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Context-free manifold calculus
and the Fulton–MacPherson operad

VICTOR TURCHIN

The paper gives an explicit description of the Weiss embedding tower in terms of
spaces of maps of truncated modules over the framed Fulton–MacPherson operad.

57Q45; 18D50, 55P48, 55P99

Introduction

It is well known that the h–principle fails for spaces of smooth maps avoiding singulari-
ties that depend on more than one point. The space Emb.M;N / of smooth embeddings
between two manifolds is an example of such a space. However, the author believes
that if one carefully constructs a space applying the h–principle taking into account
configurations with less than or equal to k points (in the source and target manifolds)
then the obtained space will be exactly the k th approximation (to the space of maps
avoiding the given multisingularities) arising from the Goodwillie–Weiss manifold
calculus; see Weiss [25]. In this paper we demonstrate this idea for Emb.M;N /. We
produce an explicit model for Tk Emb.M;N /, the k th stage of the Goodwillie–Weiss
Taylor tower, as a space of k –tuples .fi W M

�i !N �i/iD1;:::;k of equivariant (with
respect to the symmetric group action) maps satisfying the natural conditions

� the preimage of the fat diagonal is the fat diagonal, and moreover the maps
“behave nicely” when the points in configurations collide (approach the fat
diagonal);

� the maps are compatible with respect to forgetting of points in configurations;

� in addition we also need to take into account the tangential data.

To address the first point above we replace M�i and N �i by the Axelrod–Singer–
Fulton–MacPherson compactifications of configuration spaces of points in M and N

respectively; see Axelrod and Singer [3] and Sinha [19]. The condition that the maps
must be compatible with respect to forgetting of points is too restrictive—we make them
compatible only up to some explicit homotopies that are made part of the data. Finally
to take into account the tangential data, we add framing to the points in configurations.
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1244 Victor Turchin

In other words maps M�i ! N �i are replaced by sections of the space of i –multi
1–jets. It is quite interesting that the solution to this geometric-homotopy problem that
we produce actually has more of an algebraic flavor: the boundary conditions for the
maps fi and for the homotopies are expressed as operad action conditions.

One should mention that another “geometrical model” of the Goodwillie–Weiss embed-
ding tower was earlier produced by Goodwillie, Klein, and Weiss in [13]. In their model
the maps fi W M

�i !N �i must be smooth (unlike our model where only continuity
is required). These maps must satisfy some natural equivariance and transversality
conditions with respect to the fat diagonal. The tangential data in that model are
encoded by the behavior of f2 near the diagonal. The compatibility with respect to
forgetting of points in configurations is treated similarly: compatibility being replaced
by compatibility up to homotopy. Even though their model seems similar to the one
produced in this paper, they are still quite different in spirit. In particular the author
can not see any direct map or a natural short zigzag between the two models.

Organization of the paper

In Section 1 we outline a general framework of context-free manifold calculus and its
connection to the framed discs operad. The details of this approach were completed
by P Boavida de Brito and M Weiss in [5]. One of the main results of their work
is Theorem 1.5 that describes the Weiss–Taylor tower of a context-free topological
presheaf on a manifold in terms of maps of truncated right modules over the framed
discs operad. Section 1 is given to emphasize the fact that for this description one can
use the operad of framed discs with both its usual and discrete topology. A discrete
version of Theorem 1.5 appeared earlier in a work of G Arone and the author [2].
Section 2 is where the main construction is given. In Theorem 2.1 we replace the
framed discs operad by the framed Fulton–MacPherson operad and describe Weiss’
approximations Tk Emb.M;N / to the space Emb.M;N / of embeddings of one mani-
fold into another in terms of maps of truncated right modules over the latter operad. The
right modules in question themselves are naturally obtained from the Axelrod–Singer–
Fulton–MacPherson compactifications of framed configuration spaces in manifolds M

and N . This description of the embedding tower resembles both the Goodwillie–
Klein–Weiss construction [13] mentioned above and also Sinha’s models [21; 20] for
spaces of one dimensional knots. The proof of Theorem 2.1 is very straightforward
and does not rely on the Boavida–Weiss Theorem 1.5. Sections 3 and 4 do this job.
Moreover our construction can be used to give an alternative proof of Theorem 1.5
which is shown in Section 5. Section 6 produces another application of our construction
describing Weiss’ tower for spaces of long embeddings in terms of maps of truncated
infinitesimal bimodules over the Fulton–MacPherson operad. As a corollary we obtain
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Context-free manifold calculus and the Fulton–MacPherson operad 1245

that for n > mC 2 the space Embc.Rm;Rn/ is equivalent to the space of derived
maps between the operads of little discs Bm and Bn in the category of infinitesimal
bimodules over Bm which can be seen as a high-dimensional generalization of Sinha’s
work [20].

As a general remark the category Top of topological spaces that we consider is the
category of compactly generated Hausdorff spaces with the usual model structure with
weak equivalences and Serre fibrations. We also consider the model structure on the
categories of (truncated) right modules and (truncated) infinitesimal bimodules over
different operads. The idea is that each such structure is equivalent to a functor from
a certain category enriched in Top. The categories encoding such structures were
explicitly described by Arone and the author in [2]. We use the projective model
structure on the categories of such functors with equivalences and fibrations being
objectwise equivalences and objectwise fibrations.

1 Context-free manifold calculus and the operad of framed
discs

In [25] M Weiss introduced the so called manifold calculus of functors. Given a smooth
manifold M , denote by O.M / the category of open subsets of M . For any isotopy
invariant cofunctor F W O.M /! Top in topological spaces, Weiss defines a Taylor
tower

(1-1)

F

{{ �� ## ))
T0F T1Foo T2Foo T3Foo � � �oo

of polynomial approximations of F . It became clear a while ago that the manifold
calculus of functors is deeply related to the operad of little discs. Below we outline
one of the constructions that shows this connection.

Let Manm denote the category of smooth m–manifolds, where the morphisms are
codimension zero embeddings. This category is naturally enriched in topological spaces.
We denote by ıManm its discretization. For any m–manifold M one has an obvious
forgetful functor

IM W O.M /! ıManm:

Definition 1.1 A cofunctor zF W O.M /! Top is context-free if zF up to a natural
equivalence factors through ıManm . In other words zF ' F ı IM for some cofunctor
F W ıManm! Top.
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In the sequel by a context-free cofunctor we will often understand the underlying
cofunctor F W ıManm ! Top. Notice that this definition is slightly different and
somewhat simpler than the one previously used; see [2, Definition 4.9]. But the idea
is still the same—a cofunctor is context-free if “it does not depend” on where the
open subsets are located. As an example, consider a nontrivial fibration pW E!M ;
then the cofunctor �.�;p/ of continuous sections of p is linear, but in general not
context-free. The context-free cofunctors abound. The embedding and immersion
cofunctors Emb.�;N /, Imm.�;N / are context-free. These cofunctors assign to an
open set U �M the space of smooth embeddings, respectively immersions, of U in
another smooth manifold N of dimension greater than or equal to m. As a further
generalization for any type of multisingularity S the spaces MapsS.M;N / of smooth
maps M !N that avoid S also define a context-free cofunctor

MapsS.�;N /W Manm! Top:

All these cofunctors are in fact continuous in the sense that they are defined on the
enriched category Manm . Given a context-free cofunctor it is natural to forget about the
initial manifold M and study the calculus of cofunctors with domain ıManm . We will
call such calculus context-free manifold calculus. This variation of manifold calculus is
actually more similar to their brothers homotopy calculus (see Goodwillie [10; 11; 12])
and orthogonal calculus (see Weiss [24]) since it deals with all manifolds similarly as
the homotopy calculus deals with all topological spaces or spectra, and the orthogonal
calculus deals with all vector spaces of finite dimension.

By an obvious analogy with [25] define a Grothendieck topology Jk on ıManm in
which ffi W Ui ,! V gi2I is a Jk –cover if and only if

S
i2I fi.Ui/

�k D V �k . In other
words any configuration of less than or equal to k points in V should appear in the
image of at least one Ui . For our purposes we will be using the following definition of
polynomial functors. It is a nontrivial result of Weiss that the following is equivalent to
a more usual definition due to Goodwillie that uses cubical diagrams [25; 26].

Definition 1.2 An isotopy invariant presheaf F W ıMann! Top is called polynomial
of degree less than or equal to k if it is a homotopy Jk –sheaf.

A reader unfamiliar with the notion of a homotopy sheaf may wait until Section 3
where we explain what this property means.

Let ıO�k (respectively O�k ) be the full subcategory of ıManm (respectively Manm )
whose objects are disjoint unions of less than or equal to k standard m–balls. Thus
this category has only kC1 objects. Define TkF as the homotopy right Kan extension
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of F from ıO�k to ıManm :

(1-2) TkF.M /D holim
ıO�k#M

F:

For every M one has a natural map F.M /! TkF.M /. Denote by �F the corre-
sponding natural transformation.

Proposition 1.3 For any isotopy invariant presheaf F W ıManm ! Top the natural
transformation �F W F ! TkF is a homotopy Jk sheafification of F in the sense that

� TkF is polynomial of degree less than or equal to k ;

� in case F is polynomial of degree less than or equal to k then �F is a natural
equivalence.

Proof One obviously has that F is polynomial of degree less than or equal to k if
and only if its restriction on O.M / is so for all M 2 ıManm . Let O�k.M / denote
the subcategory of open subsets of M diffeomorphic to a disjoint union of less than or
equal to k balls. One has a natural evaluation functor

evM W
ıO�k #M !O�k.M /

that assigns to any embedding f W U ,! M , U 2 ıO�k , its image f .U /. This
cofunctor is homotopy right cofinal1 and therefore the induced map

holim
O�k.M /

F ! holim
ıO�k#M

F

is a weak equivalence. Notice that the first homotopy limit is exactly Weiss’ formula for
the k th approximation. Thus the properties of TkF mentioned in the proposition follow
from the analogous properties of Weiss’ approximations [25]. The cofinality of evM is
immediate from the fact that for any V 2O�k.M / the corresponding undercategory
V # evM has initial objects.

There is yet another way to describe TkF .

Lemma 1.4 For any presheaf F W ıManm! Top one has a natural equivalence

(1-3) holim
ıO�k#M

F ' hNat
ıO�k

�ıEmb. � ;M /;F. � /
�
:

1Actually it is both right and left cofinal, but we care only about the right cofinality since we only need
that evM preserves homotopy limits and our functors are contravariant.
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In the above ı Emb. � ;M / is a cofunctor that assigns to any U 2 ıO�k the space
of embeddings Emb.U;M / with the discrete topology; hNat denotes the space of
homotopy natural transformations between cofunctors on ıO�k . This lemma is a
particular case of Arone [1, Lemma 3.7]. The idea of the proof is that both spaces
can be described as a totalization of certain cosimplicial spaces, and moreover the
second corresponding cosimplicial space is obtained by an edgewise subdivision of
the first one. Thus the equivalence (1-3) can be viewed as a natural homeomorphism.
The latter description of TkF has a nice interpretation from the point of view of the
theory of operads. Notice that the category Manm , respectively ıManm , is symmetric
monoidal where the monoidal structure is given by disjoint union, and unit is the empty
set. Let E.Dm/, respectively ıE.Dm/, denote the operad of endomorphisms of the
unit disc Dm in Manm , respectively ıManm . It is obvious that E.Dm/ is equivalent
to the operad of framed discs, and ıE.Dm/ is simply the discretization of E.Dm/.
Next notice that a cofunctor GW O�k!Top, respectively GW ıO�k!Top, is exactly
the same thing as a k –truncated right module over E.Dm/, respectively ıE.Dm/.
Indeed, given such functor define a sequence of k C 1 spaces G.i/ WD G.

`
i Dm/,

i D 0; : : : ; k . This sequence has an obvious k –truncated right action of E.Dm/,
respectively ıE.Dm/. This is a general fact since the operad in question is the operad
of endomorphisms of Dm and G. � / is a sequence of values of a cofunctor on the
monoidal powers of Dm . Thus TkF.M / can be described as the space of derived
maps of k –truncated right modules over ıE.Dm/:

(1-4) TkF.M /' hRmod
ıE.Dm/

�k

�ıEmb. � ;M /;F. � /
�
:2

It is natural to ask whether ıE.Dm/ can be replaced by E.Dm/ in case F is continuous.
I asked this question to M Weiss and it turned out that his student P Boavida de Brito
was already working on the same problem and a few months later they found an elegant
solution thus proving the following.

Theorem 1.5 [5] For a cofunctor F W Manm! Top the natural composition

(1-5) F.M / �! Rmod
E.Dm/

�k

�
Emb. � ;M /;F. � /

�
�! hRmod

E.Dm/
�k

�
Emb. � ;M /;F. � /

�
is equivalent to the homotopy Jk –sheafification F.M /! TkF.M /.

They used a slightly different language to formulate this result, but their [5, Section 6]
shows that it can be reformulated using the operadic approach. A discrete version of

2As a general remark regarding notation, for a right module G. � / we will denote by G. � j�k/ its k –
truncation. However if we consider the space of (derived) maps of truncated right modules the notation j�k

will be dropped since Rmod�k already indicates that the objects are truncated.
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this result appeared in [2] with the only difference that in that paper we considered only
submanifolds of Rm and the acting operad was the operad of little (nonframed) discs.
The above result is quite remarkable not only because it gives a connection between
the theory of operads and manifold calculus, but also it shows that the discretization of
the operad of (framed) discs still keeps a lot of information about the initial topological
operad. It would be interesting to understand exactly what information is preserved
by discretization and to which extent it is true for any or a larger range of topological
operads. As a natural analogy the homology of any Lie group with coefficients in a cyclic
group is conjectured to coincide with the homology of its discretization. This conjecture,
known as the Friedlander–Milnor conjecture, was the subject of extensive research; see
Friedlander and Mislin [8], Milnor [15], Morel [16], Sah [17] and Suslin [22].

2 Embedding tower and Fulton–MacPherson operad

The motivating example for the Weiss manifold calculus is the study of embedding
spaces. The Taylor tower (1-1) for the embedding cofunctor Emb.�;N / is usually
called embedding tower. It turns out that one can obtain a nice description of the
embedding tower by replacing the operad E.Dm/ by a much smaller but equivalent
operad F fr

m the so called framed Fulton–MacPherson operad. Recall the Fulton–
MacPherson operad Fm (see Getzler and Jones [9] and Salvatore [18]). This op-
erad was simultaneously introduced by several people, in particular by Getzler and
Jones [9]. Its components are manifolds with corners such that the interior of Fm.k/

is C.k;Rm/=G the configuration space of m distinct labeled points in Rm quotiented
out by translations and positive rescalings. Notice that Fm.0/ D Fm.1/ D f�g. By
reduced Fulton–MacPherson operad xFm we will understand the suboperad of Fm

obtained by making the degree zero component to be empty xFm.0/D∅ and keeping
all the other components the same xFm.k/D Fm.k/, k � 1. It is noticed in [9] that
the operad xFm is cofibrant. As an operad in sets it is freely generated by the interiors
of its components. The framed Fulton–MacPherson operad F fr

m has components
Fm.k/� .GLm/

�k , k � 0, where GLm is the group of general linear transformations
of Rm . Each component of this operad is a certain compactification of the space of
framed configurations modulo translations and rescaling. The composition in F fr

m uses
the fact that Fm is an operad in spaces with GLm –action; see [18]. We will also
consider the oriented framed Fulton–MacPherson operad For

m which is a suboperad
of F fr

m and whose components are Fm.k/�.GLCm/
�k , k � 0, where GLCm is the group

of orientation preserving linear transformations of Rm .

For any manifold M let C.k;M /, k � 0, denote the configuration space

C.k;M /D f.x1; : : : ;xk/ 2M�k
j xi ¤ xj for all i ¤ j g:
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Let C Œk;M � denote its Axelrod–Singer–Fulton–MacPherson compactification [3; 19].
A thorough treatment of this construction is given by Sinha in [19] from where we
borrowed our notation. C Œk;M � is a manifold with corners whose interior is C.k;N /.
The boundary strata consist of configurations where some of the points collided. One
has an obvious projection C Œk;M �!M�k and we denote by pi W C Œk;M �!M

its i th component, 1 � i � n. In case a manifold N has dimension greater than
or equal to m we define a space C m_f r Œk;N � which fibers over C Œk;N � with a
fiber over any point X 2 C Œk;N � being the space of tuples .˛1; : : : ; ˛k/, where each
˛i W Rm ,! Tpi .X /M is a linear injective map called partial framing. In case of a
manifold of dimension m we will simply write C frŒk;M � instead of C m_f r Œk;M �. In
case M is oriented we also consider spaces C orŒk;M �� C frŒk;M � for which all the
framings ˛i W Rm! Tpi .X /M are orientation preserving. The sequences C frŒ � ;M �,
C m_f r Œ � ;N � are right modules over F fr

m . The degree zero component F fr
m.0/ acts

by forgetting points in configurations. Any other element x 2 F fr
m.k/, k � 1, acts

by replacing a point in a configuration by the infinitesimal configuration x according
to the framing. Similarly, for an oriented m–manifold M , the sequence C orŒ � ;M �

is naturally a right module over For
m ; and for a parallelized M , C Œ � ;M � is a right

module over Fm . Notice that any embedding f W M ,!N induces a natural evaluation
map evf W C frŒk;M �! C m_f r Œk;N � which is a morphism of right F fr

m –modules.

Theorem 2.1 In the above notation the composition

(2-1)

Emb.M;N /
ev
�! Rmod

F fr
m

�k.C
frŒ � ;M �;C m_f r Œ � ;N �/

! hRmod
F fr

m

�k.C
frŒ � ;M �;C m_f r Œ � ;N �/

is equivalent to the Jk –sheafification Emb.M;N /! Tk Emb.M;N /. In particular
the limit of the embedding tower T1 Emb.M;N / is equivalent to the space of derived
maps of right F fr

m –modules

T1 Emb.M;N /' hRmod
F fr

m

.C frŒ � ;M �;C m_f r Œ � ;N �/:

In case M is oriented, respectively parallelized, the same is true for the compositions

Emb.M;N / �! hRmod
For

m

�k.C
orŒ � ;M �;C m_f r Œ � ;N �/;(2-2)

Emb.M;N / �! hRmod
Fm

�k.C Œ � ;M �;C m_f r Œ � ;N �/:(2-3)

Remark 2.2 The first statement of this theorem is equivalent to the Boavida–Weiss
Theorem 1.5 applied to special case of the embedding cofunctor; see Section 5.2.
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Moreover our construction can be used to give an alternative proof of Theorem 1.5
itself; see Section 5.1.

To prove Theorem 2.1 we will construct a cofibrant replacement zC frŒ � ;M � (functorial
in M ) of C frŒ � ;M � in the category of right modules over F fr

m . The following result
is important to understand that construction.

Lemma 2.3 For any smooth m–manifold M , C frŒ � ;M � is cofibrant in the category of
right modules over the reduced framed Fulton–MacPherson operad xF fr

m . Similarly any
k –truncation C frŒ � j�k ;M � is cofibrant in the category of k –truncated right modules.

Proof Intuitively one can see that C frŒ � ;M � is cofibrant since as a right xF fr
m mod-

ule in sets it is freely generated by the symmetric sequence C. � ;M /—the interiors
of C Œ � ;M �. In the sequel each C.k;M /, k � 0, will be called a generating stratum
of this right module. Below we give a more rigorous argument.

Let Sub�k.M / denote the space of subsets of M of cardinality less than or equal
to k , topologized as a quotient of f∅gqM�k=†k . We will also consider the space
of all finite subsets of M ,

Sub.M /D
[
k�0

Sub�k.M /:

Denote by g the composition

gW

1a
kD0

C frŒk;M � �!

1a
kD0

M�k
�! Sub.M /:

For X 2 C frŒk;M � we say that g.X / is the set of geometrically distinct points
of X . Define a filtration in C frŒ � ;M � by the number of geometrically distinct
points C

fr
.`/
Œ � ;M �D g�1.Sub�`.M //:

(2-4) C
fr
.0/
Œ � ;M �� C

fr
.1/
Œ � ;M �� C

fr
.2/
Œ � ;M �� � � � :

Notice that the right action of xF fr
m does not change the image of g :

(2-5) g.X ıi c/D g.X /

for all X 2 C frŒ � ;M � and c 2 xF fr
m. � /. Therefore filtration (2-4) is a filtration of right

modules over xF fr
m . One can show that each inclusion in this filtration is a cofibration,

which guarantees that all elements of the filtration and its colimit are cofibrant. In
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case M is parallelized one has the following pushout square of right xF fr
m –modules:

(2-6)

Free xF fr
m
.@C Œ`;M �I `/ //

��

Free xF fr
m
.C Œ`;M �I `/

��

C
fr
.`�1/

Œ � ;M �

y
// C

fr
.`/
Œ � ;M �:

In the above Free xF fr
m
.AI `/ denotes the free xF fr

m right module generated by a space A

with a free †` action; @C Œ`;M � denotes the boundary of C Œ`;M �. The vertical maps
above are defined by a choice of trivialization of TM . Since the upper arrow is a
cofibration so is the lower one.

If M is not parallelized, consider a cellular decomposition of M and then refine the
above argument using the trivialization of the tangent bundle over each cell.

The above lemma shows that C frŒ � ;M � fails to be cofibrant as a right F fr
m module

only because of the degree zero component F fr
m.0/D � which acts by forgetting the

corresponding point in configuration. A slight adjustment has to be done in order to
make it cofibrant.

We define zC frŒk;M � as a space of hairy configurations. Its points are the tuples
.X Iy1; : : : ;y`I t1; : : : t`/, ` � 0, where X 2 C frŒk;M �, yi 2M , i D 1; : : : ; ` and
0 � t1 � t2 � � � � � t` � 1. The data .xyI xt/ D .y1; : : : ;y`I t1; : : : ; t`/ can be viewed
as a bunch of hairs that grow from the points y1; : : : ;y` and have length t1; : : : ; t`
respectively. Thus

(2-7) zC frŒk;M �D

� 1a
`D0

C frŒk;M �� .M�`
� Œ0; 1�`/=†`

�.
�;

where the equivalence relation is as follows: If one of the hairs (say y1 ) gets contracted
to zero, the corresponding point y1 disappears. If two hairy points yi and yj collide,
only the hair of the longer length survives. If one of the hairs collides with a point or a
conglomeration of points of X , the hair also disappears. Explicitly,

(2-8) .X Iy1; : : : ;y`I t1; : : : ; t`/� .X Iy�1
; : : : ;y�` I t�1

; : : : ; t�`/;

whenever t�1
� � � � � t�` , � 2†` ;

.X Iy1;y2; : : : ;y`I 0; t2; : : : ; t`/� .X Iy2; : : : ;y`I t2; : : : ; t`/;(2-9)

.X Iy1; : : : ;y`I t1; : : : ; t`/� .X Iy1; : : : ; yyi ; : : : ;y`I t1; : : : ; yti ; : : : ; t`/;(2-10)

whenever yi D yj , i < j , or yi D pm.X /, 1�m� k .
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The right action of any element c 2F fr
m.k/ in degree k � 1, is defined to affect only X :

(2-11) .xI xyI xt/ ıi c D .x ıi cI xyI xt/:

For feg D F fr
m.0/ the right action is defined by

(2-12) .X I xyI xt/ ıi e D .X ıi eI xy;pi.X /I xt ; 1/:

In other words this action replaces the i th point in X by a hair of length one. Notice
however that in the case that pi.X / D pj .X / for some j ¤ i , one has that .X ıi
eI xy;pi.X /I xt ; 1/D .X ıi eI xyI xt/ by (2-10).

Proposition 2.4 The natural projection

(2-13) zC frŒ � ;M �! C frŒ � ;M �;

that forgets all hairs, defines a cofibrant replacement of C frŒ � ;M � as a right F fr
m

module. Moreover for every k � 0 the k th truncation zC fr
.k/
Œ � j�k ;M � of the k th

filtration term (2-16) is a cofibrant replacement of C frŒ � j�k ;M � as a k –truncated right
F fr

m module.

By an obvious analogy we define zC orŒ � ;M �, respectively zC Œ � ;M �, as a cofibrant
replacement of C orŒ � ;M �, respectively C Œ � ;M �, in the category of right modules over
For

m , respectively Fm .

Sketch of the proof First we notice that the projection (2-13) is an equivalence
of F fr

m –modules. This means that for every component � D ` this map is a †`–
equivariant homotopy equivalence. The homotopy inverse is the natural inclusion
C frŒ`;M � ,! zC frŒ`;M �.

Second, it is easy to see that as a right Fm –module in sets zC frŒ � ;M � is freely generated
by the symmetric sequence

(2-14) zC .`;M /D

C1a
iD0

C.`C i;M /� .0; 1/i
ı
†i ; `� 0;

where †i acts by a simultaneous permutation of the last i points in C.`C i;M / and
the coordinates of .0; 1/i . We sketch a proof below that shows in which order the above
generating strata are attached. For simplicity one can assume that M is parallelized. If
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it is not the argument must be further refined as in the proof of Lemma 2.3. Define a
map

(2-15) zgW

C1a
`D0

zC frŒ`;M �! Sub.M /

by sending zX D .X Iy1 � � �yi I t1 � � � ti/, with all tj ¤ 0, to g.X /
S
fy1 � � �yig. Notice

that zg is not continuous contrary to the map g . Again zg. zX / is called the set of
geometrically distinct points of zX . Notice that this map is invariant with respect to
the F fr

m action:
zg. zX ıi c/D zg. zX /

for every X 2 zC frŒ � ;M � and c 2F fr
m . In particular this means we can define a filtration

of right F fr
m –modules:

(2-16) zC
fr
.0/
Œ � ;M �� zC

fr
.1/
Œ � ;M �� zC

fr
.2/
Œ � ;M �� � � � ;

where zC fr
.k/
Œ � ;M � is the preimage zg�1.Sub�k.M //. Each inclusion in the above

filtration is a cofibration of right F fr
m modules. To see this we notice that besides

the filtration by the number of geometrically distinct points there is another natural
filtration in zC frŒ � ;M � by the number of hairs whose length is strictly between 0 and 1.
Let zC fr

.k/;i
Œ � ;M �, k � 0, i � �1, denote the right submodule of zC fr

.kC1/
Œ � ;M � that

consists of hairy configurations with either less than or equal to k geometrically distinct
points or with exactly kC 1 geometrically distinct points, but with less than or equal
to i hairs of length strictly between 0 and 1. Notice that

zC
fr
.k/;kC1

Œ � ;M �D zC
fr
.kC1/

Œ � ;M �D zC
fr
.kC1/;�1

Œ � ;M �:

Thus the filtration by the geometrically distinct points and by the number of hairs of
length less than 1 can be considered as a refinement of (2-16). One can easily see that
the generating stratum C.`C i;M /� .0; 1/i

ı
†` from (2-14) is attached exactly when

we pass from zC fr
.`Ci�1/;i�1

Œ � ;M � to zC fr
.`Ci�1/;i

Œ � ;M �. By this we mean that one has
a pushout square similar to (2-6):
(2-17)

FreeF fr
m
.@ .C Œ`Ci;M ��Œ0; 1�i=†i/I `/ //

��

FreeF fr
m
.C Œ`Ci;M ��Œ0; 1�i=†i I `/

��
zC

fr
.`Ci�1/;i�1

Œ � ;M �

y
// zC

fr
.`Ci�1/;i

Œ � ;M �:

The truncated case follows from the fact that the generating strata of zC fr
.k/
Œ � ;M � all lie

in the components of degree less than or equal to k .
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Theorem 2.1 is a consequence of Propositions 2.4, 2.5, 2.6 and Lemma 2.7.

Proposition 2.5 For any right Fm module N . � /, the cofunctor that assigns to any
U 2O.M / (respectively U 2 ıManm ) the space

(2-18) Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;N . � //

is a homotopy Jk –sheaf on O.M / (respectively ıManm ).

We prove this result in Section 3. The space (2-18) looks almost like the space of
sections of a stratified fiber bundle over the filtered space

Sub�0.U /� Sub�1.U /� Sub�2.U /� Sub�3.U /� � � � � Sub�k.U /:

Our argument is thus a slight adjustment of the proof of a similar result that the
functor U 7!Maps.U�k ;X / is polynomial of degree less than or equal to k ; see [13,
Proposition 3.1].

Proposition 2.6 The composition

(2-19)

Emb.U;N /
ev
�! Rmod

F fr
m

�k.C
frŒ � ;U �;C m_f r Œ � ;N �/

! Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;C m_f r Œ � ;N �/

is a homotopy equivalence whenever U is a disjoint union of less than or equal to k

m–balls.

The proof is given in Section 4.

Lemma 2.7 In case M is orientable, respectively parallelized, one has a natural
homeomorphism of spaces

Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;M �;C m_f r Œ � ;N �/Š Rmod

For
m

�k. zC
or
.k/Œ � ;M �;C m_f r Œ � ;N �/;

respectively

Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;M �;C m_f r Œ � ;N �/Š Rmod

Fm
�k. zC.k/Œ � ;M �;C m_f r Œ � ;N �/:

This lemma is obvious by inspection.
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3 Proof of Proposition 2.5

We need to show that the functor that assigns to any open set U the space

Rk.U;N / WD Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;N . � //

is a homotopy sheaf on O.M / with respect to the Grothendieck topology Jk . This
means that for any cover fUi � U gi2I such that

S
i2I U�k

i D U�k one has that the
natural map

Rk.U;N /
'
�! holim

∅¤S�I
Rk.US ;N /

is a weak equivalence. In the above the homotopy limit is taken over the category of
finite nonempty subsets of I , and US D

T
i2S Ui .

Let us prove first that the functor

U 7! xRk.U;N / WD Rmod
xF fr

m

�k.C
frŒ � ;U �;N . � //

is polynomial of degree less than or equal to k . We don’t need this result, but technically
it is easier, and the proof of the statement that we need is just a slight modification of
the argument given below.

For a set J denote by �J its formal convex hull. It consists of linear combinations
E�D

P
i2J �ihii of elements in J , such that

P
i2J �i D 1; 0� �i � 1, i 2 J ; and the

support of E� is finite:

supp.E�/D fi 2 J j �i ¤ 0g<1:

In case J is finite �J is a simplex. In the general case it is the realization of the full
combinatorial simplicial complex on the vertex set J . In particular we have that �J

is naturally a CW–complex. The space holim∅¤S�I
xRk.US ;N / can be described

as the space of natural transformations between the functor that assigns �S to any
finite nonempty set S � I and the functor that assigns xRk.US ;N / to S � I . Thus a
point G in the homotopy limit is given by a family of maps

GS W �
S
! xRk.US ;N /; ∅¤ S � I:

By adjunction this family of maps can be written as another collection of maps

GS;k W �
S
�C frŒk;US �!N .k/; ∅¤ S � I; k � 0;
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that satisfy certain boundary conditions. In particular for S1�S2 , one has �S1 ��S2 ,
US1
� US2

and

GS2;k

ˇ̌̌
�S1�C frŒk;US2

�
DGS1;k

ˇ̌̌
�S1�C frŒk;US2

�
:

For this reason we drop the subindices S and k and will simply write G.E�;X /, where
E� 2 �I , and X 2 C frŒk;U � for some k � 0. Notice that G.E�;X / is defined if and
only if g.X /� Usupp.E�/ .

One has a natural inclusion

i W xRk.U;N /�! holim
∅¤S�I

xRk.US ;N /

that sends F to .iF /.E�;X /DF.X /. Let us describe the homotopy inverse to i . Recall
that Sub�k.U /. It is homeomorphic to a CW–complex and therefore is paracompact.
One also has that Sub�k.Ui/, i 2I , is an open cover of Sub�k.U /, since

S
i2I U�k

i D

U�k . Let E D
P

i2I ihii be a partition of unity on Sub�k.U / subordinate to the
above cover. We view it as a continuous map

E W Sub�k.U /!�I

that has the property g � Usupp. E .g// for any g 2 Sub�k.U /. On the other hand, we
also have that the map

gW

ka
iD0

C frŒi;U �! Sub�k.U /

is continuous. Now for G 2 holim∅¤S�I
xRk.US ;N / viewed as a function G.E�;X /,

we define s.G/ 2 xRk.U;N / by the formula

(3-1) s.G/.X /DG. E .g.X //;X /:

Since the right action of xF fr
m preserves g.X /, see (2-5), we get that s.G/ is a morphism

of right xF fr
m –modules. It is easy to see that sıi is identity, whereas i ıs sends G.E�;X /

to
.is/.G/.E�;X /DG. E .g.X //;X /:

The homotopy between G and .is/.G/ is given by

G.� � E .g.X //C .1� �/ � E�;X /; 0� � � 1:

Thus we proved that xRk.�;N / is a homotopy Jk –sheaf.

Algebraic & Geometric Topology, Volume 13 (2013)



1258 Victor Turchin

Now, let us establish the same result for Rk.�;N /. One still has an obvious map

i W Rk.U;N / �! holim
∅¤S�I

Rk.US ;N /;(3-2)

.iF /.E�; zX /D F. zX /;

where zX 2 zC fr
.k/
Œj ;U �, 0 � j � k . For the homotopy inverse, unfortunately the

formula (3-1) does not work since the analogous map

zgW

ka
iD0

zC
fr
.k/
Œi;U �! Sub�k.U /;

that assigns the set of geometrically distinct points, is not continuous anymore. To
remedy this we first introduce the map

„W zC frŒ � ;U �! zC frŒ � ;U �

that removes all hairs of zX 2 zC frŒk;U � of length t � 1=2, and contracts every hair to
the length 2t � 1 if its length t � 1=2. It is easy to see that „ is an endomorphism
of zC frŒk;U � as a right F fr

m –module. Moreover „ preserves filtration (2-16) and is
homotopic to the identity in the space of filtration preserving endomorphisms.

Now let zX 2 zC frŒk;U � have the form .X Iy1 � � �y`I t1 � � � t`/, where 0 < t1 � t2 �

� � � � th �
1
2
< thC1 � � � � � t` � 1. Define zgi. zX / D g.X /[ fyiC1;yiC2; : : : ;y`g.

One obviously has

zg. zX /D zg0. zX /� zg1. zX /� � � � � zgh. zX /D zg.„. zX //:

Notice that zgi are not uniquely defined, and therefore are also discontinuous, in case zX
has several hairs of the same length. For example if ti D tiC1 and all other tj are
different there is a choice which hair we take as the i th one and which we take as
the .i C 1/–st. Thus in this particular case the set zgi. zX / is not uniquely defined, but
however all the other sets including zgi�1. zX / are defined uniquely. Now define a map

E�W

ka
iD0

zC
fr
.k/
Œi;U �!�I ;

E�. zX /D

hX
iD0

2.tiC1� ti/ E .zgi. zX //;
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where t0 D 0 and abusing notation thC1 D 1=2. Thus the sum of coefficientsPh
iD02.tiC1� ti/D 1. We argue below that E� is continuous. Recall (2-7):

zC
fr
.k/
Œi;U �D

�k�ia
jD0

C frŒi;U �� .U�j
� Œ0; 1�j /=†j

�.
� :

Thus we are left to check that the equivalence relations (2-8), (2-9) and (2-10) are
respected by E� , which is an easy exercise.

Now we are ready to define a map s homotopy inverse to (3-2):

.sG/. zX /DG. E�. zX /;„. zX //:

This formula is well-defined since zg.„. zX // � Usupp. E�. zX //. Indeed, we have that
zg.„. zX //D zgh. zX /� zgi. zX /� Usupp. E .zgi . zX ///, for 0� i � h. On the other hand, we
have

Th
iD0Usupp. E .zgi . zX ///� Usupp. E�. zX //.

One also has that sG is a morphism of right modules over F fr
m since the right F fr

m

action does not change E�. zX /:

E�. zX ıi c/D E�. zX /;

for every c 2 F fr
m. � /, since again each zgi is preserved by this action.

We check that s is a homotopy inverse to i . One has .si/.F /D F ı„. Since „ is
homotopic to the identity .si/ is so. For the opposite composition we have

.is/.G/.E�; zX /DG. E�. zX /;„. zX //:

The homotopy
G.� � E�C .1� �/ � E�. zX /;„. zX //; 0� � � 1;

shows that .is/ is homotopic to the map that sends G.E�; zX / to H.E�; zX /DG.E�;„. zX //.
Finally using the homotopy between „ and the identity we see that .is/ is also
homotopic to the identity.

This finishes the proof of Proposition 2.5.

4 Proof of Proposition 2.6

We need to show that the natural evaluation map

evk W Emb.U;N /! Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;C m_f r Œ � ;N �/
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is a homotopy equivalence whenever U is a disjoint union of ` balls with `� k . Let
L� U be a finite subset of U with exactly one point in each connected component.
We fix a bijection bW f1 � � � `g!L and also framings ˛i W Rm! Tb.i/U for each point
in L. We denote by Lfr the corresponding point in C fr.`;M /. One has a natural
evaluation map

EvLfr W Emb.U;N /
'
�! C m_f r .L;N /;

that sends f 2 Emb.M;N / to the configuration f .b.1// � � � f .b.`// with framings
defined as compositions

Rm ˛i
�! Tb.i/U

f�

�! Tf .b.i//N:

One can easily see that this map is a homotopy equivalence; see for example [13].

Let C frŒ � ;L� denote the right F fr
m submodule of zC frŒ � ;U � which is generated by

Lfr 2 C frŒ`;L�. It is easy to see that this submodule is naturally homeomorphic to a
free right module generated by †` in degree `. In other words the map of right F fr

m

modules

FreeF fr
m
.†`; `/! C frŒ � ;L�

that sends the unit of †` to Lfr , is a homeomorphism. Therefore the k th truncation
C frŒ � j�k ;L� is also a truncated right module freely generated by †` in degree ` (here
we use the fact that `� k ).

The inclusion

C frŒ � ;L�� zC frŒ � ;U �

is a homotopy equivalence of right F fr
m modules. The homotopy inverse is obtained

by contracting each disc in U to the corresponding point in L, thus sending usual
configurations to infinitesimal configurations. Notice that the same is true for the
inclusion of the truncations

C frŒ � j�k ;L�� zC
fr
.k/
Œ � j�k ;U �:

As a result we get a sequence of homotopy equivalences

(4-1)
Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;C m_f r Œ � ;N �/

'
�! Rmod

F fr
m

�k.C
frŒ � ;L�;C m_f r Œ � ;N �/

Š
�!Maps†`.†`;C

m_f r Œ`;N �/
Š
�! C m_f r Œ`;N �:
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The last two maps in (4-1) are homeomorphisms. Finally we notice that the diagram

Emb.U;N / //

'Ev
Lfr

��

Rmod
F fr

m

�k. zC
fr
.k/
Œ � ;U �;C m_ frŒ � ;N �/

'

��
C m_fr.`;N /

� � ' // C m_frŒ`;N �

is commutative (the right arrow is the composition (4-1)). We conclude that the top
arrow must be an equivalence since all the other maps are.

5 Proof of Theorem 1.5 and Remark 2.2

5.1 Theorem 1.5

By the universal property of polynomial functors [25] one only needs to show that the
functor

(5-1) U 7! hRmod
E.Dm/

�k.Emb. � ;U /;F. � //; U 2 ıManm;

is polynomial of degree less than or equal to k , and also that for every U which
is a disjoint union of less than or equal to k balls this functor produces a space
naturally equivalent to F.U /. Notice that the cofunctor Emb. � ;U /, where U 2O�k ,
is representable and therefore cofibrant; thus the latter statement is straightforward from
the Yoneda lemma and also the fact that the category of k –truncated right modules
over E.Dm/ is equivalent to the category of contravariant functors from the cate-
gory O�k . Let W .E.Dm// be the Boardmann–Vogt replacement of the operad E.Dm/,
see [4]; and let W .�/ be a similar Boardmann–Vogt resolution of the corresponding
right module over E.Dm/. Due to the zigzag of equivalences of operads [18], we have

(5-2) E.Dm/ �W .E.Dm// �! F fr
m;

and the zigzag of right modules over W .E.Dm//

(5-3) Emb. � ;U / �W .Emb. � ;U // �! C frŒ � ;U �;

which is natural in U , the functor (5-1) is equivalent to a similar functor

(5-4) U 7! hRmod
F fr

m

�k.C
frŒ � ;U �; ind.F /. � //;
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where ind.F / is a certain right F fr
m module obtained from F. � / by a natural restriction-

extension construction along the zigzag (5-2); see Fresse [7, Theorem 16.B]. By
Proposition 2.5 the functor (5-4) is polynomial of degree less than or equal to k ,
therefore the equivalent functor (5-1) is so.

5.2 Remark 2.2

We need to show that the cofunctors

U 7! hRmod
E.Dm/

�k.Emb. � ;U /;Emb. � ;N //; U 2 ıManm;(5-5)

U 7! hRmod
F fr

m

�k.C
frŒ � ;U �;C m_f r Œ � ;N �/; U 2 ıManm;(5-6)

are equivalent. To see this equivalence we recall that the operad F fr
m is equivalent

to E.Dm/ via the zigzag (5-2). Thus by [7, Theorem 16.B] the right-hand sides
of (5-5) and (5-6) can be expressed as spaces of derived maps of (truncated) right
modules over W .E.Dm//. Finally, one has a similar zigzag of equivalences of right
W .E.Dm//–modules

Emb. � ;N / �W .Emb. � ;N // �! C m_f r Œ � ;N �;

which together with the natural in U 2 ıManm zigzag (5-3) imply Remark 2.2.

6 Spaces of long embeddings

Theorem 1.5 has a particularly attractive form for the spaces of higher dimensional
long knots. Let Embc.Rm;Rn/ denote the homotopy fiber of the inclusion

(6-1) Embc.R
m;Rn/ ,! Immc.R

m;Rn/;

where Embc.Rm;Rn/, and respectively Immc.Rm;Rn/, is the space of embeddings
Rm ,! Rn , respectively immersions Rm # Rn , coinciding with a fixed linear em-
bedding i W Rm ,!Rn outside a compact subset of Rm . We view Embc.�;RN / as a
cofunctor �O.Rm/! Top from the category of open sets of Rm whose complement is
compact. Define �O�k.R

m/ as its full subcategory that consists of disjoint unions of less
than or equal to k balls and one complement to a closed ball. For an isotopy invariant
cofunctor F W �O.Rm/!Top, its k th Taylor approximation TkF is the homotopy right
Kan extension of F from �O�k.R

m/ to �O.Rm/.
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To take into account the behavior of embeddings at infinity, we will express spaces of
such embeddings as spaces of derived morphisms of certain infinitesimal bimodules
over the little discs operad; see Loday and Vallette [14].3 An infinitesimal bimodule
over an operad is defined in the following way. Let fO.i/, i � 0g be an operad. An
infinitesimal bimodule over O is a symmetric sequence fM.i/; i � 0g equipped with
structure maps (where i � s � 1; j � 0, and ˝ stands for a symmetric monoidal
product):

ısW O.i/˝M.j / �!M.i C j � 1/ left action;

ı
0
sW M.i/˝O.j / �!M.i C j � 1/ right action;

satisfying certain rather easily guessed associativity axioms [2]. For example, left and
right actions must be compatible:

.o1 ıp m/ ıq o2 D .o1 ıq o2/ ıpCq�1 m; 1� q < p � i;

.o1 ıp m/ ıqCk�1 o2 D .o1 ıq o2/ ıp m; 1� p < q � i;

for all o1 2 O.i/, o2 2 O.j /, and m 2M.k/. As above the result of composition
ıi.o;m/, and ı0i.m; o/, for o2O.n/, and m2M.k/, is denoted by oıi m, and mıi o.
Graphically one can view elements of O and M as having a bunch of inputs and
one output. In this representation the composition is shown by the usual grafting; see
Figure 1.

o ı2 m D
m

o

Left action

I m ı2 o D

o

m

Right action

Figure 1: Infinitesimal action

Notice that this structure is different from the structure of a bimodule over an op-
erad. Moreover neither structure can be obtained from one another. Indeed, the right
infinitesimal action is the same as the usual right action, but the left infinitesimal
action is different from the usual left action. However, in one important case when
a bimodule M is endowed with a morphism (of bimodules over O) O!M , the
sequence M inherits the structure of an infinitesimal bimodule. Indeed the image of

3In some previous works the author was using the term weak bimodules for this notion as for example
in [23].
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the unit of O in M can be used to mimic the empty insertions of the left action. In
particular if O! P is a morphism of operads, then P is naturally an infinitesimal
bimodule over O . As an example relevant to us, the linear inclusion i W Rm ,! Rn

induces an inclusion of operads of little discs Bm ,! Bn , and thus both Bm and Bn

are infinitesimal bimodules over Bm .

As another example an infinitesimal bimodule over the commutative operad is the
same thing as a contravariant functor from the category � of finite pointed sets. An
infinitesimal bimodule over the non–† associative operad is nothing but a cosimplicial
object.

By a k –truncated infinitesimal bimodule over O we will understand a symmetric
sequence fM.i/, i D 0; : : : ; kg, with the above structure maps in the range where they
can be defined.

The category of (truncated) infinitesimal bimodules has all the pleasant formal prop-
erties of right modules. For example, the category of infinitesimal bimodules with
values in chain complexes is (in contrast with the category of honest left modules) an
abelian category with enough projectives. Another nice property of this structure is
that an equivalence of operads induces restriction and extension functors which are
Quillen equivalences, similarly to the case of right modules [7, Theorem 16.B]. Let
hIbimod.�;�/, hIbimod�k.�;�/ denote the space of derived morphisms between
infinitesimal bimodules and k –truncated infinitesimal bimodules respectively.

Theorem 6.1 One has natural equivalences

TkEmbc.R
m;Rn/' hIbimod

Bm
�k.Bm;Bn/; n�m:

In particular in the case n>mC 2,

Embc.R
m;Rn/' hIbimod

Bm

.Bm;Bn/:

A discrete version of this theorem appeared in [2]. In the last statement of the theorem
we use the unpublished result of Goodwillie, Klein, and Weiss about the convergence
of the embedding tower in codimension greater than or equal to 3. This statement
generalizes Sinha’s production [20] of a cosimplicial space K�n whose homotopy
totalization TotK�n is weakly equivalent to Embc.R1;Rn/, n� 4. This cosimplicial
object arises from an operad Kn equipped with a map Assoc! Kn , where Assoc
is the associative operad (which is equivalent to B1 ), Kn is an operad equivalent
to Bn , and the map in question is equivalent to the usual inclusion B1! Bn . As was
already mentioned, a cosimplicial space amounts exactly to an infinitesimal bimodule
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over Assoc in the category of spaces, and for mD 1 our theorem above is the same as
Sinha’s formula:

Embc.R
1;Rn/' hIbimod

B1

.B1;Bn/' hIbimod
Assoc

.Assoc;Kn/Š TotK�n:

Theorem 6.1 follows from Theorem 6.3 and Lemma 6.2, and also from the fact that the
inclusion of operads Bm ,! Bn is equivalent to the inclusion Fm ,!Fn , which means
that there is a zigzag of morphisms of operads in which every horizontal arrow is an
equivalence:

Bm� _

��

�
'oo

��

' // Fm� _

��
Bn �

'oo ' // Fn:

In fact the middle map can be chosen to be W .Bm/ ,!W .Bn/; see [18].

Consider the sequence

C�Œ � ;S
n�D fC�Œk;S

n�; k � 0g;

where C�Œk;S
n� is the Fulton–MacPherson–Axelrod–Singer compactification of the

configuration space of k C 1 distinct points in Sn labeled by f�; 1; 2; : : : ; kg, one
of which, labeled by �, is fixed to be 1 2 Sn . Here and below we view Sn as a
one-point compactification of Rn . Thus the interior of C�Œk;S

n� is naturally identified
with the configuration space C.k;Rn/. It turns out that C�Œ � ;S

n� is naturally an infin-
itesimal bimodule over Fn (and therefore over Fm , m� n). Let pi W C�Œk;S

n�! Sn ,
i D 1; : : : ; k , be natural projections. To define a right Fn action on this sequence we
fix a framing of each projection pi.X / 2 Sn , i D 1; : : : ; k , X 2 C�Œk;S

n�. In case
pi.X / 2Rn , the framing ˛i W Rn! Tpi .X /S

n is fixed to be the natural identification
Rn Š Tpi .X /R

n Š Tpi .X /S
n . For the points X on the boundary of C�Œk;S

n� the
framing is extended by continuity. It is quite easy to see that in case pi.X /D1 this
framing of pi.X / depends only on the direction from which pi.X / approaches �.
Those framings enable C�Œ � ;S

n� with a right Fn action. Indeed, the right action
of Fn replaces the corresponding point in the configuration X by an infinitesimal
configuration c 2Fn. � / inserted according to the framing. The infinitesimal left action
produces so called “strata at infinity”. Let s be the inversion map considered as a
coordinate chart at 1:

sW f1g[
[
.Rn
n f0g/ �!Rn; x 7! x=jxj2:
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Define the framing at � to be the natural identification RnŠT0RnDTs.1/R
nŠT1Sn .

The left action c ıi X , where c 2 Fn.`/, replaces the point � by an infinitesimal
configuration si.c/, where

si W Fn! Fn

is the inversion with the center i th point. The replacement is done according to the
framing at infinity that we described above.

The reader might have an impression that this construction is more difficult than it
actually is. It might appear difficult only because when points escape to infinity we
describe how the situation looks like from the point of view of 1 2 Sn . But if we
always keep the global picture in mind from the point of view of the observer in Rn

then we can see that there is no twist in the framing and everything remains as flat
as Rn is.

To be precise there exist two ways to describe C�Œk;S
n� and its strata. The first one is

the usual one (see [19]) which we call spherical, and which was used above to describe
the infinitesimal action of Fn on C�Œ � ;S

n�. In the second description, that we call flat,
it is much easier to see that C�Œ � ;S

n� is naturally an infinitesimal bimodule over Fn .
The difference is that in the spherical model we look at how points approach � D1
in Sn , while in the flat model we look at how points escaping to infinity are located
with respect to one another in Rn . For example, consider the situation when points 3, 4,
and 5, remain fixed in Rn , and points 1 and 2 escape to infinity. The corresponding
stratum in C�Œ5;S

n� is the product C.3;Rn/�C.3;Rn/=G , where G is the group
of translations and positive rescalings. In the flat model, the first factor describes the
location of 3, 4, 5 in Rn ; the second factor describes the relative location of 1, 2, and
conglomeration x D f3; 4; 5g. Figure 2 represents a point in such stratum.

3 4 5 Rn

1 2

Figure 2

The upper disc describes the actual world Rn (it is not quotiented out by G ); the lower
disc describes how points escape to infinity. In particular we see that 2 escapes to
infinity approximately 5 times faster than 1. However, from the perspective of the point
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at infinity the picture is different; see Figure 3. Since 2 escapes to 1 faster, it is closer
to � than 1. The configuration of points 1, 2, � at infinity is obtained from the “flat
configuration” of 1, 2, x D f3; 4; 5g, by taking inversion with center x .

3

4

5

1 �
2

Figure 3

As a more general example, consider the stratum of C�Œ8;S
n� encoded by the tree

from Figure 4. For the configurations in this stratum, points 6, 7, 8 collide together;
similarly 3 and 5 collide; points 1, 4, and 2 escape to infinity, but while doing so 1
stays close to 4.

6
7 8

3 5

root

1 4
� 2

6
7

8
3

5

1 4

� 2

Figure 4

Figure 5 describes the corresponding limiting configuration in the flat model, in which
we look at how the points are located with respect to one another, rather than at how
they are located with respect to 1. The shaded disc in the above figure is the actual
world Rn .

Both flat and spherical models parametrize their strata as products

C.jr j;Rn/�
Y

v2V .T /

C.jvj;Rn/=G;

where T is a tree encoding the stratum, r is its root, V .T / is its set of nonroot-nonleaf
vertices, jvj is the valence of v minus 1. To pass from the spherical parametrization
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6
7 8 3

5

4 1

2

4 1

6 7 8 3 5

Rn

2

�

Figure 5

of a stratum encoded by a tree T to the flat one, one needs to take inversion of the
factors C.jvj;Rn/=G that correspond to the vertices v lying on the path between �
and the root r in T . For all the other factors, the map that gives correspondence is
either identity in case the vertex is above the root or a framing adjusting rotation in
case the vertex is below the root.

We mention that the flat description of C�Œk;S
n� is alluded in the Bott–Taubes integra-

tion when one considers “strata at infinity”, as for example by Cattaneo, Cotta-Ramusino
and Longoni in [6].

To recall both C�Œk;S
n� and Fn.k/ are manifolds with corners whose interiors are

respectively C.k;Rn/ and C.k;Rn/=G .

Lemma 6.2 The projection C.k;Rn/ ! C.k;Rn/=G , where G is the group of
translations and positive rescalings, induces a continuous map C�Œk;S

n�! Fn.k/,
k � 0, which defines an equivalence of infinitesimal Fn bimodules C�Œ � ;S

n�!Fn. � /.

We skip the proof of this lemma. The most difficult part of the proof is probably
checking that the induced map is a morphism of infinitesimal bimodules, which is
however straightforward from the flat description of C�Œk;S

n�.

Theorem 6.3 For all k � 0 and all n�m one has an equivalence

TkEmbc.R
m;Rn/' hIbimod

Fm
�k.C�Œ � ;S

m�;C�Œ � ;S
n�/:

This theorem is a consequence of Proposition 6.4 and Theorem 6.5 below.

Notice that we are in a similar situation as in Section 2: one can see that C�Œ � ;S
m� is

cofibrant as an infinitesimal bimodule over the reduced Fulton–MacPherson operad xFm .
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Thus one only needs to correct it a little bit in order to make the (right) action of Fm.0/

to be free. Define zC�Œ � ;Sm� as the sequence of spaces

zC�Œk;S
m�D

�a
`�0

zC�Œk;S
m�� ..Sm/�` � Œ0; 1�`/=†`

�.
�

of hairy configurations. The equivalence relations are (2-8), (2-9), (2-10), plus in
addition (2-10) must hold whenever yi D1. In words the last condition says that a
hair must disappear whenever it approaches infinity.

Define a filtration

zC
.0/
� Œ � ;Sm�� zC

.1/
� Œ � ;Sm�� zC

.2/
� Œ � ;Sm�� � � �

similar to (2-16) by the number of geometrically distinct points different from 1.

Proposition 6.4 The natural projection

zC
.k/
� Œ � j�k ;S

m�! C�Œ � j�k ;S
m�

is a cofibrant replacement of k –truncated infinitesimal bimodules over Fm .

The proof is similar to Proposition 2.4.

Theorem 6.5 For n�m and any k � 0 one has

TkEmbc.R
m;Rn/' Ibimod

Fm
�k. zC

.k/
� Œ � ;Sm�;C�Œ � ;S

n�/:

In the above Ibimod�k denotes the space of (nonderived) morphisms of truncated
infinitesimal bimodules. The main idea is that for any U 2 �O.Rm/ one can similarly
define infinitesimal bimodules zC�Œ � ;U � and then one can prove statements similar to
Proposition 2.5 and Proposition 2.6 which imply the result.
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