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The Kiinneth Theorem in equivariant K —theory
for actions of a cyclic group of order 2

JONATHAN ROSENBERG

The Kiinneth Theorem for equivariant (complex) K —theory K, in the form devel-
oped by Hodgkin and others, fails dramatically when G is a finite group, and even
when G is cyclic of order 2. We remedy this situation in this very simplest case
G = 7Z/2 by using the power of RO(G)—graded equivariant K —theory.

19L47; 19K99, 55025, 55N91

1 Introduction

Equivariant K—theory, invented by Atiyah and Segal (for the original exposition, see
Segal [19]), is the simplest equivariant cohomology theory to define. It is enormously
useful in equivariant topology, in index theory (where it is needed for the equivariant
index theorem), and in the theory of operator algebras. (If X is a locally compact G —
space, then Co(X), the algebra of continuous functions on X vanishing at infinity, is a
G-C*-algebra, and K;*(X) = K *G (Co(G)). Note that on G —algebras, equivariant
K —theory becomes a homology theory instead of a cohomology theory. For the theory
of equivariant K —theory for operator algebras, see Blackadar [2, Chapter V, Section
11].)

Despite its apparent simplicity, equivariant K —theory is still quite puzzling in many
respects. This is already evident when one studies the Kiinneth Theorem, or in other
words, when one attempts to compute K5 (X x Y) given knowledge of K, (X) and
K& (Y) (or dually, to compute K% (A ® B) in terms of K9(A4) and K¢ (B)). The
first, and still the most important, work on this problem was done by Hodgkin [7].
Hodgkin observed that since the coefficient ring for G —equivariant K —theory is the
(complex) representation ring R(G) of G, a Kiinneth Theorem for K¢, should take
the form of a spectral sequence

(1) TorR (@ (K% (X), K™ (¥) = K2 (X xY),
which he constructed. However, Hodgkin noticed that there are two big problems with

this:

Published: 18 April 2013 DOI: 10.2140/agt.2013.13.1225



1226 Jonathan Rosenberg

(1) If G is a disconnected compact Lie group, then R(G) never has finite homo-
logical dimension, so the best one can hope for is that the spectral sequence is
associated to a filtration of infinite length. Sometimes the limit does not seem to
resemble K5 (X x Y) atall (see [7, Example 1, p. 68]).

(2) Even if G is connected, but if 7;(G) is not torsion-free, then the spectral
sequence may converge to the wrong limit (see [7, Example 2, p. 68]).

In particular, Hodgkin’s theorem, which was improved a bit by Snaith [21] and McLeod
[14], is of no help at all if G is finite or if 71(G) has torsion. In joint work of the
author with Schochet [17], we extended Hodgkin’s theorem to the C*-—algebraic case
of Kf (A® B), with 4 and B nuclear G —algebras in a suitable “bootstrap” class
(containing all countable inductive limits of separable commutative G —C *—algebras),
but again only for G connected compact Lie with 71 (G) torsion-free. (We did, however,
manage to elucidate the meaning of the condition that 71 (G) be torsion-free. For
connected compact Lie groups G, this is equivalent to the condition that every action
of G on the compact operators K be exterior equivalent to a trivial action.) Thus the
“puzzle” of what should replace the Kiinneth Theorem when G is finite remained open.

The other major piece of work on this problem was done by Chris Phillips [15]. He
did address the Kiinneth Theorem for equivariant K—theory for G finite, but only
obtained a partial result, since he was relying on the Localization Theorem of Segal
[19, Proposition 4.1].

While in this paper we sometimes work in the generality of group actions on C*—
algebras, the reader should realize that the case where the C* —algebras are commutative
is highly non-trivial and already new, and those not interested in operator algebras can
restrict themselves to this case without missing very much. However, generalizing to
the noncommutative case makes the proofs easier, since as first pointed out in Schochet
[18], geometric resolutions are actually easier to construct in the noncommutative
world.
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The author would like to thank the referee for the observation that there is a close formal
analogy between the main theorem in this paper and Kiinneth Theorem for KO proved
by Bousfield [4]. Bousfield’s “unified K—theory” K¢, plays a role similar to our
K, . While at first sight, real K—theory KO does not appear to be an equivariant theory,
Boersema [3] has extended Bousfield’s work to the case of real C*-algebras. These
include in particular algebras of the form C§(X) = {f € Co(X) | f(z(x)) = F(x)},
where t is an involution on the locally compact space X . The KO-theory of such
algebras recovers the Real K -theory KR of Atiyah [1], which can be viewed as another

form of Z/2-equivariant K —theory for spaces. So the analogy is actually rather close.

The author would also like to thank Peter May for pointing out to him the work of
Lewis and Mandell [11] on a more general class of equivariant Kiinneth Theorems,
from which the main theorem of this paper (in a slightly different category) could be
obtained. However, translating the Lewis—Mandell machinery into the explicit results
here still requires a fair amount of work, and does not apply (without considerable
modification) to the noncommutative world of G—C*—algebras. A remaining project
would be to use this machinery to extend the results of this paper to the case of general
finite groups. As the referee has noted, the results might look rather different at odd
primes and at the prime 2. Some work along these lines, leading to a Kiinneth Theorem
for equivariant K —theory with a somewhat different appearance from the one in this
paper, has appeared in [5].

2 Background, notation, and previous results

We begin by recalling some previous results and establishing notation. In particular, we
restate the results of Phillips [15] and Izumi [8] in terms a topologist would appreciate
since it is likely that their work is not known to most topologists interested in equivariant
K —theory.

Throughout this paper, K—theory or equivariant K—theory for spaces always means
complex topological K—theory with compact supports for locally compact Hausdorff
spaces. In most cases these spaces will be second countable and thus paracompact.
Because of Bott periodicity, we will sometimes regard this theory as being Z/2-graded.
This theory satisfies a very strong form of excision—if X is a closed G —subspace of
Y, then K (Y, X) = K (Y ~ X). (Note that ¥ ~ X is indeed locally compact.)

From now on, let G be a cyclic group of prime order g and let R = R(G) be its
representation ring, which we identify with Z[¢]/(t9—1). Here ¢ represents the standard
representation of G on C in which a fixed generator g of G is sent to { =exp(27i/q).
This ring is the coefficient ring for equivariant K —theory. Its ideal structure was studied
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in Segal [20]. Let I = (t—1) be the augmentation ideal and let J = (1 +¢+---+1971).
Since (t —1)(14+¢4---4+t971) =0 in R, each prime ideal p of R contains either
I or J, and these are the unique minimal prime ideals of R by [20, Proposition 3.7].
In the language of Segal, the prime ideal / has support {1}, while the prime ideal J
has support G. (Since {1} and G are the only subgroups of G, these are the only
two possibilities.) Note that R/I = Z, while R/J = Z[{] is the ring of integers in
the cyclotomic field Q[¢]. Similarly, the localizations of R at these two prime ideals
are Ry = Q and Ry =~ Q[¢]. Since R/I and R/J are both Dedekind domains, the
other prime ideals of R are all maximal ideals. If such a maximal ideal p contains
I, then it is of the form (/, p) for p a prime of Z generating (p N Z) < Z, while
if it contains J, then it contains (J, p) for some prime p. The arithmetic of the
cyclotomic field (the splitting of primes p in Z[¢]) will come in at this point when
one classifies the prime (and necessarily maximal) ideals over (J, p). There are now
two cases: if p =g, then R/(p) = Fy[t]/(t?7 — 1) = F4[u]/(u?), where u =t —1.
So, p ramifies in the cyclotomic field and (J, p) € (/, p), with (I, p) the unique
maximal ideal of R containing p. This ideal has support {1} in the sense of Segal.
Otherwise, if ¢ # p, the primes over (J, p) are distinct from the primes over I, and
have support G (cf [15, Proposition 6.2.2]). In any event, the localization R, of R
at a maximal ideal will be isomorphic to Zp) if p = (I, p) and to a localization of
Z[¢] if p 2 (J, p). So R, is a discrete valuation ring and thus has global dimension
1. For purposes of this paper we will eventually further restrict to the case ¢ = 2, in
which case J = (¢ + 1) and R/J is also isomorphic to Z, and the maximal ideals
of R are precisely (I, p) or (J, p) for p a prime. In this case (/,2) = (J,2) since
(t—1)4+2 =1+ 1; otherwise the ideals (/, p) and (J, p) are all distinct. The picture
of Spec R, showing the inclusion relations among prime ideals, is shown in Figure 1.
Note the left-right reflection symmetry of the diagram, which can be explained by the
existence of an automorphism 7 — —¢ of R (quite special to the case ¢ = 2), which
interchanges I and J.

support={1} support=G

maximal ideals: - (£,5) (£,3) ([,2)=(J,2) (J,3) (J,5) -~

NN

minimal primes:

Figure 1: A picture of Spec R for G = Z/2
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Before proceeding, it is convenient to recall the following calculation of equivariant
K —theory for free actions, which almost certainly is known to experts but is not explicit
in [19].

Proposition 2.1 Let G be a cyclic group of order q and let X be a compact free
G —space. Then, the R—module structure on K¢,(X) = K*(X/G) is defined by letting
t act by tensoring with the line bundle V with ¢,(V) = ¢, where ¢ is the image
in H>(X/G,Z) under the Bockstein homomorphism of the class in H' (X /G, Fq)
classitying the g—to—1 covering map X — X/G. One can also realize V more
explicitly as the fiber product X xg C, where G acts on C by the nontrivial character ¢ .

If A is a closed G —invariant subspace of X , then the R(G)-module structure on
KZ‘;(X,A) ~ K*(Y,B), Y=X/G, B=A/G,

is again defined by letting ¢ act by cup-product with [V] € K°(X/G). (Recall that for
any pair (Y, B), we have the cup-product K°(Y) ® K*(Y, B) - K*(Y, B).)

Proof The definition of the R(G)—action on K;(X) oron K (X, A) implies that the
result of applying the module action of ¢ corresponds to tensoring with (C, ¢), which is
the same after applying the isomorphism K7 (X) = K*(Y) or K§,(X, A) = K*(Y, B)
as the vector bundle tensor product with V. The rest is immediate. |

The following result of Izumi constrains K f (A) if A isa G-C*-algebra, or K5 (X)
if X is a locally compact G —space, and if K4«(4) =0 or K*(X) = 0 (in all degrees).

Theorem 2.2 (Izumi [8, Lemma 4.4]) Let A be a G—C* —algebra, where G is a
cyclic group of prime order ¢ . Assume that A is K —contractible, i.e., that K«(A) =0
(non-equivariantly, in both odd and even degrees). Then, as a Z —module (i.e., forgetting
the R-module structure), K f (A) is uniquely g —divisible. Similarly, if X is a locally
compact G —space and K*(X) = 0, then K{(X) is uniquely q—divisible as a 7.—
module.

Note that Izumi phrased Theorem 2.2 in terms of the K —theory of the crossed product
A X7Z/q, but this is the same as K& (A) because of the Green—Julg Theorem (Julg
[10], Blackadar [2, Theorem 11.7.1]).

The theorem cannot be improved, even in the abelian case, because if X is a locally
compact G —space and K*(X) =0, then K,(X) is not necessarily zero. It was pointed
outin [16, Lemma 5.7] that Lowell Jones’ converse [9] to P A Smith’s Theorem provides
a counterexample. However, since the proof there was slightly garbled (as pointed out
by Thomas Schick in the review in MathSciNet), we restate it again.
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Proposition 2.3 Let G be a cyclic group of prime order q. Then there is a contractible
finite G—CW-complex Y for which L = Y © has torsion in its homology of order
prime to ¢. We can choose a basepoint xg € L sothatif X =Y ~{xo}, K*(X)=0
while K¢, (X) # 0.

Proof By [9],if L is a finite CW—complex with H* (L,Z/q) =0 (in all degrees), then
we can choose a contractible finite G-CW-complex Y with L = Y@ . Clearly L can
be chosen with a basepoint xq so that K*(L ~ {xo}) contains torsion of order a prime
€ # g (though K*(L ~{xo}:Z/q) = K*(L:Z/q) = 0). Since Y is contractible, if
X =Y ~{xo}, then K*(X)= K*(Y)=0. Choose a maximal ideal p of R containing
(J,£). Then p has support G in the sense of Segal, so by the Localization Theorem
[19, Proposition 4.1], K&(X ), = K (L ~{x0})p = K*(L ~ {x0}) ®z R,. This is
non-zero since K*(L ~{xo}) ®z Z/{ # 0 and R, /p, is a finite field of characteristic
€. Thus K7 (X), # 0 and K (X) # 0. O

Applying Takai Duality [22] to Theorem 2.2, we deduce the following.

Corollary 2.4 Let A be a G—C* —algebra, where G is a cyclic group of prime order
q. If K9(A) =0 (in all degrees), then K (A) is uniquely q—divisible as a Z —module.
Similarly, if X is a locally compact G —space and K§,(X) =0, then K*(X) is uniquely
q —divisible.

Now suppose one has a G—C*—-algebra B with K¢(B) =0 but K«(B) # 0. One
can get such an example by starting with a K —contractible G —C *-algebra for which
Kf (A4) is non-zero, as provided by Proposition 2.3 or by [8, Lemma 4.7]. Then let
B = AxZ/q and consider the dual action of Z/q on B;then B is not K—contractible
since Kx(B) = K&(A4) # 0, but by Takai duality, one finds that K% (B) = K4(4) =
0. However, K«(B) =~ K%(C(G) ® B), so we find that the Kiinneth Theorem in
equivariant K —theory fails for B, in the sense that K¢ (B) is identically 0 but there
is a G'—algebra (namely C(G)) for which the tensor product has non-vanishing (but
uniquely g—divisible) equivariant K—theory. (See [12] for more details.) To sum up,
knowing just K¢ (C) and K (D), we cannot hope for a spectral sequence computing
KZ(C ® D). The fact that the (naive) Kiinneth Theorem in equivariant K —theory fails
for actions of finite groups was already pointed out in Phillips [15, Example 6.6.9].

However, we can now state the Kiinneth Theorem of Phillips.

Theorem 2.5 (Phillips, [15, Theorem 6.4.6]) Let G be a cyclic group of prime order
¢, and let p be a prime ideal of R = R(G) with support G. (Thus either p = J
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or p contains (J, p) for p a prime not equal to q.) Let A and B be separable G —
C* —algebras with B nuclear and with A in a suitable bootstrap category containing
all equivariant inductive limits of separable type I G —C* —algebras and closed under
various conditions (see [15, Theorem 6.4.7] for more details). Then there is a functorial
short exact sequence

2 R
0— K& (A), ®r, K (B), —> KZ(A® B), — Tor;* (KZ (A)y. K&, (B);) — 0,

which splits, though not naturally. The theorem holds in particular if A = Co(X) and
B =Cy(Y) with X and Y second countable locally compact G —spaces.

Remark 2.6 Note that Theorem 2.5 is exactly what would expect from a Hodgkin-type
spectral sequence (1), since localization is an exact functor, and thus one would get a
spectral sequence

R(G —
) Torg P (K& (X)p, Kg™ (Y )p) = KEH(X x Y),,

which would collapse at £, giving a short exact sequence, since Ry, is a PID in this
case, and thus all higher Tor’s (beyond Tory ) vanish. Phillips’ insight is that (2) holds
for the prime ideals mentioned in the theorem, even though the Hodgkin-type spectral
sequence (1) fails.

Remark 2.7 Note that Theorem 2.5 fails, even in the commutative case, if p = I or
p= ([, p), even though R, has global dimension 1, so that homological algebra alone
is not the explanation. Indeed, note that K (G) = R/I, which when localized at p
gives just Ry, which is free of rank 1 as an Ry—module. Thus the theorem, if true,
would say that K(G x X), = K*(X)(p) is always isomorphic to K5, (X), at least
as a Z(py—module. But this is false even in the rather trivial case of X' = G with the
simply transitive G —action, since K& (G x G), = R} while K£(G), = R,.

3 A finer invariant

To deal with the failure of the Kiinneth Theorem, we need a finer invariant than just
equivariant K—theory alone. An important fact about equivariant K—theory for a
compact group G is that it is naturally RO(G)—graded (see for example May [13,
Chapters IX, X, XIII, and XIV]). Given a compact group G, a locally compact G-
space, and a finite-dimensional real orthogonal representation V' of G, we can form
K;,V(X) = K*(X x V). Similarly, given a G—C*-algebra A4, we can define

K&V (4) = K¢ (4® Cy(V)),
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where G acts on the second factor via the linear representation and acts on the tensor
product by the tensor product action. Note that if V' happens to be a complex vector
space and the action of G is complex linear, then equivariant Bott periodicity [19,
Proposition 3.2] gives an isomorphism KE’V ~ K§ or K&V ~ K. (This is also
true more generally if V is even-dimensional over R and if the action of G factors
through Spin°(V).) And if G acts trivially on V, Kf A~ K*G+ dim - But in general
the groups K*G ¥ are not the same as Kf , even modulo a grading shift. In the
noncommutative world, another approach to the groups K *G Vs possible via graded
Clifford algebras, since Co(V) is KK —equivalent to C{(V), the complex Clifford
algebra of V viewed as a graded G —algebra [2, Theorem 20.3.2]. But this requires
introducing graded C*—algebras, which we would prefer to avoid.

For the rest of the paper we will deal only with the case where G = {1, g} is cyclic
of order 2.! This group G has exactly two real characters, the trivial character 1 and
the non-trivial character ¢, the sign representation — (where the generator g of the
group acts by —1 on R). From the sign representation we get the twisted equivariant
K—groups K Z‘,— (on spaces) or K*G " (on algebras). These are modules over the
representation ring R. The coefficient groups for K g’_ are computed in Echterhoff
and Pfante [6], for example. It turns K a_(pt) =~ R/J, concentrated in even degree.
Twisting twice brings us back to conventional equivariant K —theory since a direct sum
of two copies of the sign character is a complex representation, where equivariant Bott
periodicity applies.

We can now define an invariant of a G —space (or G —C *—algebra) finer than just the
equivariant K —theory alone. Namely, note that if V' is R with the sign representation of
G, then we have a G-map {0} — V inducing (for any G —space) a natural R-module
homomorphism ¢: K E“;’_(X ) — K¢ (X), which when X is a point can be identified
with the composite R/J =~ I — R. Via the composite

equivariant Bott

KG(X) ————— KG(X xV x V) — KG(X x V x{0}),

we also have a natural R-module homomorphism v: K5 (X) — Kg _(X). The
composite ¢ oy is the product with the element of R associated to

R K2(pt) == K% (Vo) — K&({0h) = R

coming from the inclusion {0} — C, where V¢ is the complexification of V' (C with
the action of G by multiplication by —1). This composite is 1 —¢ (see [19, Section

IUnfortunately, RO(G)—graded K —theory does not give anything new when G is cyclic of odd prime
order, since then all non-trivial real irreducible representations of G are actually complex.
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3]), and since ¥ o @ is the same thing (except applied to X x V instead of to X '), we
have proved the following.

Proposition 3.1 Let G be the cyclic group of two elements. To any G —space there X
is naturally associated a diagram

¥
LX) Ke(X) T 7Kg _(X) b
%

where the maps ¢ and v preserve the 7 /2—grading and the composite in either order
is multiplication by 1 —1t.

Examples 3.2

(1) If X = pt, then Ki(X) = R (concentrated in degree 0) and K¢, _(X) =
R/J = I (concentrated in degree 0). The map ¢ is the inclusion / < R. The
map v is the projection R — R/J .

(2) If X =V (R with the sign representation of G ), then KE(V) is the same as
K¢ (pt), but with the two R-modules interchanged.

(3) If X =G with the simply transitive action of G, then K, (X) = R/I (concen-
trated in degree 0) and K _(X) = K5(Gx V)= K*(V) = R/I (concentrated
in degree 1). The connecting maps are both necessarily 0.

Note of course that K& (A4) can be defined for a G—C*—-algebra A in exactly the same
way.

The following proposition is a precursor of the main theorem in the next section.

Proposition 3.3 Let G be a cyclic group of two elements and let X be a locally
compact G —space. Then there is a natural 6—term exact sequence

K'(X) —= K& _(X) 2~ K2(X)
f T jf
K&(X) <= K _(X) =—— K°(X)
where the vertical arrows marked f on the left and right are the forgetful maps from

equivariant to non-equivariant K —theory. The same (with the indices lowered) holds
similarly for G —C* —algebras.
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Proof We use the fact that if V is the sign representation of G as above, then
V ~{0} = R x G (equivariantly). Here R carries the trivial G—action but G acts
simply transitively on itself. Thus we get an induced long exact sequence:

o> KGXXRXG) = KE(X xV) > KG(X x{0}) — -

Here the middle group is KZ,,_(X ) and the map to K (X x {0}) is what we de-
fined to be ¢. The group on the left is isomorphic to the non-equivariant K—group
K*(X xR) 2= K*T1(X). It remains to show that the connecting map K& (X x{0}) —
K**T1(X xR) 2= K*(X) is the forgetful map /. This follows by naturality of products
from the fact that it is true for X = pt (which one can check from the exact sequence
and the identification of K g (X) with R and of K°(X) with R/T). |

Corollary 3.4 If G is a cyclic group of two elements and X is a locally compact
G —space, then there is a short exact sequence
0 — cokergp — K*(X) — kergp — 0,

where ¢ is as in Proposition 3.1.

Proof This is just a restatement of the exactness in Proposition 3.1. O

4 The main theorem and its proof

In this section G will always denote a cyclic group of order 2.

Because of Theorem 2.5, as well as the fact that an R—module is completely determined
by its localizations at maximal ideals p of R, to complete the problem of getting a
Kiinneth Theorem for K¢, (for G-spaces) or Kf (for G —algebras) we just need to
compute K (X x Y), in terms of K, (X), and K7, (Y), (and similarly for algebras
in a suitable bootstrap category) for maximal ideals p = (I, p), p a prime. (Once
again, see Figure 1.)

After localization at p = (/, p), an interesting thing happens: since 1 —¢ lies in the
kernel of the localization map R — Ry, ¥ o¢ and ¢ oy are both 0. But something
much stronger is true.

Proposition 4.1 Let G be a cyclic group of order 2 and let p = (I, p)<R = R(G), p

a prime. Then for any G —C* —algebra A, ¢: Kf’_(A) — K*G (A) and . K*G (4) —>
K *G " (A) vanish after localization at p.
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Proof It is enough to treat one of ¢ and v since each can be obtained from the other
by replacing 4 by A ® Co(V'). (As usual, V here denotes the sign representation
of G on R.) Furthermore, by the usual tricks with suspensions and unitalizations,
we can restrict attention to Ko and assume A is unital. By [2, Section 11.3], any
class in Ko(A) comes from a G —invariant projection p in End(W) ® A, W a finite-
dimensional G -module (and thus of the form C" @ V). Such a projection p defines
a G-homomorphism C — End(W) ® A. By functoriality of ¥, we get a commutative
diagram

¥ _
K§(C)y =R, K3 (C)y=0

|’ | o

KS (End(W) ® A), —= KG~(End(W) ® A),

which shows that ¥ ([p]) = 0 after localization at p. |

Because of Proposition 4.1, we can ignore ¢ and i after localization at p and treat
K& (X), as a Z/2—graded Ry,—module, by putting K%’_(X)p <) KEI(X)p in odd
degree and K g (X)p® K L (x )p in even degree. Our main result is suggested by the
following reformulation of Corollary 3.4:

Proposition 4.2 Let G be a cyclic group of order 2 and let X be a locally compact
G —space. Let p = (I, p) < R, p a prime. Then there is a filtration on a direct sum
of two copies of K*(X), = K§(X x G), for which the associated graded module is
K& (X)p ® K (G)y.

Proof By Examples 3.2(3), K;(G), contains two copies of R, concentrated in
degree 0. Thus tensoring with K7, (X), is simply tensoring over R, with R, ® Ry,
i.e., the operation of “doubling.” But by Proposition 3.3 together with Proposition 4.1,
K*(X), is an extension of KéJr_l (X)p by K§(X)p. So the result follows. m|

Remark 4.3 It might seem strange that the formulation of Proposition 4.2 is limited
to the case of maximal ideals p D 7. If we localize instead at a maximal ideal p with
support G (and thus of the form (J, p), p # 2), then by Examples 3.2(3), K (G), =0.
At the same time, K*(X) = K5(X x G), and X x G is a free G—space, so by the
Localization Theorem, K E (X x G)p = 0. Thus Proposition 4.2 is still true in this
case, but it just says 0 = 0, which obviously is not very interesting. By way of further
explanation, Proposition 2.1 shows that for a free compact G —space, the augmentation
ideal I acts nilpotently on the equivariant K—theory, so only localization at prime
ideals containing I gives anything useful.
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Now we are ready to state and prove the main theorem.

Theorem 4.4 Let G be a cyclic group of order 2 and let X and Y be second countable
locally compact G —spaces. Let p = (I, p) < R, p a prime. Then there is a natural
short exact sequence of Z/2—-graded R,—modules:

w
3) 0—>K&(X),®p KL(Y), — KX xY),
— Tor}” (K2 (X)p, K& (¥),) — 0

Note the similarity to (2). Similarly, for separable G —C* —algebras A and B with B
in a suitable “bootstrap” category, containing all inductive limits of separable type 1
G —C* —algebras and closed under exterior equivalence, equivariant Morita equivalence,
and the “2 out of 3 property for short exact sequences,” we have a natural short exact
sequence:
@p R

0> KS(4), ®, KS (B)y — KS, ,(4® B), — Tor, " (K (4),. K, | (B),) > 0

The method of proof of this theorem is similar to the one used in [17] and [15], or in
other words, is based on the method of geometric resolutions. First we need to see that

the problem that occurred in our previous counterexample to the Kiinneth Theorem,
having K¢, (X) =0 but K5, (X xY) # 0 for some Y, cannot recur.

Lemma 4.5 Let p = (I,p) < R, p a prime. Let A be a G-C*-algebra with
Kf(A)p = 0. Then for any finite G—CW-complex Y, K¢ (4 ® C(Y)),=0.

Proof We are assuming K¢(A) = 0 and K*G’_(A) = 0, and we need to show
K94 ® C(Y)) = 0. (A similar conclusion for Kf’_(A ® C(Y)) follows upon
replacing AQC(Y) by AQC(Y)RCo(V), where V as usual is the sign representation
of G on R.) First we show the result holds when Y is a single (open) G —cell, i.e.,
either R” or G x R" with trivial action on R”. (Since we are using open cells
here, C(Y) should be replaced by Cy(Y).) But K*G (A® Co(R™)) =~ Kf+n (A) and
K% (A®Cy(GxR")) 2 K41, (A), to which we can apply Proposition 3.3. Now assume
Z is a G-space for which we know KG(4xCo(Z)) =0 and K™ (AxCo(Z)) =0,
and assume Y is obtained from Z by adding a single equivariant cell, so that ¥ ~ Z
is either R” or G x R" with trivial action on R”. Applying the 5-Lemma to the
K —theory sequences associated to the equivariant short exact sequence

0>A4AQCy(ZL) > AR Cy(Y) > AR Cy(Y ~Z)— 0,

we get the result for Y. Finally, the lemma in full generality follows by an induction
on the G—cells of Y. O

Algebraic € Geometric Topology, Volume 13 (2013)



The Kiinneth Theorem in equivariant K—theory 1237

Corollary 4.6 Let Ag denote the category of separable abelian G —C* —algebras
(contravariantly equivalent to the category of second countable locally compact Haus-
dorff G —spaces) and let Cg denote the smallest category of separable G —C* —algebras
containing the separable type I G —C* —algebras and closed under G —kernels, G —
quotients, G —extensions, equivariant inductive limits, crossed products by actions of R
or Z commuting with the G —action, exterior equivalence, and G —Morita equivalence.
Letp=(I,p)<R, p aprime. Let A be a G—-C*—algebra with K*G(A),J = 0. Then
for any G—C*-algebra B in Ag or Cg, K¢(A® B), = 0.

Proof This follows from Lemma 4.5 by an application of [17, Theorem 2.8] or
[15, Theorem 6.4.7]. We just recall the essence of the argument for the abelian case
B = Cy(Y). Because of the exact sequence for the pair (¥, Y ?), it is enough to treat
the cases of free and trivial G—spaces. There is also an easy reduction to the case
where the space is compact. But any compact metrizable space is a countable inverse
limit of finite CW—complexes. This plus Lemma 4.5 immediately gives the case of a
trivial G —space. If Y is a free compact metrizable G —space, write Y /G as a countable
inverse limit of finite CW—complexes and pull back to write Y as a countable inverse
limit of free finite G—CW-complexes. Since equivariant K —theory commutes with
equivariant countable C*—inductive limits, the result follows. |

The next step is to prove Theorem 4.4 with a projectivity restriction on Kf(A). This
first requires a lemma which will also be needed to do the general case.

Lemma 4.7 Let G be a cyclic group of order 2, p = (I, p)< R, p aprime. Let A be
a separable G —C™* —algebra. Let H denote an infinite-dimensional separable complex
Hilbert space equipped with a unitary representation of G that contains both irreducible
representations with infinite multiplicity. Then there is a commutative G —C* —algebra
C =Co(X L (Y xV)), where X and Y are disjoint unions of finite-dimensional real
vector spaces with trivial G —action and V' is the sign representation of G, and there
is a G —homomorphism a: C — A ® Co(Ve ® C) ® K(H), such that « induces a
surjection

O

K& (C), K& (A4 ® Co(Ve & C) ® K(H)), ~—— K (4),

where the isomorphism Kf(A)p ~KE(ARC(VedC)® K(H))y is the canonical
one coming from equivariant Bott periodicity.

If ]Kf(A),J is free over Ry, then C and a can be chosen so that ax is an isomorphism.

Proof By [17, Proposition 4.1 and Remark 4.2], which are proved using the same
trick that appeared in the proof of Proposition 4.1, there is a commutative C*—algebra,
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which we may take to be of the form Cy(X’) with X a disjoint union of countably
many points and lines on which G acts trivially, and there is a G-map Co(X’' xR) —
A® Co(Ve xR xR) ® K(#H) inducing a surjection on KO . If K¢ (A)y is free over
Ry, we can choose the induced map on K*G localized at p to be an isomorphism. We
take X = X’ x R. Note by Examples 3.2(1) (and its suspension) that KE’_(X),, =0.

Similarly, we can apply the same argument to A ® Co(V), and by definition, K¢ (4 ®
Co(V)p=K f " (A)p. We getatrivial G—space Y, again a disjoint union of countably
many points and lines, and a G—-map Co(Y' X R) > 4 ® Co(V xR x R) ® K(H)
inducing a surjection on K¢ . Again, if K¢ (A®Co(V xR?)), = K*G’_(A)p is free over
Ry, we can choose the induced map on K *G localized at p to be an isomorphism. Take
Y =Y’xR and tensor everything with Co (V). Recall that Co(V)RCo(V) = Co (V).
We now have a G—map Cy(Y x V) - AR Cy(Vc & C) ® K(H) inducing a surjection
on K f > after localization at p, and inducing an isomorphism if K *G " (A)y is free over
R,. Since KE";’_(Y),J =0, K&(Y x V), = 0. The lemma follows upon assembling
everything together. |

Theorem 4.8 Let G be a cyclic group of order 2, p = (I, p)<R, p aprime. Let A be
a separable G —C* —algebra with K*G (A), free over Ry. Let B be any G—-C* —algebra
in Ag or Cg (in the notation of Corollary 4.6). Then there is a natural isomorphism
Kg(A4), ®p Kg(B)y — Kg(4 ® B), coming from the pairing w, discussed in [15,
Section 6.1].

Proof The theorem is obviously true for 4 = C with trivial action, and it follows that
it is true for 4 = Cy(V') also, since this has essentially the same K —theory (except
for interchange of KOG with KOG >, by Examples 3.2(2)). Note that since we are
localizing at a maximal ideal containing /, K f *(C), =0, whereas K¢ (Co(V))p=0.
The theorem is also true for A = C(G) by Proposition 4.2, and then follows for
A=Cyo(GxV)or A=Cy(G xR) as well.

Now let us do the general case. Assume C and « are chosen as in Lemma 4.7 to
induce isomorphisms on K¢ and on K*G *~ after localization at p. Let W denote the
mapping cone of «. Then we obtain a short exact sequence of G —algebras

4) 0>ARCo(VedO)RK(H) > W — C — 0,

for which the induced long exact sequence in K f localized at p gives an isomorphism
K% (C),=KZ(A), and an isomorphism Kf’_(C)piK*G’_(A)p. It follows that
]Kf(W)lJ = 0. By Corollary 4.6, Kf(W ® B) = 0. But tensoring with B is exact,
since B is nuclear, so we get a short exact sequence

0->A4A0C (Ve ®dC)K(H)®B—->WR®B—-C®B—0
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from (4). The long exact sequence now gives an isomorphism (¢ ®1)4: K¢ (C® B)y,—
Kf(A ® B),. But by the case already considered (because of the special structure of
the algebra C),

wp: KE(C)p @1, KE(B), = K (C ® B),.

Combining the isomorphisms and a little diagram chase now shows that:

wp: KE(4), ® g, KE (B)y = KE (4 ® B), O
Finally we can prove the main theorem.

Proof of Theorem 4.4 We apply Lemma 4.7 and take the mapping cone sequence (4).
Since
G @ G G
K3 (C)y — K (4® Co(Ve & C) ® K(H)), = K] (A),

is surjective, R, is a PID, and Kf(C)]J is free over Ry, Kf(W),J is also free over
Ry in fact

(5) KE (W), = KZ(C)p — K (4),

is a free Ry-resolution of Kf(A)p. To simplify the notation, let us replace A by
AR Cy(Ve & C) ® I (H); this is harmless since the theorem will be true for A if it is
true for the latter. As in the proof of Theorem 4.8, we tensor (4) with B and apply K*G .
We now get a commutative diagram with exact columns, where the first column comes
from tensoring (5) with ]K*G(B),J and the second column is the long exact sequence in
K& . The result is as follows:

R
Tor, " (K& (4),. K¢ (B)y) K¢, (4® B),
w
KS(W), @, K¢ (B), —= K$(W ® B),
w
K¢(C)p @&, K¢(B), ——=K$(C ® B),
ax®1 (x®1p)«
w
K9(4), ®g, K¢ (B)y ——= K¢(4® B),

The fact that the middle horizontal arrows are isomorphisms follows from Theorem 4.8.

We finish the proof with a diagram chase. If a class in Kf(A ® B)p maps to 0
in ]K*G_l (W ® B)y, then it comes from K¢ (C® B), and thus lies in the image of
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]Kf(A)p R, ]K,,?(B),J under wy,. Furthermore, if a class ¢ € ]K*G(A)]J R, ]K,kc"(B),J
maps to 0 under wy, then ¢ = (ax ® 1)(d) for some d € Kf(C)p Q®R, Kf(B)p, and
chasing the diagram shows that d came from ]K*G(W)p ®R, Kf(B)p, which shows
that ¢ = 0. Thus w,, is injective, and its image is the same as the image of K¢ (C® B),
in K¢(4® B),, which is precisely the kernel of the boundary map to Kf_l (W®B),.
Now consider the cokernel of w,. By the above discussion, this is identified with the
image of K¢(4® B), in K¢ (W ® B),, which is the kernel of the map K¢ (W ®
B), — Kf_l (C ® B),, which by the diagram again is identified with

R
Tor, "(]K*G(A)p, Kf_l (B)yp)-

That completes the proof of the main theorem. O
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