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Milnor–Wood inequalities for products

MICHELLE BUCHER

TSACHIK GELANDER

We prove Milnor–Wood inequalities for local products of manifolds. As a conse-
quence, we establish the generalized Chern conjecture for products M �†k of any
manifold M and k copies of a surface † for k sufficiently large.

57R20

1 Introduction

Let M be an n–dimensional topological manifold. Consider the Euler class "n.�/ in
H n.M;R/ and Euler number �.�/D h"n.�/; ŒM �i of an oriented Rn –vector bundle
� over M . We say that the manifold M satisfies a Milnor–Wood inequality with
constant c if for every flat oriented Rn –vector bundle � over M , the inequality

j�.�/j � c � j�.M /j

holds. Recall that a bundle is flat if it is induced by a representation of the fundamental
group �1.M /. We denote by

MW.M / 2R[fC1g

the smallest such constant.

If X is a simply connected Riemannian manifold with closed quotients, we denote

eMW.X / WD supfMW.M / WM is a closed quotient of X g:

Milnor’s seminal inequality [7] amounts to showing that the Milnor–Wood constant of
the hyperbolic plane H is eMW.H/D1=2, and in [3], we showed that eMW.Hn/D1=2n .

In this note we prove a product formula for the Milnor–Wood constants of general
closed manifolds:

Theorem 1.1 For any pair of compact manifolds M1 , M2 ,

MW.M1 �M2/DMW.M1/ �MW.M2/:
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For the product formula for universal Milnor–Wood constant, we restrict to Hadamard
manifolds:

Theorem 1.2 Let X1;X2 be Hadamard manifolds. Then

eMW.X1 �X2/DeMW.X1/ �eMW.X2/:

One important application of Milnor–Wood inequalities is to make progress on the
generalized Chern conjecture.

Conjecture 1.3 (Generalized Chern conjecture) Let M be a closed oriented aspheri-
cal manifold. If the tangent bundle TM of M admits a flat structure then �.M /D 0.

This conjecture has been suggested by Milnor [7]1 and is a strong version of the famous
Chern conjecture which merely predicts the vanishing of the Euler characteristic for
affine manifolds, that is, for manifolds admitting a torsion-free flat connection.

As pointed out in [7], if MW.M / < 1 then the generalized Chern conjecture holds
for M . Indeed, if �.M /¤ 0 the inequality

j�.M /j D j�.TM /j �MW.M / � j�.M /j< j�.M /j

leads to a contradiction to the assumption that M has a flat structure.

One can use Theorem 1.1 to extend the family of manifolds satisfying the generalized
Chern conjecture. For instance, we prove a stable variant of the generalized Chern
conjecture:

Corollary 1.4 For any manifold M , there exists k0�0 such that the product M �†k ,
where † is a surface of genus � 2, satisfies the generalized Chern conjecture for
any k � k0 . If �.M / D 0, then k0 D 0. If �.M / ¤ 0, then one can take any
k0 > log2.MW.M //. In particular, in the latter case, the product M �†k does not
admit an affine structure.

Remark (1) One can replace †k in Corollary 1.4 by any Hk –manifold.

(2) The corollary is somehow dual to a question of Yves Benoist [1, Section 3, page 19]
asking whether for every closed manifold M there exists m such that M � .S1/m

admits an affine structure. For example, if M is a hyperbolic manifold or a sphere,
the product M � S1 admits an affine structure. On the other hand, if M admits a

1In [7] Milnor suggested the generalized conjecture without the assumption that M is aspherical,
however Smillie [9] gave counterexamples, in any even dimension ¤ 2 , when this assumption is omitted.
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quaternionic hyperbolic structure then m D 1 will not suffice, since the holonomy
representation of �1.M / is superrigid in Sp.2; 1/ by Corlette’s Theorem and the latter
has no nontrivial 9–dimensional linear representations.

Note that since there are only finitely many isomorphism classes of oriented Rn –bundles
which admit a flat structure, it is immediate that the set

fj�.�/j j � is a flat oriented Rn –bundle over M g

is finite for every M . In particular, if �.M /¤ 0, there exists a finite Milnor–Wood
constant MW.M / < C1. However, in general, the Milnor–Wood constant can be
infinite, since the implication

�.M /D 0 H) �.�/D 0;

for a flat oriented Rn –bundle � , does not hold in general as we will show in Section 6.
Our example is inspired by Smillie’s counterexample [9] of the generalized Chern
conjecture for nonaspherical manifolds, and likewise this manifold is nonaspherical.

The following questions are quite natural:

(1) Does there exist a finite constant c.n/ depending on n only so that we have
MW.M /� c.n/ for every closed aspherical n–manifold?

(2) Let X be a contractible Riemannian manifold such that there exists a closed
X –manifold M with MW.M / <1. Is eMW.X / necessarily finite?

(3) Does �.M / D 0) �.�/ D 0 for flat oriented Rn –bundles � over aspherical
manifolds M ?
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Mittag-Leffler in Djursholm, Sweden. Michelle Bucher acknowledges support by
the Swiss National Science Foundation grant PP00P2-128309/1. Tseachik Gelander
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2 Proportionality principles and vanishing of the Euler class
of tensor products

Lemma 2.1 Let X be a simply connected Riemannian manifold, G D Isom.M / and
�W G!GLCn .R/ a representation. Then �.��/=vol.M /, where M D�nX is a closed
X –manifold and �� is the flat vector bundle induced on M by � restricted to � , is a
constant independent of M .
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Proof There is a canonical isomorphism H�c .G/ŠH�.��.X /G/ between the con-
tinuous cohomology of G and the cohomology of the cocomplex of G–invariant
differential forms ��.X /G on X equipped with its standard differential. (For a
semisimple Lie group G , every G–invariant form is closed, hence one further has
H�.��.X /G/ Š ��.X /G .) In particular, in top dimension n D dim.X /, the coho-
mology groups are 1–dimensional, H n

c .G/ŠH n.��.X /G//Š R, and contain the
cohomology class given by the volume form !X .

Since the bundle �� over M is induced by � , its Euler class "n.��/ is the image of
"n 2H n

c .GLC.R; n// under

H n
c .GLC.R; n//

��

�!H n
c .G/ �!H n.�/ŠH n.M /;

where the middle map is induced by the inclusion � ,!G . In particular,

��."n/D � � Œ!X � 2H n
c .G/

for some � 2R independent of M . It follows that �.��/=Vol.M /D �.

Lemma 2.2 Let �˝W GLC.n;R/ � GLC.m;R/! GLC.nm;R/ denote the tensor
representation. If n;m� 2, then

��˝."nm/D 0 2H nm
c .GL.n;R/�GL.m;R//:

Proof The case n D m D 2 was proven in [3, Lemma 4.1], based on the simple
observation that interchanging the two GLC.2;R/ factors does not change the sign
of the top dimensional cohomology class in H 4

c .GL.2;R/�GL.2;R// Š R, but it
changes the orientation on the tensor product, and hence the sign of the Euler class in
H 4

c .GLC.4;R//.

Let us now suppose that at least one of n;m is strictly greater than 2, or equivalently,
that nCm< nm. The Euler class is in the image of the natural map

H nm.BGL.nm;R// �!H nm
c .GL.nm;R//:

By naturality, we have a commutative diagram

H nm.BGLC.nm;R//

��
˝

��

// H nm
c .GLC.nm;R//

��
˝

��
H nm.B.GLC.n;R/�GLC.m;R/// // H nm

c .GLC.n;R/�GLC.m;R///:

Since the image of the lower horizontal arrow is contained in degree �nCm, it follows
that ��˝."nm/D 0.
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3 Representations of products

Lemma 3.1 Let H1;H2 be groups and �W H1 �H2! GLn.R/ a representation of
the direct product and suppose that �.Hi/ is nonamenable for both i D 1; 2. Then, up
to replacing the Hi by finite index subgroups, either

� V D Rn decomposes as an invariant direct sum V D V 0 ˚ V 00 , where the
restriction �jV 0 D �0

1
˝ �0

2
is a nontrivial tensor representation, or

� V D V1˚V2 , where �.Hi/ is scalar on Vi .

Proof This can be easily deduced from the proof of [3, Proposition 6.1].

Proposition 3.2 Let H D
Qk

iD1Hi be a direct product of groups and let �W H !
GLCn .R/ be an orientable representation, where n D

Pk
iD1mi . Suppose that �.Hi/

is nonamenable for every i . Then, up to replacing the Hi by finite index subgroups
H 0 D

Qk
iD1H 0i , either

(1) there exists 1� i0< k such that V DRn decomposes nontrivially to an invariant
direct sum V D V 0˚V 00 and the restricted representation

� j.H 0
i0
�
Q

i>i0
H 0

i
;V 0/W H

0
i0
�

Y
i>i0

H 0i �! GL.V 0/

is a nontrivial tensor, or

(2) the representation �0 factors through

�0W

kY
iD1

H 0i �!

� kY
iD1

GLm0
i
.R/

�C
�! GLCn .R/;

where the latter homomorphism is, up to conjugation, the canonical diagonal
embedding, and �0.H 0i / restricts to a scalar representation on each GLm0

j
.R/,

for i ¤ j .

Moreover, if all mi are even then either m0i <mi for some i or one can replace GL
with GLC everywhere.

The notation .
Qk

iD1GLm0
i
.R//C stands for the intersection of

Qk
iD1GLm0

i
.R/ with

the positive-determinant matrices.
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Proof We argue by induction on k . For k D 2 the alternative is immediate from
Lemma 3.1. Suppose k > 2. If (1) does not hold, it follows from Lemma 3.1 that,
up to replacing the Hi by some finite index subgroups, V decomposes invariantly to
V D V1˚V 0

1
where �.H1/ is scalar on V 0

1
and �.

Q
i>1 Hi/ is scalar on V1 . We now

apply the induction hypothesis for
Q

i>1 Hi restricted to V 0
1

.

Finally, in case (2), since
P

mi D n, either m0i < mi for some i or equality holds
everywhere. In the latter case, if all the mi are even, given g 2Hi , since the restriction
of �.g/ to each Vj¤i is scalar, it has positive determinant. We deduce that also �.g/jVi

has positive determinant.

4 Multiplicativity of the Milnor–Wood constant for product
manifolds: A proof of Theorem 1.1

Let M1;M2 be two arbitrary manifolds. We prove that

MW.M1 �M2/DMW.M1/ �MW.M2/:

First note that the inequality MW.M1�M2/�MW.M1/ �MW.M2/ is trivial. Indeed,
let �1; �2 be flat oriented bundles over M1 and M2 , respectively, of the right dimension
such that j�.�i/j DMW.Mi/ � j�.Mi/j for i D 1; 2. Then �1� �2 is a flat bundle over
M1 �M2 with

j�.�1 � �2/j D j�.�1/jj�.�2/j DMW.M1/ �MW.M2/ � j�.M1 �M2/j:

For the other inequality, let � be a flat oriented Rn –bundle over M1 �M2 , where
nD dim.M1/C dim.M2/. We need to show that

j�.�/j �MW.M1/ �MW.M2/ � j�.M1 �M2/j :

Observe that if we replace M by a finite cover, and the bundle � by its pullback to the
cover, then both sides of the previous inequality are multiplied by the degree of the
covering.

The flat bundle � is induced by a representation

�W �1.M1 �M2/Š �1.M1/��1.M2/ �! GLCn .R/:

If �.�1.Mi// is amenable for i D 1 or 2, then ��."n/D 0 [3, Lemma 4.3] and hence
�.�/D 0 and there is nothing to prove. Thus, we can without loss of generality suppose
that, upon replacing �1.M1 �M2/ by a finite index subgroup, the representation �
factors as in Proposition 3.2.
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In case (1) of the proposition, we obtain that ��."n/ D 0 by Lemma 2.2 and [3,
Lemma 4.2]. In case (2) we get that � factors through

�W �1.M1/��1.M2/ �!
�
GLm0

1
.R/�GLm0

2
.R/

�C i
�! GLCn .R/;

where the latter embedding i is up to conjugation the canonical embedding. Further-
more, up to replacing � by a representation in the same connected component of

Rep
�
�1.M1/��1.M2/;

�
GLm0

1
.R/�GLm0

2
.R/

�C�
which will have no influence on the pullback of the Euler class, we can without loss of
generality suppose that the scalar representations of �1.M1/ on GLm0

2
and �1.M2/

on GLm0
1

are trivial, so that � is a product representation. If m0
1

or m0
2

is odd,
then i�."n/D 0 2H n

c ..GLm0
1
.R/�GLm0

2
.R//C/. If m0

1
and m0

2
are both even then

Proposition 3.2 further tells us that either m0i <mi for i D 1 or 2, or the image of �
lies in GLCm1

.R/�GLCm2
.R/. In the first case, the Euler class vanishes [3, Lemma 4.2],

while in the second case, we immediately obtain the desired inequality. This finishes
the proof of Theorem 1.1.

5 Multiplicativity of the universal Milnor–Wood constant for
Hadamard manifolds: A proof of Theorem 1.2

Theorem 1.2 can be reformulated as follows:

Theorem 5.1 Let X be a Hadamard manifold with de Rham decomposition X DQk
iD1Xi , then eMW.X /D

Qk
iD1

eMW.Xi/.

Proof The inequality “�” is obvious. Let M D�nX be a compact X –manifold. We
must show that MW.M / �

Qk
iD1

eMW.Xi/. Note that � is torsion-free. Let us also
assume that k � 2. If M is reducible one can argue by induction using Theorem 1.1.
Thus we may assume that M is irreducible. Observe that this implies that Isom.X / is
not discrete. If � admits a nontrivial normal abelian subgroup then by the flat torus
theorem (see [2, Chapter 7]), X admits an Euclidean factor which implies the vanishing
of the Euler class. Assuming that this is not the case we apply Farb–Weinberger [4,
Theorem 1.3] to deduce that X is a symmetric space of noncompact type. Thus, up to
replacing M by a finite cover (equivalently, replace � by a finite index subgroup), we
may assume that � lies in

G D Isom.X /ı D
kY

iD1

Isom.Xi/
ı
D

kY
iD1

Gi ;
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where the Gi are adjoint simple Lie groups without compact factors and � � G is
irreducible in the sense that its projection to each factor is dense. Denote by eG i the
universal cover of Gi , and by e� �Qk

iD1
eG i the pullback of � .

Let �W � ! GLCn .R/ be a representation inducing a flat oriented vector bundle �
over M . Up to replacing � by a finite index subgroup, we may suppose that �.�/
is Zariski connected. Let S � GLCn .R/ be the semisimple part of the Zariski closure
of �.�/, and let �0W �! S be the quotient representation. By superrigidity, the map
Ad ı �0W �! Ad.S/ extends to

�W � �

kY
iD1

Gi �! Ad.S/

(see [5], [6] and [8]). This map can be pulled back to e� W e� ! S . Recall also thatQk
iD1

eG i is a central discrete extension of
Qk

iD1Gi and, likewise, e� is a central
extension of � . If

ni D dim Xi and nD

kX
iD1

ni

we deduce from Proposition 3.2 and Lemma 2.2 that either the Euler class vanishes or the
image of e� lies (up to decomposing the vector space Rn properly) in .

Qk
iD1 GLni

/C .

Suppose that eMW.Xi/ is finite for all i D 1; : : : ; k and let Mi be closed Xi –manifolds.
Let � 0 be the flat vector bundle on

Qk
iD1Mi coming from e� reduced to

Qk
iD1Mi , and

let � 0i be the vector bundle on Mi induced by e� i , i D 1; : : : ; k . By Lemma 2.1, we
have

�.�/

vol.M /
D

�.� 0/

vol
�Qk

iD1 Mi

� D kY
iD1

�.� 0i/

vol.Mi/
�

kY
iD1

eMW.Xi/;

which finishes the proof.

6 Example: a flat bundle with nonzero Euler number over a
manifold with zero Euler characteristic

Recall that given two closed manifolds of even dimension, the Euler characteristic of
connected sums behaves as

�.M1 ]M2/D �.M1/C�.M2/� 2:

The idea is to find M DM1 ]M2 such that M1 admits a flat bundle with nontrivial
Euler number which in turn induces such a bundle on the connected sum, and to choose
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then M2 in such a way that the Euler characteristic of the connected sum vanishes.
Take thus

M1 D†2 �†2; M2 D .S
1
�S3/ ] .S1

�S3/ and M DM1 ]M2:

These manifolds have the following Euler characteristics:

�.M1/D 4; �.M2/D 2 ��.S1
�S3/� 2D�2; �.M /D 0:

Let � be a flat bundle over †2 with Euler number �.�/D 1. (Note that we know that
such a bundle exists by [7].) Let f W M !M1 be a degree 1 map obtained by sending
M2 to a point, and consider

� D f �.�� �/:

Obviously, since � is flat, so is the product ��� and its pullback by f . Moreover, the
Euler number of � is

�.�/D �.�� �/D 1:

Indeed, the Euler number of ��� is the index of a generic section of the bundle, which
we can choose to be nonzero on f .M2/, so that we can pull it back to a generic section
of � which will clearly have the same index as the initial section on �� �.
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