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Faithful simple objects, orders and
gradings of fusion categories

SONIA NATALE

We establish some relations between the orders of simple objects in a fusion category
and the structure of its universal grading group. We consider fusion categories that
have a faithful simple object and show that their universal grading groups must be
cyclic. As for the converse, we prove that a braided nilpotent fusion category with
cyclic universal grading group always has a faithful simple object. We study the
universal grading of fusion categories with generalized Tambara–Yamagami fusion
rules. As an application, we classify modular categories in this class and describe the
modularizations of braided Tambara–Yamagami fusion categories.

18D10, 16T05

1 Introduction

Group gradings on fusion categories and more precisely, group extensions of a fusion
category, are key ingredients in several classification results. In particular, they underlie
the notions of nilpotency and solvability of a fusion category, developed in Gelaki and
Nikshych [14], and Etingof, Nikshych and Ostrik [12]. Group extensions of fusion
categories have been recently classified in Etingof, Nikshych and Ostrik [11].

We shall work over an algebraically closed base field k of characteristic zero. Let C
be a fusion category over k . There is a canonical faithful grading C D

L
g2U.C/ Cg ,

called the universal grading of C , with trivial homogeneous component Ce D Cad ,
where Cad is the adjoint subcategory of C , that is, the fusion subcategory generated
by X ˝X � , where X runs through the simple objects of C (Etingof, Nikshych and
Ostrik [10]). The group U.C/ is called the universal grading group of C [14].

Let X be an object of C . Then X is called faithful if the fusion subcategory CŒX �
generated by X is all of C , so that X is faithful if and only if every simple object of C
appears with positive multiplicity in some tensor power of X .

Let G be a finite group. An example of a fusion category over k is given by the
category rep G of finite dimensional k –linear representations of G . In this case, the
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universal grading group is isomorphic to the dual group bZ.G/ of the center Z.G/ of
G and the adjoint subcategory coincides with the category rep G=Z.G/. See [14].

Suppose V is a finite-dimensional representation of G , and let � be the character of
V . Then it follows from the Burnside–Brauer Theorem (see Isaacs [16, Theorem 4.3])
that V is a faithful object of rep G if and only if � is a faithful character of G , that is,
if and only if ker�D 1.

Let X be a nonzero object of a fusion category C . The order of X is the smallest
natural number n such that the nth tensor power X˝n contains the trivial object 1 of
C . The order of every nonzero object in C is finite; indeed, it is not bigger than the
rank of C . This invariant is introduced and studied in Kashina, Sommerhäuser and Zhu
[17] for the category of representations of a semisimple Hopf algebra.

The orders of simple objects play a rôle in recent classification results Rowell, Stong
and Wang [25], and Hong and Rowell [15]. As pointed out in [15], the classification of
modular categories of a given rank divides naturally into those for which every simple
object is self-dual, that is, of order at most 2, and those for which at least one simple
object is not self-dual, that is, of order bigger than 2. See, in particular, Theorem 2.2
of [loc. cit.].

In this paper we establish some relations between the structure of the group U.C/
and the orders of the simple objects of C . We show that if C is generated by simple
objects X1; : : : ;Xm , then the group U.C/ is generated by elements g1; : : : ;gm , such
that Xi 2 Cgi

, and the order of gi divides the order of Xi , for all i D 1; : : : ;m. Hence,
if C has a faithful simple object X , then the universal grading group of C is cyclic and
its order divides the order of X .

We also establish the converse in the case where C is braided and nilpotent. That is,
if such a fusion category has a cyclic universal grading group, then it has a faithful
simple object. These results are contained in Section 4; see Theorems 4.1 and 4.7. They
extend classical results for finite groups. The proof of Theorem 4.7 relies on the one
hand on Theorem 2.1, which generalizes, in the braided case, the fact that a nontrivial
normal subgroup of a finite nilpotent group intersects the center nontrivially, and on
the other hand, on the fact that every braided nilpotent fusion category is equivalent to
a tensor product of braided fusion categories whose Frobenius–Perron dimensions are
powers of distinct primes (Drinfeld, Gelaki, Nikshych and Ostrik [8, Theorem 1.1]).

Let us summarize some consequences of these facts. See Corollaries 4.3, 4.4, 4.9 and
Proposition 4.8. Firstly, for any fusion category C , the exponent of U.C/ divides the
least common multiple of the orders of simple objects of C . Thus, if every simple
object is self-dual, then U.C/ is an elementary Abelian 2–group.
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Also, if C is nilpotent and has a simple object of order p , where p is a prime number,
then the Frobenius–Perron dimension of C , which is always an integer, is divisible
by p . Moreover, if the order of every simple object of C is a power of p , then the
Frobenius–Perron dimension of C is a power of p .

Assume in addition that C is braided. If X1; : : : ;Xn are simple objects that generate C
as fusion category, we get that the exponent of U.C/ divides the least common multiple
of the orders of X1; : : : ;Xn . In particular, U.C/ is an elementary Abelian 2–group if
C is generated by self-dual simple objects.

These results can be formulated in terms of the group of invertible objects of C when
C is a modular category, since in this case this group is dual to the group U.C/ [14].

In the last two sections of the paper we discuss some applications of the relations
between the orders of simple objects and the orders of the elements of the universal
grading group to study a class of fusion categories. We consider fusion categories C
with generalized Tambara–Yamagami fusion rules in the sense that C is not pointed
and the tensor product of two simple objects of C is a sum of invertible objects. Fusion
categories with these kind of fusion rules are classified, up to equivalence of tensor
categories, in Liptrap [18].

In Section 5 we discuss the universal grading of this kind of fusion categories. We
then apply the results of this section to establish a classification result for modular
categories in this class. Specifically, we show that if C is a modular category, then C
has generalized Tambara–Yamagami fusion rules if and only if C is equivalent to I�B ,
where I is an Ising category and B is a pointed modular category. See Theorem 5.4.
This implies the classification of such modular categories in terms of group theoretical
data, in view of the results on Ising and pointed modular categories Drinfeld, Gelaki,
Nikshych and Ostrik [9, Section 2.11 and Appendix B], and Quinn [24].

Let C be a Tambara–Yamagami fusion category. Up to isomorphism, C has exactly one
non-invertible object X and a (necessarily Abelian) group of invertible objects G such
that X˝X '

L
g2G g . The classification of these categories, up to tensor equivalence,

is given in Tambara and Yamagami [28]. The possible structures of a braided and
spherical fusion category in C are classified in Siehler [26]. By [26, Theorem 1.2], C
admits a braiding if and only if G is an elementary Abelian 2–group. In particular,
FPdim CD 2mC1 , where m is the rank of G . Moreover, by [26, Theorem 1.2 (3)] each
braiding of C has two choices of ribbon structures compatible with it.

Let C be a braided Tambara–Yamagami fusion category and let us regard C as a pre-
modular category with respect to a fixed ribbon structure � 2Aut.idC/. See Bruguières
[5] and Müger [19].
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We show that C is modularizable and describe its modularization zC . We prove that zC
is pointed if and only if C is integral. Otherwise, zC ' I , where I is an Ising category.
This is contained in Section 6. Theorem 6.4 is the main result of this section. Its proof
relies on the fact that, unless it is symmetric, C is a yT –equivariantization of zC for a
certain subgroup T of index at most 2 of the group G of invertible objects of C .

Recall from Siehler [27] that if G is a finite group and � is a nonnegative integer, a
near-group fusion category of type .G; �/ is a fusion category C whose isomorphism
classes of simple objects are represented by G and a non-invertible object X , obeying

(1) g˝ h' gh; X ˝X '
M
g2G

g˚ �X; 8g; h 2G:

Near-group categories of type .G; 0/ are thus Tambara–Yamagami categories.

For the type .G; �/ with � > 0, all possible structures of braided fusion category in C
are classified in Thornton [29]. In this case, if C is not symmetric, then either G D 1

or G is isomorphic to Z2 or Z3 . It follows also from the results of [29] that any
braided near-group category is a premodular category and, as such, it is modularizable.
Furthermore, the modularization of C is a pointed fusion category, unless C is of type
.1; 1/, also called a Yang–Lee category, in which case C is modular.

It turns out that the modularization of any braided near-group category is always either
pointed or self-dual of rank at most 3.
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Conventions and notation

Let C be a fusion category over k . That is, C is a k –linear semisimple rigid tensor
category C with finitely many isomorphism classes of simple objects, finite-dimensional
spaces of morphisms and such that the unit object 1 of C is simple. The set of
isomorphism classes of simple objects in C will be denoted by Irr.C/. By abuse of
notation, we shall indicate a simple object and its isomorphism class by the same letter.

In analogy with the notation used in [16, Chapter 12] in the case of finite group
representations, we shall indicate by cd.C/ the set of Frobenius–Perron dimensions of
simple objects of C .

If X 2 Irr C and Y is an object of C , the multiplicity of X in Y will be denoted by
m.X;Y /. Thus m.X;Y /D dim HomC.X;Y / and Y '

L
X2Irr.C/m.X;Y /X .
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The group of isomorphism classes of invertible objects of C will be denoted by G.C/.
The group G.C/ acts on the set Irr.C/ by left (and right) tensor multiplication. Denote
by GŒX � the stabilizer of X 2 Irr.C/ under the left action of G.C/. If g 2 G.C/
and X 2 Irr.C/, we have g 2 GŒX � if and only if m.g;X ˝X �/ > 0 if and only if
m.g;X ˝X �/D 1.

A fusion subcategory of C is a full tensor subcategory stable under direct sums and
subobjects. A fusion subcategory is itself a fusion category [9, Corollary F.7]. Let S

be a set of objects of C . The smallest Abelian subcategory of C containing S and
stable by direct sums and subobjects will be denoted .S/. We shall indicate by CŒS �
the fusion subcategory of C generated by S . The fusion subcategory generated by
fX g, where X is an object of C , will be denoted CŒX �. The maximal pointed fusion
subcategory of C is denoted Cpt D CŒG.C/�.

2 Group gradings on fusion categories

Let C be a fusion category and let G be a finite group. A G–grading on C is a
decomposition of C as a direct sum of full Abelian subcategories C D

L
g2G Cg , such

that C�g D Cg�1 and the tensor product ˝W C � C ! C maps Cg � Ch to Cgh . The
neutral component Ce is thus a fusion subcategory of C .

A G–grading on C is equivalently determined by a function �W Irr.C/ ! G such
that �.X �/ D �.X /�1 and �.Z/ D �.X /�.Y /, for all X;Y;Z 2 Irr.C/ such that
m.Z;X ˝Y / > 0.

The grading C D
L

g2G Cg is called faithful if Cg ¤ 0, for all g 2G . In other words,
the associated map �W Irr.C/!G is surjective. In this case, C is called a G –extension
of Ce [12]. When C is a G –extension of a fusion subcategory DD Ce , the Frobenius–
Perron dimensions of Cg are all equal and we have FPdim C D jGjFPdimD [10,
Proposition 8.20].

Let us recall the notion of nilpotent fusion category from [14]. The adjoint subcategory
Cad is the full tensor subcategory of C generated by X ˝X � , X 2 Irr C . The upper
central series C D C.0/ � C.1/ � � � � � C.n/ � � � � of C is defined inductively as
C.n/ D .C.n�1//ad , for all n � 1. A fusion category C is called nilpotent if its upper
central series converges to Veck , that is, if C.n/ D Veck for some n� 0. The smallest
such n is called the nilpotency class of C .

For instance, if p is a prime number and C is any fusion category with FPdim C D pn ,
n� 0, then C is nilpotent [14; 10].
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There is a faithful grading CD
L

g2U.C/ Cg , where Ce D Cad and U.C/ is the universal
grading group of C . Let �C W Irr.C/! U.C/ denote the universal grading of C . Its
universal property can be stated as follows: for any grading �W Irr.C/!G by a group
G , there exists a unique group homomorphism �W U.C/!G such that �D ��C .

Suppose D is a fusion subcategory of C . Then D is faithfully graded by the subgroup
UD.C/D fg 2 U.C/ jD\ Cg ¤ 0g � U.C/. By the universal property of U.D/ there
is a surjective group homomorphism �DW U.D/! UD.C/ [14, Corollary 3.7]. For all
g 2 UD.C/, we have a decomposition D\ Cg D

L
�D.t/Dg Dt .

Let G be a finite group. The category C D rep G of finite-dimensional representations
of G is nilpotent if and only if G is nilpotent [14]. On the other hand, a fusion
subcategory of C is of the form rep G=N for some normal subgroup N of G . The
next theorem amounts in this case to the well-known fact that if G is nilpotent and
N ¤ 1 is a subgroup, then N \Z.G/¤ 1.

Theorem 2.1 Let C be a nilpotent fusion category with commutative Grothendieck
ring. Suppose D is a fusion subcategory of C such that UD.C/ D U.C/, that is,
D\ Cg ¤ 0, for all g 2 U.C/. Then DD C .

The assumption on commutativity of the Grothendieck ring comes from the use, in the
proof below, of properties of commutator subcategories, which are proved only under
this assumption. See [14, Section 4.2].

Note that the theorem applies, in particular, if C is braided.

Proof Note first that if C.1/ D Cad �D , then DD C . Indeed, in this case D is a Cad –
sub-bimodule category of C and therefore, it is a sum of indecomposable sub-bimodule
categories DD

L
g2S Cg , for some subset S � U.C/ (since the subcategories Cg are

the indecomposable Cad –sub-bimodule categories of C [14]). Hence D\ Cg D 0, for
all g … S , implying, by assumption, that S D U.C/, that is, DD

L
g2U.C/ Cg D C .

Consider the upper central series � � � � C.mC1/ � C.m/ � � � � � C.1/ � C.0/ D C . Since
C is nilpotent, there exists n� 1 such that C.n/ D Veck . In particular, C.n/ �D . Let
m be the smallest nonnegative integer such that C.m/�D . We may assume that m� 1.
Then C.m�1/ ªD and C.m/ D .C.m�1//ad �D .

Let Dco be commutator subcategory of D in C , that is, Dco is the fusion subcategory
of C generated by all simple objects Y of C such that Y ˝ Y � belongs to D [14,
Definition 4.10]. Thus .Dco/ad �D �Dco , and Dco is the largest fusion subcategory
of C with the property .Dco/ad �D .
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For every j D 0; : : : , let DŒj � be the fusion subcategory defined as follows: DŒ0� DD ,
DŒjC1� D .DŒj �/co , j � 0. As before, we have .DŒjC1�/ad � DŒj � � DŒjC1� , for all
j D 0; 1; : : : .

Since D �DŒj � , we get:

(2) DŒj �\ Cg ¤ 0; 8g 2 U.C/;8j D 0; : : :

On the other hand, we have inclusions

(3) C.m�j/
�DŒj �; 8j D 0; : : : ;m:

Indeed, C.m/ D .C.m�1//ad �D , so that C.m�1/ �Dco DDŒ1� . Assuming inductively
that C.m�j/ � DŒj � for 1 � j < m, we get that .C.m�.jC1///ad D C.m�j/ � DŒj � .
Hence C.m�.jC1// � .DŒj �/co DDŒjC1� .

It follows from (3) that C.1/ D Cad � DŒm�1� . Therefore DŒm�1� D C , in view of
(2). We now show by induction that DŒm�j � D C , for all j D 1; : : : ;m. Suppose
that DŒm�j � D C . Then Cad D .DŒm�j �/ad �DŒm�.jC1/� . Hence DŒm�.jC1/� D C . In
particular, DDDŒ0� D C . This finishes the proof of the theorem.

3 The fusion subcategory generated by a simple object

Let C be a fusion category. Recall that an object X of C is called faithful if for every
Y 2 Irr.C/, we have m.Y;X˝n/ > 0, for some integer n� 1. Thus X 2 C is faithful
if and only if fX g generates C as a fusion category.

The following definition appears in [17, Chapter 4].

Definition 3.1 Let X be a nonzero object of C . The smallest nonnegative integer n

such that m.1;X˝n/ > 0 is called the order of X . We shall denote it by ord.X /.

Suppose X 2 Irr.C/. Then ord.X / D 1 if and only if X D 1. Also, ord.X / D 2 if
and only if X DX � and 1¤X .

Remark Recall that the rank of C , denoted rk.C/, is the cardinality of the set Irr.C/.
It is shown in [17, Proposition 5.1] that an object X is faithful if and only if the
matrix of left multiplication by X in the basis Irr.C/ of the Grothendieck ring of C
is indecomposable. As in [17, Corollary 5.1], we get that ord.X / � rk.C/, for all
nonzero object X . Indeed, these results are stated [loc. cit.] for the case where C is
the category of finite-dimensional representations of a semisimple Hopf algebra, but
the proof applies mutatis mutandis in any fusion category as well.
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Suppose that C is a spherical fusion category. Then, by Ng and Schauenburg [22,
Corollary 5.13], for every simple object X of C , we have furthermore that ord.X /�
FSexp .C/, where FSexp .C/ 2N is the Frobenius–Schur exponent of C .

Let X be an object of C and let CŒX � be the fusion subcategory of C generated by X .
The universal grading group of CŒX � will be denoted by U.X /.

Remark Let C be a fusion category and assume C has a unique maximal fusion
subcategory. Then C has a faithful simple object.

Proof Let D ¨ C be the unique maximal fusion subcategory of C . If X 2 Irr.C/ is
such that CŒX � ¨ C , then CŒX � � D . Hence there must exist some X 2 Irr.C/ with
CŒX �D C . This proves the claim.

Example 3.2 (i) Let C be a pointed fusion category with a finite group G of invertible
objects. Then a simple object g 2 G is faithful if and only if G is a cyclic group
generated by g .

(ii) Suppose C D rep G , where G a finite group. Let X be an object of C , and let
�D �X be the character of X . Then X is a faithful object of C if and only if � is a
faithful character of G .

We have in this example CŒX �D rep.G= ker�/. Moreover, if X 2 Irr.C/ (that is, X

is an irreducible representation of G ), then U.X /'Z.G= ker�/'Z.�/= ker� [16,
Lemma 2.27]. Recall that the normal subgroups ker� and Z.�/ are defined as:

(4) ker�D fg 2G j �.g/D �.1/g; Z.�/D fg 2G j j�.g/j D .���/.g/D �.1/g

(iii) Let H be a semisimple Hopf algebra and let C D rep H be the category of
finite-dimensional representations of H . Let � W H ! End.V / be a finite-dimensional
representation. The subspaces

Rker.�/D fh 2H j �.h.1//˝ h.2/ D idV ˝hg;

RZ.�/D Rker.� ˝��/D fh 2H j .� ˝��/.h.1//˝ h.2/ D idV˝V � ˝hg;

are normal right coideal subalgebras of H . (Similarly, one can define normal left
coideal subalgebras Lker.�/ and LZ.�/ with analogous properties.) The coideal
subalgebras Rker.�/ and Lker.�/ are studied in Burciu [7].

The quotient Hopf algebra H=H.Rker�/C satisfies CŒ��D rep.H=H.Rker�/C/. We
have in addition:
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Proposition 3.3 Let A�H be a right coideal subalgebra. Then A� RZ.�/ if and
only if, for all a 2 A, �.a/ D �.a/ idV , for some linear character � 2 G.A�/. In
particular, if A� RZ.�/ and � is faithful then A�Z.H /.

Proof Note that if an element h 2H belongs to RZ.�/DRker.�˝��/, then h acts
trivially on V ˝V � . Since V ˝V � ' End.V / as H –modules, this implies that there
exists �.h/ 2 k such that �.h/D �.h/ idV . In other words, the normal right coideal
subalgebra RZ.�/ acts by scalars on V . Clearly, the map � defines a linear character
on RZ.�/. This implies the only if direction.

Conversely, suppose that for all a 2 A, �.a/ D �.a/ idV , for some linear character
�2G.A�/. Then A acts trivially on End.V /' V ˝V � and since A is a right coideal
subalgebra, we get that A� RZ.�/. This finishes the proof of the lemma.

Let K �H be the maximal central Hopf subalgebra. It follows from [14, Theorem
3.8] that K' kU.H / , where U.H / is the universal grading group of CD rep H . Thus,
U.H / is isomorphic to the group G.K�/ of one-dimensional representations of K .

The following corollary describes the universal grading group U.H /, generalizing [16,
Corollary 2.28]. The author thanks S Burciu for his comments on a previous version of
the manuscript that motivated the present statement.

Corollary 3.4 Let H be a semisimple Hopf algebra and let U.H / be the universal
grading group of the category rep H . Then kU.H / D

T
�2Irr.H / RZ.�/.

Proof Let R D
T
�2Irr.H / RZ.�/. As remarked above, we have an isomorphism

kU.H /'K , where K is the maximal central Hopf subalgebra of H . Since K�Z.H /,
we have K �R, by Proposition 3.3.

Note that H=HKCDHad is the unique quotient Hopf algebra that satisfies rep HadD

.rep H /ad . Let pW H ! Had denote the canonical projection, so that K D co pH D

fh 2H W p.h.1//˝ h.2/ D 1˝ hg.

Since R is a central right coideal subalgebra, there is a Hopf algebra quotient p0W H!

H=HRC and we have as well RD co p0H Dfh2H Wp0.h.1//˝h.2/D1˝hg. Because
elements of R act trivially on the tensor products V ˝V � , for all simple H –modules
V , it follows that R acts trivially on every irreducible representation of Had . Hence
pjR D � and thus HRC � ker p DHKC . Then the projection p factorizes through
p0W H ! H=HRC , that is, p D fp0 , where f W H=HRC ! H=HKC is a Hopf
algebra map. Therefore R D co p0H � co pH D K . This implies that R D K and
finishes the proof of the corollary.
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Let C be a fusion category and let X 2 Irr.C/. Recall that by the universal property of
U.X / there is a group homomorphism �X D�CŒX �W U.X /!U.C/. This is determined
as follows: for every t 2 U.X /, �X .t/D g 2 U.C/ if and only if CŒX �t � Cg . The
following lemma will be used later on.

Lemma 3.5 We have U.C/D
S

X2Irr.C/ �X .U.X //.

Proof Let g 2 U.C/ and let Y be a simple object in Cg . By definition of �Y , we
have g 2 �Y .U.Y //. This proves the lemma.

We end this section by recalling some known families of examples. Let k DC .

Example 3.6 (Verlinde categories for sl2 ) Let n be a positive integer and let q D

ei�=.nC2/ . Let CnDCn.sl2/ be the semisimplification of the category of representations
of Uq.sl2/ (Andersen and Paradowski [1], and Bakalov and Kirillov [2]). It is well-
known that Cn is a modular fusion category over k . Isomorphism classes of simple
objects in Cn are represented by objects Xi , 0� i � n, with X0 D 1, X �i DXi , and
obeying the truncated Clebsch–Gordan fusion rules:

(5) Xi ˝Xj '

min.iCj ;2n�.iCj//M
lDji�j j

iCj�l.2/

Xl

The Frobenius–Perron dimension of Xj is given by

FPdim Xj D
qjC1� q�.jC1/

q� q�1
D

sin..j C 1/�/

sin.�/
; where � D

�

nC 2
:

In particular, there are exactly two invertible objects: 1DX0 and g DXn .

There is a faithful Z2 –grading on Cn given by Cn D CCn ˚ C�n , where C˙n is the
full Abelian subcategory with simple objects Xi , i even (respectively, odd). Letting
X DX1 , relation (5) implies that Cn D CnŒX �, so that X is a faithful simple object of
order 2. We have in this example U.Cn/'G.Cn/' Z2 .

Example 3.7 (Modular near-group categories) Let C be a near-group category of
type .G; �/, as described in the introduction. Then we have U.C/D 1 if � > 0, and
U.C/D Z2 if � D 0. Indeed, in the first case, it is clear from (1) that Cad D C , while
in the second case Cad ' CŒG�.

Let C be a near-group category of type .G; �/ and suppose that C admits a modular
structure. Then G DG.C/' U.C/ is of order 1 or 2.
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If � ¤ 0, then G D 1, so C is of rank 2 and has a non-invertible object X , such that
X˝2 D 1˚X . By Ostrik [23] there are 4 nonequivalent braided fusion categories
with these fusion rules, called Yang–Lee categories, and they are modular.

If � D 0, then G ' Z2 . The fusion rule (1) is in this case X˝2 D 1˚ a, where
hai DG . Fusion categories with these fusion rules are called Ising categories. They
are classified in [9, Appendix B]. In particular, every braided Ising category is modular
[9, Corollary B.12].

Example 3.8 (Fermionic Moore–Read fusion rule) Let G D hg j g4 D ei denote the
cyclic group of order 4. Consider the commutative fusion rules on the set G[fX;X 0g

determined by h˝ h0 ' hh0 , h; h0 2G and

g2
˝X 'X; g2

˝X 0 'X 0; X ˝X 0 ' 1˚g2;

g˝X 'X 0; g˝X 0 'X; X ˝X ' g˚g3;

g3
˝X 'X 0; g3

˝X 0 'X; X 0˝X 0 ' g˚g3:

It is known that, up to equivalence of tensor categories, there are four fusion categories
with these fusion rules, none of them braided (Bonderson [4], and Liptrap [18]). If C is
any fusion category satisfying these fusion rules, then FPdim C D 8 and C is nilpotent
of nilpotency class 2. We have in addition G DG.C/' U.C/ and Cad D CŒg2�.

Observe that in these examples g2 is the only simple object of order 2. Also, X is of
order 4 and X˝2 decomposes as a direct sum of simple objects of order 4.

Example 3.9 (Faithful simple objects of order 2) Let C be a fusion category over k

and assume X is a faithful simple object of C of order 2, that is, C D CŒX �, X ¤ 1
and X 'X � .

Let q2k� and consider the tensor category rep SLq.2/ of finite-dimensional comodules
over the Hopf algebra SLq.2/. Suppose q is generic, that is, it is not a root of unity
or q D ˙1. Then rep SLq.2/ is a semisimple tensor category whose Grothendieck
ring is isomorphic to the Grothendieck ring of the category rep SL.2/. The category
rep SLq.2/ has a self-dual faithful simple object V corresponding to the standard
2–dimensional representation of SL.2/.

Fix an isomorphism ˆW X !X � such that the induced map

1!X ˝X �
ˆ˝ˆ�1

�����!X �˝X ! 1

is given by the scalar �.qC q�1/, where q 2 k� is generic. In this case there exists
a unique tensor functor F W rep SLq.2/ ! C such that F.V / D X and F.�/ D ˆ,
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where �W V ! V � is a fixed isomorphism in rep SLq.2/. See Etingof and Ostrik
[13, Theorem 2.1], and Turaev [30, Chapter XII]. Since X is a faithful object and
F.V / D X , the functor F is surjective. Thus, every such fusion category C is a
quotient of rep SLq.2/ for an appropriate value of q . (Note that when q is a root of
unity, the category rep SLq.2/ has a similar universal property [13, Theorem 2.3].)

Example 3.10 (Faithful comodules of dimension 2) Finite-dimensional cosemi-
simple Hopf algebras with a self-dual faithful irreducible comodule V of dimension 2

were classified in Bichon and Natale [3].

Let �.V /D˙1 denote the Frobenius–Schur indicator of V . If �.V /D�1, then H is
commutative and isomorphic to the dual group algebra k

z� , where z� is a non-Abelian
binary polyhedral group.

If, on the other hand, �.V / D 1, then either H is commutative and isomorphic
to kDn , n � 3, where Dn is the dihedral group of order 2n, or H is isomorphic
to one of certain nontrivial Hopf algebra deformations AŒz�� or BŒz�� of a binary
polyhedral group z� . In the last case, H fits into an Abelian cocentral exact sequence
k! k�!H ! kZ2! k , where z�=Z2D � � PSL2.k/ is a finite polyhedral group
of even order. The universal grading group of the category C of finite-dimensional
H –comodules is Z2 , and the adjoint subcategory is the category of representations of
the commutative Hopf subalgebra k� .

4 Faithful simple objects and the universal grading group

Let G be a finite group and let C D rep G . Then U.C/ ' Z.G/. A classical result
says that if G has a faithful character, then the center Z.G/ is cyclic; see for instance
[16, Theorem 2.32 (a)]. The analogous statement is true for any fusion category, as
follows from the next theorem.

Theorem 4.1 Let C be a fusion category and let U.C/ be its universal grading group.
Then the following hold:

(i) Suppose X 2 Irr.C/ and let g 2 U.C/ such that X 2 Cg . Then the order of g

divides the order of X .

(ii) Suppose C is generated by simple objects X1; : : : ;Xm as a fusion category, and
let gi 2 U.C/ such that Xi 2 Cgi

, 1 � i � m. Then g1; : : : ;gm generate the
group U.C/.

In particular, if X 2 Irr.C/ is faithful, then the group U.C/ is cyclic and its order divides
the order of X .
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As a consequence, if C has a self-dual faithful simple object, then U.C/ D 1 or
U.C/' Z2 .

Proof (i) Let nD ord.X /, so that m.1;X˝n/ > 0. On the other hand, X˝n 2 Cgn ,
and since 1 2 Ce , we get Cgn D Ce . Hence gn D e , and the order of g divides n.

(ii) Since Xi 2Cgi
, 1� i �m, then Xi1

˝� � �˝Xit
2Cgi1

���git
, for all 1� i1; : : : ; it �

m. Let g 2 U.C/ and let Y 2 Irr.C/ such that Y 2 Cg . By assumption, Y appears
with positive multiplicity in some tensor product Xi1

˝ � � �˝Xit
. Then Y 2 Cgi1

���git

and we get that g D gi1
� � �git

. Thus U.C/D hgi1
; : : : ;git

i, as claimed.

Example 4.2 Let H be a semisimple Hopf algebra and let K �H be the maximal
central Hopf subalgebra of H , so that K ' kU.C/ , where C D rep H is the fusion
category of finite dimensional representations of H . Theorem 4.1 implies that if H

has a faithful irreducible character �, then K ' kZm , where m divides the order of �.
(Compare with [3, Theorem 3.5].)

Corollary 4.3 Let p be a prime number. Suppose C is a nilpotent fusion category
such that C has a simple object of order p . Then the Frobenius–Perron dimension of C
is divisible by p . In particular, if C has a self-dual simple object, then FPdim C is even.

Note that the Frobenius–Perron dimension of a nilpotent fusion category is always an
integer.

Proof Let X 2 Irr.C/ of order p . Since CŒX � is also nilpotent, then U.X /¤ 1 and
therefore U.X /' Zp , by Theorem 4.1. Hence p divides FPdim CŒX �. This implies
the corollary, since FPdim CŒX � divides FPdim C [10, Proposition 8.15].

Combining Lemma 3.5 and Theorem 4.1 we get the following:

Corollary 4.4 Let C be a fusion category. Then the following hold:

(i) Let n 2N and suppose that the order of X divides n, for all X 2 Irr C . Then the
exponent of U.C/ divides n. In particular, if all simple objects of C are self-dual,
then U.C/ is an elementary Abelian 2–group.

(ii) Let p be a prime number. Suppose that C is nilpotent and the order of X is a
power of p , for all simple object X of C . Then FPdim CDpm , for some m� 1.
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Proof By Theorem 4.1 each of the groups U.X / is cyclic of order dividing n. Thus
(i) follows from Lemma 3.5. To prove (ii), observe that it follows from Lemma 3.5
and Theorem 4.1 that U.C/ is a p–group, hence of order a power of p . Since C is
nilpotent, FPdim Cad < FPdim C . By induction, we may assume that FPdim Cad is a
power of p . Then so is FPdim C .

The next lemma gives a sufficient condition for a fusion category C to have a self-dual
simple object, in terms of the universal grading of C .

Lemma 4.5 Suppose that g 2 U.C/ is of order 2 and the rank of Cg is 1. Then, if
X 2 Cg is a simple object of C , X has order 2.

Proof Let X 2 Cg . Then X � 2 Cg�1 D Cg , because g is of order 2, by assumption.
Since Cg has rank 1, then X � must be isomorphic to X . This implies the lemma.

Recall that if G is a finite nilpotent group with cyclic center, then G has a faithful
irreducible character [16, Theorem 2.32(b) and Problem 4.3]. Our next theorem
establishes the analogous fact for braided fusion categories, thus giving a partial
converse of Theorem 4.1 in this case.

We need first the following lemma.

Lemma 4.6 Let C1; C2 be nilpotent fusion categories with commutative Grothendieck
ring. Suppose that Xi is a faithful simple object of Ci , i D 1; 2. Assume in addition
that the orders of U.C1/ and U.C2/ are relatively prime. Then X1�X2 is a faithful
simple object of C1� C2 .

Proof Let C D C1 � C2 and put Ui D U.Ci/ and U D U.C/. Note that Cad D

.C1/ad� .C2/ad and U D U1 �U2 . In particular, C is also nilpotent.

By Theorem 4.1 the groups U1 and U2 are cyclic. Since jU1j and jU2j are relatively
prime, then U is also cyclic. Moreover, suppose that Xi 2 .Ci/ai

, i D 1; 2. Then
haii D Ui and thus U D hai, where aD .a1; a2/.

Let g 2 U , g D am D .am
1
; am

2
/, m � 1. Then .X1�X2/

˝m D X˝m
1
�X˝m

2
is a

nonzero object in .C1/am
1
� .C2/am

2
D .C1� C2/.am

1
;am

2
/ D Cg .

Denote by DD CŒX1�X2� the fusion subcategory of C generated by X1�X2 . We
have shown that D \ Cg ¤ 0, for all g 2 U.C/. Since C is also a nilpotent fusion
category with commutative Grothendieck ring, DD C , by Theorem 2.1.

Theorem 4.7 Let C be a braided nilpotent fusion category such that the group U.C/
is cyclic. Then C has a faithful simple object.
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Proof Suppose first that FPdim C D pn , where p is a prime number, n � 0. By
assumption, U.C/ has a unique subgroup T of index p . Let X 2 Irr.C/ and suppose
that CŒX � ¨ C . It follows from Theorem 2.1 that �X .U.X // ¨ U.C/ and therefore
�X .U.X //� T . By Lemma 3.5, U.C/D

S
X2Irr.C/�X .U.X //. Therefore there must

exist some X 2 Irr.C/ with CŒX �D C . Then the theorem holds in this case.

By [8, Theorem 1.1] a braided nilpotent fusion category has a unique decomposition
into a tensor product of braided fusion categories whose Frobenius–Perron dimensions
are powers of distinct primes. That is, there exist prime numbers p1; : : : ;pr , pi ¤ pj

for all i¤ j , and an equivalence of braided fusion categories C'Cp1
�� � ��Cpr

, where
for all i D 1; : : : ; r , Cpi

is a braided fusion category of Frobenius–Perron dimension
p

ni

i , for some ni � 0.

We have an isomorphism U.C/'U.Cp1
/�� � ��U.Cpr

/. Therefore the groups U.Cpi
/

are also cyclic. As we have already shown, this implies that each Cpi
has a faithful

simple object Xi , i D 1; : : : ; r . Since the orders of the groups U.Cpi
/ are relatively

prime, Lemma 4.6 implies that X1� � � ��Xr is a faithful simple object of C . This
finishes the proof of the theorem.

When C is a braided fusion category, the group U.C/ is Abelian. We have in this case
the following refinement of Corollary 4.4:

Proposition 4.8 Let C be a braided fusion category. Suppose C is generated by simple
objects X1; : : : ;Xn . Then the exponent of U.C/ divides l:c:m:ford Xi j 1� i � ng. In
particular, if C is generated by self-dual simple objects, then U.C/ is an elementary
Abelian 2–group.

Proof Let gi 2U.C/ such that Xi 2 Cgi
. Then U.C/ is generated by g1; : : : ;gn , and

by Theorem 4.1, the order of gi divides ord Xi , for all i D 1; : : : ; n. This implies the
proposition, since U.C/ is Abelian.

When C is a modular category, there is a group isomorphism G.C/ ' U.C/ [14].
Theorems 4.1 and 4.7 imply the following:

Corollary 4.9 Let C be a modular category. Then the following hold:

(i) Suppose C has a faithful simple object. Then the group G.C/ is cyclic and its
order divides the order of X . In particular, if C has a faithful self-dual simple
object, then G.C/D 1 or G.C/' Z2 .

(ii) Suppose C is nilpotent. If G.C/ is cyclic, then C has a faithful simple object.
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5 Generalized Tambara–Yamagami fusion rules

Let us consider a fusion category C such that C is not pointed and for all non-invertible
simple objects X;Y of C , their tensor product X ˝ Y is a direct sum of invertible
objects. We shall say in this case that C has generalized Tambara–Yamagami fusion
rules. These categories are classified, up to equivalence of tensor categories, in [18].
Semisimple Hopf algebras H such that the category rep H has generalized Tambara–
Yamagami fusion rules were studied in Natale [21].

Let G be the group of invertible objects of C . Then for all X 2 Irr.C/ we have the
relation X ˝X � '

L
h2GŒX �h. In particular, C is nilpotent of nilpotency class 2.

Lemma 5.1 (i) The action of the group G by left (or right) tensor multiplication
on the set Irr.C/�G is transitive.

(ii) There exists a normal subgroup � of G such that GŒX �D� , for all non-invertible
simple objects X of C . In particular cd.C/D f1;

p
j�jg.

(iii) Irr.C/DG [fXsj s 2G=�g, where Xg D g˝X , g 2G , obeying

(6) g˝ h' gh; Xg˝X �
h
'

M
a2�

gah�1; 8g; h 2G:

Proof Let X;Y 2 Irr.C/�G . By assumption, X ˝Y � D
L

h2S h for some subset
S �G . Then there exists h 2G such that m.h;X ˝Y �/ > 0. Hence m.X; h˝Y /D

m.h;X ˝ Y �/ D 1 and thus h˝ Y D X . This shows that the left action of G is
transitive. The statement for the right action is proved similarly. This shows (i).

Part (ii) follows from transitivity of the right action, since GŒX ˝ h�DGŒX �, for all
simple objects X , and for all h2G . Note that, if h2G , �DGŒh˝X �DhGŒX �h�1D

h�h�1 . Hence � is normal in G .

Finally, let X be a fixed non-invertible simple object and set Xg D g˝X , for every
g 2G=� . The isomorphism class of Xg is well defined, since � DGŒX �. This also
implies that Xg ' X

h
if and only if g D h in G=� . It is clear that the relations (6)

are satisfied. By (i), every non-invertible Y 2 Irr.C/ is isomorphic to Xg , for some
g 2G , and thus we get (iii).

Remark Let G and � be the groups associated to C as in Lemma 5.1. We shall say
that C has generalized Tambara–Yamagami fusion rules of type .G; �/. In this case,
the lemma implies that the rank of C is ŒG W ��.1Cj�j/ and FPdim C D 2jGj.

In addition, if the index of � in G is odd, then C has a non-invertible simple object of
order 2.
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Tambara–Yamagami categories and Moore–Read categories are examples of fusion
categories with generalized Tambara–Yamagami fusion rules of types .G;G/, where
G is a finite Abelian group, and .Z4;Z2/, respectively.

Proposition 5.2 Suppose C has generalized Tambara–Yamagami fusion rules of type
.G; �/. Then we have:

(i) The adjoint subcategory Cad coincides with CŒ�� and it is equivalent to the
category of � –graded vector spaces.

(ii) The group U.C/ is of order 2ŒG W ��.

(iii) The universal grading �W Irr.C/! U.C/ induces an isomorphism G=� ' �.G/,
such that ŒU.C/ W �.G/�D 2.

(iv) Let g 2 U.C/. Then the rank of Cg equals j�j if and only if g 2 �.G/, and in
this case Cg D .zg�/, where �.zg/D g . Otherwise, Cg is of rank 1.

Proof (i) By Lemma 5.1 (ii), X˝X �'
L

h2�h, for all non-invertible simple objects
X of C . Therefore Cad D CŒ��. On the other hand, if X is a non-invertible simple
object, then X gives rise (via left tensor multiplication) to a fiber functor on CŒ��.
Then CŒ�� is equivalent to the category of �–graded vector spaces. This shows (i).

(ii) Since FPdim C D j�jjU.C/j D 2jGj, jU.C/j D 2ŒG W ��, as claimed.

(iii) It is clear that � induces a group homomorphism �W G!U.C/. Since CadDCŒ��,
ker�D � and G=� ' �.G/. The last assertion follows from (ii).

(iv) We have FPdim Cg D j�j, for all g 2U.C/. This implies (iv), in view of (iii) and
Lemma 5.1 (ii).

Recall that a braided fusion category T is called Tannakian if there exists an equivalence
of braided tensor categories T ' rep G , where G is a finite group.

Lemma 5.3 Let C be a modular category with generalized Tambara–Yamagami fusion
rules. Then we have:

(i) � ' Z2 and CŒ�� is not Tannakian.

(ii) C has a non-invertible simple object of order 2.

Proof (i) Since C is modular, G 'U.C/. From Proposition 5.2, we get that j�j D 2.
Hence FPdim X D

p
2, for all non-invertible simple object X of C . Suppose on the

contrary that CŒ�� is Tannakian, that is, CŒ�� ' rep Z2 as braided tensor categories.
We may regard C a fusion subcategory of its Drinfeld center Z.C/. It follows from
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[12, Proposition 2.10; 9, Theorem 4.18(i)] that C is a Z2 –equivariantization of a (not
necessarily braided) fusion category D . In other words, there exists a fusion category
D and an action of �W Z2! Aut˝D by tensor autoequivalences, such that C 'DZ2

as fusion categories.

The forgetful functor F W DG!D is a tensor functor and the image under F of every
object of CŒ�� is a trivial object of D . Let ı be the nontrivial element of � ' Z2 .
If X is a non-invertible simple object of C , then we know from Lemma 5.1 that
X ˝X � ' 1C ı . Thus F.X ˝X �/ ' F.X /˝F.X /� D 1C 1, which is clearly
impossible; indeed, this implies that F.X / is not simple, so F.X /˝F.X /� should
have at least four nonzero simple summands.

(ii) Let C0pt denote the Müger centralizer of Cpt D CŒG� in C . By [9, Corollary 3.27],
[14, Corollary 6.8], we have CŒG�0 D Cad D CŒ��. In particular, CŒ��� CŒG� coincides
with the Müger center of CŒG�. Since, by Part (i), CŒ�� is not Tannakian, CŒG� is
slightly degenerate, and it follows from [12, Proposition 2.6 (ii)] that CŒG�' CŒ���B
as braided tensor categories, where B is a pointed modular category. In particular,
jGj D 2 FPdimB . Let B0 be the Müger centralizer of B in C . Since C is modular, we
have FPdimB FPdimB0 D FPdim C D 2jGj. Hence FPdimB0 D 4 and therefore B0
is an Ising category. Then B0 , and thus also C , has a non-invertible simple object of
order 2 and (ii) holds. This finishes the proof of the lemma.

The following theorem is the main result of this section. Combined with the results
in [9, Section 2.11 and Appendix B] and [24], it gives the classification of modular
categories with generalized Tambara–Yamagami fusion rules.

Theorem 5.4 Let C be a modular category. Then C has generalized Tambara–
Yamagami fusion rules if and only if C ' I�B , where I is an Ising category and B is
a pointed modular category.

Proof Suppose that C D I � B , where I is an Ising category and B is a pointed
category. Then every simple object of C is isomorphic to Y � g , where Y 2 Irr.I/
and g 2G.B/. Then C is not pointed, and the non-invertible simple objects of C are
represented by X �g , where X is the unique non-invertible simple object of I and
g 2 G.B/. This implies that C has generalized Tambara–Yamagami fusion rules of
type .G.B/;Z2/. If in addition B is modular category, then so is C . This proves the
‘if’ direction.

Conversely, suppose that C is modular and has generalized Tambara–Yamagami fusion
rules. As in the proof of Lemma 5.3, CŒG�' CŒ���B as braided tensor categories,
where B is a pointed modular category such that I WDB0 is an Ising category. Moreover,

Algebraic & Geometric Topology, Volume 13 (2013)



Faithful simple objects, orders and gradings of fusion categories 1507

B0 is also modular and C'B�I as modular tensor categories, by Müger [20, Theorem
4.2]. This finishes the proof of the theorem.

6 Modularization of braided Tambara–Yamagami categories

Throughout this section, C D T Y.G; �; �/ will be a Tambara–Yamagami fusion cate-
gory, where G is a finite Abelian group, � is a square root of the order of G in k and
�W G �G! k� is a non-degenerate symmetric bicharacter on G [28].

We assume that C is braided. All possible structures of braided category in C are
classified in [26]. In particular, G is an elementary Abelian 2–group, and there are two
choices of compatible ribbon structures. Let us consider a fixed choice � 2 Aut.idC/,
so that C becomes a premodular category.

Let C0�C be Müger center of C . In the terminology of [5], C0 is the fusion subcategory
of transparent objects of C .

Lemma 6.1 Suppose C is not symmetric. Then we have C0 D CŒT �, where T is the
subgroup of G defined by T D fg 2 G j �.g;g/D 1g. Moreover, the category C is
modularizable.

Proof Since C is not symmetric, and X generates C , X … C0 . Hence C0 � CŒG�.
Observe that an object Z belongs to C0 if and only if Z centralizes X . It follows from
[26, Section 3.1] that, after a suitable normalization, the braidings �g;X W g˝X!X˝g

and �X ;gW X ˝g! g˝X correspond, under the identification g˝X DX DX ˝g ,
to s.g/ idX , where s.g/ 2 k� are such that s.g/2 D �.g;g/, for all g 2 G . This
implies that C0 D CŒT �, where T D fg 2G j �.g;g/D 1g, as claimed.

Let � 2 Aut.idC/ be the ribbon structure of C . Then �g D s.g/2 [26, Section 3.5], for
all g 2 G . Hence �g D 1 for all g 2 T (this can also be deduced from [19, Lemma
5.4], since all simple objects g of C0 are invertible and satisfy g˝X ' X ). This
implies that C0 is Tannakian and thus C is modularizable [5, Théorème 3.1].

Remark Suppose that C is symmetric. Since every invertible object g of C satisfies
g˝X 'X , then [19, Lemma 5.4] implies that C is Tannakian.

Let yT be the dual group of T , so that we have a non-canonical isomorphism of groups
T ' yT . In view of Lemma 6.1, we have CŒT �' rep yT , as symmetric tensor categories.

Let F W C! zC denote the modularization functor, where zC is a modular category and F

is a dominant braided tensor functor. Observe that FPdim zCD FPdim C=jT jD 2ŒG WT �,
and therefore FPdim zC D 2 or 4.

We have in addition:
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Proposition 6.2 There is an action �W yT ! Aut˝ zC by braided autoequivalences such
that C ' zC yT as braided tensor categories over rep yT .

Proof It follows from the results in [5] that there is an exact sequence of braided
tensor functors

rep yT ! C F
! zC:

Then the proposition follows from Bruguières and Natale [6, Corollary 5.31]. See [6,
Example 5.33].

Remark Lemma 6.1 implies that if C is modular then �.g;g/¤ 1, for all 1¤ g 2G .
On the other hand, if �.g;g/D 1, for all g 2 G , then either C is symmetric or zC is
pointed and FPdim zC D 2.

Lemma 6.3 Suppose zC is not pointed. Then G. zC/'G=T ' Z2 .

Proof By Proposition 6.2, C ' zC yT is a yT –equivariantization. The modularization
functor corresponds to the forgetful functor F W zC yT ! zC . Since, by assumption, zC is
not pointed, T ¤G .

Note that C0 D CŒT � is the kernel of F in the sense of [6]. Then F.G/ ' G=T is
isomorphic to a subgroup G. zC/.

Let h 2 G. zC/ be an invertible object. We claim that m.h;F.X // D 0. This can
be seen as follows. Let LW C ! CG denote the left adjoint of F . Then we have
FL.h/ D ˚

t2 yT
�t .h/ [6], and in particular, FL.h/ belongs to zCpt . Suppose on the

contrary that m.h;F.X // > 0. It follows by adjunction that X is a simple direct
summand of L.h/ and therefore F.X / is a direct summand of FL.h/. This implies
that F.X / 2 zCpt and then, by surjectivity of F , zCpt D zC , since X generates C . This
contradiction shows that m.h;F.X //D 0, as claimed.

By surjectivity of the functor F , there exists g 2G such that m.h;F.g// > 0. Then
h' F.g/ 2G=T . This shows that G. zC/'G=T .

Observe next that, since G is an elementary Abelian 2–group, � induces a group
homomorphism f W G! Z2 , defined in the form f .g/D �.g;g/, for all g 2G . We
have T D kerf , whence ŒG W T �D 2, because T ¤G .
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Theorem 6.4 Let C be a braided Tambara–Yamagami fusion category and let zC be
the modularization of C . Then we have:

(i) C is integral if and only if zC is pointed. In this case G. zC/ is of order 1, 2 or 4.

(ii) Suppose that C is not integral. Then zC ' I , as braided tensor categories, where
I is an Ising category.

Note in addition that the integrality of C is determined by the parity of the rank of G ,
namely, C is integral if and only if the rank of G is even.

Proof (i) We have an exact sequence of fusion categories CŒT �! C! zC . By [6]
C is integral if and only if zC is integral. If zC is not pointed, then by Theorem 5.4, it
contains an Ising subcategory and therefore it is not integral. Hence zC is integral if and
only if it is pointed. Moreover, unless C is symmetric, in which case FPdim zC D 1, we
have FPdim zC D 2ŒG W T �D 2 or 4. This shows (i).

(ii) Since C is not integral, zC is not integral either. In particular, zC is not pointed.
By Lemma 6.3 we have G. zC/'G=T ' Z2 . The fusion rules of C imply that zC has
generalized Tambara–Yamagami fusion rules. Theorem 5.4 implies that zC is equivalent
to an Ising category. This proves (ii) and finishes the proof of the theorem.
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