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Amenable category of three–manifolds

JOSÉ CARLOS GÓMEZ-LARRAÑAGA

FRANCISCO GONZÁLEZ-ACUÑA
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A closed topological n–manifold M n is of ame–category � k if it can be covered
by k open subsets such that for each path-component W of the subsets the image
of its fundamental group �1.W /! �1.M

n/ is an amenable group. catame.M
n/ is

the smallest number k such that M n admits such a covering. For nD 3 , M 3 has
ame–category � 4 . We characterize all closed 3–manifolds of ame–category 1 , 2

and 3 .

55M30, 57M27, 57N10; 57N16

1 Introduction

Categorical properties of a manifold M are those that deal with covers of M by open
sets with certain properties. For example, the classical Lusternik–Schnirelmann category
cat.M / of M is the smallest number k such that there is an open cover W1; : : : ;Wk

of M with each Wi contractible in M . An extensive survey for this category can be
found in Cornea, Lupton, Oprea and Tanré [3]. M Clapp and D Puppe [2] proposed
the following generalization cat.M /: Let K be a non-empty class of spaces. A subset
W of M is K–contractible (in M ) if the inclusion �W W !M factors homotopically
through some K 2 K , ie, there exist maps f W W ! K , ˛W K!M , such that � is
homotopic to ˛ � f . (W and K need not be connected.) The K–category catK.M /

of M is the smallest number of open K–contractible subsets of M that cover M . If
no such finite cover exists, catK.M / is infinite. When the family K contains just one
space K , one writes catK .M / instead of catK.M /. In particular, if K is a single point,
then catK .M /D cat.M /. For closed n–manifolds, 1� catK.M /� cat.M /� nC 1.

Note that for each path-component W 0 of a K–contractible subset W of M , the
image of its fundamental group ��.�1.W

0;�/� �1.M // is a quotient of a subgroup
of �1.K; f .�//, for every basepoint � 2W 0 . This suggests considering coverings of
M by open sets whose components satisfy certain group properties. For example, if
�1.K

0;�//D 1 for each path-component K0 of K , one may ask more generally: what
is the smallest number k of open sets Wi that are needed to cover M and such that
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for each component of Wi the image of its fundamental group in �1.M // is trivial?
This number is the �1 –category of M and has been calculated for closed 3–manifolds
M 3 in [7] (Corollary 4.2).

When we considered the case of S1 –category [8; 9], ie, when K D fS1g, J Porti
pointed out a connection to the Gromov Vanishing Theorem [11], which states that if a
closed orientable n–manifold M admits an open cover by n amenable sets, then the
simplicial volume jM j of M vanishes. Here a set W �M is amenable if for each
path-component W 0 of W the image of its fundamental group �1.W

0/! �1.M
n/

is an amenable group. By Perelman’s proof of the Geometrization Theorem for 3–
manifolds, see eg Bessières, Besson, Maillot, Boileau and Porti [1], we know that a
connected closed orientable 3–manifold M 3 is a connected sum of graph manifolds if
and only if jM 3j D 0. Here a graph manifold is a union of Seifert fiber spaces along
tori components in their boundaries. A good exposition of this is in chapter 13 of [1].

Motivated by the work of Gromov (see also Ivanov [13]) we define the ame–category
catame M n to be the smallest number of open amenable sets needed to cover M n . For
M n compact one has 1 � catame.M

n/ � nC 1. By Gromov and Perelman, if M is
a closed orientable 3–manifold with ame–category � 3 then M is a connected sum
of graph manifolds. We show the converse in Theorem 2. This answers a question of
M Boileau that is to find a characterization of graph manifolds in terms of category
concepts.

In this paper we study the ame–category of all compact 3–manifolds M . It turns out
(Proposition 2) that the fundamental group of a compact 3–manifold is amenable if
and only if it does not contain a free group of rank 2, which happens if and only if
it is virtually solvable. These manifolds are classified in Proposition 3 (Section 4).
As a preparation for this proposition we list in Section 3 the compact 3–manifolds
with solvable fundamental group and with boundary containing projective planes. In
Section 5 we classify the 3–manifolds with catame D 2 (Theorem 1). It is perhaps
interesting to note that the only closed prime 3–manifolds with ame–category 2 are
non-orientable 3–manifolds that contain projective planes such the vertices of the
P2 –graph of M are the manifolds in the examples of section 3. Finally, in Section 6,
we classify all closed non-orientable 3–manifolds of ame–category � 3 (Theorems 2
and 3).

2 Basic properties and catame for 2–manifolds

A group G is solvable if Gn D 1 for some n, where G0 DG and GiC1 D ŒGi ;Gi �,
.i D 0; : : : ; n� 1/.
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G is virtually solvable if it contains a solvable subgroup of finite index.

G is amenable if it a has finitely additive, left-invariant probability measure �, ie,
�.gS/ D �.S/ for all subsets S � G , g 2 G , �.A[B/ D �.A/C �.B/ for all
disjoint subsets A;B �G and �.G/D 1.

Let us say that a group G is hunfree (“hereditarily unfree”) if G does not contain the
free group F2 of rank 2 as a subgroup.

(Virtually) solvable groups are amenable and amenable groups are hunfree. Subgroups
and quotient groups of solvable, resp. amenable, resp. hunfree groups are solvable,
resp. amenable, resp. hunfree. Extensions of amenable groups by amenable groups are
amenable; virtually amenable groups are amenable.

Definition 1 Let M be a manifold. A subset W of M is amenable (in M ) if, for
every basepoint � 2W , the image ��.�1.W;�/� �1.M;�/ is an amenable group.

Note that a subset of an amenable set is amenable.

Definition 2 catame.M / is the smallest number of open amenable subsets of M that
cover M .

For any compact n–manifold we have 1� catame.M /� nC 1.

For the case that catame M n� 2 we first observe that we may choose compact amenable
submanifolds that intersect along their boundaries:

Lemma 1 Let M be a closed n–manifold. Then catame.M / � 2 if and only if
there are compact amenable n–submanifolds Wi of M so that M DW1 [W2 and
W1\W2 D @W1 D @W2 .

Proof If catame.M / � 2 there are open amenable subsets U0 and U1 of M whose
union is M . By Lemma 1 of [8], there exist compact n–submanifolds W0 , W1 such
that W0 [W1 D M n , W0 \W1 D @W0 D @W1 and Wi � Ui .i D 0; 1/. Since
subgroups of amenable groups are amenable, Wi is amenable.

First we use this lemma to calculate the amenable category for compact 2–manifolds.
Denote by �.M / the Euler characteristic of M .

Proposition 1 Let M 2 be a compact 2–manifold. Then

catame M 2
D

8<:
1 if �.M 2/� 0,
2 if @M ¤∅ and �.M 2/ < 0,
3 otherwise.
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Proof If M 2 is not a disk, an annulus, a Möbius band, S2 , P2 , a torus, or a Klein
bottle, then �1.M

2/ is not hunfree, so the manifolds with �.M 2/ � 0 are the only
2–manifolds with amenable fundamental group.

If @M 2¤∅ then M 2 can be decomposed into two disks and therefore catame M 2� 2.

We show that if M 2 is closed with catame M 2 � 2, then �.M 2/ � 0. We write
M D W1 [W2 and W1 \W2 D @W1 D @W2 as in Lemma 1 and assume that the
number c of components of @W1 D @W2 D W1 \W2 is minimal. If c D 0 then
W2D∅, say, and M is amenable (case 1). So assume c ¤ 0. If a simple closed curve
of W1 \W2 is null-homotopic in M 2 , it bounds a disk in M 2 and we let D be an
innermost such disk (ie, int.D/\W1\W2 D∅). Then D is equal to a component of
W2 , say, and we obtain a new decomposition M DW 0

1
[W 0

2
, W 0

1
\W 0

2
D @W 0

1
D @W 0

2
,

where W 0
1
DW1[D and W 0

2
DW2�D are amenable and the number of components

of W 0
1
\W 0

2
is less than c , a contradiction. So each component of Wi is �1 –injective,

ie, its fundamental group is amenable, and it must be an annulus or Möbius band. It
follows that �.M 2/� 0.

For 3–manifolds we observe that the amenable category of a connected sum is bounded
by the highest amenable category of the factors:

Lemma 2 Let M DM1 # M2 be a connected sum of 3–manifolds.

If catame.Mi/� ki for i D 1; 2 and ki � 2, then catame.M /� max fk1; k2g.

Proof There are 3–balls Bi � Mi so that M D .M1 � int B1/ [ .M2 � int B2/

and .M1 � int B1/ \ .M2 � int B2/ D @B1 D @B2 . Deleting a ball from an open
amenable contractible subset does not change amenability, so we may assume Mi D

Wi1[� � �[Wiki
is an amenable cover such that Bi �Wi1 , Bi\Wij D∅ for j ¤ 1 and

B1\W 12D∅. Note that Wij � int Bi is amenable in Mi� int Bi and therefore in M .
Let N be an open product neighborhood of @B1 in W11� int B1 with N \W12 D∅.
Assume that k1 � k2 . Then M DW1[ � � � [Wk2

, where W1 D .W11�B1/[W22 ,
W2 DW12[ .W21�B2/[N , Wj DW1j [W2j for 3� j � k1 and Wj DW2j for
k1 < j � k2 are amenable in M .

Corollary 1 Let M be a closed 3–manifold with prime decomposition

M DM1 # M2 # � � � # Mm:

Then for k � 2, catame.M /� k if and only if catame.Mi/� k , for i D 1; : : : ;m.
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Proof If catame.Mi/� 2 for each i , then by Lemma 2, catame.M /� 2.

Conversely, suppose fW1; : : : ;Wkg is an amenable open cover of

M D .M1� int B1/[ � � � [ .Mm� int Bm/:

Then Wj\Mi is an amenable subset of M , and since �1.Mi� int Bi ;�/!�1.M;�/

is injective, it follows that Wj \Mi is amenable in Mi (for 1 � i �m; 1 � j � k ).
Hence .W1\Mi/[ � � � [ .Wk \Mi/ is an amenable cover of Mi .

We use the following terminology: A closed manifold is a compact manifold without
boundary. We also assume that a closed manifold is connected unless stated otherwise.

The manifold that is obtained from a manifold M by filling in all boundary spheres
with 3–balls is denoted by yM .

T z�I , K z�I , S1 z�D2 , S1 z�S2 denote, respectively, an I –bundle over the torus, an
I –bundle over the Klein bottle, a D2 –bundle over S1 , an S2 –bundle over S1 . The
bundles may be trivial (ie, product bundles) or non-trivial.

By a Seifert manifold we mean a compact 3–manifold (orientable or not, closed or with
boundary) that is decomposed into disjoint simple closed curves, the fibers, such that
each fiber has a neighborhood that forms a fibered solid torus in the sense of Seifert
[20]. The fibering of such a solid torus is obtained from the mapping torus of a rotation
of a disk by an angle of 2�ˇ=˛ , for some coprime ˛ > 0, ˇ . If ˛ > 1, the middle fiber
is an exceptional fiber of multiplicity ˛ . The orbifold Euler characteristic of a Seifert
manifold is �.S/�

Pk
iD1.1� 1=˛i/, where �.S/ is the usual Euler characteristic of

the orbit surface S and the ˛i are the multiplicities of the exceptional fibers.

A graph manifold is a union of Seifert manifolds along tori or Klein bottle components
in their boundaries.

3 Six 3–manifolds with solvable fundamental groups

We describe some well-known 3–manifolds containing projective planes. In the
examples below, M is a compact orientable 3–manifold that admits an orientation-
reversing involution � W M !M with zero-dimensional fixed point set and m> 0 fixed
points. Choose invariant 3–ball neighborhoods C1; : : : ;Cm of the fixed points and let
M� DM � .C1[ � � � [Cm/=� be the orbit manifold. The boundary of M� contains
m projective planes and �1.M�/ is a semi-direct product of Z2 with �1.M /.
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Example 1 The geminus M D D2�S1 . There is only one (up to conjugates)
orientation-reversing involution � with non-empty zero-dimensional fixed point set
(see Luft and Sjerve [16, Corollary 3.4]). �.x; z/D .�x;xz/ (where x 2D2 ), mD 2.
The geminus is M� D .P

2�I/ #b .P
2�I/, the disk sum of two copies of .P2�I/.

The boundary of the geminus consists of 2 projective planes and a Klein bottle.

Example 2 The quadripus M DS1�S1�I . There is only one orientation-reversing
involution � with non-empty zero-dimensional fixed point set (see [16], Kim and
Sanderson [14]). �.z1; z2; t/D . xz1; xz2; 1� t/, mD 4. The orbit manifold M� is the
quadripus; its boundary consists of 4 projective planes and one incompressible torus.

Example 3 The dipus M D .K z� I/o D S1�S1 � Œ0; 1�=.z1; z2; 1/D .�z1; xz2; 1/,
the orientable twisted I –bundle over the Klein bottle K with boundary the torus
T D S1�S1 � f0g. There is only one orientation-reversing involution � with non-
empty zero-dimensional fixed point set on M , given by �Œz1; z2; t � D Œ� xz1;�z2; t �

(see [16, Corollary 4.8]), mD 2. The orbit manifold M� is the dipus; its boundary
consists of 2 projective planes and an incompressible Klein bottle.

The dipus D is also obtained from the geminus P D .P2�I/#b .P
2�I/ and the solid

Klein bottle m0�I (where m0 is the Möbius band) by gluing a nonseparating annulus
A1 in the Klein bottle boundary of P to the incompressible annulus A2 D @m0�I

[16, page 333].

Example 4 The octopod and tetrapod M is an orientable torus bundle over S1 .
There are only two torus bundles over S1 that admit orientation-reversing involutions
� with non-empty zero-dimensional fixed point set, and each admits only one such
involution [14], [16].

(i) The octopod M D S1�S1�S1 , �.z1; z2; z3/ D . xz1; xz2; xz3/, m D 8. The orbit
manifold M� is the octopod; its boundary consists of 8 projective planes.

Any self-homeomorphism of the torus boundary T0 of the quadripus Q (Example 2)
extends to a homeomorphism of Q. The octopod may also be viewed as Q[T0

Q,
the union of two copies of Q along the torus boundary.

(ii) The tetrapod M D S1�S1�Œ�1; 1�=.z1; z2; 1/ � . xz1; xz2;�1/, �Œz1; z2; t � D

Œ� xz1; xz2;�t � (see [14, page 106]), mD 4. The orbit manifold M� is the tetrapod; its
boundary consists of 4 projective planes.

M can also be described as the double of .K z� I/o : The torus in

S1
�S1

� I=.z1; z2; 0/� . xz1; xz2; 1/
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that is the union of the two annuli f˙ig � S1 � Œ0; 1� cuts M into two copies of
.K z� I/o . With this description the tetrapod is the union of two copies of the dipus
along the Klein bottle boundary.

The tetrapod may also be viewed as Q[T0
T z� I (where T z� I is the non-orientable

twisted I –bundle) and as Q[T0
K z� I .

Example 5 The bipod M D ..K z� I/o/ [' ..K z� I/o/
0 , the twisted double of

.K z� I/o , where
'W S1

�S1
� f0g ! .S1

�S1
� f0g/0

is '.z1; z2; 0/ D .z2; z1; 0/
0 . This “Hantzsche–Wendt manifold” is the only twisted

double of .K z� I/o , besides the double in (4)(ii), that admits an orientation-reversing
involution � with non-empty zero-dimensional fixed point set [16, Corollary 6.6], given
by �Œz1; z2; t �D Œ�xz1;�z2; t �, �Œz1; z2; t �

0D Œ�z1;�xz2; t �
0 , mD 2. The orbit manifold

M� is the bipod; its boundary consists of 2 projective planes.

The bipod B may also be viewed as D[.K z�I/, where K z�I is the non-orientable I –
bundle over the Klein bottle K and D is the dipus from Example 3, with D\.K z�I/D

@K D D @.K z� I/.

Two projective planes P1;P2 in a closed prime 3–manifold M are pseudo-parallel if
they cobound a submanifold homotopy equivalent to P2�I�M . By Perelman, pseudo-
parallel is the same as parallel, ie, P1;P2 cobound a submanifold homeomorphic to
P2 � I �M .

Remark 1 Let M� be a geminus, quadripus, dipus, bipod, tetrapod, or octopod. If P0

is a projective plane in int.M�/, then P0 is parallel to a boundary component of M� .

To see this, let pW M � .C1[ � � � [Cm/ ! M� be the 2–sheeted covering and let
S0 D p�1.P0/. Since M is irreducible, the 2–sphere S0 bounds a punctured ball
B0 in M � .C1[ � � � [Cm/ (where @B0 consists of S0 and some of the 2–spheres
@Ci ). Then pW B0! p.B0/ is a 2–sheeted covering. Hence �1.p.B0//DZ2 and by
Epstein [4] and Perelman’s proof of the Poincaré Conjecture, p.B0/ is homeomorphic
to P2�I �M� , where P2�0D P0 and P2�1D p.@Ci/, for some i .

4 Hunfree 3–manifolds

In this section we obtain a complete list of all compact 3–manifolds whose fundamental
groups do not contain F2 and show that these are precisely the compact 3–manifolds
whose fundamental groups are virtually solvable.
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Virtually solvable groups are amenable and amenable groups are hunfree. First we show
that these three classes of groups agree for compact 3–manifold groups, by showing:

Proposition 2 If the fundamental group of a compact 3–manifold N is hunfree, then
it is virtually solvable. In fact, if N is not covered by the dodecahedral manifold and
�1.N / is hunfree, then �1.N / is solvable.

Proof The manifold that is obtained from a manifold W by filling in all boundary
spheres with 3–balls is denoted by �W or W y. For a compact 3–manifold N we
denote by zN its minimal orientable cover (ie, if N is orientable, zN D N ; if N is
non-orientable, then zN is the 2–sheeted orientable cover of N ).

We start by applying Theorem 2.9 in Evans and Jaco’s paper [5]:

Theorem [5] Let N be a compact 3–manifold. If zNy is a closed 3–manifold with
�2. zNy/D 0, assume that zNy is virtually Haken. Then if �1.N / is hunfree, �1.N /

is polycyclic.

By Theorem 5.2 of Evans and Moser [6], �1.N / is polycyclic if and only if �1.N / is
solvable.

So now consider the remaining case where zNy is a closed 3–manifold with �2. zNy/D0,
but zNy is not virtually Haken, hence orientable. Perelman’s Geometrization Theorem
implies that if zNy is not virtually Haken with �2. zNy/D 0, then zNy is hyperbolic or
spherical (see eg [1, Theorem 1.1.6]). By the Tits alternative for finitely generated linear
groups [22], closed hyperbolic 3–manifold groups are not hunfree. Now if �1.N / is
hunfree, then so is �1. zNy/, and it follows that zNy is spherical and �1.N / is finite,
hence virtually solvable.

In fact it follows from Theorem 3.1 of [6] that in the latter case �1.N / is solvable with
the exception of those for which N is covered by the dodecahedral manifold, which
are the groups SL.2; 5/�Zm , with gcd.m; 30/D 1.

The next proposition lists all compact 3–manifolds with hunfree (or amenable or
virtually solvable) fundamental groups. The manifold .K z�I/0 that appears in case (3)
is the unique orientable non-trivial I –bundle over K . A twisted double of .K z� I/0 is
a closed 3–manifold obtained by gluing two copies of .K z� I/0 along their boundary
components.

Proposition 3 Let W be a compact connected 3–manifold. Then �1.W / does not
contain F2 if and only if �W is one of the following manifolds:
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(1) A closed Seifert manifold with non-negative orbifold Euler characteristic

(2) A torus bundle over S1

(3) A twisted double of .K z� I/0

(4) T z� I , K z� I , S1 z�D2

(5) The quadripus, dipus, or geminus

(6) The octopod, tetrapod, bipod, P2 � I , .P2 � I/ # P3 , or .P2 � I/ # .P2 � I/

Proof Let M D �W . Note that �1.W / D �1.M / and suppose �1.M / does not
contain F2 .

If M is covered by the dodecahedral manifold then M belongs to case (1) of the
proposition. Therefore by Proposition 2 we may assume that �1.M / is solvable.

Case 1 �2.M /D 0

If M is sufficiently large, then by Theorems 4.2 and 4.5 of [6], M is as in cases (1),
(2), (3), (4) of the proposition.

If M is not sufficiently large (and therefore orientable), Perelman’s Geometrization
Theorem implies that M is hyperbolic or Seifert and, as before, the Tits alternative
shows that M is Seifert. By Theorem 6.4 of Evans and Moser [6], M is as in case
(1) of the proposition. (Note that Klein bottle bundles over S1 and twisted doubles of
non-orientable I –bundles over the Klein bottle belong to case (1) of the proposition).

Case 2 �2.M /¤ 0

If there is an essential 2–sphere S �M then �1.M / D Z � �1.M1/ (if S is non-
separating) or �1.M /D �1.M1/��1.M2/ is a non-trivial free product (if S is sepa-
rating). Since �1.M / does not contain F2 , we obtain in the first case that �1.M /DZ
and in the second case that �1.M /D Z2 �Z2 . In the first case M D S1 z�S2 (case
(1) of the proposition). In the second case, by Kneser’s Conjecture (proved by Stallings
[21]) M �M1 #M2 , where �1.Mi/ŠZ2 , and it follows that M � .P2�I/#.P2�I/

or .P2�I/ # P3 (case (6) of the proposition), or P3 # P3 (case (1) of the proposition).

Thus assume there is no essential 2–sphere S �M , ie, M is prime. By the Projective
Plane Theorem of Epstein, there is a 2–sided P2 �M .

If P2 does not separate M , then the orientable double cover �M D S1 z� S2 # M1 .
Since �1. �M / does not contain F2 , M1 is a punctured S3 and �1.M / is an extension
of Z by Z2 . Hence �1.M / Š Z�Z2 or Z2 �Z2 . In the first case M D P2�S1

(case (1) of the proposition) and the second case does not occur by Kneser’s Conjecture
and since M is prime.
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If P2�M separates M but is not boundary parallel, then

�1.M /D �1.M1/�Z2
�1.M2/;

a free product with amalgamation over Z2 . Now �.Mi/ is not finite, otherwise
Mi D P2�I and P2 would be boundary parallel. Then �1

�M D �1. �M1/��1. zM2/

would be a non-trivial free product. Since �1. �M / is hunfree, this case can not happen.

So assume that all 2–sided P2 ’s in M are boundary parallel. It follows that all essential
2–spheres in �M are boundary parallel and �2. �My/D 0. Hence �My is as in case 1,
ie, as in cases (1)–(4) of the proposition. We also assume that �1.M / is infinite, since
otherwise M D P2�I (case (5) of the proposition).

Extending the covering translation � W �M ! �M to an orientation-reversing involution
� W �My! �My (with isolated fixed points corresponding to the lifts of the projective
planes) we obtain M from �My=� by removing neighbourhoods of the fixed points. We
now consider all possible orientation-reversing involutions � of �My with non-empty
finite fixed point set in cases (1)–(4) of the proposition.

(1) If �My is a closed Seifert manifold, then by Theorems 8.2 and 8.5 of Neumann
and Raymond [19] �My fibers over S1 . Since �My is orientable, �1. �My/ contains no
F2 , and �2. �My/D 0, the fiber is a torus. So �My is as in the next case:

(2) If �My is an orientable torus bundle over S1 , then by Example 4, M is the octopod
or the tetrapod.

(3) If �My is a twisted double of .K z� I/o , then by Example 5, M is the bipod.

(4) If �My D T � I , then by Example 2, M is the quadripus.

If �My D .K z� I/o , then by Example 3, M is the dipus.

If �My D S1 z�D2 , then by Example 1, M D .P2 � I/ #b .P
2 � I/.

Conversely, all fundamental groups of the manifolds in the proposition are virtually
solvable, hence amenable and hunfree:

The groups of the manifolds in cases (1)–(4) are solvable with the exception of those
covered by the dodecahedral manifold, which are the finite groups SL.2; 5/�Zm , with
gcd.m; 30/D 1 [6, Theorem 3.1]. All the remaining fundamental groups are solvable:
the groups Z2�Z2 , Z2 in cases (5) and (6) are solvable, the fundamental groups
of the quadripus and dipus are extensions of the solvable fundamental groups of the
torus and Klein bottle by Z2 , the fundamental groups of the octopod and tetrapod are
extensions of the solvable fundamental groups of torus bundles over S1 by Z2 and
the fundamental group of the bipod are extensions of the solvable fundamental group
of a twisted double of .K z� I/0 by Z2 .
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Corollary 2 Let M be a closed 3–manifold. Then catame.M /D 1 if and only if M

is one of the following:
(1) A closed Seifert manifold with non-negative orbifold Euler characteristic
(2) A torus bundle over S1

(3) A twisted double of .K z� I/0

For future use we need the following two corollaries.

Corollary 3 Let W be a compact connected 3–manifold such that �1.W / does not
contain F2 . If G is a torus or a Klein bottle in @W with inclusion �W G!W , then
j�1.W / W ��.�1.G//j � 2.

Proof W is as in cases (4) or (5) of Proposition 3. If �W DG�I , .P2�I/#b .P
2�I/

or S1 z�D2 , then j�1.W / W i�.�1.G//j D 1. If �W is a nontrivial I –bundle then it is
a mapping cylinder of a 2–fold covering and so j�1.W / W ��.�1.G//j D 2.

If �W is the quadripus or dipus, let �W �W ! �W be the orientable 2–fold covering.
For the quadripus, �W is a punctured T�I . So for a torus component T of @ �W the
inclusion induced homomorphism j�W �1.T /!�1. �W / is an isomorphism and � maps
T homeomorphically onto G . Hence j�1.W / W ���1.G/jD j�1. �W / W��j��1.T /jD 2.

If �W is the dipus, G is a Klein bottle and in the commutative diagram of injections

�1.�
�1.G// �1. �W /

�1.G/ �1. �W /

-

? ?
-

with vertical monomorphisms induced by � and horizontal monomorphisms induced
by inclusions, the upper and vertical monomorphism have images of index 2. Therefore
image(�� ) has index 2.

Corollary 4 Suppose W DW1[W2 such that W1\W2 D @W1\ @W2 is a torus or
a Klein bottle. If, for i D 1; 2, Wi is a compact connected 3–manifold and �1.Wi/

does not contain F2 , then �1.W / is solvable.

Proof Let G DW1\W2 . Then �1.W /D I.W1/�I.G/ I.W2/ is the free product of
I.W1/ and I.W2/ amalgamated along I.G/, where I.X / denotes the image of �1.X /

in �1.W / under the inclusion-induced homomorphism �1.X /! �1.W /.

By Corollary 3 the index of I.G/ in �1.Wi/ is � 2, hence I.G/ is normal in I.W / and
�1.W /=I.G/ is Z2 �Z2 , Z2 , or 1. Since I.G/ is solvable, it follows that �1.W / is
solvable.
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5 catame.M
3/ � 2

In this section we classify the closed 3–manifolds of amenable category 2. The main
result is the following:

Theorem 1 A closed 3–manifold has amenable category � 2 if and only if there is
a disjoint collection of embedded 2–spheres and projective planes that splits M into
submanifolds with amenable groups. Moreover, after filling all the boundary 2–spheres
with balls, each component is closed, a bipod, a tetrapod or an octopod.

Recall that two projective planes P1;P2 in a 3–manifold M are parallel if they
cobound a submanifold homeomorphic to P2�I �M . By [18] there is a (possibly
empty) maximal disjoint collection P of 2–sided projective planes in M , unique up to
isotopy, such that no two projective planes of P are parallel in M and every projective
plane in M �N.P/ is parallel (in M ) to a component of P . We call such a system a
complete system P of projective planes of M . By Remark 1 of Section 3, if M 0 is a
bipod, a tetrapod, or an octopod, such a complete system is formed by the boundary
components of M 0 .

Corollary 5 A closed prime 3–manifold M has amenable category 2 if and only if
M is non-orientable and every component of the exterior of the complete system P of
projective planes in M is a bipod, tetrapod, or octopod.

In particular, there are no closed Seifert fiber spaces or graph-manifolds of amenable
category 2. This is because a Seifert fiber space M that contains a 2–sided projective
plane is homeomorphic to P2�S1 , which is of amenable category 1.

For the proof of Theorem 1 note that the “if” part is clear; M DW1[W2 , where W1

is a regular neighborhood of the collection of the 2–spheres and projective planes, and
W2 DM �W1 .

For the “only if” part suppose M is a closed 3–manifold with catame.M / � 2. We
first observe that there is a (not necessarily connected) 2–sided surface F in M such
that F and M �N.F / are amenable.

To see this, apply Lemma 1 to write M DW1[W2 , where Wi is a compact amenable
3–submanifold and so that W1 \W2 D @W1 D @W2 . In particular, F WD W1 \W2

is a 2–sided closed (pl)–surface in M and a regular neighborhood N.F / in M is
homeomorphic to a product F�I . Note that Wi and F need not be connected. For each
component F 0 of F , im.�1.F

0/! �1.M // is contained in im.�1.W
0

i /! �1.M //,
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where W 0i is a component of Wi , and it follows that F is amenable. Furthermore the
exterior M �N.F / of F is amenable.

Our goal is to show that we can find such an F such that every component of F is a
2–sphere or projective plane.

Lemma 3 Let F be a 2–sided surface in the closed 3–manifold M such that F and
M �N.F / are amenable. If F is compressible and if F1 is the surface obtained from
F after surgery on a compressing disk, then F1 and M �N.F1/ are amenable.

Proof Suppose D is a compressing disk for a component F 0 of F . Let D � I be
a regular neighborhood such that .D � I/\F D @D � I and @D � 0 is an essential
curve in F 0 . For the component F 0

1
of F1 D .F � @D � I/[ .D � @I/ that contains

D � f0g or D � f1g, im.�1.F
0
1
/! �1.M // is a subgroup of im.�1.F

0/! �1.M //.
Since F 0 is amenable, so is F1 .

If a component M 0
1

of M �N.F1/ is different from a component of M �N.F /, then
either M 0

1
is contained in a component M 0 of M �N.F /, or M 0

1
can be written as

M 0
1
DM 0[ .D0 � I1/, where I1 is a subinterval of I and D is a subdisk of D0 such

that .D0 � I1/\M 0 D @D0 � I1 . In the first case M 0
1

is amenable as a subset of the
amenable set M 0 . In the second case �1.M

0
1
/ and �1.M

0/ have the same image in
�1.M /, and since M 0 is amenable, so is M 0

1
.

Define the complexity c.F / of a closed connected 2–manifold F to be c.F /D 1, if
F is the sphere, and otherwise, c.F /D .2g� 1/! where g is the (orientable or non-
orientable) genus of F and ! is the first infinite ordinal. If F is a closed non-connected
2–manifold with components F1;F2; : : : ;Fn , define c.F /D c.F1/C c.F2/C � � �C

c.Fn/.

Note the following:

If F is a surface with minimal complexity such that F and M �N.F / are amenable, if
F0 is a component of F and F1DF �F0 , then the component of M �F1 containing
F0 is not amenable.

Lemma 4 Suppose M is a closed 3–manifold with catame.M / � 2. If F is of
minimal complexity such that F and M �N.F / are amenable, then every component
of F is a 2–sphere or projective plane.

Proof First we show that F is incompressible.

If not, let F1 be obtained from F by surgery on a compressing disk. By Lemma 3, F1

and M �F1 are amenable. However, c.F1/ < c.F /, a contradiction to the minimality
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of c.F /. Hence F!M is �1 –injective. (Here one says that Y !X is �1 –injective,
if �1.Y;�/! �1.X;�/ is injective for each basepoint � 2 F ).

In particular, since amenable groups are hunfree, all the components of F have non-
negative Euler characteristic.

Let F � Œ0; 1� be a tubular neighborhood of F and let E D M �F � Œ0; 1� be the
exterior of F . Then the inclusions @E!E and @E!F �I are �1 –injective and so
E!M is �1 –injective (see for example [10, Lemma 2.2]). Since E is amenable, its
components have amenable fundamental groups and so are as in Proposition 3.

Now suppose a component F0 of F is a torus or Klein bottle. Let F0 � Œ0; 1� be the
component of F � Œ0; 1� containing F0 . If a component C of E contains @.F0� Œ0; 1�/

then yC is homeomorphic to F0�I (only (4) of Proposition 3 applies) so C[.F0�Œ0; 1�/

is a punctured F0 –bundle over S1 and its fundamental group is amenable; hence F�F0

and its complement in M are amenable and c.F � F0/ < c.F /, contradicting the
minimality of c.F /.

If no component of E contains @.F0� Œ0; 1�/, let C1;C2 be the two components of E

intersecting F0 � Œ0; 1�. Note that Ci is not a trivial I–bundle because of the minimal
complexity condition. We claim that C D C1 [F0 � Œ0; 1�[C2 is amenable, which
again leads to a contradiction, since then F �F0 and its complement are amenable
with c.F �F0/ < c.F /.
yC D yC1[F0

yC2 is a union along an incompressible torus or Klein bottle F0 , where
yCi is as in cases (4) or (5) of Proposition 3. If yCi D T z� I or K z� I , then �1.C / is
solvable. In the remaining cases, (where one or both of yCi is a quadripus Q or dipus
D ), yC D T z� I [F0

QDK z� I [F0
Q is the tetrapus, yC DQ[F0

Q is the octopus,
yC DK z� I [F0

[D is the bipod and yC DD[F0
D is the tetrapod. All their groups

are amenable (in fact solvable).

We now complete the proof of the “only if” part of Theorem 1.

Proof Choose F of minimal complexity such that F and M �N.F / are amenable.
By the preceding lemma, @C consists of 2–spheres and projective planes, for every
component C of M �N.F /, and C is as in Proposition 3.

If yC D P2 � I , .P2 � I/ # .P2 � I/ or .P2 � I/ # P3 , let P be a P2 –component of
F parallel to a boundary component of C , and (if C ¤ P2 � I ) let S be a 2–sphere
in C splitting it into two punctured copies of P2 � I (resp. into a punctured P2 � I

and a punctured P3 ) (that is, the 2–sphere used for the connected sum #). Then
F1 D .F �P /[S and M �F1 are amenable and c.F1/ < c.F /, a contradiction.

Hence yC is as in cases (1) or (2) of Proposition 3 or is a bipod, tetrapod or octopod.
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6 catame.M
3/ � 3

In this section we classify the closed 3–manifolds M with catame.M /� 3. The main
result is the following:

A closed 3–manifold has amenable category � 3 if and only if its minimal orientable
2–fold cover is a connected sum of graph manifolds.

This follows from Theorems 2 and 3. In the orientable case, Theorem 2 follows from
Proposition 4, which establishes the converse of the statement that a closed orientable
3–manifold that can be covered by 3 open amenable sets has trivial simplicial volume
by Gromov’s Vanishing Theorem, and therefore is a connected sum of graph manifolds
by Perelman’s Geometrization Theorem. Theorem 3 gives a more detailed description
of the non-orientable 3–manifolds with amenable category � 3.

Lemma 5 (a) If M is a Seifert fiber space with non-empty boundary, then

catame.M /� 2:

(b) If M is a closed Seifert fiber space, then catame.M /� 3.

Proof (a) Let pW M ! S be the projection to the orbit surface. Starting with a
decomposition of S into two disks and choosing proper disjoint disk neighborhoods of
the exceptional points, we obtain a decomposition of S into a disk D1 and a disjoint
collection D2 of r C 1 disks, where r is the number of exceptional points, such that
D1\D2 D @D1\ @D2 . (The figure below illustrates the case when S is of genus 2

with 3 boundary components and 4 exceptional points). Then W1 D p�1.D1/ and
the components of W2 D p�1.D2/ are solid tori and W D W1 [W2 , where each
component of Wi has cyclic fundamental group.

(b) The proof is as in (a) by starting with a decomposition of S into three disks.

D2

D1
D2

D2 D2
D2

�

�
�

�
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Proposition 4 If M is a graph manifold, then catame.M /� 3.

Proof By Lemma 5 we may assume that M is not a Seifert fiber space. So there
is a non-empty collection of tori and Klein bottles that splits M into Seifert fiber
spaces. Let W3 be a regular neighborhood (in M ) of this collection and let M �W3D

M1[M2[� � �[Mn , where each Mi is a Seifert fiber space with non-empty boundary.
By Lemma 5(a), Mi D Wi1 [Wi2 , for some amenable Wi1 and Wi2 . Now let
W1 D

S
i Wi1 , W2 D

S
i Wi2 . Then M DW1[W2[W3 is a cover by 3 amenable

3–submanifolds.

Theorem 2 Let M be a closed orientable 3–manifold M . Then catame M � 3 if and
only if M is a connected sum of graph manifolds.

Proof As pointed out in the introduction, it follows from Gromov [11] and Perelman
(see [1]) that catame M � 4, if some factor Mi of the prime decomposition of M is
not a graph manifold. The converse follows from Proposition 4 and Corollary 1.

We now consider the case that M is non-orientable.

Lemma 6 Let pW �M !M be any covering map. Then catame. �M /� catame.M /.

Proof It suffices to show that if W is amenable in M, then �W Dp�1.W / is amenable in�M . Assume W, �W are connected (otherwise we look at components). Let �W W !M

and z�W �W ! �M be the inclusions and let p0W �W !W be the restriction of p to �W . Then
p�z��.�1. �W //D ��p

0
�.�1. �W // is a subgroup of ��.�1.W //, which is amenable. Now

p�W z��.�1. �W //! p�z��.�1. �W // is an isomorphism, hence z��.�1. �W // is amenable.

In particular, if M is a closed 3–manifold with catame.M / � 3 and pW �M !M is
its orientable 2–fold cover it follows from Theorem 2 that �M is a graph manifold. By
Meeks and Scott [17] there exists a torus decomposition of �M that is equivariant under
the covering translation, except in the special case when �M is a torus bundle over S1

with hyperbolic monodromy.

Lemma 7 Suppose yC is a Haken graph manifold but not a torus bundle over S1 with
hyperbolic monodromy and suppose that hW C ! C is a fixed-point free orientation-
reversing involution. Then there is a disjoint (possibly empty) collection F of tori and
Klein bottles in C such that every component of the orbit manifold C �N.F /=h is a
punctured S1 –bundle or geminus.
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Proof Let pW C !C=h be the natural 2–fold covering and extend h to an involution
yhW yC ! yC , where possible fixed points of yh are the centers of ball components of
yC �C . Since yC is Haken but not a torus bundle with hyperbolic monodromy, there is
by Meeks and Scott [17] an yh–invariant disjoint collection T 0 of tori in yC , such that
the components of

yC �N.T 0/

are Seifert fibered. If a component of T 0 intersects Fix.yh/ replace it in T 0 by the two
boundary components of an yh–invariant product neighborhood of this component.

The new collection T is an h–invariant union of tori in int C .

Let Vo denote the union of all components Ci of C �N.T / for which h.Ci/\Ci D∅
and let V denote the union of those components Cj for which h.Cj /D Cj .

The components of p.Vo/ are punctured orientable Seifert fiber spaces and we let
Eo be the collection of torus boundaries of fibered solid torus neighborhoods of the
exceptional fibers of p. yVo/.

Every component p.Cj / of p.V / is non-orientable and �1.Cj / contains a non-trivial
cyclic normal subgroup. By Theorem 1 of Heil and Whitten [12] there is a collection
B of 2–sided Klein bottles in bp.V / such that bp.V / DWs [Wt , Ws \Wt D B , the
components of Wt are gemini, and each component of Ws is a Seifert bundle, ie, it
admits a decomposition into disjoint circle-fibers each having a regular neighborhood
that is either a fibered solid torus or a fibered solid Klein bottle.

Let Es be the collection of torus boundaries of fibered solid torus neighborhoods of
the exceptional fibers of Ws .

Let Ks be the union of all fibers in Ws that have solid Klein bottle neighborhoods. Ks

is a union of tori and Klein bottles.

Now F W D T [B [Eo[Es [Ks satisfies the conclusion of the lemma.

We now consider the case when �M is a torus bundle over S1 with hyperbolic mon-
odromy, more generally:

Lemma 8 Suppose yC is an orientable torus bundle over S1 whose monodromy is
not the identity or the inversion .z1; z2/! .Sz1; Sz2/. Let hW C ! C be an orientation-
reversing PL involution. Then C=h is a punctured torus bundle.

Proof Extend h to an involution yhW yC ! yC by coning. By Corollary 1 of [14], the
only orientable torus bundle over S1 admitting orientation-reversing PL involutions
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with non-empty fixed point sets are the two that are excluded in the lemma. Hence
yh has no fixed points and it follows that no (sphere) boundary component of C is
h–invariant. Furthermore, by Theorem B of [14], yC=yh is a torus bundle. Hence C=h

is a punctured torus bundle.

We close with the following theorem, that together with Corollary 2 and Theorem 1
provides a complete classification of closed 3–manifolds of amenable category 3.

Theorem 3 Let M be a closed nonorientable 3–manifold and let �M be its orientable
2–fold cover. The following are equivalent:

(i) catame.M /� 3

(ii) catame. �M /� 3

(iii) �M is a connected sum of graph manifolds.

(iv) M contains a disjoint collection F of 2–spheres, projective planes, tori, and
Klein bottles such that every component of M �N.F / is a punctured S1 –bundle
or geminus.

Proof (i) ) (ii) by Lemma 6.

(ii) , (iii) by Theorem 2 and Corollary 2.

(iii) ) (iv): Let pW �M !M be the 2–fold covering and hW �M ! �M the covering
involution. By Kim and Tollefson [15] there is a collection zS0 of disjoint h–invariant
2–spheres in �M with an h–invariant neighborhood N. zS0/. Every component C of

zE WD �M �N. zS0/

is a punctured graph manifold and either h.C /\ C D ∅ or C is h–invariant. Let
S0 D p. zS0/, a disjoint union of 2–spheres and projective planes.

Let zV1 be the union of the components C of zE for which h.C /\C D∅. Then p. zV1/

is a disjoint union of punctured graph manifolds and there is a disjoint union T1 of
tori in the interior of p. zV1/ such that the components of

V1 WD p. zV1�N.T1//

are punctured Seifert manifolds. Let E1 be the union of the torus boundaries of fibered
solid tori of the exceptional fibers of yV1 (which we may assume are contained in
int V1 ).

Let zV2 be the union of those components of zE that are h–invariant torus bundles
over S1 with hyperbolic monodromy. By Lemma 8, p. zV2/ is a disjoint union of
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punctured torus bundles and therefore there is a union T2 of tori in int p. zV2/ such that
the components of

p. zV2/�N.T2/

are punctured T 2 � I ’s.

Finally let zV3 be the union of the components of E that are h–invariant but not torus
bundles with hyperbolic monodromy. If C is such a component, then yC is Haken
because either it has an incompressible torus or it is an irreducible closed Seifert
manifold admitting an orientation-reversing involution and, by Neumann and Raymond
[19], fibers over S1 . Hence by Lemma 7 there is a disjoint collection T3 of tori and
Klein bottles in int.p. zV3// such that every component of

p. zV3/�N.T3/

is a punctured S1 –bundle or geminus.

Now take F WD S0[T1[E1[T2[T3 , and the conclusion follows.

(iv) ) (i): Let VT (respectively VS ) be the union of the components of M �N.F /

that are (respectively are not) gemini. There is an S1 –fibration pW yVS ! B where B

is a compact 2–manifold.

For every component of B with empty boundary take an annulus embedded in it
and let A be the union of these annuli. We may assume that p�1.A/ � int VS . Let
W1 DN.F /[p�1.A/.

Now, since every component of B �A has nonempty boundary we obtain a de-
composition B �A D D [ D0 where D and D0 are disjoint unions of disks and
D\D0 D @D\ @D0 . We may assume that

p. yVS �VS /� int D0:

Let W2 D p�1.D/[VT and W3 D p�1.D0/\VS .

Then M D W1 [W2 [W3 . The components of W1 are tubular neighborhoods of
2–spheres, projective planes, tori or Klein bottles. The components of W2 are solid tori
or gemini and the components of W3 are punctured solid tori. All these components
have amenable fundamental groups and it follows that catame.M / � 3.
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