4ab.n�2/h.n� 2/

�
C t2ab

�
t4ab.nC1/h.nC 1/C t�4ab.n�1/h.n� 1/

�
� .t2ab

C t�2ab/
�
h.nC 1/C h.n� 1/

�
C .t2.a�b/

C t2.b�a//.t4ab
C t�4ab/h.n/

D
�
t2ab.3nC4/�c.nC4/� t2ab.n�2/�c.nC2/

C t�2ab.nC2/�c.n�2/� t�2ab.3n�4/�c.n�4/

�
��c

�
t2ab.3nC4/�c.nC3/� t2abn�c.nC1/C t�2abn�c.n�1/� t�2ab.3n�4/�c.n�3/

�
C
�
t2ab.3nC4/�c.nC2/� t2ab.nC2/�cnC t�2ab.n�2/�cn� t�2ab.3n�4/�c.n�2/

�
� .t2ab

C t�2ab/
�
t2ab.nC1/�c.nC2/� t�2ab.nC1/�cn

C t2ab.n�1/�cn� t�2ab.n�1/�c.n�2/

�
C�c.t

4ab
C t�4ab/

�
t2abn�c.nC1/� t�2abn�c.n�1/

�
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Note that �kCl C�k�l D �k�l . Hence:

Ph.n/D
�
�t2ab.n�2/�c.nC2/C t�2ab.nC2/�c.n�2/

�
��c

�
�t2abn�c.nC1/C t�2abn�c.n�1/

�
C
�
�t2ab.nC2/�cnC t�2ab.n�2/�cn

�
� .t2ab

C t�2ab/
�
t2ab.nC1/�c.nC2/� t�2ab.nC1/�cn

C t2ab.n�1/�cn� t�2ab.n�1/�c.n�2/

�
C�c.t

4ab
C t�4ab/

�
t2abn�c.nC1/� t�2abn�c.n�1/

�
D�.t4ab

C t�4ab
C 1/t2abn�c.nC2/C .t

4ab
C t�4ab

C 1/t�2abn�c.n�2/

� .t4ab
C t�4ab

C 1/.t2abn
� t�2abn/�cn

C�c.t
4ab
C t�4ab

C 1/
�
t2abn�c.nC1/� t�2abn�c.n�1/

�
D�.t4ab

C t�4ab
C 1/t2abn

�
�c.nC2/C�cn��c�c.nC1/

�
C .t4ab

C t�4ab
C 1/t�2abn

�
�c.n�2/C�cn��c�c.n�1/

�
D 0

This proves Lemma 3.3.

Proposition 3.1 follows directly from Lemmas 3.2 and 3.3.

3.2 The case a D 2

We claim that:

Proposition 3.4 The colored Jones function of T .2; b/ is annihilated by the operator

RD t�4b.L2M 2b
CL�2M�2b/C .t2b

C t�2b/.LCL�1/

�.t4
C t�4/t�2b.LM 2b

CL�1M�2b/C .M 2b
CM�2b/� 2.t4

C t�4/:

Proof From Lemma 2.5 we have

JT .2;b/.nC 1/D�t�.4nC2/bJT .2;b/.n/C t�2nb Œ2nC 1�;

JT .2;b/.nC 2/D t�8.nC1/bJT .2;b/.n/� t�6.nC1/b Œ2nC 1�C t�2.nC1/b Œ2nC 3�;

JT .2;b/.n� 1/D�t .4n�2/bJT .2;b/.n/C t2nb Œ2n� 1�;

JT .2;b/.n� 2/D t8.n�1/bJT .2;b/.n/� t6.n�1/b Œ2n� 1�C t2.n�1/b Œ2n� 3�:
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Hence

RJT .2;b/.n/D t�4b
�
t4.nC2/bJT .2;b/.nC 2/C t�4.n�2/bJT .2;b/.n� 2/

�
C .t2b

C t�2b/
�
JT .2;b/.nC 1/CJT .2;b/.n� 1/

�
� .t4

C t�4/t�2b
�
t4.nC1/bJT .2;b/.nC 1/C t�4.n�1/bJT .2;b/.n� 1/

�
C
�
.t4nb

C t�4nb/� 2.t C t�4/
�
JT .2;b/.n/

D t�4b
�
�t�2.n�1/b Œ2nC 1�C t2.nC3/b Œ2nC 3�

� t2.nC1/b Œ2n� 1�C t�2.n�3/b Œ2n� 3�
�

C .t2b
C t�2b/

�
t�2nb Œ2nC 1�C t2nb Œ2n� 1�

�
� .t4

C t�4/t�2b
�
t .2nC4/b Œ2nC 1�C t .�2nC4/b Œ2n� 1�

�
� .t C t�4/t2b

�
t2nb Œ2nC 1�C t�2nb Œ2n� 1�

�
D t2bt2nb

�
Œ2nC 3�C Œ2n� 1�� .t4

C t�4/Œ2nC 1�
�

C t2bt�2nb
�
Œ2n� 3�C Œ2nC 1�� .t4

C t�4/Œ2n� 1�
�

D 0;

since ŒkC l �C Œk � l �D .t2l C t�2l/Œk�.

3.3 Proof of Theorem 1

We first note that the A–ideal p, the kernel of � W t� �!CŒ�.X /�, is radical, ie,
p
pDp,

since the character ring CŒ�.X /� is reduced, ie, has nil-radical 0, by definition.

Lemma 3.5 Suppose ı.t;M;L/ 2 AK . Then there are polynomials g.t;M / 2

CŒt˙1;M � and  .t;M;L/ 2 T such that

(3) ı.t;M;L/D
1

g.t;M /
 .t;M;L/˛K .t;M;L/:

Moreover, g.t;M / and  .t;M;L/ can be chosen so that ".g/ 6D 0.

Proof By definition ˛K is a generator of zAK , the extension of AK in the principal
left-ideal domain �T . Since ı 2AK , it is divisible by ˛K in �T . Hence (3) follows.

We can assume that tC1 does not divide both g.t;M / and  .t;M;L/ simultaneously.
If ".g/D 0 then g is divisible by tC1, and hence  is not. But then from the equality
gı D ˛K , it follows that ˛K is divisible by t C 1, which is impossible, since all the
coefficients of powers of L in ˛K are supposed to be co-prime.
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Showing
p
".A�

K
/� p For torus knots, by Section 1, we have ".˛K /D f .M /AK ,

where f .M / 2 CŒM˙1�. For every ı 2 AK , by Lemma 3.5, there exist g.t;M / 2

CŒt˙1;M � and  2 T such that ı D 1
g.t;M /

 ˛K and ".g/ 6D 0. It implies that

(4) ". /D
1

".g.M //
". /".˛K /D

1

".g.M //
". /f .M /AK :

The A–polynomial of a torus knot does not contain any non-trivial factor depending
on M only. Since ". / 2 tDCŒL˙1;M˙1�, equation (4) implies that

h WD
1

".g.M //
". /f .M /

is an element of t. Hence ". / 2 AK � t, the ideal of t generated by AK . It follows
that ".AK /�AK � t and thus ".A�

K
/� .AK � t/

� D p. Hence
p
".A�

K
/�
p
pD p.

Showing p�
p
".A�

K
/ For a; b > 2, by Proposition 3.1 the colored Jones function of

T .a; b/ is annihilated by the operator PQ. Note that

".PQ/D .LCL�1
� 2/2.L2M 2ab

CL�2M�2ab
� 2/2

DL�2
�
L�1M�ab.L� 1/.L2M 2ab

� 1/
�4
:

If u 2 p then uD vA0
T .a;b/

, where

A0T .a;b/ WDL�1M�ab.L� 1/.L2M 2ab
� 1/DL�1M�abAT .a;b/

and v 2 CŒM˙1;L˙1�. It is easy to see that �.v/ D Lv , since �.u/ D u and
�.A0

T .a;b/
/DL�1A0

T .a;b/
. This implies that �.v2L/D �.v/2L�1 D v2L. We then

have
u4
D v4A

04
T .a;b/ D ".v

4L2PQ/ 2 ".A�K /;

hence u 2
p
".A�

K
/.

For aD 2, by Proposition 3.4 the colored Jones function of T .2; b/ is annihilated by
the operator R. Note that �.R/DR and

".R/D .LCL�1
�2/.LM 2b

CL�1M�2b
C2/D

�
L�1M�b.L�1/.LM 2b

C1/
�2
:

If u 2 p then uD vA0
T .2;b/

, where

A0T .2;b/ WDL�1M�b.L� 1/.LM 2b
C 1/DL�1M�bAT .2;b/

and v2CŒM˙1;L˙1�. It is easy to see that �.v/D�v and hence �.v2/D�.v/�.v/D

v2 . We then have
u2
D v2A

02
T .2;b/ D ".v

2R/ 2 ".A�K /;
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hence u 2
p
".A�

K
/.

In both cases p�
p
".A�

K
/. Hence

p
".A�

K
/D p for all torus knots.
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