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Mod p decompositions of gauge groups
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We give mod p decompositions of homotopy types of the gauge groups of principal
bundles over spheres, which are compatible with mod p decompositions of Lie
groups given by Mimura, Nishida and Toda. As an application, we also give some
computations on the homotopy types of gauge groups. In particular, we show the
p–local converse of the result of Sutherland on the classifications of the gauge groups
of principal SU.n/–bundles.

57S05; 55R70, 54C35, 55P15

1 Introduction

Let G be a topological group and let P be a principal G –bundle over a space K . The
gauge group of P , denoted by G.P /, is the group of all automorphisms of P endowed
with the compact-open topology, where automorphisms of P are G –equivariant self-
maps of P covering the identity map of K . By definition, one naively expects that
G.P / inherits properties of G , and this is known to be true in some cases. For example,
it is shown in Kishimoto and Kono [13] that higher homotopy commutativity of G

yields a splitting of a certain exact sequence including G.P / and G . Localize at the
odd prime p . If G is a Lie group, G is homotopy equivalent to a product of smaller
spaces, which is called a mod p decomposition of G . Then as above, one can expect
there is also a mod p decomposition of G.P /. There are two results supporting this
expectation: one is due to the first and the second authors [11] when G admits a finite
order automorphism, and the other is due to Theriault [21] when G is of low rank and
K is the 4–sphere. In this paper, generalizing the above results, we construct a mod p

decomposition of G.P / when K is a sphere of certain dimension. Note that G.P / is
not connected in general, implying the p–localization of G.P / does not make sense.
So we set the p–localization of G.P / as

G.P /.p/ D�.BG.P /.p//:
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To set notation, let us recall mod p decompositions of Lie groups. Let X be a (p–local)
finite H–space. By a classical result of Hopf, there is a rational homotopy equivalence

X '.0/ S2n1C1
� � � � �S2n`C1:

We denote the index set fn1; : : : ; n`g by t.X / and call it the type of X . Put ti.X /D
fk 2 t.X / j k � i mod .p � 1/g. We list the types of compact, simply connected,
simple Lie groups.

SU.n/ 1; 2; : : : ; n� 1 G2 1; 5

Sp.n/ 1; 3; : : : ; 2n� 1 F4 1; 5; 7; 11

Spin.2n/ 1; 3; : : : ; 2n� 3; n� 1 E6 1; 4; 5; 7; 8; 11

Spin.2nC 1/ 1; 3; : : : ; 2n� 1 E7 1; 5; 7; 9; 11; 13; 17

E8 1; 7; 11; 13; 17; 19; 23; 29

Table 1

We state a result of Mimura, Nishida and Toda [17] on mod p decompositions of Lie
groups.

Theorem 1.1 (Mimura, Nishida and Toda [17]) Let G be a compact, simply con-
nected, simple Lie group such that H�.GIZ/ is p–torsion free. Then there is a
homotopy equivalence

G.p/ ' B1 � � � � �Bp�1;

where t.Bi/D ti.G/ for i D 1; : : : ;p� 1.

The above theorem is proved by Mimura, Nishida and Toda [17] by an explicit con-
struction of Bi , and later, a simple proof is given by Wilkerson [24] using the unstable
Adams operations. We remark here that Harris [9] gives a mod p decomposition of
a Lie group G when G admits a finite order automorphism, which is included in
Theorem 1.1 as a special case. It is shown in [11] that these mod p decompositions of
Harris induce those of gauge groups.

For convenience, we regard a collection of sets fS1; : : : ;Sp�1g as also indexed by
Z=.p � 1/. Namely, for n 2 Z, Sn means Si , where 1 � i � p � 1 and n �

i mod .p� 1/.

Let us return to gauge groups. Let G be a compact, simply connected, simple Lie
group. We restrict the base space of principal G –bundles to S2dC2 with d 2 t.G/. In
constructing mod p decompositions of gauge groups, we exclude Spin.2n/–bundles
for a technical reason. However, we have the following construction. Let P be a
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principal Spin.2n/–bundle over S2dC2 . Suppose that P is classified by an element
of Im �� � �2dC2.BSpin.2n// for the inclusion �W Spin.2n� 1/! Spin.2n/. Then
there is a principal Spin.2n� 1/–bundle Q over S2dC2 such that P is the bundle
associated with Q by �. Let E be an S2n�1 –bundle over S2dC2 that is associated
with P by the canonical action of Spin.2n/ on S2n�1 . Then as a special case of a
result of [11], we have a p–local homotopy equivalence

(1-1) G.P /'.p/ G.Q/��.E/

for any odd prime p , where �.E/ is the set of sections of E . By the standard fiber
sequence

Spin.2n� 1/
�
�! Spin.2n/! S2n�1

together with Table 1, we see that ��W �2dC2.BSpin.2n� 1//! �2dC2.BSpin.2n//

is an isomorphism on free parts except for d ¤ n� 1. Thus we may say that in most
cases, mod p decompositions of gauge groups of Spin.2n/–bundles over S2dC2 are
deduced from those of Spin.2n� 1/–bundles over S2dC2 .

Our main result is the following.

Theorem 1.2 Let G be a compact, simply connected, simple Lie group such that
H�.GIZ/ is p–torsion free and G ¤ Spin.2n/, and let P be a principal G–bundle
over S2dC2 for d 2 t.G/. Then there is a homotopy equivalence

G.P /.p/ ' BP
1 � � � � �B

P
p�1

and a homotopy fiber sequence

�.�2dC1
0

Bi/! BP
i ! Bi�d�1

for i 2 Z=.p� 1/.

The organization of the paper is as follows. In Section 2, we first give a proof of
Theorem 1.1 adapted to our situation, which is a slight modification of the proof due
to Wilkerson [24]. After that, we prove Theorem 1.2. In Section 3, we prove that the
homotopy fiber sequence in Theorem 1.2 is principal when G is of low rank. As a
consequence, we see that mod p decompositions of gauge groups due to Theriault [21]
are included in Theorem 1.2 as a special case. In Section 4, we give two applications of
mod p decompositions of gauge groups. The first application is to count the homotopy
types of gauge groups as in Kono [15], and Crabb and Sutherland [2]. As a consequence,
we see that the converse of a result of Sutherland [18] is true in the low rank case. The
second application is on the adjoint bundles of given principal bundles. We prove that
not all mod p decompositions of G.P / in Theorem 1.2 are induced from those of the
adjoint bundle of P .
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2 Proof of Theorem 1.2

We first reproduce a proof of Theorem 1.1 which is a slight modification of a proof by
Wilkerson [24] adjusted to our situation.

Proof of Theorem 1.1 By assumption, one has

H�.GIZ.p//Dƒ.x2n1C1; : : : ;x2n`C1/; jxi j D i;

where t.G/Dfn1; : : : ; n`g and each xi is in the image of transgression of the universal
bundle G!EG!BG . In particular, each xi is primitive. For an integer q prime to
p , let �qW BG.p/! BG.p/ be the unstable Adams operation of degree q as in [24].
Then we have .�q/�.y/D qky for y 2H 2k.BGIZ.p//, implying

(2-1) .��q/�.x2niC1/D qniC1x2niC1

for iD1; : : : ; `. Choose an integer u whose modulo p reduction is a primitive .p�1/st

root of unity in Z=p . Let r W X !X denote the r –power map of an H–space X . For
integers b and m, we define a map f .m; b/W G.p/!G.p/ as

f .m; b/D ub
ı��u

�ubCmC1;

where the subtraction is given by the standard multiplication of G.p/ . Then by (2-1)
and primitivity of x2niC1 , one has

(2-2) f .m; b/�.x2niC1/D .u
bCniC1

�ubCmC1/x2niC1

for i D 1; : : : ; `.

Define the index set tbi as

tbi D
[
k¤i

.tk.G/[fj C bC 1 j j 2 tk�b�1.G/g/

for i 2 Z=.p� 1/. If tbi D fi1; : : : ; isg, we put

F.i; b/D f .i1; b/ ı � � � ıf .is; b/W G.p/!G.p/:

Let B.i; b/ be the homotopy colimit of the diagram

G.p/
F.i;b/
����!G.p/

F.i;b/
����!G.p/! � � � :

Then it follows from (2-2) that

H�.B.i; b/IZ=p/Dƒ.x2kC1 j k 2 ti.G//

Algebraic & Geometric Topology, Volume 13 (2013)



Mod p decompositions of gauge groups 1761

and the natural map G.p/! B.i; b/ induces the projection in the mod p homology.
Thus the natural map �W G.p/ !

Qp�1
iD1

B.i; b/ induces an isomorphism on mod p

homology.

Since the Hurewicz homomorphism induces an isomorphism from ��.G/˝Q to the
module of indecomposables of H�.GIQ/, we see from (2-2) that

F.i; b/W �2kC1.G.p//=torsion! �2kC1.G.p//=torsion

is an isomorphism for k 62 ti.G/ and the zero map for k 2 ti.G/, implying that the
map � is a rational homotopy equivalence. Then since � induces an isomorphism on
mod p homology and is a rational homotopy equivalence between simply connected
spaces, it is a homotopy equivalence. Thus the proof of Theorem 1.1 is completed by
putting Bi D B.i; b/.

Remark 2.1 Wilkerson’s proof [24] of Theorem 1.1 is the case b D 0 in the above
proof.

Remark 2.2 The homotopy type of B.i; b/ in the above proof does not depend on b .
Indeed, the composite

B.i; b/
incl
��!

p�1Y
iD1

B.i; b/
'
�!G.p/! B.i; 0/

induces an isomorphism on mod p homology and then a homotopy equivalence, where
the last arrow is the canonical map.

We next prove Theorem 1.2. The idea of the proof of Theorem 1.2 is to apply the
construction in the above proof of Theorem 1.1 to fiber sequences including gauge
groups. Then we need to know a relation of fiber sequences and homotopy colimits.

Lemma 2.3 (Farjoun [3]) Suppose there is a commutative diagram

F0
//

��

F1
//

��

F2
//

��

� � �

E0
//

��

E1
//

��

E2
//

��

� � �

B0
// B1

// B2
// � � �

in which columns are homotopy fiber sequences. Then

hocolim Fn! hocolim En! hocolim Bn
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is also a homotopy fiber sequence.

We describe the induced maps of the unstable Adams operations in homotopy groups.

Proposition 2.4 Let G be a compact, simply connected, simple Lie group such that
H�.GIZ/ is p–torsion free and G ¤ Spin.2n/. Then for d 2 t.G/, �2dC1.G.p//Š

Z.p/ .

Proof In the case that G is SU.n/ and Sp.n/, we obtain the result by considering the
inclusions into SU.1/ and Sp.1/, respectively. Since there is a homotopy equivalence
Spin.2nC 1/'.p/ Sp.n/ for any odd prime p as in Friedlander [4], we have already
proved the case of Spin.2nC 1/. For exceptional Lie groups, we can verify the claim
using Theorem 1.1 together with a calculation of homotopy groups of Bi in [17,
Proposition 6.3 and 6.6].

Corollary 2.5 Let G be as in Proposition 2.4, and let q be an integer prime to p . For
d 2 t.G/, the induced map .��q/�W �2dC1.G.p//!�2dC1.G.p// is the qdC1 –power
map.

Proof By Proposition 2.4, we have that the natural map

�2dC1.G.p//Š �2dC1.G/˝Z.p/! �2dC1.G/˝Q

is injective. Since the Hurewicz homomorphism induces an isomorphism of

�2dC1.G/˝Q

to the module of indecomposables of H2dC1.GIQ/ as is mentioned in the proof of
Theorem 1.1, the result follows from (2-1) and naturality of the Hurewicz homomor-
phism.

Proof of Theorem 1.2 Let ˛W S2dC2! BG be the classifying map of P , and let
map.X;Y If / be the component of the space of maps from X to Y including f .
Recall from Atiyah and Bott [1] that there is a natural homotopy equivalence

(2-3) BG.P /'map.S2dC2;BGI˛/:

Let u be an integer whose mod p reduction of a primitive .p� 1/st root of unity in
Z=p , and let r W S2dC2

.p/
! S2dC2

.p/
denote a map of degree r . By Corollary 2.5, we

can define a map

gi W �map.S2dC2
.p/

;BG.p/I˛.p//!�map.S2dC2
.p/

;BG.p/I˛.p//
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as
gi D�..u

�d�1/� ı�u
�/�ui�d ;

where �uW BG.p/! BG.p/ is the unstable Adams operation of degree u. Then there
is a commutative diagram of homotopy fiber sequences:

(2-4)

�.�2dC1
0

G.p//
�2dC2f .i;�d�1/ //

��

�.�2dC1
0

G.p//

��

�map.S2dC2
.p/

;BG.p/I˛.p//
gi //

��

�map.S2dC2
.p/

;BG.p/I˛.p//

��
G.p/

f .i�d�1;0/ // G.p/

Let t�d�1
i be as in the proof of Theorem 1.1. If t�d�1

i D fi1; : : : ; isg, we define a map

Gi D gi1
ı � � � ıgis

W �map.S2dC2
.p/

;BG.p/I˛.p//!�map.S2dC2
.p/

;BG.p/I˛.p//:

Then (2-4) yields a commutative diagram:

(2-5)

�.�2dC1
0

G.p//
�2dC2F.i;�d�1/ //

��

�.�2dC1
0

G.p//

��

�map.S2dC2
.p/

;BG.p/I˛.p//
Gi //

��

�map.S2dC2
.p/

;BG.p/I˛.p//

��
G.p/

F.i�d�1;0/ // G.p/

For a self-map hW X !X , we denote the homotopy colimit of a diagram

X
h
�!X

h
�!X ! � � �

by hocolim h. If X D�Y and hD�xh for some xhW Y ! Y , Lemma 2.3 implies a
natural homotopy equivalence hocolim h'�.hocolim xh/. Then we obtain

hocolim�2dC2F.i;�d � 1/'�.�2dC1
0

.hocolim F.i;�d � 1///'�.�2dC1
0

Bi/:

Put BP
i D hocolim Gi . Then it follows from Lemma 2.3 and (2-5) that there is a

homotopy fiber sequence

�.�2dC1
0

Bi/! BP
i ! Bi�d�1
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satisfying a homotopy commutative diagram of homotopy fiber sequences

�.�2dC1
0

G.p//
//

��

�map.S2dC2
.p/

;BG.p/I˛.p// //

��

G.p/

��
�.�2dC1

0
Bi/ // BP

i
// Bi�d�1

in which vertical arrows are natural maps. Hence we get a homotopy commutative
diagram of homotopy fiber sequences

�.�2dC1
0

G.p//
//

��

�map.S2dC2
.p/

;BG.p/I˛.p// //

��

G.p/

��Qp�1
iD1

�.�2dC1
0

Bi/
// Qp�1

iD1
BP

i
// Qp�1

iD1
Bi�d�1

in which the right and the left vertical arrows are homotopy equivalences by Theorem 1.1.
This implies that the middle vertical arrow is also a homotopy equivalence, and thus
the proof is completed by a natural homotopy equivalence

map.S2dC2;BGI˛/.p/ 'map.S2dC2
.p/

;BG.p/I˛.p//

and (2-3).

3 The case of low rank Lie groups

In this section, we prove that the homotopy fiber sequence �.�2dC1
0

Bi/! BP
i !

Bi�d�1 is principal for the low rank Lie groups in Table 2.

SU.n/ .p� 1/.p� 2/� n� 1

Sp.n/;Spin.2nC 1/ .p� 1/.p� 2/� 2n� 1

G2;F4;E6 p � 5

E7;E8 p � 7

Table 2

As a consequence, we see that the following result of Theriault [21] is included in
Theorem 1.2. We set some notation. For a base point preserving map f W Sn! X ,
we denote by ıf the connecting map �X !�n

0
X of the evaluation fiber sequence

�n
0
X ! map.Sn;X If /! X . Hereafter, if a Lie group G satisfies the conditions

in Theorem 1.1, we identify G.p/ with
Qp�1

iD1
Bi by the homotopy equivalence of
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Theorem 1.1. For i D n; nC 1, it is known that �2i.SU.n// is cyclic, and then there
is only one ui such that 1 � ui � p � 1 and �2i.Bui

/ ¤ 0. Similarly for Sp.n/, it
is also known that �4nC2.Sp.n// is cyclic, implying there is only one v such that
1� v � p� 1 and �4nC2.Bv/¤ 0.

When the type of a (p–local) H–space is fn1; : : : ; n`g with n1 � � � � � n` , we put
`.X /D n` .

Theorem 3.1 (Theriault [21]) (1) Let G be a compact, connected, simple Lie
group, and let P be a principal G –bundle over S4 . If `.G/C 2< p , there is a
p–local homotopy equivalence

G.P /'.p/
Y

i2t.G/

.S2iC1
��4

0S2iC1/:

(2) Let P be a principal SU.n/–bundle over S4 classified by ˛ 2�4.BSU.n//, and
for i D n; nC 1, let ZP

i be the homotopy fibers of the composite

Bi�2
incl
��! SU.n/.p/

ı˛
.p/

��!�3
0SU.n/.p/

proj
��!�3

0Bui
;

where ui is as above. Then there is a homotopy equivalence

G.P /.p/ 'ZP
n �ZP

nC1 �

Y
i 6�n;nC1
mod .p�1/

Bi �

Y
i 6�un;unC1

mod .p�1/

�4
0Bi :

(3) Let P be a principal Sp.n/–bundle over S4 classified by ˛ 2 �4.BSp.n//, and
let W P be the homotopy fiber of the composite

B2n�1
incl
��! Sp.n/.p/

ı˛
.p/

��!�3
0Sp.n/.p/

proj
��!�3

0Bv;

where v is as above. Then there is a homotopy equivalence

G.P /.p/ 'W P
�

Y
i 6�2n�1

mod .p�1/

Bi �

Y
i 6�v

mod .p�1/

�4
0Bi :

Remark 3.2 Since BSpin.2nC 1/'.p/ BSp.n/ for any odd prime p , (3) implies a
result for Spin.2nC 1/. Theriault [21] also gave a partial result for Spin.2n/. We get
a complete result by the construction in Section 1.

Remark 3.3 The above definition of ZP
i and W P is equivalent to that of Xk , Yk in

[21] by [19, Lemma 5.1]. As we see below, the definition of ZP
i and W P is better

suited to our situation.
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Recall from [19] the universality of homotopy associative and homotopy commutative
H–spaces. Let X be a homotopy associative and homotopy commutative H–space, and
let A be a subspace of X . X is called universal for A if for any homotopy associative
and homotopy commutative H–space Y and a map f W A ! Y , there is a unique
H–map xf W X ! Y extending f , up to homotopy. By an elementary observation, one
gets the following.

Lemma 3.4 For iD1; 2, let Xi be a homotopy associative and homotopy commutative
H–space and let Ai be a subspace of Xi for which Xi is universal. Then X1 �X2 is
universal for A1 _A2 .

We use the following result of Theriault [19].

Theorem 3.5 (Theriault [19]) Let .G;p/ be as in Table 2. Then for i 2 Z=.p� 1/,
there are a homotopy associative and homotopy commutative H–structures �i on Bi

and a subspace Ai of Bi satisfying the following.

(1) The inclusion Ai! Bi induces an isomorphism

ƒ.H�.Ai IZ=p//
Š
�!H�.Bi IZ=p/:

(2) Bi is universal for Ai .

We can generalize [21, Theorem 1.1] simply by replacing 4 with 2dC2; here we omit
the proof.

Lemma 3.6 (cf [21, Theorem 1.1]) Let .G;p/ be as in Table 2 and let �i be as in
Theorem 3.5. For ˛ 2 �2dC2.BG/, the connecting map ı˛

.p/
W G.p/ ! �2dC1

0
G.p/

is an H–map with respect to the H–structure �1 � � � � ��p�1 on G.p/ and the loop
multiplication on �2dC1

0
G.p/ .

Remark 3.7 The H–structure �1 � � � � ��p�1 on G.p/ is homotopy commutative.
Then by a result of McGibbon [16], it is not equivalent to the standard H–structure on
G.p/ in general.

Let us decompose the connecting map ı˛ as a product of certain maps.

Proposition 3.8 Let G be a compact, simply connected, simple Lie group such that
G ¤ Spin.2n/ and H�.GIZ/ is p–torsion free. Then for 0 � k � i C p.p � 1/,
�2k.Bi/D 0 unless k � i mod .p� 1/ with k > `.G/.
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Proof By Table 2 and Theorem 3.5, we have

(3-1) H�.Ai IZ.p//D Z.p/hx2iC1C2m.p�1/; : : : ;x2iC1C2.mCn/.p�1/i; jxj j D j

for some m; n� 0. In [17], Bi is shown to be spherically resolvable. Namely, there is
a fiber sequence

B.j /! B.j C 1/! S2iC1C2.mCj/.p�1/

for j D 0; : : : ; n such that B.0/ D S2iC1C2m.p�1/ and B.n C 1/ D Bi . Recall
from Toda [22] that �2`C2k.S

2`C1/ D 0 for ` > 0, 0 � k � 2p.p � 1/C 3 and
k 6� 0 mod .p� 1/. Thus by an inductive calculation of the homotopy exact sequence
of the above fiber sequence, we obtain the result for k > `.G/. The remaining case is
proved quite similarly to Proposition 2.4.

Corollary 3.9 Let .G;p/ be as in Table 2. Then for ˛ 2 �2dC2.BG/ with d C

`.G/C 1� p.p� 1/, the restriction of ı˛
.p/

to Ai can be compressed into

�2dC1
0

Bi�d�1 ��
2dC1
0

G:

Proof By Proposition 3.8 and (3-1), we see that the homotopy set ŒAi�d�1; �
2dC1
0

Bj �

is trivial for j 6� i mod .p� 1/ if d C `.G/C 1� p.p� 1/, implying the result.

Remark 3.10 By Tables 1 and 2, one can easily check that the inequality dC`.G/C

1� p.p� 1/ always holds for d D 1.

For ˛ 2 �2dC2.BG/ and i 2 Z=.p� 1/, let ı˛i denote the composite

Bi�d�1

incl
��!G.p/

ı˛
.p/

��!�2dC1
0

G.p/
proj
��!�2dC1

0
Bi :

Lemma 3.11 Let .G;p/ be as in Table 2 and let ˛ 2 �2dC2.BG/. If dC`.G/C1�

p.p� 1/, it holds that ı˛
.p/
' ı˛

1
� � � � � ı˛

p�1
.

Proof Consider the H–structure �1 � � � � ��p�1 on G.p/ as in Lemma 3.6. Then
by Lemma 3.6, ı˛

.p/
and ı˛i are H–maps. By Corollary 3.9, ı˛

.p/
jA1_���_Ap�1

and
ı˛

1
jA1
_ � � � _ ı˛

p�1
jAp�1

are homotopic, and thus for Lemma 3.4 and Theorem 3.5, the
proof is completed.

We now state the main result of this section.
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Theorem 3.12 Let .G;p/ be as in Table 2 and let P be a principal G–bundle over
S2dC2 for d 2 t.G/ classified by ˛ 2 �2dC2.BG/. If d C `.G/C 1� p.p� 1/, the
homotopy fiber sequence

�.�2dC1
0

Bi/! BP
i ! Bi�d�1

is principal and is classified by ı˛i for i 2 Z=.p� 1/.

Proof Consider the diagram

Ai�d�a
incl // Bi�d�1

ı˛
i //

incl
��

�2dC1
0

Bi

incl
��

Ai�d�a
incl // G.p/

ı˛
.p/// �2dC1

0
G.p/:

By Corollary 3.9, the outer rectangle is homotopy commutative, and then so is also
the right square by Theorem 3.5 and Lemma 3.6. Let F˛i be the homotopy fiber of
ı˛i . Since �map.S2dC2;BG/.p/ is the homotopy fiber of ı˛

.p/
, the above observation

shows that there exists a map � W F˛i !�map.S2dC2;BG/.p/ satisfying the following
homotopy commutative diagram.

�.�2dC1
0

Bi/ //

��

F˛.i/ //

�
��

Bi�d�1

��
�.�2dC1

0
G.p//

//

��

�map.S2dC2;BGI˛/.p/
//

��

G.p/

��
�.�2dC1

0
Bi/ // BP

i
// Bi�d�1

Thus the top and the bottom homotopy fiber sequences are equivalent, completing the
proof.

Let .G;p/ be as in Table 2 and choose d 2 t.G/. Define the index set Ip.G; d/ as

Ip.G; d/D f1� i � p� 1 j ŒAi�d�1; �
2dC1
0

Bi �D 0g:

We give a rough description of the homotopy types of p–localized gauge groups
using Ip.G; d/.
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Corollary 3.13 Let .G;p/ be as in Table 2 and let P be a principal G–bundle over
S2dC2 with d 2 t.G/. If d C `.G/C 1� p.p� 1/, there is a homotopy equivalence:

G.P /.p/ '
Y

i 62Ip.G;d/

Bi �

Y
i2Ip.G;d/

.Bi�d�1 ��.�
2dC1
0

Bi//

Proof Let ˛ 2 �2dC2.BG/ be the classifying map of P . If i 2 Ip.G; d/, the
restriction of ı˛i to Ai�d�1 is trivial, implying triviality of ı˛i by Theorem 3.5 and
Lemma 3.6. Thus the proof is completed by Theorems 1.2 and 3.12.

As in the proof of Corollary 3.9, we can calculate Ip.G; d/ in some cases.

Proposition 3.14 For .G;p/ in Table 2, we have the following.
(1) If `.G/C d C 1 < p or .G;p; d/ is as in the following table, Ip.G; d/ D

f1; : : : ;p� 1g.

G .d;p/

G2 .1; 5/; .5; 5/

F4 .1; 5/; .1; 7/; .1; 11/; .5; 5/; .7; 7/

E6 .1; 11/; .7; 17/; .8; 19/

E7 .1; 17/; .7; 23/; .13; 29/

E8 .1; 17/; .1; 23/; .1; 29/; .7; 23/; .7; 29/; .11; 37/;

.13; 29/; .13; 41/; .17; 43/; .19; 41/; .19; 47/

(2) If d C 1< p , Ip.SU.n/; d/ includes 1� i � p� 1 satisfying

i 6� n; nC 1; : : : ; nC d mod .p� 1/:

(3) If d C 1< p , Ip.Sp.n/; d/ includes 1� 2i � 1� p� 1 satisfying

i 6� n; nC 1; : : : ; nC
j

d

2

k
mod

�
p�1

2

�
:

Proof (1) If `.G/C d C 1 < p , Bi is S2iC1
.p/

or a point. Then the first assertion
follows from Toda’s calculation of the homotopy groups of spheres [22] as mentioned
above. The second assertion can be verified by a calculation of the homotopy groups
of Bi in [17].

(2) If `.Bi�d�1/ C d C 1 < n, we see from Proposition 3.8 that i belongs to
Ip.SU.n/; d/. (3) is quite analogous to (2).

Proof of Theorem 3.1 (1) follows from Corollary 3.13 and Proposition 3.14(1).
Quite similarly, for (2) and (3), we only need to show ui � i C 2 mod .p � 1/ for
i D n; nC 1 and v � 2nC 1 mod .p � 1/. Indeed, by Proposition 2.4, we have the
desired congruences.

Algebraic & Geometric Topology, Volume 13 (2013)



1770 Daisuke Kishimoto, Akira Kono and Mitsunobu Tsutaya

4 Applications

In this section, we give two applications of the mod p decompositions of gauge groups.
One is to count the homotopy types and the other is on a relation of gauge groups with
adjoint bundles.

4.1 Counting homotopy types

It is of interest to count the number of the homotopy types of G.P / when P ranges
over all principal G–bundles over K , where G and K are fixed. This problem
was first studied by the second author in [15] for G D SU.2/ and K D S4 . Later,
many results were obtained concerning this problem. See Hamanaka and Kono [7],
Hamanaka, Kaji and Kono [6], Crabb and Sutherland [2], Kamiyama, Kishimoto, Kono
and Tsukuda [10], Theriault [20], and Sutherland [18] for example. Here, we determine
the homotopy types of G.P /.p/ when P ranges over all principal SU.n/–bundles over
S4 and n�1� .p�1/.p�2/. As a consequence, we see that the converse of a result
of Sutherland [18] holds at the above prime p . We notice here that one can easily
generalize the following calculation to SU.n/–bundles over S2dC2 for d � p� 2.

We first recall the following description of the connecting map ı˛ .

Proposition 4.1 (Whitehead [23]) For ˛ 2 �d .X /, the connecting map ı˛W �X !

�d
0

X corresponds to the Samelson product of hx̨; 1�X i in �X through the adjoint
congruence

Œ�X; �d
0 X �Š ŒSd�1

^�X; �X � ;

where x̨W Sd�1!�X is the adjoint of ˛ .

Fix an isomorphism �4.BSU.n//Š Z. For n� 1� .p� 1/.p� 2/, let us determine
the order of ık

i for k 2 Z Š �4.BSU.n//. Let �i W Bi ! SU.n/.p/ and x�i W Ai !

SU.n/.p/ denote the inclusions. Since .�i/�W ŒS
3^Bi�2;Bi �! ŒS3^Bi�2;SU.n/.p/�

is injective, it follows from Proposition 4.1 that the desired order is equal to that of the
Samelson product hk; �i�2i in the group of the homotopy set ŒS3 ^Bi�2;SU.n/.p/�,
where we denote the adjoint S3! SU.n/ of k also by k . Let �W SU.n/! U.n/ be
the inclusion. Then since S3 ^Bi�2 is simply connected, the order of the Samelson
product hk; �i�2i is equal to that of h� ı k; � ı �i�2i. Note that the group structures
of ŒS3 ^Bi�2;U.n/.p/� given by a suspension parameter of the source space and the
multiplication of U.n/.p/ are the same. Here, we choose the latter one. In particular,
by � ı k D k ı � ı 1 and linearity of Samelson products, we have

(4-1) h� ı k; � ı�i�2i D k ı h� ı 1; � ı�i�2i;
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where kW U.n/.p/!U.n/.p/ is the k –power map as above. So we determine the order
of h�ı1; �ı�i�2i in the group ŒS3^Bi�2;U.n/.p/�. As in Kishimoto and Nagao [14],
the order of h�ı1; �ı�i�2i is equal to that of h�ı1; �ıx�i�2i. Obviously, the projection
� W S3�Ai�2!S3^Ai�2 induces an injection of groups ��W ŒS3^Ai�2;U.n/.p/�!
ŒS3 � Ai�2;U.n/.p/�. Moreover, ��.h� ı 1 ı �1; � ı x�i�2i/ is the commutator of
� ı 1 ı �1 and � ı x�i�2 ı �2 in the group ŒS3 �Ai�2;U.n/.p/�, where �i is the i th

projection. Thus we determine the order of the commutator Œ� ı 1 ı�1; � ı x�i�2 ı�2�

in the group ŒS3 � Ai�2;U.n/.p/�. To this end, we apply the following result of
Hamanaka [5]. Let x2i�1 2 H 2i�1.U.n/IZ/ be the suspension of the i th universal
Chern class ci 2H 2i.BU.n/IZ/.

Theorem 4.2 (Hamanaka [5]) Let X be a CW–complex of dimension � 2nC2p�4.
For f;gW X ! U.n/, we put


k D

X
iCjC1Dk
0�i;j�n�1

f �.x2iC1/g
�.x2jC1/:

Then the order of the commutator Œf;g� in the group ŒX;U.n/.p/� is equal to the order
of .
n; : : : ; 
nCp�2/ in the cokernel of

(4-2)
p�2M
iD0

.nC i/! chnCi W
zK.X /.p/!

p�2M
iD0

H 2nC2i.X IZ.p//;

where chk is the 2k –dimensional part of the Chern character.

For an integer m, let �p.m/ be the maximum k such that m is divisible by pk .

Proposition 4.3 Let n�1� .p�1/.p�2/ and let �; x�i be as above. Then the order of
the commutator Œ�ı1ı�1; �ıx�i�2ı�2� in the group ŒS3�Ai�2;U.n/.p/� is p�p.i.i�1//

for i D n; nC 1.

Proof It is shown in [14] that zK.†Am/.p/ is generated by �m;0; : : : ; �m;`m
for some

`m > 0 such that

chn�1.�m;s/D

( as

.n�1/!
†x2n�3 m� n� 2 mod .p� 1/;

0 m 6� n� 2 mod .p� 1/;

chn.�m;s/D

(
bs

n!
†x2n�3 m� n� 1 mod .p� 1/;

0 m 6� n� 1 mod .p� 1/;
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and
a0; b0 2 Z�.p/;

where xj is as in (3-1). Then since zK.S3�As/Š zK
�1.S3/˝ zK�1.As/, we obtain that

the image of the map (4-2) for X DAn�2;An�1 is generated by n.n�1/.u3�x2n�3/

and n.nC 1/.u3�x2n�1/, respectively, where u3 is a generator of H 3.S3IZ/. Thus
the proof is completed by Theorem 4.2.

Corollary 4.4 Let n� 1 � .p � 1/.p � 2/. Then for SU.n/ and i D n; nC 1, the
order of ı1

i W Bi�2!�3
0
Bi is p�p.i.i�1// .

Let Pk be a principal SU.n/–bundle over S4 classified by k 2 Z Š �4.BSU.n//.
Sutherland [18] obtains the following necessary condition for G.Pk/ and G.P`/ having
the same homotopy type with some indeterminacy, which is fixed later by Hamanaka
and the second author [7].

Theorem 4.5 (Sutherland [18], Hamanaka and Kono [7]) Let Pk be a principal
SU.n/–bundle over S4 classified by k 2 Z Š �4.BSU.n//. If G.Pk/ ' G.P`/, it
holds that .n.n2� 1/; k/D .n.n2� 1/; `/.

The converse of the above theorem is true for nD 3 [7] but not for nD 2 [15]. However,
for n D 2, the converse is still true if we look at odd prime components, which is
generalized by the following result.

Theorem 4.6 Let Pk be a principal SU.n/–bundle over S4 classified by k 2 Z Š
�4.BSU.n// and suppose n� 1� .p� 1/.p� 2/. Then G.Pk/.p/ ' G.P`/.p/ if and
only if minf�p.n.n2� 1//; �p.k/g Dminf�p.n.n2� 1//; �p.`/g.

Proof Notice that the equality (4-1) implies that ık
i ' k ı ı1

i and that since p is odd,
at most one of n� 1; n; nC 1 is divisible by p . Then if .�p.n.n2 � 1//; �p.k// D

.�p.n.n
2 � 1//; �p.`//, ık

i and ıl
i have the same order for both i D n; n C 1 by

Corollary 4.4, implying that there exists ai 2Z�
.p/

such that ık
i 'aiıı

`
i for iDn; nC1.

Define a map aW �3
0
SU.n/.p/!�3

0
SU.n/.p/ as

aD an � anC1 � 1W

�3
0Bn ��

3
0BnC1 �

Y
i 6�n;nC1
mod .p�1/

�3
0Bi!�3

0Bn ��
3
0BnC1 �

Y
i 6�n;nC1
mod .p�1/

�3
0Bi :

It follows from Lemma 3.11 that ık
.p/
' a ı ı`

.p/
. Since the map a is a homotopy

equivalence, we obtain that G.Pk/.p/ ' G.P`/.p/ , completing the proof.
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Remark 4.7 Sutherland [18] proved a result for Sp.n/–bundles over S4 that is
analogous to Theorem 4.5. We can also show its converse as in Theorem 4.6 using
naturality of the mod p decompositions of SU.2n/ and Sp.n/ with respect to the
inclusion Sp.n/! SU.2n/.

4.2 Adjoint bundles

Let us first set some terminology and notation for fiberwise spaces. A fiberwise
space over B is a space X equipped with a map �X W X ! B . Let �X W X ! B

and �Y W Y ! B be fiberwise spaces over B . A fiberwise map from X to Y is a
map f W X ! Y satisfying �Y ı f D �X . A fiberwise homotopy is a homotopy
ht W X � Œ0; 1�! Y such that ht is a fiberwise map for each t 2 Œ0; 1�. We then define
a fiberwise homotopy equivalence in the obvious way. The fiberwise product of X and
Y , denoted by X �B Y is f.x;y/ 2X �Y j �X .x/D �Y .y/g, where X �B Y ! B

is the restriction of �X ��Y . X is called a trivial fiberwise space if �X is a homotopy
equivalence. If X is fiberwise homotopy equivalent to a fiberwise product of non-trivial
fiberwise spaces, we say that X is fiberwise decomposable.

For a topological group G , let P be a principal G –bundle over K . The adjoint bundle
of P , denoted by adP , is the associated fiber bundle P �G=�, where .p;g/� .q; h/
if q D pk and hD k�1gk for p; q 2 P and g; h; k 2 G . Then as in [1], there is a
natural isomorphism

(4-3) G.P /Š �.adP /;

where �.adP / is the set of all sections of adP . It has been a standard method to study
the gauge group G.P / by investigating adP as a fiberwise space over K . See [2; 11;
13], for example. However, the converse might not work well in general. Namely,
there are properties of the space G.P / that are not deduced from fiberwise properties
of adP . Combining results of Crabb and Sutherland [2] and the second author [15],
we get an example for this converse problem, and this example is the only one we
know so far. By (4-3), a fiberwise product decomposition of .adP /fib

.p/
yields a product

decomposition of G.P /.p/ , where .�/fib
.p/

is the fiberwise p–localization. The first
two authors [11] construct mod p decompositions of gauge groups by constructing
fiberwise decompositions of adjoint bundles. We show not all mod p decompositions
of gauge groups are achieved in this way.

We start by recalling a result of Wilkerson [25] on the uniqueness of mod p decompo-
sitions. A space is called indecomposable if it is not homotopy equivalent to a product
of two contractible spaces.
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Theorem 4.8 (Wilkerson [25]) Let X be a simply connected, finite H–space. If
X.p/ 'X1 � � � � �Xn where each Xi is indecomposable, then the homotopy types of
X1; : : : ;Xn are unique up to permutations.

If G is a compact, simply connected, simple Lie group such that H�.GIZ/ is p–
torsion free and G ¤ Spin.2n/, then the non-contractible product factor Bi of G.p/ is
indecomposable. See [17]. Then by Theorem 4.8, we have the following.

Corollary 4.9 Let G be a compact, simply connected, simple Lie group such that
G ¤ Spin.2n/ and H�.GIZ/ is p–torsion free. Then for any decomposition G.p/ '

X1 � � � � �Xn , there is a partition I1 t � � � t In D f1; : : : ;p� 1g such that

Xk '

Y
i2Ik

Bi

for k D 1; : : : ; n.

We next calculate the cohomology of the adjoint bundle adEG . It is well known
that adEG is fiberwise homotopy equivalent to the free loop space LBG over BG .
Then we consider the cohomology of free loop spaces. In [12], the following useful
operation is constructed. Since there is a section of the projection LX!X , we assume
H�.X IR/�H�.LX IR/.

Theorem 4.10 (Kishimoto and Kono [12]) There is a linear map y� W H�.X IR/!
H��1.LX IR/ satisfying the following, where R is a commutative ring.

(1) For the inclusion �W �X ! LX , it holds that

�� ı y� D �;

where � W H�.X IR/!H��1.�X IR/ is the cohomology suspension.

(2) For x;y 2H�.X IR/, we have

y�.xy/D y�.x/yC .�1/jxjjyjxy�.y/:

(3) If RD Z=p , we have

y�P1
D P1

y� and y�ˇ D ˇy�:

Let G be a compact, simply connected, simple Lie group such that G ¤ Spin.2n/ and
H�.GIZ/ is p–torsion free. It holds that

(4-4) H�.BGIZ=p/D Z=pŒy2iC2 j i 2 t.G/�
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and 1 2 t.G/. Then it follows from the Borel transgression theorem that

H�.GIZ=p/Dƒ.�.y2iC2/ j i 2 t.G//:

Thus by Theorem 4.10, we can apply the Leray–Hirsch theorem to the evaluation fiber
sequence G '�BG! LBG! BG and get

H�.LBGIZ=p/DZ=pŒy2iC2 j i 2 t.G/�˝ƒ.yx2iC1 j i 2 t.G//; yx2iC1Dy�.y2iC2/:

Let P be a principal G–bundle over S4 classified by 1 2 ZŠ �4.BG/. Then since
LBG is fiberwise homotopy equivalent to adEG over BG , there is a homotopy
pullback diagram

adP
j //

��

LBG

��
S4

i1 // BG;

implying that

(4-5)
H�.adP IZ=p/D Z=pŒu4�=.u

2
4/˝ƒ.xx2iC1 j i 2 t.G//;

u4 D i�1 .y4/; xx2iC1 D j �.yx2iC1/;

where i1 represents 1 2 ZŠ �4.BG/. Let rp.G/ be the number of i 2 Z=.p � 1/

such that ti.G/¤∅. We give a criterion for fiberwise indecomposability of .adP /fib
.p/

.

Theorem 4.11 Let G be a compact, simply connected, simple Lie group such that
G ¤ Spin.2n/ and H�.GIZ/ is p–torsion free, and let P be a principal G–bundle
over S4 classified by 1 2ZŠ �4.BG/. Suppose there exists a prime p > 3 satisfying
the following conditions.

(1) p� 2 2 t.G/.

(2) P1y4 includes the term ay4y2p�2 for a 2 .Z=p/� .

Then .adP /fib
.p/

is not fiberwise decomposable into rp.G/ non-trivial fiberwise spaces

over S4 .

Proof By the condition (2) together with Theorem 4.10 and (4-5), we get

(4-6) P1
xx3 D au4˝ xx2p�3C � � � :

Assume that .adP /fib
.p/

is fiberwise homotopy equivalent to X1 �S4 � � � �S4 Xrp.G/ ,
where Xi is a non-trivial fiberwise space over S4 for i D 1; : : : ; rp.G/. Then in
particular, we have that the homotopy fiber Fi of Xi ! S4 is not contractible for
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each i . By Corollary 4.9, we may assume B1 is included in F1 . Then it follows from
(4-6) that B1 �Bp�2 must be included in F1 . Thus by Corollary 4.9, at least one Fi

is contractible, a contradiction.

Let G;P be as in Theorem 1.2. Then G.P /.p/ is decomposable into rp.G/ non-
contractible spaces. Then the following shows that not all these decompositions are
induced from those of .adP /fib

.p/
.

Corollary 4.12 Let G be a compact, simply connected, simple Lie group such that
G ¤ Spin.2n/;Sp.1/ .Š SU.2//;SU.3/ and H�.GIZ/ is p–torsion free, and let P

be a principal G –bundle over S4 classified by 1 2 ZŠ �4.BG/. Then there exists an
odd prime p such that .adP /fib

.p/
is not fiberwise decomposable into rp.G/ non-trivial

fiberwise spaces over S4 .

Proof When G is exceptional, p D `.G/C 2 satisfies all conditions in Theorem 4.11
by Hamanaka and Kono [8].

For G D SU.n/ with n> 3, we can take a prime p > 3 satisfying p�1� n� 2p�1,
implying the conditions (1) and (2) in Theorem 4.11 are satisfied. By an elementary
calculation, we have

P1c2 D�.pC 1/c2cp�1C � � �

and then the condition (3) is satisfied, where ci 2H 2i.BSU.n/IZ/ is the i th universal
Chern class. Thus the proof is done by Theorem 4.11 in this case.

The case G D Sp.n/ with n> 1 follows quite similarly from an equality

P1q1 D .�1/
pC1

2 .pC 1/q1q p�1
2

C � � � ;

where qi 2H 4i.BSp.n/IZ/ is the i th universal symplectic Pontrjagin class.

Remark 4.13 By [11], we have that for G D SU.3/, .adP /fib
.p/

is fiberwise decom-

posable into two fiberwise spaces over S4 .
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