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Diagram spaces, diagram spectra
and spectra of units

JOHN A LIND

This article compares the infinite loop spaces associated to symmetric spectra, orthog-
onal spectra and EKMM S–modules. Each of these categories of structured spectra
has a corresponding category of structured spaces that receives the infinite loop space
functor �1 . We prove that these models for spaces are Quillen equivalent and that
the infinite loop space functors �1 agree. This comparison is then used to show
that two different constructions of the spectrum of units gl1R of a commutative ring
spectrum R agree.

55P42, 55P43, 55P47, 55U35, 55U40; 55P48, 18G55

1 Introduction

In recent years, algebraic topology has witnessed the development of models for
the stable homotopy category that are symmetric monoidal under the smash product.
Indeed, there are many such categories of spectra. The models that we will consider are
symmetric spectra (see Hovey, Shipley and Smith [11] and Mandell, May, Schwede and
Shipley [14]), orthogonal spectra [14] and EKMM S–modules (see Elmendorf, Kriz,
Mandell and May [7]). These categories of spectra, as well as their various categories
of rings and modules, are known to be Quillen equivalent; see Mandell and May [13],
Mandell, May, Schwede and Shipley [14] and Schwede [32]. However, a Quillen
equivalence only gives so much information. On their own, these Quillen equivalences
give no comparison of the infinite loop spaces associated to equivalent models of the
same spectrum. The present paper makes this comparison of infinite loop spaces.

To describe the prototype of the objects under comparison, let S denote the category of
spectra E whose zeroth spaces are infinite loop spaces: these are sequences of spaces
En with homeomorphisms En!�EnC1 . Then the infinite loop space associated to
such a spectrum E is its zeroth space: �1E DE0 Š�

nEn for all n. This defines
a functor �1 from S to the category T of based spaces. The suspension spectrum
functor †1 is the left adjoint of �1 . Composing with the free/forgetful adjunction
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1858 John A Lind

between the category of unbased spaces U and the category of based spaces T, we
have the composite adjunction:

(0) U
.�/C //

T
†1 //oo S:
�1
oo

The main point of this paper is to define the analog of this adjunction for symmetric
spectra, orthogonal spectra and S–modules, and then to show that these three ad-
junctions agree after passing to the homotopy category of spaces and the homotopy
category of spectra. Each model for spectra has a corresponding model for spaces
that is symmetric monoidal with commutative monoids modeling E1–spaces, and
we prove that all of these models are Quillen equivalent: this is the enhancement of
the Quillen equivalence between categories of spectra needed to compare infinite loop
space information.

The “structured spaces” associated to structured spectra are of considerable interest
in their own right. Since their commutative monoids model E1–spaces, applying
�1 to a commutative ring spectrum yields a space with a “multiplicative” E1–space
structure. Multiplicative E1–spaces, particularly as packaged in May’s notion of an
E1 ring space, were central to the early applications of the theory of structured ring
spectra (see May [21] for the role of E1 ring spaces in stable topological algebra
and his [20] for a history of these applications). More recently, Rognes [26] has
developed the logarithmic algebra of structured ring spectra, which explicitly uses
both the symmetric spectrum and EKMM approach to structured ring spectra and their
multiplicative infinite loop spaces. Our results not only prove that his constructions in
the two contexts are equivalent, but show how to transport information between them.

Another example of the use of multiplicative infinite loop spaces is the spectrum
of units gl1R of a commutative ring spectrum R. Spectra of units are essential to
multiplicative orientation theory in geometric topology [20] and have been used more
recently in Rezk’s [25] logarithmic power operations and the work of Ando, Hopkins
and Rezk [2] on the String orientation of tmf . To construct gl1R, the multiplication
on R is converted into the addition on the spectrum gl1R. This transfer of structure
occurs on the infinite loop space associated to R, and cannot be performed purely in
terms of spectra. In fact, there are two constructions of spectra of units: the first is the
original definition of May, Quinn and Ray [17] for E1 ring spectra and the second
is the definition for commutative symmetric ring spectra given by Schlichtkrull [28].
Using the comparison of infinite loop spaces, we also prove that these two constructions
give equivalent spectra as output.

Let †S be the category of symmetric spectra, IS the category of orthogonal spectra
and MS the category of S–modules. Let I be the category of finite sets and injective
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functions and let IU be the category of functors from I to the category U of unbased
spaces. We call an object of IU an I–space. IU is the appropriate model for spaces
corresponding to symmetric spectra; it receives the infinite loop space functor �� from
symmetric spectra and participates in an adjunction

(1) IU
†�
C //
†S:

��
oo

Here, the subscript C denotes adding a disjoint basepoint to each space in the diagram
before taking the suspension spectrum. We will work throughout with unbased spaces
for flexibility and to simplify our later construction of gl1 .

In direct analogy to I , let I denote the category of finite-dimensional real inner
product spaces and linear isometries (not necessarily isomorphisms). Let IU denote
the category of continuous functors from I to U. Objects in this category, which we
refer to as I–spaces, are the model for spaces corresponding to orthogonal spectra and
we have an adjunction

(2) IU
†�
C //

IS:
��
oo

We will prove that I–spaces and I–spaces are models for topological spaces in the
following sense.

Theorem 1.1 There is a model category structure on the category of I–spaces whose
weak equivalences are detected by the homotopy colimit functor

hocolimIW IU �!U:

Similarly, the category of I–spaces has a model category structure with weak equiva-
lences detected by

hocolimI W IU �!U:

Furthermore, both of these model structures are Quillen equivalent to Quillen’s model
structure on U.

The construction of the model structure is carried out for a general diagram category
satisfying a few axioms and may be of independent interest. The model structures
will be used throughout the paper but their construction is delayed to Section 15. The
Quillen equivalence with spaces follows from Theorems 6.2 and 9.9 (see Remark 7.1).
In the case of I–spaces, this model structure has also been constructed by Schlichtkrull
and Sagave [27].
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Moving on from diagram spaces, let M� denote the category of �–modules, as devel-
oped by Blumberg, Cohen and Schlichktrull [4] and Ando, Blumberg, Gepner, Hopkins
and Rezk [1]. This is a symmetric monoidal model category Quillen equivalent to
U whose commutative monoids are equivalent to algebras for the linear isometries
operad L and thus model E1–spaces. M� is the model for spaces corresponding to
S–modules and we have an adjunction:

(3) M�

†1
SC // MS :
�1

S

oo

Readers of EKMM [7] should be warned that �1
S

is not the usual functor �1 on
S–modules. Instead, �1

S
is a version of �1 that passes through the mirror image

categories MS and M� . This is necessary to yield �–modules as output and to make
the resulting adjunction work correctly.

When we take the total derived functors of the three adjunctions (1)–(3), the homotopy
categories on the left and right sides are equivalent to the homotopy category of spaces
and the stable homotopy category, respectively. We prove that these adjunctions descend
to homotopy categories compatibly, in the following sense.

Theorem 1.2 The total derived versions of the adjunctions (1)–(3), after passing along
the equivalences of homotopy categories, are all isomorphic to the adjunction

ho U
†1
C // ho S:

�1
oo

induced by the prototype adjunction (0).

To prove this, it suffices to prove that the four versions of the infinite loop space functor
�1 agree on ho S. Since we are using different but Quillen equivalent models for
spectra, we must incorporate the comparison functors between these models. The same
is true for our different models for spaces. To make the comparison, we will use two
intermediaries between orthogonal spectra and S–modules: the category SŒL� of L–
spectra and MS , the mirror image to the category of S–modules. There are analogs at
the space level: UŒL�, the category of L–spaces, and M� , the mirror image to the cate-
gory of �–modules. We shall construct the following diagram relating these categories:

†S
P //

��

��

IS
N //

��

��

U
oo SŒL�

N#
oo

�1L
��

FL.S;� / //
MS

r
oo

S^L� //

�1L

��

MS

�1
S

��

FL.S;� /

oo

IU
P // IU

Q //

U
oo UŒL�

Q#
oo

FL.�;� / //
M�

��L� //
r

oo M�
FL.�;� /

oo
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The top row consist of models for the stable homotopy category and the bottom row
consists of models for the homotopy category of spaces. All parallel arrows are Quillen
equivalences with left adjoints on top. All vertical arrows are Quillen right adjoints.
By definition, the functors �1L agree with the definition of �1 in the adjunction (0),
and we prove Theorem 1.2 by showing that the associated diagram of derived functors
on homotopy categories commutes up to natural isomorphism. The two squares on the
right commute by construction, so this is accomplished by showing that (the derived
versions of) the two left diagrams commute (Propositions 6.3 and 10.1, respectively).

Each category in the top row of the main diagram carries a symmetric monoidal
product ^ whose monoids and commutative monoids give equivalent models for ring
spectra and commutative ring spectra. Each category in the bottom row also carries
a symmetric monoidal product � and all of the adjunctions in the main diagram are
symmetric monoidal. An I–space monoid under � is called an I–FCP (functor with
Cartesian product) and an I–space monoid under � in I–spaces is called an I–FCP.
Strictly speaking, the categories SŒL�;UŒL�;MS and M� are only weakly symmetric
monoidal, meaning that in general the unit maps are only weak equivalences. However,
we can still define monoids and commutative monoids, and we will use the usual
language of monoidal categories (lax/strong symmetric monoidal functors, monoidal
transformations, etc). The category of monoids in UŒL� is isomorphic to the category
of A1–spaces structured by the non-† linear isometries operad L and the category of
commutative monoids in UŒL� is isomorphic to the category of E1–spaces structured
by the linear isometries operad with symmetric group actions. The following theorem
shows that associative and commutative FCPs provide models for A1– and E1–
spaces. Given a symmetric monoidal category C, we write M C for the category of
monoids in C and C C for the category of commutative monoids in C.

Theorem 1.3 The bottom row of Quillen equivalences in the main diagram restricts
to give a chain of Quillen equivalences between the category M IU of I–FCPs, the
category MIU of I–FCPs and the category M UŒL� of non-† L–spaces. These
equivalences restrict further to give a chain of Quillen equivalences between the category
CIU of commutative I–FCPs, the category CIU of commutative I–FCPs and the
category CUŒL� of L–spaces.

This is proved in Theorems 9.10, 17.6 and 18.2. The infinite loop space functors ��

are lax symmetric monoidal, so the underlying infinite loop spaces of (commutative)
diagram ring spectra are (commutative) FCPs. There is a version of the main diagram
for ring spectra and for commutative ring spectra, given by passage to monoids and
commutative monoids in all of the categories present.
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In Section 11, we construct a group-like FCP GL�1R of units from a diagram ring
spectrum R. This defines functors GL�1W M†S!M IU from symmetric ring spectra
to I–FCPs and GL�1W MIS!MIU from orthogonal ring spectra to I–FCPs. When
R is commutative, the FCP of units GL�1R is also commutative. In Section 12, we
build spectra out of group-like commutative FCPs, defining functors gl1W C†S! S

and gl1W CIS! S that give the spectrum of units of a commutative diagram ring
spectrum. This agrees with the construction of Schlichtkrull [28] for commutative
symmetric ring spectra.

The units of A1 and E1 ring spectra were first constructed by May–Quinn–Ray [17].
Starting with an A1 ring spectrum R, there is a group-like A1–space GL1R of units.
When R is E1 the group-like E1–space GL1R may be delooped to give a spectrum
of units gl1R. The categories MMS and CMS of S–algebras and commutative S–
algebras arise as subcategories of the categories M SŒL� and CSŒL�D SŒL� of A1–
and E1 ring spectra, so we may also apply the functors GL1 and gl1 to them as well.

Theorem 1.4 After passage to homotopy categories, all four versions of the A1–
space GL1R of units of a ring spectrum R agree. After passage to homotopy categories,
all four versions of the spectrum of units gl1R of a commutative ring spectrum R agree.

The first statement is proved as Propositions 13.8 and 14.1, and the second is proved as
Theorems 13.9 and 14.4. The proof requires the comparison of delooping machines,
which seems to be intrinsically nonmodel-theoretic.

Outline In Sections 2–3 we define I–spaces, I–spaces and the adjunctions (1) and
(2) involving the infinite loop space functors �� for symmetric and orthogonal spectra.
In Section 4, we show that the adjunctions are monoidal and that commutative monoids
in I–spaces and I–spaces give rise to E1–spaces and hence to infinite loop spaces.
Section 5 contains the basic categorical technique used for all of the comparisons in the
paper. In Section 6 we compare �� for symmetric and orthogonal spectra. In Section 7
we shift to the EKMM approach, describing �–modules and defining the infinite loop
space functor �1

S
for S–modules. In Section 8 we construct the adjunction between

I–spaces and �–modules and in Section 9 we prove that it is a Quillen equivalence.
The comparison of infinite loop spaces is completed by Section 10, which gives the
comparison of �� on orthogonal spectra with �1

S
on S–modules. In Section 11

we define an FCP GL�1R of units associated to a diagram ring spectrum R and in
Section 12 we convert commutative FCPs to spectra, thus defining the spectrum of units
gl1R. We compare gl1 of symmetric and orthogonal ring spectra in Section 13 and then
compare with gl1 of E1 ring spectra in Section 14. The rest of the paper contains the
model-theoretic results that underlie the comparison results. In Section 15 we construct
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the model structure on the category of D–spaces in full generality and in Section 16
we prove that the model structures on I–spaces and I–spaces are Quillen equivalent.
In Sections 17–18 we construct the model structure on the categories of monoids and
commutative monoids in D–spaces (FCPs). The appendix gives background material
on bar constructions and homotopy colimits over topological categories, as well as the
action of the linear isometries operad L on the categories and functors used throughout
the paper.

Conventions In this paper, a topological category means a category internal to topo-
logical spaces, not just enriched in topological spaces (see the appendix for a review).
The symbol D will always denote a topological category. The main examples in this
paper are I (with the discrete topology) and I| , a small category equivalent to I .
The description of the topology on I| is in the appendix. By a D–space we mean
a continuous functor D! U. We will often write Xd for the value X.d/ of X at
an object d of D. Notice that a D–space only depends on the enrichment of D: the
topology on ob D is not part of the structure of a D–space. We will use the language
of compactly generated model categories as defined by May–Sigurdsson [22, 4.5.3].
A model category C is topological if it is enriched, tensored and cotensored in U

and the topological analog of SM7 holds: given a cofibration i W A!X and fibration
pW E! B , the induced map of spaces

C.i;p/W C.X;E/ �! C.A;E/�C.A;B/ C.X;B/

is a Serre fibration which is a weak equivalence if either i or p is.

Although the following conditions are easy to verify in practice, we will make repeated
use of them in gluing arguments and prefer to make a single definition for easy reference.
A topologically cocomplete category C has cylinder objects defined by the tensor I�X

of an object X with the unit interval I D Œ0; 1�. We have the notion of an h–cofibration
in C, given by the homotopy extension property with homotopies defined by these
cylinders. Since h–cofibrations are defined by a lifting property, it is immediate that
h–cofibrations are preserved under coproducts, pushouts and sequential colimits. We
say that a class of weak equivalences in a topologically bicomplete category C is
well-grounded (compare May and Sigurdsson [22, 5.4.1]) if the following properties
hold:

(i) A coproduct of weak equivalences is a weak equivalence.

(ii) If i W A!X is an h–cofibration and a weak equivalence and f W A! Y is any
map, then the cobase change Y !X [A Y is a weak equivalence.
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(iii) If i and i 0 are h–cofibrations and the vertical arrows are weak equivalences in
the following diagram

X

��

A
ioo //

��

Y

��
X 0 A0

i0
oo // Y 0

then the induced map of pushouts X [A Y !X 0[A0 Y
0 is a weak equivalence.

(iv) If X and Y are each colimits of sequences of h–cofibrations Xn ! XnC1 ,
Yn! YnC1 , and fnW Xn! Yn is a compatible family of maps, each of which
is a weak equivalence, then the induced map colimfnW X ! Y is a weak
equivalence. In particular, if each map Xn!XnC1 is a weak equivalence, then
X0!X is a weak equivalence.

(v) If f W X !Y is a map in C and i W A!B is a retract of a relative CW complex,
then the pushout product

f � i W .X �B/[X�A .Y �A/ �! Y �B

is a weak equivalence if either f or i is a weak equivalence.

Finally, a diagram of categories, such as the main diagram of this introduction, will be
said to commute when we really mean “commute up to natural isomorphism”.

Acknowledgments I thank Peter May for his guidance and enthusiasm, as well as
Andrew Blumberg, Mike Mandell and Mike Shulman for helpful conversations. I am
very much in debt to a careful referee who caught serious errors in previous versions
of this paper.

2 Infinite loop space theory of symmetric spectra

In this section we will summarize the basic theory of I–spaces (see also Rognes [26,
Section 6] and Sagave–Schlichtkrull [27]). Let us first recall the foundations on symmet-
ric spectra from Hovey–Shipley–Smith [11] and Mandell–May–Schwede–Shipley [14].
Let † be the category of finite sets nD f1; : : : ; ng for n� 0 and bijections n! n. †
is a symmetric monoidal category under disjoint union. The category †T of based
†–spaces is symmetric monoidal under the internal smash product ^. The sphere
†–space S W n 7! Sn is a commutative monoid under ^. A symmetric spectrum E

is a module over S in the symmetric monoidal category †T. The category †S of
symmetric spectra is symmetric monoidal under the smash product ^S with unit object
the sphere spectrum S .
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In order to capture the infinite loop space information contained in a symmetric spectrum,
we describe the structure naturally occurring in the collection of loop spaces f�nEng.
To this end, let I be the category of finite sets nDf1; : : : ; ng for n� 0 with morphisms
the injective set maps. Let J be the subcategory of I with the same objects but with
morphisms only the inclusions �W m!n such that �.k/D k . Note that every morphism
� of I can be factored (nonuniquely) as � D � ı � for some permutation � in †.

Let E be a symmetric spectrum. Define a based I–space ��E by .��E/.n/D�nEn .
Given a morphism �W m!n of I , define .��E/.�/ as follows. Write �D�ı�, where
�W m! n is the natural inclusion and � 2†n . The induced map ��W �mEm!�nEn

is �mz� , where z� is the adjoint of the spectrum structure map †n�mEm!En . Define
��W �

nEn!�nEn by sending 
 2�nEn to the composite:

Sn ��1

���! Sn 

�!En

E.�/
���!En:

The induced map ��W �mEm!�nEn is defined to be �� ı �� and is independent of
the choice of � .

The functor ��W †S! IT has a left adjoint †� . Given a based I–space X , the
symmetric spectrum †�X is given by .†�X /nDX.n/^Sn , with permutations acting
diagonally. The adjunction

IT
†� //

†S
��
oo

should be thought of as the symmetric spectrum analog of the usual .†1; �1/ adjunc-
tion between based spaces and spectra. The I–space ��E is the appropriate notion of
the infinite loop space associated to the symmetric spectrum E .

From now on, we will work with unbased I–spaces. The usual adjunction between
unbased and based spaces passes to diagram spaces, and we have the composite
adjunction:

IU
.�/C //

IT
†� //oo †S
��
oo :

Denote the top composite by †�C .

To understand the homotopy type that ��E determines, we combine the spaces �nEn

into a single space using the (unbased) homotopy colimit, which we denote by �1ED

hocolimI �
�E .

Remark 2.1 In general, �k�
1E and �kE do not agree. However, for k � 0, the

�k�
1E are the “true” homotopy groups of the symmetric spectrum E . This is
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because �1E is the zeroth space of Shipley’s detection functor D [35] applied to
E . When E is semistable in the sense of Hovey–Shipley–Smith [11], then �k�

1E

is isomorphic to �kE for k � 0. For more on semistable symmetric spectra and the
nuances of the homotopy groups of symmetric spectra, see Schwede [33].

Thinking of the homotopy colimit of an I–space as determining its underlying homotopy
type leads us to make:

Definition 2.2 A weak homotopy equivalence of I–spaces is a map f W X ! Y such
that the induced map of homotopy colimits

f�W hocolimI X �! hocolimI Y

is a weak homotopy equivalence of spaces.

Theorem 2.3 There is a compactly generated topological monoidal model structure
on the category of I–spaces with weak equivalences the weak homotopy equivalences.
The fibrations are level fibrations f W X ! Y such that for every morphism �W m! n

of I , the induced map

X.�/�f .m/W X.m/ �!X.n/�Y .n/ Y .m/

is a weak homotopy equivalence of spaces. In particular, the fibrant objects are the
I–spaces X such that X.�/W X.m/ ! X.n/ is a weak homotopy equivalence for
every morphism �W m! n of I . Furthermore the weak equivalences of I–spaces are
well-grounded.

The compactly generated topological model structure exists by Theorem 15.2, and
the pushout-product axiom is proved in Section 17. The last claim follows since
the homotopy colimit functor preserves tensors with spaces, pushouts and sequential
colimits, and weak homotopy equivalences of spaces are well-grounded.

For the following result and throughout, we will use the stable model structure on
symmetric spectra [14].

Proposition 2.4 .†�C; �
�/ is a Quillen adjunction between I–spaces and symmetric

spectra.

Before proving this, we will prove:

Lemma 2.5 �� preserves fibrant objects.

Algebraic & Geometric Topology, Volume 13 (2013)



Diagram spaces, diagram spectra and spectra of units 1867

Proof Suppose that E is a fibrant symmetric spectrum. Then the maps z� W En !

�EnC1 are weak homotopy equivalences. Let �W m! n be any morphism of I . By
the description of fibrant objects, we need to show that .��E/.�/W �mEm!�nEn

is a weak homotopy equivalence. Factor � as �D � ı �, where � is the natural inclusion
m� n and � is a permutation. As � induces a homeomorphism of spaces, we need
only show that .��E/.�/W �mEm ! �nEn is a weak homotopy equivalence. But
.��E/.�/D�mz�n�m , where z� is the adjoint to the structure maps of the spectrum
E . Since z� is a weak equivalence, the lemma is proved.

Proof of Proposition 2.4 It suffices to show that �� preserves fibrations and acyclic
fibrations. Suppose that pW E! B is a fibration of symmetric spectra. Then p is a
level fibration of symmetric spectra [14, Section 9], so each component pnW En! Bn

is a fibration of spaces. Thus .��p/.n/W �nEn!�nBn is a fibration, so ��p is a
level fibration of I–spaces. Next form the fiber F of p as the following pullback:

F

��

// E

p

��
� // B

Since p has the right lifting property with respect to acyclic cofibrations, F!� does as
well, so F is a fibrant symmetric spectrum. By Lemma 2.5, ��F is a fibrant I–space.
Let �W m!n be a morphism of I . Then the induced map .��F /.�/W �mFm!�nFn

is a weak homotopy equivalence. Now consider the following diagram, where each
vertical column is a fiber sequence of spaces:

�mFm
//

��

�nFn
D //

��

�nFn

��
�mEm

//

��

�nEn ��nBn
�mBm

//

�

��

�nEn

��p

��
�mBm �mBm

.��B/.�/

// �nBn

The lower right square is a pullback, so we may identify the fiber of � with �nFn

as indicated. The top composite is .��F /.�/W �mFm! �nFn . It follows that the
map of total spaces �mEm ! �nEn ��nBn

�mBm is a weak homotopy equiva-
lence. By the description of fibrations in the stable model structure, this means that
��pW ��E!��B is a fibration of I–spaces, so �� preserves fibrations.

Next we will show that �� preserves acyclic fibrations. Suppose that pW E! B is
an acyclic fibration of symmetric spectra. Then ��p is a fibration and we need to
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show that it is a weak homotopy equivalence. By [14, 9.8], p is a level equivalence
of symmetric spectra. Therefore each map .��p/.n/W �nEn ! �nBn is a weak
homotopy equivalence, so the map of homotopy colimits

��pW hocolimI �
�E �! hocolimI �

�B

is a weak homotopy equivalence, as desired.

3 Infinite loop space theory of orthogonal spectra

We now make the analogous constructions for orthogonal spectra, referring to Mandell
May Schwede and Shipley [14] for background. Let I be the category of finite-
dimensional inner product spaces V and linear isometric isomorphisms V !W . I

is symmetric monoidal under direct sum ˚. The category IT of based I–spaces
is symmetric monoidal under the internal smash product ^. The sphere I–space
S W V 7! SV is a commutative monoid under ^, and an orthogonal spectrum is a
module over S . The category IS of orthogonal spectra is symmetric monoidal under
^S with unit object the sphere spectrum S .

Let I be the category of finite-dimensional real inner product spaces V and linear
isometries V !W (not necessarily isomorphisms). The category I is the analog of
the category I of finite sets n and injections. A universe U is a real inner product
space that admits an isomorphism U ŠR1 . Later on, we will use spectra indexed on
U , as in EKMM [7] and Lewis, May, Steinberger and McClure [12]. We fix, once and
for all, a universe U . Let J be the category of finite-dimensional subspaces V � U

with morphisms the inclusions V � W within U . Notice that there is at most one
morphism between any two objects in J . The category J is the analog of the category
J of finite sets n and ordered inclusions. We have inclusions of categories J ! J
and I! I defined by n 7!Rn , where we choose a countable orthonormal basis of U

and use it to identify Rn with a canonical n–dimensional subspace of U .

There is an adjunction

IT
†� // IS;
��
oo

defined the same way as for symmetric spectra. Given a based I–space X , †�X
is the orthogonal spectrum given by .†�X /V D X.V /^ SV . Given an orthogonal
spectrum E , the I–space ��E is defined on objects by .��E/.V /D�V EV and on
morphisms so that an isometry �W V !W induces the map ��W �V EV ! �W EW
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that sends 
 2�V EV to:

SW id^��1

�����! SW ��.V /
^SV id^


���! SW ��.V /
^EV

id^E.�/
������! SW ��.V /

^E�.V /
†
�!EW :

Notice that to define E.�/, we must consider � as a linear isometric isomorphism
onto its image �.V / so that it is a morphism in I.

From now on, we will work with unbased I–spaces, and we have the composite
adjunction:

IU
.�/C // IT

†� //oo IS:
��
oo

We want to form the topological homotopy colimit hocolimI X of an I–space X

over I . This homotopy colimit should take into account the topology of the space of
objects and the space of morphisms in I . However, I is not a topological category
because its class of objects is not a set. Instead, we restrict to the equivalent small
category I| consisting of finite-dimensional real inner product spaces V that are a
subspace of some finite product U n of the universe U . The categories I| and J
are topological categories but I is not. See the appendix for the definitions of the
topologies and the formation of topological homotopy colimits. By abuse of notation,
we will write hocolimI X for the topological homotopy colimit hocolimI| X of an
I–space X restricted to the category I| .

With these conventions in place, let �1EDhocolimI �
�E . The following proposition

relies on results from later sections, but we include it here since it is the analog of the
I–spaces of Remark 2.1.

Proposition 3.1 For k � 0, there is a canonical isomorphism of homotopy groups
�k�

1E Š �kE .

Proof We have isomorphisms:

�kE D colim
n2J

�kCnEn Š colim
n2J

�k�
nEn Š �k hocolim

n2J
�nEn:

The result follows by the following composite of weak homotopy equivalences induced
by the inclusions of categories J ! J ! I| (Lemma A.5 and Proposition 9.4):

hocolimJ �
�E �!

' hocolimJ �
�E �!

' hocolimI �
�E:
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Remark 3.2 Unlike the case of symmetric spectra, orthogonal spectra always have
an isomorphism �k�

1E Š �kE for k � 0. Another way to say this is that for both
symmetric and orthogonal spectra, �1E is the zeroth space of a fibrant replacement,
but only for orthogonal spectra does a fibrant replacement always have the same
homotopy groups as the original spectrum. One way to understand this difference is that
hocolimJ and hocolimI are only equivalent under certain hypotheses, as specified by
Bökstedt’s Telescope Lemma 16.1, but hocolimJ and hocolimI are always equivalent
(Proposition 9.4).

Definition 3.3 A weak homotopy equivalence of I–spaces is a map f W X ! Y such
that the induced map of homotopy colimits

f�W hocolimI X �! hocolimI Y

is a weak homotopy equivalence of spaces.

Theorem 3.4 There is a compactly generated topological monoidal model structure
on the category of I–spaces with weak equivalences the weak homotopy equivalences.
The fibrations are level fibrations f W X ! Y such that for every morphism �W V !W

of I , the induced map

X.�/�f .V /W X.V / �!X.W /�Y .W / Y .V /

is a weak homotopy equivalence of spaces. In particular, the fibrant objects are the
I–spaces X such that X.�/W X.V /! X.W / is a weak homotopy equivalence for
every morphism �W V !W of I .

The compactly generated topological model structure is a special case of Theorem 15.2
and the pushout-product axiom is proved in Section 17. The weak equivalences are
well-grounded because the homotopy colimit functor commutes with tensors with
spaces, pushouts and sequential colimits.

The functor �� participates in a Quillen adjunction with the category of orthogonal
spectra, which is endowed with the stable model structure [14]:

Proposition 3.5 .†�C; �
�/ is a Quillen adjunction between I–spaces and orthogonal

spectra.

The proof is essentially identical to the proof of Proposition 2.4 and will not be repeated.
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4 Functors with Cartesian product and diagram ring spectra

We now consider the multiplicative properties of the functor �� . Starting in full
generality, let .D;˚; 0/ be a symmetric monoidal category enriched in spaces. The
category of unbased D–spaces DU is symmetric monoidal under the internal Cartesian
product �. Given D–spaces X and Y , X �Y is defined as the left Kan extension of
the .D�D/–space X �Y along ˚W D�D!D and its universal property is described
by the adjunction:

DU.X �Y;Z/Š .D�D/U.X �Y;Z ı˚/:

The unit of � is the represented D–space DŒ0� D D.0;� /. When 0 is the initial
object, this is the terminal D–space �. We will call a monoid in D–spaces under � a
D–functor with Cartesian product, abbreviated to D–FCP. By the above adjunction,
an FCP X can be described internally in terms of an associative and unital map of
D–spaces X �X ! X or externally in terms of an associative and unital natural
transformation X.m/�X.n/!X.m˚n/. A commutative monoid under � is called
a commutative FCP.

Specializing to DD I and I , we have a symmetric monoidal product � on I–spaces
and I–spaces.

Lemma 4.1 For both symmetric and orthogonal spectra, the functor �� is lax sym-
metric monoidal.

Proof The functor †�C is strong symmetric monoidal by inspection. As with any
right adjoint of a strong symmetric monoidal functor, �� is lax symmetric monoidal
with structure maps

��E���E0 �!��.E ^E0/ and � �!��.S/

defined to be the adjuncts of:

†�C.�
�E���E0/ �!Š †�C�

�E ^†�C�
�E0

�^�
��!E ^E0

and
†�C.�/ �!

Š
S:

Here � is the counit of the .†�C; �
�/ adjunction and the isomorphisms are the strong

monoidal structure maps for †�C .

Lax symmetric monoidal functors preserve monoids and commutative monoids, so
we have:
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Proposition 4.2 If R is a symmetric ring spectrum, then ��R is an I–FCP. If R is
an orthogonal ring spectrum, then ��R is an I–FCP. If R is commutative, then ��R
is commutative.

Remark 4.3 If X is a commutative D–FCP, then hocolimD X is an E1–space
(DD I or I ). In particular, for a commutative symmetric or orthogonal ring spectrum
R, �1RDhocolim��R is an E1–space. The E1–space structure is encoded by an
action of the (topological) Barratt–Eccles operad E† with E†.j /DE†j , the usual
total space of the universal †j –bundle. Indeed, hocolimD X arises as the classifying
space of the translation category DŒX �, which in our situation can be made into a
permutative topological category, and so BDŒX � carries an action of E† [16, 4.9].

5 Comparing left and right Quillen functors

Having set up the infinite loop space theory of diagram spectra, we are ready to start
proving the comparison results. This brief section is an overview of the method of
comparison that we will use. It is given in full generality, and is an easy observation
about conjugation of adjoint functors. It can be thought of as a special case of Shulman’s
method [36] for comparing composites of left and right derived functors.

Let .f;g/W A!B and .h; k/W C!D be two Quillen adjunctions of model categories.
Further suppose that there are functors aW A! C and bW B! D that preserve fibrant
objects and weak equivalences of fibrant objects. For example, a and b might be right
Quillen functors. This situation can be pictured in the following diagram:

(5.1)

A
f //

a

��

B
g
oo

b
��

C
h //

D
k

oo

In the applications to follow, it will be easy to find a natural equivalence of composites
ag ' kb . We wish to understand how to transfer this equivalence to an equivalence in
the other direction: ha' bf . In general, this will not be possible. However, when
.f;g/ and .h; k/ are Quillen equivalences, we can make a comparison of derived
functors.

As left Quillen adjoints, f and h have left derived functors Lf W ho A! ho B and
LhW ho C! ho D. Similarly, g and k have right derived functors RgW ho B! ho A

and RkW ho D! ho C. Since a and b preserve fibrant objects and weak equivalences
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of fibrant objects, they also have right derived functors Ra and Rb , represented by
aR and bR, respectively, where R denotes fibrant approximation.

Proposition 5.2 Suppose that .f;g/ and .h; k/ are Quillen equivalences in the situa-
tion pictured in diagram (5.1). Further suppose that there is a natural equivalence of
functors ag ' kb . Then there is an isomorphism of composites of derived functors:
LhRaŠRbLf .

Proof Since right derived functors compose to give right derived functors, we have
isomorphisms RaRg Š R.ag/ Š R.kb/ Š RkRb . The units and counits of the
derived adjunctions .Lf;Rg/ and .Lh;Rk/ are isomorphisms, yielding the desired
isomorphism:

LhRa
LhRa�
�����!LhRaRgLf ŠLhRkRbLf

�
�!RbLf:

6 Comparison of infinite loop spaces of diagram spectra

To compare symmetric spectra and orthogonal spectra, one uses the embedding of
diagram categories † ! I defined by n 7! Rn . This induces a forgetful functor
U W IS!†S with a left adjoint P W †S!IS defined by left Kan extension. Similarly,
the embedding I ! I induces a forgetful functor U W IU ! IU with left adjoint
P W IU!IU defined by left Kan extension. Such left adjoints P are called prolongation
functors. We recall the comparison results for diagram spectra, then state the analogous
results for I and I–spaces.

Theorem 6.1 [14] The adjunction .P ;U/W †S� IS is a Quillen equivalence be-
tween the categories of symmetric spectra and orthogonal spectra, both considered with
the stable model structure. The adjunction restricted to the subcategories of monoids,
respectively commutative monoids, gives a Quillen equivalence between symmetric
ring spectra and orthogonal ring spectra, respectively commutative symmetric ring
spectra and commutative orthogonal ring spectra.

In the case of commutative ring spectra, we use the positive stable model structure. There
is also a positive model structure on diagram spaces, which is used for commutative
FCPs. The following result will be proved as Theorems 16.4 and 18.2:

Theorem 6.2 The adjunction .P ;U/W IU� IU is a Quillen equivalence between
the categories of I–spaces and I–spaces. The adjunction restricted to the subcategories
of monoids, respectively commutative monoids, gives a Quillen equivalence between
I–FCPs and I–FCPs, respectively commutative I–FCPs and commutative I–FCPs.
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The infinite loop space functors �� fit into the following diagram:

†S
P //

��

��

IS
U
oo

��

��
IU

P // IU
U
oo

Our goal is to show that this diagram commutes in both directions, up to weak equiva-
lence. For the direction involving the prolongation functors, we must compose left and
right Quillen functors. This requires descending to homotopy categories and derived
functors, as discussed in Section 5.

Proposition 6.3 The following diagrams commute:

†S

��

��

IS
Uoo

��

��

ho†S
LP //

R��

��

ho IS

R��

��
IU IU

U
oo ho IU

LP
// ho IU

Proof The commutativity of the first diagram is immediate from the definitions.
The adjunctions are Quillen equivalences, and the functors �� are right Quillen by
Propositions 2.4 and 3.5. Hence we are in the situation described in Section 5, so the
second diagram commutes by Proposition 5.2.

We also make the comparison of �� for ring and commutative ring spectra, paren-
thesizing the statement about commutative monoids. We first record the following
observation:

Proposition 6.4 Restricted to the categories of symmetric and orthogonal (commuta-
tive) ring spectra and (commutative) I and I–FCPs, .†�C; �

�/ is a Quillen adjunction.

Proof This goes just as for the additive case in Proposition 2.4. For commutative ring
spectra, we use the positive stable model structure on ring spectra and FCPs.

In particular, Proposition 5.2 applies and we have:

Proposition 6.5 The following diagrams (and their analogs with M replaced by C)
commute:

M†S

��

��

MIS
Uoo

��

��

ho M†S
LP //

R��

��

ho MIS

R��

��
M IU MIU

U
oo ho M IU

LP
// ho MIU
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Proof The first diagram is immediate from the definitions and the second follows
from Proposition 5.2.

7 Infinite loop space theory of S–modules

We recall what we need of the theory of L–spectra and S–modules, referring to
EKMM [7] as our primary source (see also Lewis, May, Steinberger and McClure [12]
and May [17; 21]). By a spectrum we mean a (LMS) spectrum E indexed on a universe
U 0 of real inner product spaces such that the structure maps EV !�W �V EW are
homeomorphisms, as in [12]. We denote the category of spectra indexed on U 0 by SU 0.
Recall that we have fixed a universe U , and we will work with the category SD SU

of spectra indexed on U . There is a monad L on spectra defined using the twisted
half-smash product:

LE D L.1/ËE:

L denotes the linear isometries operad with L.j / D Ic.U
j ;U /. Here Ic is the

category of finite and countably infinite-dimensional real inner product spaces and
their linear isometries. An L–spectrum is an algebra for the monad L and we let
SŒL� denote the category of L–spectra. There is a smash product ^L of L–spectra
defined in terms of a certain coequalizer involving the actions of L.1/. The functor
.�/^L E is left adjoint to the function L–spectrum functor FL.E;� /. S–modules
in the sense of [7] are the L–spectra E for which the sphere spectrum acts as unit,
meaning that the canonical weak equivalence S ^L E!E is an isomorphism. Denote
the category of S–modules by MS . The functor S ^L�W SŒL�!MS is right adjoint
to the forgetful functor l W MS ! SŒL� and is left adjoint to the function L–spectrum
functor FL.S;� /W MS ! SŒL�.

An E1 ring spectrum is an L–spectrum R with an action of the linear isometries
operad L. Equivalently, R is an algebra for the monad C on L–spectra defined by

CE D
_
j�0

E^j=†j ;

where E^j is the j –fold smash product ^L of E . Similarly, a commutative S–
algebra is an algebra for the monad C restricted to S–modules. To avoid confusion, be
warned that the monad C is denoted by P in [7] and C is used for a different monad
there. Similarly, an A1 ring spectrum is an algebra for the monad M on L–spectra
defined by

ME D
_
j�0

E^j :
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We will use the following model structures on the categories of spectra, L–spectra and
S–modules from [7, Section VII.4] and [1, Section 3.1]:

� There is a cofibrantly generated topological model structure on the category of
spectra, with weak equivalences the weak homotopy equivalences of spectra and
fibrations the Serre fibrations, ie the maps that are level-wise Serre fibrations of
based spaces. All spectra are fibrant in this model structure.

� There is a cofibrantly generated topological model structure on the category of
L–spectra with weak equivalences and fibrations created by the forgetful functor
to spectra.

� There is a cofibrantly generated topological monoidal model structure on S–
modules with weak equivalences and fibrations created by the forgetful functor
to spectra.

The underlying infinite loop space of a spectrum E is the zeroth space �1E DE.0/.
The functor �1 is right adjoint to the suspension spectrum functor †1W T! S. Our
goal is to study the analog of this adjunction for S–modules.

In order to capture the underlying infinite loop space of an S–module in a structured
way, we will use a symmetric monoidal category Quillen equivalent to the category
of topological spaces whose commutative monoids are L–spaces. This category
is constructed in direct analogy with S–modules, and was first used in Blumberg’s
thesis [3]. We will outline the basic definitions, referring to the work of Ando–Blumberg–
Gepner–Hopkins–Rezk [1] and Blumberg–Cohen–Schlichtkrull [4] for full details.

Let L be the monad on unbased spaces defined by LX D L.1/�X . An algebra for
L is called an L–space and the category of L–spaces is denoted by UŒL�. There is a
weak symmetric monoidal product �L on UŒL� defined as the coequalizer

L.2/�L.1/�L.1/�X �Y //// L.2/�X �Y // X �L Y

of the action of L.1/2 on L.2/ by precomposition and the action of L.1/2 on X �Y .
The functor .�/�L X is left adjoint to the function L–space functor FL.X;� /. An
L–space X is a �–module if the canonical weak equivalence �W ��L X !X is an
isomorphism. The full subcategory of UŒL� consisting of �–modules is denoted by M� .
The functor ��L�W UŒL�!M� is right adjoint to the forgetful functor l W M�!UŒL�
and is left adjoint to the function L–space functor FL.�;� /W M�!UŒL�.

A commutative monoid in the category of L–spaces is an algebra for the monad

CX D
a
j�0

X �j=†j :
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Here we have written � for �L . Commutative monoids in L–spaces are the same
thing as L–spaces, meaning algebras for the linear isometries operad in unbased spaces.
A monoid in the category of L–spaces is an algebra for the monad

MX D
a
j�0

X �j :

Monoids in L–spaces are the same thing as non-† L–spaces.

We will use the following model structures on L–spaces and �–modules from [4, 4.15,
4.16]. They are defined using the cofibrantly generated model structure on the category
of topological spaces with weak equivalences the weak homotopy equivalences and
fibrations the Serre fibrations.

� There is a cofibrantly generated topological monoidal model structure on the
category of L–spaces with weak equivalences and fibrations created by the
forgetful functor to spaces. In particular, all objects are fibrant. Colimits and
limits of L–spaces are constructed in the underlying category of spaces.

� There is a cofibrantly generated topological monoidal model structure on �–
modules with weak equivalences and fibrations created by the forgetful functor to
spaces. Colimits are created in the category of L–spaces, and limits are created
by applying �� .�/ to the limit computed in the underlying category of spaces.

Notice that since colimits and weak equivalences are preserved by the forgetful functor
to spaces, the weak equivalences are well-grounded for both L–spaces and �–modules.

Remark 7.1 As observed by Blumberg, Cohen and Schlichtkrull [4], the category of
L–spaces and the category of �–modules are each Quillen equivalent to the category
of topological spaces via the forgetful functor. This is immediate from the construction
of the model structures. Although neither Quillen adjunction is monoidal, there is
a different comparison functor from L–spaces to spaces that is monoidal; see [4,
Section 4.5].

Let X be a based L–space (with trivial action of L.1/ on the basepoint). The untwisting
isomorphism [7, 2.1] allows us to define an L–spectrum structure on †1X using the
L–space structure on X :

L.1/Ë†1X Š†1.L.1/C ^X / �!†1X:

Since †1 preserves the coequalizers defining �L and ^L , the untwisting isomorphism
also gives a natural isomorphism †1.X �L Y /C Š†

1XC ^L†
1YC for unbased

L–spaces X and Y . In fact, we may lift the .†1; �1/ adjunction to a symmetric
monoidal adjunction between L–spectra and L–spaces.
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Proposition 7.2 [1, 5.17] The composable pair of Quillen adjunctions

U
.�/C //

T
†1 //oo S
�1
oo

induces a pair of Quillen adjunctions between L–spaces and L–spectra:

UŒL�
.�/C // TŒL�

†1L //oo SŒL�
�1L

oo

Furthermore, the composite of left adjoints †1L ı .�/C D †
1
LC is strong symmetric

monoidal and the right adjoint �1L is lax symmetric monoidal.

Remark 7.3 The suspension spectrum †1X of an arbitrary based space X carries a
different L–spectrum structure given by collapsing L.1/ to a point:

L.1/Ë†1X Š†1.L.1/C ^X / �!†1.S0
^X /Š†1X:

To avoid confusion with this trivial L–spectrum structure, we use the notation †1L X

for the L–spectrum associated to an L–space.

Since S D†1LC.�/, we have a natural isomorphism †1LC.��L X /Š S ^L†
1
LCX .

Therefore, the functor †1LC restricts to a functor †1
SC
W M�!MS . Its right adjoint

�1
S

will be the appropriate notion of the underlying infinite loop space of an S–module.
Notice that the composite �1L ı l of �1L with the forgetful functor l W MS ! SŒL�
does not land in �–modules, and in particular is not the right adjoint of †1

SC
.

In order to define the infinite loop space �1
S

of an S–module, we must be more
careful. The problem is that �1L ı l is the composite of a left adjoint and a right
adjoint. To remedy this, we will pass through the mirror image to the category of
S–modules [7, Section II.2]. This is the category MS of L–spectra for which S is
a strict counit, meaning that the canonical weak equivalence E ! FL.S;E/ is an
isomorphism. The forgetful functor r W MS ! SŒL� has as left adjoint the functor
FL.S;� /. Furthermore, the resulting adjunction .S ^L�;FL.S;� //W MS !MS is
an equivalence of categories. We summarize this series of adjunctions in the following
diagram, with left adjoints on top:

SŒL�
FL.S;� / //

MS
r

oo
S^L� // MS :

FL.S;� /

oo

Similarly, there is a mirror image category M� to the category of �–modules. Its
objects are the L–spaces for which the natural map X !FL.�;X / is an isomorphism.
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We have adjunctions and an equivalence of categories between M� and M� just as for
S–modules:

UŒL�
FL.�;� / //

M�
r

oo
��L� // M�:

FL.�;� /

oo

A series of adjunctions shows the natural isomorphism †1LC.��L X /Š S ^L†
1
LCX

induces a natural isomorphism �1L FL.S;E/Š FL.�; �
1
L E/. Therefore, the infinite

loop space functor �1L W SŒL�!UŒL� restricts to a functor of mirror image categories
�1L W MS !M� .

Definition 7.4 Define the infinite loop �–module �1
S

M of an S–module M by:

�1S M D ��L�
1
L FL.S;M /:

A series of adjunctions proves:

Lemma 7.5 The left adjoint of �1
S
W MS !M� is †1

SC
D†1LC ı l W M�!MS . The

left adjoint of �1L ı r W MS !M� is the functor

X 7�! FL.S; †
1
L .��L X //:

8 The adjunction between I–spaces and �–modules

Mandell and May construct a Quillen equivalence between orthogonal spectra and
S–modules in [13]. Over the next two sections, we will construct an analogous Quillen
equivalence between I–spaces and �–modules. Since �–modules are equivalent to
L–spaces, it suffices to prove that I–spaces are equivalent to L–spaces, which is
accomplished in Theorem 9.9. The equivalence restricts to a Quillen equivalence of
commutative I–FCPs and L–spaces, giving two equivalent approaches to modeling
infinite loop spaces. Section 10 will use this result to show that the infinite loop space
functors for orthogonal spectra and S–modules agree. We first summarize the Quillen
equivalence of orthogonal spectra and S–modules.

Theorem 8.1 [13, 1.1 and 1.5] There is a Quillen equivalence .N;N#/W IS� SŒL�
between orthogonal spectra and L–spectra. The functor N is strong symmetric
monoidal and N# is lax symmetric monoidal. The restricted adjunction between
(commutative) orthogonal ring spectra and A1 (E1 ) ring spectra is also a Quillen
equivalence. Similarly, there is a Quillen equivalence .NS ;N

#
S
/W IS�MS between

orthogonal spectra and S–modules that restricts to a Quillen equivalence between
(commutative) orthogonal ring spectra and (commutative) S–algebras.
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The functors we have denoted by NS and N#
S

are called N and N# in [13]. The cited
source only contains the comparison of orthogonal spectra and S–modules, but the
equivalence of orthogonal spectra and L–spectra follows by the equivalence between
the categories of L–spectra and S–modules.

We now make the central definition underlying the comparison between I–spaces and
L–spaces.

Definition 8.2 Let W be a real inner product space of countable dimension. The
space of linear isometries Ic.W;U / is an L–space with the action

LIc.W;U /D Ic.U;U /� Ic.W;U / �! Ic.W;U /

given by composition. Define Q�W Iop �!UŒL� by

Q�.V /D Ic.V ˝U;U /:

By Hopkins’ Lemma [7, I.5.4], the L–space Ic..V ˚W /˝U;U / is the coequalizer
of the diagram defining Ic.V ˝U;U /�LIc.W ˝U;U /. This identification is natural
and symmetric in V and W , so we have proved the following:

Lemma 8.3 The functor Q� is strong symmetric monoidal:

Q�.V ˚W /ŠQ�.V /�L Q�.W / and Q�.0/Š �:

The general theory of [13, Section 1.2] now applies to the functor Q� . Define functors
QW IU!UŒL� and Q#W UŒL�! IU by

QX DQ�˝I X and .Q#Y /.V /DUŒL�.Q�.V /;Y /:

Here � ˝D � denotes the tensor product of functors (an enriched coend) over a
topological category D. See the appendix for the definition in this context. In particular,
Proposition A.4 shows that �˝D� does not depend on the topology of ob D, only on
the enrichment of D. The paper of Hollender and Vogt [9] is a readable account of the
case when ob D is discrete and both functors land in topological spaces. For a more
abstract setting and the relation to bar constructions, see Shulman [31]. We will freely
use basic properties of this construction as contained in these sources. The results of
[13, Section 1.2] give us:

Proposition 8.4 The functor Q is left adjoint to Q# . Furthermore, Q is strong
symmetric monoidal and Q# is lax symmetric monoidal. Thus .Q;Q#/ restricts to
an adjunction between the categories of (commutative) I–FCPs and (commutative)
monoids in L–spaces.
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The following diagram shows how the adjunction .Q;Q#/ fits into the infinite loop
space theory of orthogonal spectra, L–spectra and S–modules:

(8.5)

IS
N //

��

��

SŒL�
N#

oo

�1L

��

FL.S;� / //
MS

r
oo

S^L� //

�1L

��

MS

�1
S

��

FL.S;� /

oo

IU
Q // UŒL�
Q#

oo
FL.�;� / //

M�
��L� //

r
oo M�

FL.�;� /

oo

Each pair of arrows is a Quillen adjunction with left adjoint on top. Each vertical
arrow has a left adjoint and these vertical adjunctions are also Quillen adjunctions. The
rightmost square commutes (in both directions) by the definition of �1

S
and the fact

that the top and bottom adjunctions are equivalences of categories. The middle square
also commutes (in both directions), and we will prove in Proposition 10.1 that the left
square commutes up to natural weak equivalence.

There is a direct construction of a functor Q�W IU!M� using the same method as the
construction of Q: choosing Q��.V /D ��L Ic.V ˝U;U / instead of Ic.V ˝U;U /

lands in �–modules instead of L–spaces. The functor Q� DQ��˝I .�/ has a right
adjoint Q#

� . In fact, this adjunction of I–spaces and �–modules coincides with the
composite adjunction in diagram (8.5). The proof is a long series of adjunctions and
will be omitted, but works equally well to compare NS to N .

Lemma 8.6 In diagram (8.5), the top horizontal composite S ^L FL.S;N�/ is
naturally isomorphic to NS W IS ! MS . Hence its right adjoint N#FL.S;� / is
naturally isomorphic to N#

S
. The bottom horizontal composite ��L FL.�;Q�/ is

naturally isomorphic to Q� and its right adjoint Q#FL.�;� / is naturally isomorphic
to Q#

� .

9 The equivalence of I–spaces and �–modules

We now turn to the homotopical analysis of the functors Q and Q# . The main result
of this section is Theorem 9.9, which states that .Q;Q#/ is a Quillen equivalence.

We will make serious use of the two sided bar construction B.Y;D;X / built out of
a topological category D and functors X W D!U and Y W Dop!U. The homotopy
colimit of X over D is the special case of Y D�. The bar construction acts as a derived
version of the tensor product of functors Y ˝D X . See the appendix for the definition
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and basic properties of the two-sided bar construction over topological categories.
Recall from Section 3 that we use the equivalent topological category I| instead of I
when taking the homotopy colimit of an I–space. We make the same abuse of notation
for bar constructions as we do for homotopy colimits and write B.Y; I;X / for the bar
construction defined using I| .

We will need the following results on spaces of isometries.

Lemma 9.1
(i) Given a real inner product space V , the space Ic.V;U / of isometries is con-

tractible. Furthermore, if V is finite-dimensional, then it is a CW complex.

(ii) If U 0 is a countably infinite-dimensional real inner product space, then the space
Ic.U

0;U / of linear isometries is a cofibrant L–space.

(iii) A linear isometry U 0! U 00 of infinite-dimensional real inner product spaces
induces a weak equivalence of mapping spaces:

UŒL�.Ic.U
0;U /;Y / �!

'
UŒL�.Ic.U

00;U /;Y /:

Similarly, a weak equivalence X ! Y of L–spaces induces a weak equivalence
of mapping spaces:

UŒL�.Ic.U
0;U /;X / �!

'
UŒL�.Ic.U

0;U /;Y /:

(iv) Let f W X ! Y be a fibration of L–spaces and let �W V !W be a morphism
in I . The map

f�W UŒL�.Q�.V /;X / �!UŒL�.Q�.V /;U /;Y /

is a Serre fibration and the induced map UŒL�..�˝ id/�; f /

UŒL�.Q�.V /;X / �!UŒL�.Q�.W /;X /�UŒL�.Q�.W /;Y / UŒL�.Q�.V /;Y /

is a weak homotopy equivalence.

Proof The first claim in (i) is [17, I.1.3]. When V is finite-dimensional, Ic.V;U /

is the union over the finite-dimensional subspaces W � U of the Stiefel manifolds
I.V;W /, hence is triangulable as a CW complex. A choice of isomorphism U ! U 0

induces an isomorphism of L–spaces Ic.U
0;U /Š Ic.U;U /DL.�/, and the latter is

a generating cell for the model structure on L–spaces. This proves (ii), and (iii) follows
because the model structure on L–spaces is topological. For (iv), the induced map
f� is a Serre fibration because Q�.V /D Ic.V ˝U;U / is a cofibrant L–space. The
induced maps UŒL�.��;X / and UŒL�.��;Y / are weak homotopy equivalences by (iii).
Since weak homotopy equivalences are preserved by pullbacks along Serre fibrations,
it follows that the map UŒL�..�˝ id/�; f / is also a weak homotopy equivalence.
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The following lemma translates between the model-theoretic approach to homotopy
theory and that based on the bar construction.

Lemma 9.2 Suppose that X is a cofibrant I–space. Then the projection

� W hocolimJ X �! colimJ X

is a weak homotopy equivalence.

Proof We may assume that X is an FI –cell complex, where FI is the set of generating
cofibrations for the level model structure (Section 15):

FI D fFV i j V 2 ob I|; i W Sn�1
�!Dn ; n� 0g:

Here FV W U!IU is the left adjoint to evaluation at the object V of I and is calculated
by .FV A/.W / D I.V;W / �A. Note that an inclusion W � W 0 of inner product
spaces induces a closed inclusion .FV A/.W /! .FV A/.W 0/. Since the pushouts and
sequential colimits defining cell complexes are calculated level-wise, we also have a
closed inclusion X.W /!X.W 0/.

Now restrict X along the inclusions of categories J!J ! I . The homotopy colimit
over J is homotopy equivalent to the usual mapping telescope, and we have just argued
that each map m!mC 1 of J induces a closed inclusion X.m/! X.mC 1/. It
follows that the top horizontal map in the following commutative diagram is a weak
homotopy equivalence:

hocolimJ X //

��

colimJ X

hocolimJ X // colimJ X:

The vertical map of homotopy colimits is induced by the inclusion of categories J!J ,
and is a weak homotopy equivalence by Lemma A.5. Therefore the bottom horizontal
arrow is a weak homotopy equivalence as desired.

Lemma 9.3 The Iop –space B.�;J ; I/ is level-wise contractible.

Proof Evaluated at V , the bar construction is:

B.�;J ; I.V;� //D hocolim
W 2J

I.V;W /:
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The represented I–space I.V;� / is the evaluation FV .�/ of FV on a point. Thus
I.V;� / is an FI–cell complex, and in particular is cofibrant. By Lemma 9.2, the
homotopy colimit over J is weak homotopy equivalent to the colimit:

hocolim
W 2J

I.V;W / �!
' colim

W 2J
I.V;W /D Ic.V;U /:

The contractibility of the space of isometries Ic.V;U / finishes the proof.

Proposition 9.4 Let X be an I–space. The inclusion of categories J ! I induces a
natural homotopy equivalence of spaces:

hocolimJ X �!
' hocolimI X:

Proof The map in question is the bottom horizontal map in the following diagram of
spaces:

B.�;J ;B.I; I;X //

**

Š //

B.id;id;�/

��

B.B.�;J ; I/; I;X /

��
B.�; I;B.I; I;X // Š //

B.id;id;�/ **

B.B.�; I; I/; I;X /

B.�;id;id/
��

B.�;J ;X / // B.�; I;X /

The horizontal isomorphisms are the canonical interchange maps for iterated bar con-
structions. The other unmarked arrows are induced by the inclusion J !I . The bottom
right triangle commutes up to homotopy as an instance of Lemma A.2 with Y D �.
The other regions commute by naturality. The map of I–spaces �W B.I; I;X /!X is
a level-wise deformation retract, hence the left vertical map is a homotopy equivalence.
The right vertical composite is induced by the map of Iop –spaces

B.�;J ; I/ �! B.�; I; I/ �
�! �;

which is equal to the level-wise homotopy equivalence B.�;J ; I/!� of Lemma 9.3.
Thus the right vertical composite is also a homotopy equivalence and the lemma
follows.

Remark 9.5 The preceding proposition is the first step in connecting the homotopy
theory of I–spaces to the homotopy theory of L–spaces. It is an interesting fact that
the analogs of Lemma 9.3 and Proposition 9.4 do not hold for I–spaces. That is,
B.�; J ; I/ is not contractible. This difference between the symmetric and orthogonal
contexts is related to the fact that ��–isomorphisms and weak homotopy equivalences
do not coincide for symmetric spectra, and do coincide for orthogonal spectra.
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We will now define a variant of Q that gives rise to the colimit functor colimJ and com-
pare it to Q. The definitions are in direct analogy with the two different functors M and
N from orthogonal spectra to S–modules [13, Section 1.7]. Define O�W Iop!UŒL�
by O�.V /D Ic.V;U /. Then the tensor product of functors OX DO�˝I X defines
a functor OW IU!UŒL�. The map

L.2/�L.1/2 Ic.V;U /� Ic.W;U / �! Ic.V ˚W /;

.
; f;g/ 7�! 
 ı .f ˚g/;

defines a natural map O�.V /�L O�.W /! O�.V ˚W / making O� , and hence
O , a lax symmetric monoidal functor. In particular, O takes commutative FCPs to
L–spaces. We will now show that the functor O is the original construction of an
L–space from a commutative I–FCP described in [17]:

Lemma 9.6 Let X be an I–space. Then there is a natural isomorphism OX Š

colimJ X . If X is a commutative I–FCP then this is an isomorphism of L–spaces.

Proof We may write Ic.V;U /D colimW 2J I.V;W / as the coend �˝J I.V;� /.
The isomorphism follows:

OX DO�˝I X D �˝J I˝I X Š �˝J X D colimJ X:

Comparing the definition of the monoidal structure maps of O� with the L–space
structure maps on colimJ X in [17, I.1.6] verifies the second claim.

A choice of one-dimensional subspace of U determines an inclusion V ! V ˝U ,
which induces a natural transformation

��W Q�.V /D Ic.V ˝U;U / �! Ic.V;U /DO�.V /:

Write � D ��˝I .�/W Q!O for the induced natural transformation.

Lemma 9.7 The natural transformation �W Q!O is symmetric monoidal. If X is a
cofibrant I–space, then �W QX !OX Š colimJ X is a weak homotopy equivalence
of L–spaces.

Proof Checking the definitions of the monoidal structure maps for Q� and O� verifies
that �� is a symmetric monoidal natural transformation. We may assume that X is a
FI –cell complex and induct up the cellular filtration. Hence it suffices to shows that � is
a weak homotopy equivalence on I–spaces of the form FV K D I.V;� /�K with K
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a CW complex. The functor Q commutes with tensors with spaces and on represented
I–spaces takes the form Q.I.V;�//DQ�.V /, so we have a natural isomorphism

QFV K Š Ic.V ˝U;U /�K:

On the other hand, we have the natural isomorphism OFV K Š Ic.V;U /�K from
Lemma 9.6. Since both space of isometries are contractible, it follows that

�W QFV K �!OFV K

is a weak homotopy equivalence.

Remark 9.8 Note that the identification of OX with colimJ X is canonical, but �
is not canonical: it requires a choice of one-dimensional subspace of U . The functor
O has a right adjoint O# , but this adjunction does not appear to be monoidal, and
.O;O#/ does not appear to be a Quillen adjunction. The difficulty is in showing that
the L–space O�.V /D Ic.V;U / is cofibrant.

We are now ready to prove the main result of this section:

Theorem 9.9 The adjunction .Q;Q#/ is a Quillen equivalence between the categories
of I–spaces and L–spaces.

Proof Using the characterization of fibrations of I–spaces given in Theorem 3.4, it is
an immediate consequence of Lemma 9.1(iii) and (iv) that the functor Q# preserves
fibrations and takes weak equivalences to level-wise weak homotopy equivalences.
Hence .Q;Q#/ is a Quillen adjunction.

Now we turn to the Quillen equivalence. Suppose that X is a cofibrant I–space.
Extend X to a functor defined on Ic by taking the left Kan extension of X along
the inclusion of categories I ! Ic . This means that the value of X on an infinite-
dimensional inner product space W is computed as colimV�W X.V /, where V runs
over the finite-dimensional subspaces of W . In particular, X.U /D colimJ X .

Choose a one-dimensional subspace of U . This gives a linear isometry iV W V !V ˝U

for each object V of I , and a natural transformation ��W Q�!O� . By Lemma 9.7,
the induced map

�W QX �!OX ŠX.U /

is a weak equivalence of L–spaces.
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Now consider an object V of J . The inclusions V � U and V ˝U � U ˝U and
the maps iV and iU D colimV iV give rise to the following commutative diagram:

UŒL�.Ic.V ˝U;U /;QX /
Q#�

'
// UŒL�.Ic.V ˝U;U /;X.U //

'

��

X.V /

�V

OO

iV //

��

X.V ˝U /

��

55

X.U /
iU

//

Š

��

X.U ˝U /

))
UŒL�.Ic.U;U /;X.U //

'

iU

// UŒL�.Ic.U ˝U;U /;X.U //

Here, � is the unit for the adjunction .Q;Q#/. The diagonal arrows and the isomor-
phism X.U /! UŒL�.Ic.U;U /;X.U // are all the adjuncts of evaluation maps for
the functor X . The lower and right trapezoids commute by the naturality of those
adjunctions. A diagram chase involving the definition of the unit � verifies that the
upper trapezoid commutes. The maps of mapping spaces are weak equivalences as
indicated by Lemma 9.1(ii). Now take the homotopy colimit of this diagram over
V 2 J . The induced map hocolimJ X ! hocolimJ X.U / is a weak equivalence by
the following commutative diagram:

hocolimJ X //

'

��

hocolimJ X.U /

��

Š // X.U /�BJ

'

��
colimJ X

Š // colimJ X.U /
Š // X.U /

Here the vertical maps are the canonical projections to the colimit and are weak
equivalences by Lemma 9.2 and the homotopy equivalence BJ ' �, respectively.
Returning to the main diagram, it follows that the homotopy colimit of the unit � is
a weak equivalence as well. Since homotopy colimits over J and I are homotopy
equivalent (Proposition 9.4), we have shown that the unit �W X !Q#QX is a weak
equivalence for cofibrant I–spaces X . Since all L–spaces are fibrant, this implies that
.Q;Q#/ is a Quillen equivalence [10, 1.3.16].

The equivalence between I–spaces and L–spaces induces an equivalence at the level
of monoids and commutative monoids.
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Theorem 9.10 Restricting to monoids, respectively commutative monoids, .Q;Q#/

induces a Quillen equivalence between the categories of I–FCPs and non-† L–spaces,
respectively commutative I–FCPs and L–spaces.

Proof In the case of monoids, the theorem follows from the fact that cofibrant I–FCPs
are cofibrant as I–spaces. While this is not true of cofibrant commutative I–FCPs, we
will prove in Proposition 18.15(iii) that �W QX!OX is a weak homotopy equivalence
for X a cofibrant commutative I–FCP. The proof of Theorem 9.9 then goes on to show
that the unit of the adjunction .Q;Q#/ is a weak homotopy equivalence on cofibrant
commutative FCPs. This proves the result in the case of commutative monoids.

10 Comparison of infinite loop spaces of orthogonal spectra
and S–modules

We will now use the Quillen equivalence of I–spaces and L–spaces to prove that the
infinite loop space functors of orthogonal spectra, L–spectra and S–modules agree.

Let X be a based space. Given a universe U 0 and a subspace V � U 0 , the shift
desuspension functor †U 0

V
.�/ is left adjoint to the functor .�/V W SU 0 ! T from

spectra indexed on U 0 to based spaces given by evaluation at V . When V D 0,
†U 0

0
D †U 0 is the suspension spectrum functor for spectra indexed on U 0 . For our

privileged universe U , †U is the suspension spectrum functor †1 . The twisted
half-smash product Ic.U

0;U /Ë†U 0X is naturally an L–spectrum via the action of
L.1/D Ic.U;U / on Ic.U

0;U / by composition. This action of L.1/ on Ic.U
0;U /

also gives Ic.U
0;U /C ^X the structure of an L–space. These L actions are related

by the untwisting isomorphism [7, 2.1]:

(10.0) Ic.U
0;U /Ë†U 0X Š†U

L .Ic.U
0;U /C ^X /:

We may now make the comparison:

Proposition 10.1 The following diagrams commute:

IS

��

��

SŒL�
N#
oo

�1L
��

ho IS
LN //

R��

��

ho SŒL�

R�1L
��

IU UŒL�
Q#
oo ho IU

LQ
// ho UŒL�
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Proof In [13], the definition of the functor N depends on a choice of a one-dimensional
subspace R � U . Different choices give rise to (noncanonically) isomorphic functors,
so we are free to fix a choice R � U for the remainder of the proof. We may identify
a finite-dimensional inner product space V with the subspace V ˝R of the universe
V ˝U .

We will make the comparison of right adjoints first. Unraveling definitions, we have:

��N#E.V /D�V SŒL�.Ic.V ˝U;U /Ë†V˝U
V

S0;E/

Š SŒL�.Ic.V ˝U;U /Ë .SV
^†V˝U

V
S0/;E/

Š SŒL�.†1LCIc.V ˝U;U /;E/

ŠUŒL�.Ic.V ˝U;U /;�1L E/DQ#�1L E.V /:

The first isomorphism follows since tensors with spaces are preserved by left adjoints,
such as the twisted half-smash product. For the second isomorphism, notice that
SV ^†V˝U

V
S0 Š†V˝U S0 , and then apply the untwisting isomorphism (10.0). This

gives the diagrams on the left. The diagrams on the right follow by the uniqueness of
adjoints.

The two rightmost squares of diagram (8.5) commute strictly, so we may immediately
deduce the comparison of infinite loop spaces between orthogonal spectra and S–
modules from Proposition 10.1.

Proposition 10.2 The following diagrams commute:

IS

��

��

MS

N#
Soo

�1
S

��

ho IS
LNS //

R��

��

ho MS

R�1
S

��
IU M�

Q#
�

oo ho IU
LQ�

// ho M�

This concludes both the comparison of infinite loop space functors and the proof of
Theorem 1.2.

11 The space of units of a diagram ring spectrum

Let R be a commutative diagram ring spectrum. In the next two sections, we will
define the spectrum of units gl1R. The idea is that by taking the stably invertible
components of the commutative FCP ��R, we have a group-like commutative FCP
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GL�1R. This is accomplished in the current section. We then convert commutative
FCPs into spectra in Section 12. In the case of symmetric spectra, the construction is
due to Schlichtkrull [28] (see also his [29; 30]).

The forgetful functor from groups to monoids has a right adjoint M 7!M� , where
M� is the submonoid of invertible elements of M . We will now make the analo-
gous construction for D–FCPs, where DD I or I . Let X be a D–FCP. The space
hocolimD X inherits a topological monoid structure from the FCP multiplication � on
X and the permutative structure ˚ of D:

.hocolimD X /2 D hocolimD2.X �X /
�
�! hocolimD2.X ı˚/

˚�
�! hocolimD X:

In fact, this monoid structure underlies the E1–space structure on hocolimD X

(Remark 4.3). Taking components, there is an induced monoid structure on �0X D

�0 hocolimI X . We say that X is group-like if �0X is a group. Consider �0X

and .�0X /� as constant D–spaces. We define a discretization map of D–spaces
X ! �0X by

X.d/ �! �0X.d/ �! colim
d2D

�0X.d/ �! �0 hocolimD X D �0X:

The first map is the discretization map of spaces that takes a point to its connected
component in �0 , and we give �0X.d/ the quotient topology. Give �0X the topology
inherited from the colimit topology on colim�0Xn , so that the composite is continuous.

Definition 11.1 Given a D–FCP X , define the D–FCP X� to be the following
pullback of D–spaces:

X�

��

// X

��
.�0X /� // �0X

The space .X�/.d/ is the disjoint union of the components of X.d/ whose elements
are stably invertible, in the sense that they map to units in �0X . It is immediate that
�0.X

�/D .�0X /� and so X� is group-like. Furthermore, X 7!X� is right adjoint
to the forgetful functor from group-like D–FCPs to D–FCPs.

Let � 0
0
X be the D–FCP .� 0

0
X /.d/ D �0.X.d//. Define a sub-D–FCP � 0

0
X� by

letting .� 0
0
X�/.d/ be the set of components Œx� 2 �0X.d/ for which there exists

Œy� 2 �0X.d 0/ such that Œ�.x;y/� and Œ�.y;x/� are the components of the image
of the FCP unit map �W � ! X in �0X.d ˚ d 0/ and �0X.d 0˚ d/. It follows that
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colimI �
0
0
X� Š .�0X /� , so X� can also be described as the pullback

(11.2)

X�

��

// X

��
� 0

0
X� // � 0

0
X:

Specializing to the case of the FCP ��R for diagram ring spectra R, we define FCPs
of units:

Definition 11.3 If R is a symmetric ring spectrum, we define the I–FCP of units of
R to be GL�1RD .��R/� . If R is an orthogonal ring spectrum, we define the I–FCP
of units of R to be GL�1RD .��R/� .

Remark 11.4 For semistable symmetric spectra, �0�
1RŠ �0R (see Remark 2.1).

In this case, .�0R/� is the usual subgroup of multiplicatively invertible elements of
the ring �0R and GL�1R is defined by the following pullback:

GL�1R

��

// ��R

��
.�0R/� // �0R

On the other hand, �0�
1RŠ �0R for all orthogonal ring spectra R. Hence GL�1R

is always described by the above pullback.

12 The spectrum of units of a commutative diagram ring
spectrum

From a commutative diagram ring spectrum R we have constructed a commutative
FCP of units GL�1R. We will now convert commutative FCPs into � –spaces and then
apply an infinite loop space machine to get spectra of units.

Let �op be the skeletal category of finite base sets nCDf0; 1; : : : ; ng with basepoint 0

and based maps. A � –space is a functor Y W �op!U such that Y .0C/ is contractible
and the projections ıi W nC! 1C sending i to 1 and all other elements to the basepoint
induce a weak equivalence:

ıW Y .nC/ �!
'

nY
iD1

Y .1C/:
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We refer to this map as the Segal map. Note that our � –spaces are often called special
� –spaces elsewhere. Write Yn for Y .nC/. The underlying space of a � –space is Y1 .
In general, �0Y1 an abelian monoid. We call a � –space group-like if �0Y1 is a group.

Starting with a commutative I–FCP X, we will construct a � –space HIX . Starting
with a commutative I–FCP, we will construct two different � –spaces: HIX and
HI.U /X . HIX will be used to define the spectrum of units of an orthogonal ring
spectrum. HI.U /X will be used to compare with the spectrum of units of an E1 ring
spectrum, and uses the full subcategory I.U / of I whose objects are finite-dimensional
inner product subspaces V � U . Unlike I , the category I.U / is an L–category (see
Remark A.6), which will allow the comparison with the L–space colimJ X . However,
I.U / is not symmetric monoidal, so we will never consider I.U /–spaces or I.U /–
FCPs. In what follows, the homotopy colimits that define HIX are built by replacing
I with the equivalent small topological subcategory I| , as usual (see Section 3). We
break from our usual convention, and explicitly write I| where it appears in this
construction.

Construction 12.1 Let D denote I , I| or I.U /. We construct a functor X 7!HDX

from commutative I–FCPs (for DD I ) or I–FCPs (for DD I|; I.U /) to � –spaces
as follows. Let P.nC/ be the poset of subsets A � nC D f0; 1; : : : ; ng that do not
contain 0. Let D.nC/ be the category of functors � W P.nC/!D such that for every
pair of subsets A;B 2P.nC/ with A\B D∅, the diagram induced by the inclusions
A!A[B and B!A[B

�.A/ �! �.A[B/ � �.B/

is a coproduct diagram in the category of finite sets (for DD I ) or in the category of
vector spaces (for DD I|; I.U /). Morphisms in D.nC/ are natural transformations
of functors. Notice that �.∅/D 0, the initial object (and unit for ˚). Thus an object
� of D.nC/ consists of:

� Objects �i D �.fig/ for 1� i � n.
� Morphisms �i! �.A/ for each A� f1; : : : ; ng and i 2A that assemble into a

canonical isomorphism:

(12.2)
M
i2A

�i Š �.A/:

Here ˚ denotes the monoidal product of D. For DD I.U /, the abstract direct sum is
not a subspace of U , so the isomorphism is a morphism of I but not I.U /.

We want to take topological homotopy colimits over D.nC/ and so we must give
D.nC/ a topology. Let P.nC/ have the discrete topology and topologize the category

Algebraic & Geometric Topology, Volume 13 (2013)



Diagram spaces, diagram spectra and spectra of units 1893

Fun.P.nC/;D/ of functors and natural transformations as described in Definition A.8.
Since D.nC/ is a full subcategory of Fun.P.nC/;D/, we topologize ob D.nC/ and
mor D.nC/ as subspaces of ob Fun.P.nC/;D/ and mor Fun.P.nC/;D/.

We have a continuous forgetful functor uW D.nC/! Dn that sends � to .�1; : : : ; �n/.
Let X.nC/ denote the composite functor

X.nC/W D.nC/
u
�! Dn X n

�!U;

� 7�!

nY
iD1

X.�i/:

Define a functor HDX from �op to spaces using the homotopy colimit:

HDX.nC/D hocolim
D.nC/

X.nC/:

By definition, HDX.0C/D �. Note that the underlying space of HDX is .HDX /1 D

hocolimD X . To see the functoriality in �op , suppose that ˛W mC ! nC is a map
of based sets. The inverse image functor ˛�1W P.nC/! P.mC/ induces a functor
˛�W D.mC/ ! D.nC/ by precomposition. We then have a natural transformation
X.˛/W X.mC/!X.nC/ ı˛� defined using the FCP multiplication �:

X.˛/� W

mY
iD1

X.�i/�!

mY
jD1

Y
i2˛�1.j/

X.�i/
�
�!

mY
jD1

X

� M
i2˛�1.j/

�i

�
Š

mY
jD1

X.�.˛�1.j ///:

The first map is the projection away from the factors indexed by elements i 2 mC

that map to the basepoint under ˛ . The last isomorphism is induced by the canonical
isomorphism (12.2). Since X is a commutative FCP, X.˛/ does not depend on the
choice of ordering used to define the product indexed by ˛�1.j /. When DD I.U /
the isomorphism (12.2) is not a morphism in I.U /. However, in that case we start
with an I–FCP, so we are free to use functoriality in I when defining HI.U /X . The
natural transformation X.˛/ induces the first map of homotopy colimits below:

hocolim
D.mC/

X.mC/
X .˛/
���! hocolim

D.mC/
X.nC/ ı˛�

˛�
�! hocolim

D.nC/
X.nC/:

The second map is induced by the functor ˛�W D.mC/! D.nC/ and the composite
gives functoriality of HDX in the morphism ˛ .

Proposition 12.3 The functor HDX is a � –space.
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Proof It remains to show that the Segal maps are weak equivalences. Under the
canonical isomorphism .hocolimD X /n Š hocolimDn X n , the Segal map

ıW HD.n
C/ �!

nY
iD1

HD.1C/

is identified with the map of homotopy colimits induced by the forgetful functor
uW D.nC/! Dn :

hocolim
D.nC/

X.nC/ �! hocolim
Dn

X n:

To show that this is a weak homotopy equivalence, we will apply Lemma A.5 to the
forgetful functor uW D.nC/!Dn . For any object d D .d1; : : : ; dn/ of Dn , the comma
category .d # u/ has initial object idW d ! u.�/, where � is the functor P.nC/! D

given by:
�.A/D

M
i2A

di :

This works as written for D D I and I| . For D D I.U /, the direct sum is not an
object of I.U /. Instead, we choose isometric isomorphisms �i W di! d 0i such that the
d 0i are pairwise orthogonal for 1� i � n. Then define the functor � using the internal
direct sum:

�.A/D
X
i2A

d 0i � U:

The object
Q

i �i W d! u.�/ is an initial object of .d # u/. In all cases, the classifying
space of a topological category with initial object is contractible, so Lemma A.5 applies,
yielding the desired weak equivalence.

From now on, denote the � –space HI|X by HIX . Notice that if X is a commutative
I–FCP, the inclusions of categories I! I| and I.U /! I| induce maps of � –spaces
HIUX !HIX and HI.U /X !HIX .

Remark 12.4 The preceding construction is equivalent to the construction of a � –
space from the permutative category DŒX � defined by May [19] (see Remark 4.3). In
the case of DD I.U /, which is not permutative, one must use the structure of a partial
permutative category given by the internal direct sum, as discussed in May’s [18]. Our
construction avoids the use of partial structures because we only need the internal direct
sum in the verification of the � –space condition.

The last step in constructing the spectrum of units is converting a �–space into a
spectrum. Our model for the output will be weak �–spectra. A weak �–spectrum X
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is a sequence of spaces Xn with spectrum structure maps Xn!�XnC1 that are weak
homotopy equivalences. In the language of Mandell, May, Schwede and Shipley [14],
these are the fibrant objects in the category of coordinatized prespectra. Denote the
category of weak �–spectra by S� . We will use the term spectrum for this notion
from now on, hoping not to cause confusion with the underlying (LMS) spectrum
of an L–spectrum. Since the spectrum of units of a ring spectrum will never carry
multiplicative structure, we need not model it in a symmetric monoidal category of
spectra: ultimately, we only care about the object it determines in the stable homotopy
category.

There are many different, but equivalent, constructions of a spectrum from a � –space.
Instead of choosing one, we follow the axiomatic approach of May–Thomason [23]
(� –spaces are called F–spaces there). The most general input is the notion of an
O–space for a category of operators O. � –spaces and C–spaces for an E1 operad C

are both examples of O–spaces. An O–space Y has an underlying space Y1 . An infinite
loop space machine is a functor E from O–spaces (for some category of operators O)
to weak �–spectra along with a natural group completion �W Y1! E0Y D .EY /0 .
The main theorem of [23] shows that any two infinite loop space machines agree up to
natural weak equivalence, so the following definition does not depend on the choice
of E .

Definition 12.5 Let R be a symmetric or orthogonal commutative ring spectrum. The
spectrum of units of R is the output of any infinite loop space machine E applied to
the � –space given by Construction 12.1 for the commutative FCP GL�1R:

gl1RDEHDGL�1R;

�
DD I for symmetric ring spectra,
DD I for orthogonal ring spectra.

Remark 12.6 We could have defined the spectra of units of diagram ring spectra op-
eradically, by applying an infinite loop space machine to the E1–space hocolim GL�1R

(Remark 4.3). In fact, this gives the same homotopy type as Definition 12.5. One can
prove this by applying the uniqueness result of [19] to the permutative category whose
geometric realization is hocolim GL�1R.

We will not use the following result until the comparison with the spectra of units of
E1 ring spectra, but we record it here since it is immediate from the definitions. It
shows how Construction 12.1 encodes infinite loop space structure in two different
ways. Given an operad C, a �C–space is a �–space X such that each X.A/ is a
C–space and the maps induced by morphisms in �op are maps of C–spaces.
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Proposition 12.7 Let X be a commutative I–FCP. Then HI.U /X is a �L–space,
where L is the linear isometries operad.

Proof By Proposition A.12, I.U / is an L–category. Let

uW ob I.U /.nC/ �! .ob I.U //n

be the object map of the forgetful functor � 7! .�1; : : : ; �n/. Define an L–space
structure on ob I.U /.nC/ by letting 
 2L.j / act on .�1; : : : ; �j /2ob I.U /.nC/j by


 � .�1; : : : ; �j /W A 7�! 
 .�1.A/˚ � � �˚ �j .A//; where A 2 P.nC/.

Since this agrees with the product L–space structure on .ob I.U //n , the map

uW ob I.U /.nC/ �! .ob I.U //n

is a map of L–spaces.

Let tnW Xn! .ob I.U //n be the n–fold Cartesian product of the left I.U /–module
associated to the I–space X . By Proposition A.12(iv), tn is a map of L–spaces. The
left I.U /.nC/–module associated to the I.U /.nC/–space X.nC/ is the pullback:

X.nC/ //

��

Xn

��
ob I.U /.nC/ u // .ob I.U //n

Since this is the pullback of a diagram of L–spaces, X.nC/ is an L–space and the
structure map X.nC/! ob I.U /.nC/ is a map of L–spaces.

The space of morphisms mor I.U /.nC/ is the following pullback:

mor I.U /.nC/ //

s�t

��

.mor I.U //n

s�t

��
ob I.U /.nC/� ob I.U /.nC/ u�u // .ob I.U //n � .ob I.U //n

Again this is a pullback diagram of L–spaces, so mor I.U /.A/ is an L–space and
the source and target maps mor I.U /.nC/! ob I.U /.nC/ are maps of L–spaces.
The left module structure map mor I.U /.nC/�obI.U /.nC/X.nC/!X.nC/ is defined
using these pullback diagrams and so is a map of L–spaces as well. It follows that
X.nC/ is an LI.U /.nC/–algebra, in the sense of the appendix. By Lemma A.11,
hocolimI.U /.nC/X.nC/ is an L–space. The preceding argument is functorial in the
variable nC and so the homotopy colimits hocolimI.U /.nC/X.nC/ assemble into a
�L–space.
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13 Comparison of units of diagram ring spectra

We will compare the spectra of units of symmetric and orthogonal commutative ring
spectra. First we need some lemmas on homotopy colimits, which will be useful in later
sections as well. For the following, see Remark A.6 on initial objects in topological
categories.

Lemma 13.1 Let D be a topological category with an initial object 0. Let X be
a D–space such that for every morphism � of D, the induced map X.�/ is a weak
homotopy equivalence of spaces. Then for any object d of D, the inclusion

X.d/ �! hocolimD X

is a weak homotopy equivalence.

The proof given by Mandell and Shipley [15, 6.2] for ordinary categories also applies
to topological categories.

When X is a fibrant D–space in the positive model structure, X.�/W X.d/!X.d 0/

is only an equivalence for d ¤ 0, so the previous lemma does not apply. A serious
technical result provides the same conclusion:

Lemma 13.2 (Bökstedt) Let DD I or I . Let X be a D–space and let D>n denote
the full subcategory of D consisting of objects d > n for I and V with dim.V / > n

for I . Suppose that every morphism d ! d 0 in D>n induces a �–connected map
X.d/! X.d 0/. Then for d 2 ob D>n , the inclusion X.d/! hocolimD X is at least
.�� 1/–connected.

This goes back to Bökstedt’s THH preprints [5]. For a published proof, see Brun [6,
2.5.1].

Lemma 13.3 Let DD I or I| and suppose that X.�/ is a weak equivalence for every
morphism � in D>0 . Then the inclusion

hocolimD>0
X �! hocolimD X

is a homotopy equivalence.

For a proof, see [15, 6.4]. The proof there for I works for I as well.

Lemma 13.4 [23, 2.3] Let  W X ! Y be a map of � –spaces such that the map of
underlying spaces  1W X1! Y1 is a weak homotopy equivalence. Then E is a weak
equivalence of spectra.
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Lemma 13.5 Let X ! Y be a weak homotopy equivalence of commutative I–FCPs.
Then the induced map EHIX !EHIY is a weak equivalence of spectra. Similarly, a
weak homotopy equivalence of commutative I–FCPs induces a weak equivalence of
spectra EHIX !EHIY .

Proof Here is the proof for I–FCPs. The orthogonal case is essentially identical. By
Lemma 13.4, it suffices to show the map of spaces HIX1!HIY1 is an equivalence.
By definition, HIX1 D hocolimI X . Since X ! Y is a weak homotopy equivalence,
the result follows.

The following proposition compares the output of Construction 12.1 when fed I–FCPs
and their underlying I–FCPs.

Proposition 13.6 Let X be a fibrant commutative I–FCP. Then there is a natural
weak equivalence of spectra EHIX 'EHI.UX /.

Proof The inclusion of categories I!I induces a map of � –spaces HIUX!HIX .
We will show that this induces a weak equivalence of spectra. Fix d > 0. Because
X and UX are positive fibrant, Lemma 13.2 implies that the horizontal maps in the
following commutative diagram are weak homotopy equivalences:

UX.d/
' // hocolimI UX

��
X.Rd /

' // hocolimI X

Thus the vertical arrow of homotopy colimits is a weak homotopy equivalence. By
Lemma 13.4, the associated map of spectra is a weak equivalence.

We are ready to prove the comparison theorem for the units of symmetric and orthogonal
ring spectra. Before stating the result, we need to know that GL�1 descends to a functor
on homotopy categories.

Lemma 13.7 For symmetric and orthogonal ring spectra and commutative ring spectra,
the functor GL�1 preserves fibrant objects and weak equivalences between fibrant
objects.

Proof Consider the case of a fibrant (commutative) symmetric ring spectrum R

(the orthogonal case is essentially identical). Since �� is right Quillen, the (com-
mutative) I–FCP ��R is fibrant in the (positive) model structure. Restricting the
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equivalences �mRm!�nRn to the stably unital components, we get equivalences
.�mRm/

�! .�nRn/
� (for m� 1 in the commutative case). Hence GL1R is fibrant

in the (positive) stable model structure.

Next, suppose that f W R!R0 is a stable equivalence of fibrant (commutative) sym-
metric ring spectra. By [14, 8.11], f is a (positive) level equivalence of symmetric
spectra. Since �0.R/! �0.R

0/ is an isomorphism of monoids, the induced map of
pullbacks .�nRn/

�! .�nR0n/
� is a weak homotopy equivalence (for n� 1 in the

commutative case). Thus GL�1f is a (positive) level equivalence. By Lemma 13.3, a
positive level equivalence is a weak homotopy equivalence, so we have proved that
GL�1 preserves weak equivalences between fibrant objects.

It follows that in both the associative and the commutative settings, GL�1 has a right
derived functor RGL�1 . By Lemma 13.5, the functor gl1 preserves weak equivalences
between fibrant objects. Hence gl1 also has a right derived functor Rgl1 from the
homotopy category of commutative ring spectra to the homotopy category of spectra.
Next, we make the comparison of the FCPs GL�1 :

Proposition 13.8 The following diagrams commute:

M†S

GL�
1

��

MIS
Uoo

GL�
1

��

ho M†S
LP //

RGL�
1

��

ho MIS

RGL�
1

��
M IU MIU

U
oo ho M IU

LP
// ho MIU

The diagrams of commutative monoids (with C replacing M ) also commute.

Proof Let R be an orthogonal ring spectrum. Then UR is a semistable symmetric
ring spectrum, so GL�1UR may be identified with the following pullback of I–FCPs:

GL�1UR //

��

��UR

��
.�0UR/� // �0UR

Since ��URŠU��R and �0URŠ�0R, U takes the pullback diagram of I–FCPs
defining GL�1R to the displayed pullback. U preserves pullbacks, so we have a natural
isomorphism UGL�1R Š GL�1UR. This gives the diagram on the left. The second
diagram commutes by applying Proposition 5.2.

The same proof works in the commutative setting, but for the second diagram we use
the Quillen equivalence of categories of commutative monoids instead of monoids
when we apply Proposition 5.2.
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Theorem 13.9 The following diagrams commute:

ho C†S

Rgl1 %%

ho CIS

Rgl1yy

RUoo ho C†S

Rgl1 %%

LP // ho CIS

Rgl1yy
ho S� ho S�

Proof The diagram on the left can be expanded into the diagram:

ho C†S

RGL�
1

��

ho CIS

RGL�
1

��

RUoo

ho CIU

EHI %%

ho CIU
RUoo

EHIyy
ho S�

The upper square commutes by Proposition 13.8. Since the right derived functors are
calculated by fibrant approximation, Proposition 13.6 applies, proving that the lower
triangle commutes.

The second diagram is:

ho C†S

RGL�
1

��

LP // ho CIS

RGL�
1

��
ho CIU

EHI %%

LP // ho CIU

EHIyy
ho S�

The top square commutes by Proposition 13.8. For the lower triangle, notice that the
following natural transformation is an isomorphism:

EHI
EHI�
����!EHI RULP ŠEHI LP :

Here the displayed isomorphism is the commutativity of the triangle in the previous
diagram and the unit � of the adjunction .LP ;RU/ is an isomorphism by the Quillen
equivalence of Theorem 6.2.
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14 Comparison of units of orthogonal and E1 ring spectra

We now make the comparison between the spectra of units of commutative orthogonal
ring spectra and E1 ring spectra. They must first be compared at the space level:

Proposition 14.1 The following diagrams commute:

MIS

GL�
1

��

M SŒL�
N#
oo

GL1

��

ho MIS
LN //

RGL�
1

��

ho M SŒL�

RGL1

��
MIU M UŒL�

Q#
oo ho MIU

LQ
// ho M UŒL�

The diagrams of commutative monoids (with C replacing M ) also commute.

Proof We consider the diagram on the left first. The second diagram will follow by
Proposition 5.2 as usual. GL�1 is the composite of �� and the functor of I–FCPs:
X 7!X� . Similarly, the functor GL1 from A1 ring spectra to L–space monoids is
the composite of �1L and the functor taking an L–space monoid Y to the pullback

Y � //

��

Y

��
�0Y � // �0Y:

Using the diagram in Proposition 10.1 that compares �� with N# and Q# , it suffices
to prove that Q#.Y �/Š .Q#Y /� for an L–space monoid Y .

The components of the space Q#Y .V / are given by

�0Q#Y .V /D �0UŒL�.Q�.V /;Y / �!Š �0Y;

where the map sends a homotopy class Œf � to the component of its image in Y . This
is well-defined because Q�.V /D Ic.V ˝U;U / is contractible. The FCP structure on
Q#Y is defined in terms of the multiplication Y �L Y ! Y and the strong symmetric
monoidal structure map Q�.V / �L Q�.W / Š Q�.V ˚ W /. It follows that the
FCP multiplication �0Q#Y .V / � �0Q#Y .W /! �0Q#Y .V ˚W / agrees with the
multiplication on �0Y coming from the L–space monoid structure.

Using the notation established right before diagram (11.2), we have an isomorphism of
FCPs � 0

0
Q#Y Š �0Y . Therefore, Q# takes the pullback diagram defining Y � to the

pullback diagram (11.2) defining .Q#Y /� . Since Q# preserves pullbacks, we have a
natural isomorphism Q#.Y �/Š .Q#Y /� .
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To compare the associated spectra of units, we need to compare the output of different
infinite loop space machines. This is the technical thrust of May and Thomason’s
uniqueness theorem [23] for infinite loop space machines, whose methods and notation
we follow for the next proposition. The Segal machine S is an infinite loop space
machine defined on � –spaces. Let E be any infinite loop space machine defined on
L–spaces. Let Y be a �L–space with nth L–space Yn D Y .nC/ and let Y denote
the underlying � –space obtained by forgetting the L–space structures.

Proposition 14.2 There is a natural weak equivalence of spectra SY 'EY1 .

Proof Applying the infinite loop space machine E to each L–space Yn , we have
a sequence of spectra EYn such that for m fixed, nC 7! EmYn defines a � –space
EmY . Applying the Segal machine S to each of these � –spaces, we have spectra
SEmY for m � 0. From here the proof is the same as the proof of [23, 2.5]. By
properties of the Segal machine, there are weak equivalences

SEmY
S�
�! S�EmC1Y �!�SEmC1Y ;

and thus the spectra SEmY comprise a bispectrum. The “up-and-across” theorem [23,
3.9] then yields an equivalence of spectra SE0Y ' S0EY . Taking group completions
into account leads to a zig-zag of weak equivalences:

SY �!
'

SE0Y ' S0EY  �
'

EY1:

If X is a commutative I–FCP, we may construct a spectrum by applying the Segal
machine S to the � –space HIX or by applying E to the L–space hocolimJ X . The
two outputs are equivalent:

Proposition 14.3 Let X be a commutative I–FCP. There is a natural chain of weak
equivalences of spectra SHIX 'E hocolimJ X .

Proof The chain of weak equivalences is:

SHIX  �
'

SHI.U /X 'E.HI.U /X /1 �
'

E hocolim
J

X:

The inclusion of categories I.U / ! I induces a weak homotopy equivalence of
spaces hocolimI.U /X ! hocolimI X by Lemma A.5. The first equivalence in the
chain follows by Lemma 13.4. For the middle equivalence, apply Proposition 14.2
to the �L–space HI.U /X (Proposition 12.7). For the last equivalence, consider the
inclusions of categories J ! I.U /! I . The composite induces a weak equivalence
of homotopy colimits by Proposition 9.4. The second inclusion also induces a weak
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equivalence as just mentioned. Thus the first inclusion induces a weak equivalence
hocolimJ X!hocolimI.U /X . Since this is a map of L–spaces (Proposition A.12(v)),
it induces the last weak equivalence of spectra after applying E .

We may now compare the spectra of units of commutative orthogonal ring spectra and
E1 ring spectra:

Theorem 14.4 The following diagrams commute:

ho CIS

Rgl1 %%

ho CSŒL�

Rgl1yy

RN #
oo ho CIS

Rgl1 %%

LN // ho CSŒL�

Rgl1yy
ho S� ho S�

Proof We will do the diagram on the right first. We choose to use the Segal machine
in the definition of gl1 for commutative orthogonal ring spectra (Definition 12.5). The
diagram is:

ho CIS

RGL�
1

��

LN // ho CSŒL�

RGL1

��
ho CIU

SHI %%

LQ // ho CUŒL�

Eyy
ho S�

The square commutes by Proposition 14.1. For the triangle, let X be a cofibrant
commutative I–FCP. We will prove in Proposition 18.15 that the map of L–spaces
�W QX !OX from Lemma 9.7 and the canonical projection

� W hocolimJ X �! colimJ X

are both weak homotopy equivalences. Observe that the L–space action on hocolimJ X

specified in Proposition A.12 is defined so that � is a map of L–spaces. Combined with
the isomorphism of L–spaces colimJ X ŠOX from Lemma 9.6, we have exhibited
a natural chain of weak homotopy equivalences of L–spaces QX ' hocolimJ X .
Along with Proposition 14.3, this gives a chain of weak equivalences

SHIX 'E hocolimJ X 'EQX:

Thus the triangle commutes.

The diagram on the left commutes by Proposition 14.1, the Quillen equivalence .Q;Q#/

and the triangle in the other diagram, exactly as in the proof of Theorem 13.9.
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15 Construction of the model structure on diagram spaces

In this section we construct the model structures on I–spaces and I–spaces used
throughout the paper. The analogous model structures on diagram spectra are con-
structed in [14], which is the source for many of the arguments in this section.

The model structure on commutative monoids in D–spaces will require an underlying
positive model structure on D–spaces, just as for diagram spectra. We will work at a
level of generality that subsumes all variants by fixing the following data:

Input data 15.1 Fix a pair .D;DC/ consisting of a symmetric monoidal topological
category .D;˚; 0/ whose unit object 0 is an initial object (see Remark A.6) and a full
subcategory DC �D. The categories D and DC must satisfy the following conditions:

(i) Given a D–space X , there exists an associated left D–module X! ob D (see
the appendix for this terminology) and this association is functorial. Furthermore,
if X ! Y is a level-wise fibration of D–spaces, then X! Y is a fibration of
spaces.

(ii) The inclusion of categories DC ! D induces a natural weak equivalence of
homotopy colimits:

hocolimDC X �!
' hocolimD X:

(iii) Suppose that for every morphism �W d ! d 0 of DC , the induced map

X.�/W X.d/ �!X.d 0/

is a weak equivalence. Then for every d 2 ob DC , the inclusion of X.d/ into
the homotopy colimit is a weak equivalence:

X.d/ �!
' hocolimD X:

DC is the subcategory determining the relative level model structure that we start with.
For example, the positive level model structure corresponds to the case where DC is
the full subcategory of D without 0. Condition (i) is required in order for homotopy
colimits over D to be defined and is automatically satisfied if ob D is discrete.

We now define the model structure on D–spaces relative to .D;DC/. First consider the
DC–relative level model structure on DU, (also known as the relative projective model
structure). This has weak equivalences the DC level equivalences (X.d/! Y .d/ a
weak equivalence of spaces for each d 2 ob DC ), fibrations the level fibrations and
cofibrations defined by the left lifting property (LLP) with respect to acyclic fibrations.
The generating cofibrations and acyclic cofibrations are given as follows. Let I be
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the set of inclusions of spaces i W Sn!DnC1 for n� �1 (where S�1 D∅), and let
J be the set of inclusions i0W D

n!Dn � Œ0; 1� for n� 0. The sets I and J are the
generating cofibrations and acyclic cofibrations for the underlying model structure on
U. Given an object d of D, the functor Fd W U! DU is left adjoint to evaluation on
the object d . Define

FCI D fFd i j d 2 ob DC; i 2 Ig and FCJ D fFdj j d 2 ob DC; j 2 J g:

Then FCI and FCJ are the generating cofibrations and acyclic cofibrations for the
DC–relative level model structure on DU.

We will refer to the fibrations and weak equivalences of the DC–relative level model
structure as level fibrations and level equivalences (leaving reference to DC implicit).
The cofibrations of the level model structure will simply be called cofibrations as they
coincide with the cofibrations in the new model structure.

A map f W X ! Y of D–spaces is a weak homotopy equivalence if the induced map
of homotopy colimits over D is a weak homotopy equivalence of spaces:

f�W hocolimD X �!
' hocolimD Y:

A map pW E! B of D–spaces is a fibration if it has the right lifting property (RLP)
with respect to the acyclic cofibrations. Notice that since the homotopy colimit functor
preserves tensors with spaces, pushouts and sequential colimits, the weak equivalences
are well–grounded.

The main result of this section is:

Theorem 15.2 Suppose that .D;DC/ satisfies the hypotheses of Input data 15.1. Then
the category of D–spaces is a compactly generated topological model category with
respect to the cofibrations, fibrations and weak homotopy equivalences. The model
structure is constructed as a left Bousfield localization of the DC–relative level model
structure on DU.

The case DC D D is the most important one, and we will refer to that case as the
absolute model structure when necessary for clarity. The examples we will need are:

(1) DD DC D I : the (absolute) model structure on I–spaces.

(2) DD I , DC D I>0 : the positive model structure on I–spaces.

(3) DD DC D I| : the (absolute) model structure on I| –spaces.

(4) DD I| , DC D I|
>0

: the positive model structure on I| –spaces.

Algebraic & Geometric Topology, Volume 13 (2013)



1906 John A Lind

Remark 15.3 We define the absolute and positive model structures on I–spaces by
transferring structure across the equivalence of categories IU!I|U that is induced by
the equivalence I|! I . It is straightforward to see that the resulting model structures
on I–spaces are well-defined and compactly generated by the images of the generating
sets under the prolongation I|U! IU.

Proposition 15.4 Examples (1)–(4) all satisfy the hypotheses of Input data 15.1.

Proof In all cases, condition (i) is given by Construction A.3 and Lemma A.7. For
(1) and (3), condition (ii) is automatically satisfied and (iii) follows from Lemma 13.1.
For (2) and (4), condition (ii) is Lemma 13.3 and condition (iii) is Lemma 13.2.

The proof of Theorem 15.2 takes up the rest of this section. A morphism �W c! d

in DC induces a natural transformation ��W Fd ! Fc of functors U! DU. Let
�� D �

�.�/W Fd .�/! Fc.�/ be the component of this natural transformation at �.
By the Yoneda Lemma, Fd .�/ is the represented D–space DŒd �D D.d;� /. Factor
�� W DŒd �!DŒc� into a cofibration k� followed by a level acyclic fibration r� using
the mapping cylinder M�� of �� (defined level-wise):

�� W DŒd �
k�
�!M��

r�
�! DŒc�:

Starting with k� and any i W Sn ! DnC1 in the set I of generating cofibrations,
passage to pushouts yields the pushout product:

k� � i W .DŒd ��DnC1/[DŒd ��Sn .M�� �Sn/ �!M�� �DnC1:

Let k�� I D fk�� i j i 2 Ig. Notice that �� is a weak homotopy equivalence, since
hocolimD DŒd � and hocolimD DŒc� are both contractible. Hence each k� is a weak
homotopy equivalence. Define K to be the union of FCJ and the sets k� � I over
all morphisms � of DC . K will be the set of generating acyclic cofibrations and FCI

will be the set of generating cofibrations for the model structure on DU.

Proposition 15.5 A map pW E! B satisfies the RLP with respect to K if and only
if p is a level fibration and the induced map E.c/ ! E.d/ �B.d/ B.c/ is a weak
equivalence for all �W c! d in DC .

Proof Since FCJ �K and level fibrations are precisely the maps satisfying the RLP
with respect to FCJ , we assume that p is a level fibration and then show that for
each morphism � of DC , p satisfies the RLP with respect to k� � I if and only if
E.c/!E.d/�B.d/B.c/ is a weak homotopy equivalence.
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By [14, 5.16], p has the RLP with respect to k� � I if and only if the following map
of morphism spaces has the RLP with respect to I :

DU.k�� ;p�/W DU.M�� ;E/ �! DU.DŒd �;E/�DU.DŒd �;B/ DU.M�� ;B/:

The latter condition means that DU.k�� ;p�/ is an acyclic Serre fibration. Since k� is
a cofibration and p is a level fibration, we know that DU.k�� ;p�/ is a Serre fibration
because the level model structure is topological. Hence p satisfies the RLP with respect
to k� � I if and only if DU.k�� ;p�/ is a weak equivalence of spaces.

Since the canonical fibration r� W M��! DŒc� is a weak equivalence, DU.k�� ;p�/ is
a weak equivalence if and only if

DU.��� ;p�/W DU.DŒc�;E/ �! DU.DŒd �;E/�DU.DŒd �;B/ DU.DŒc�;B/

is a weak equivalence. This map is isomorphic to the induced map to the pullback

E.c/ �!E.d/�B.d/B.c/;

so the proof is complete.

Corollary 15.6 The trivial map F ! � satisfies the RLP with respect to K if and
only if F.�/W F.c/! F.d/ is a weak equivalence for every �W c! d in DC .

We will need to understand how the fiber of a level-wise fibration E ! B relates
to the fiber of hocolimD E ! hocolimD B . For the following lemma, we fix a map
bW � ! B , giving compatible basepoints in each space B.d/.

Lemma 15.7 Suppose that pW E ! B is a level fibration of D–spaces with fiber
F DEb over bW � ! B . Choose a point � 2 BD and also write � for its image under
the induced map of homotopy colimits

BDD hocolimD.�/
b
�! hocolimD B:

Then in the following morphism of homotopy fiber sequences

F�.q/ //

��

F�.p/

��
hocolimD F

q

��

// hocolimD E

p
��

BD
ib

// hocolimD B

(i) the map F�.q/ �! F�.p/ of homotopy fibers is a weak equivalence, and
(ii) hocolimD F is weak homotopy equivalent to the homotopy fiber F�.p/.
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Proof Each space F.d/ is the pullback of the fibration p.d/W E.d/! B.d/ over
the point bW � ! B.d/. These pullbacks assemble into a pullback square of left
D–modules:

(15.8)

F

q

��

// E

p

��
ob D // B

This pullback induces a pullback of topological homotopy colimits:

hocolimD F

q

��

// hocolimD E

p

��
BD // hocolimD B

By condition (i) on .D;DC/, both of the vertical arrows in (15.8) are fibrations, so
we may apply Lemma A.7. It follows that q� and p� are quasifibrations. Since the
square is a pullback, the fibers of q and p over � are isomorphic. Thus the map of
homotopy fibers F�.q/! F�.p/ is a weak homotopy equivalence, proving (i). To
prove (ii), recall that the category D has an initial object, and so the classifying space
BD is contractible. Thus the inclusion F�.q/! hocolimD F of the homotopy fiber of
q is a weak equivalence. Along with the weak equivalence of homotopy fibers, this
gives a chain of weak equivalences between hocolimD F and F�.p/.

We can now establish the crucial step in setting up the model structure:

Proposition 15.9 Suppose that pW E!B is a weak homotopy equivalence satisfying
the RLP with respect to K . Then p is a level acyclic fibration.

Proof As p has the RLP with respect to FCJ , it is a level fibration. We must show
that it is a level equivalence. Choose a map bW �!B and let F DEb be the pullback
of pW E ! B over b . Lemma 15.7 implies that hocolimD F is equivalent to the
homotopy fiber of a weak equivalence:

hocolimD F �! hocolimD E �!
' hocolimD B:

Hence �� hocolimD F D 0. By the pullback square, F ! � satisfies the RLP with
respect to K . Corollary 15.6 implies that the maps F.�/ are weak homotopy equiva-
lences for all morphisms � of DC . By assumption (iii) on .D;DC/, for every object
d of DC , the inclusion F.d/! hocolimD F is a weak homotopy equivalence. Thus
��F.d/ D 0. This means that the maps p.d/W E.d/! B.d/ are weak homotopy
equivalences for all objects d of DC , proving that p is a level equivalence.
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Lemma 15.10 A retract of a relative K–cell complex is an acyclic cofibration.

Proof The maps in K are all weak equivalences and h–cofibrations. Since the weak
equivalences are well grounded, this implies that every retract of a relative K–cell
complex is a weak equivalence. The maps in K are also cofibrations, so by the closure
properties of cofibrations in the level model structure, every retract of a relative K–cell
complex is a cofibration.

In order to complete the proof of Theorem 15.2, we invoke the following criterion for
compactly generated model categories:

Theorem 15.11 [22, 4.5.6] Suppose that C is a bicomplete category with a subcat-
egory of weak equivalences satisfying the two out of three property. Let I and J be
compact sets of maps in C satisfying the following two conditions:

(a) Every relative J –cell complex is a weak equivalence.

(b) A map has the RLP with respect to I if and only if it is a weak equivalence and
has the RLP with respect to J .

Then C is a compactly generated model category with generating cofibrations I and
generating acyclic cofibrations J .

Here a set of maps I is said to be compact if for every domain object X of a map in
I and every relative I –cell complex Z0!Z , the induced map colim C.X;Zn/!

C.X;Z/ is an isomorphism.

In our situation, the generating cofibrations are FCI and the generating acyclic cofibra-
tions are K . Using the adjunction between Fn and evaluation at level n, compactness of
FCI and K follows from compactness of spheres and disks. Condition (a) follows from
Lemma 15.10. Proposition 15.9 shows that weak homotopy equivalences satisfying the
RLP with respect to K satisfy the RLP with respect to FCI . This is one direction of
condition (b). For the other, suppose that f satisfies the RLP with respect to FCI , ie
f is a level acyclic fibration. Since f is a level equivalence, it is a weak homotopy
equivalence, so we only need to show that f satisfies the RLP with respect to K .
Using the level model structure, f satisfies the RLP with respect to cofibrations. It
follows from Lemma 15.10 that f satisfies the RLP with respect to relative K–cell
complexes. In particular, f satisfies the RLP with respect to K . Thus conditions (a)
and (b) are satisfied, so Theorem 15.11 gives the compactly generated model structure
on D–spaces. This concludes the proof of Theorem 15.2.
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16 The equivalence of I–spaces and I–spaces

We will now prove that the prolongation and forgetful functors comprise a Quillen
equivalence between I–spaces and I–spaces. We first record a standard consequence
of Böksted’s Lemma 13.2, known as the “telescope lemma”.

Lemma 16.1 Suppose that X is an I–space such that X.n/ is �n –connected, where
f�ng is an unbounded nondecreasing sequence of integers. Then the inclusion of
categories J ! I induces a weak homotopy equivalence of homotopy colimits:

hocolimJ X �!
' hocolimI X:

Lemma 16.2 Let I Œn�D I.Rn;� / be the I–space represented by Rn . Restricting
I Œn� to an I–space, the inclusion of categories J ! I induces a weak homotopy equiv-
alence hocolimJ I Œn�! hocolimI I Œn�. Furthermore, hocolimI I Œn� is contractible.

Proof We need to show that the following map of homotopy colimits is a weak
homotopy equivalence:

hocolim
k2J

I.Rn;Rk/ �! hocolim
k2I

I.Rn;Rk/:

The space I.Rn;Rk/ is the Stiefel manifold of n–frames in Rk , which is .k�n�1/–
connected. Thus, I Œn� satisfies the conditions for Lemma 16.1, which gives the weak
homotopy equivalence of homotopy colimits.

For the second claim, notice that the maps I.Rn;Rk/! I.Rn;RkC1/ are closed
inclusions of manifolds. Therefore, there is a weak homotopy equivalence

Ic.R
n;R1/D colimJ I Œn� �!' hocolimJ I Œn�:

Since the space of isometries Ic.R
n;R1/ is contractible, the result follows.

Proposition 16.3 Let X be a cofibrant I–space. Both of the following maps are weak
homotopy equivalences:

(i) The unit �W X !UPX of the adjunction .P ;U/.

(ii) The map hocolimJ PX ! hocolimI PX induced by the inclusion of categories
J ! I .

Proof The P , U and the homotopy colimit functors all commute with colimits, includ-
ing tensors with spaces. Since weak equivalences are well-grounded, we may assume
that X is an FI –cell complex and induct up the cell structure. Hence it suffices to prove
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ether claim for a represented I–space X D F I
n .�/D IŒn�. Since their right adjoints

are isomorphic by inspection, there is a natural isomorphism PF I
n Š FI

Rn . Hence (ii)
follows from Lemma 16.2. For (i), we need to show that �W IŒn�! I Œn� is a weak
homotopy equivalence. We have the canonical level equivalence �W B.�; I; I/! �,
so hocolimI IŒn� is contractible. By Lemma 16.2, the target hocolimI I Œn� is also
contractible. Therefore � is a weak homotopy equivalence.

Theorem 16.4 The prolongation functor P W IU ! IU and the forgetful functor
U W IU! IU induce a Quillen equivalence of the stable model structures.

Proof By the characterization of fibrations given in Proposition 15.5, U preserves
fibrations. Acylic fibrations and level acyclic fibrations coincide and U preserves level
equivalences, so U preserves acyclic fibrations. Thus .P ;U/ is a Quillen adjunction.

By [10, 1.3.16], .P ;U/ is a Quillen equivalence if U detects weak equivalences
between fibrant objects and for cofibrant I–spaces X , the composite

(16.5) X
�
�!UPX

Ur
��!URPX

of the unit of the adjunction with the map induced by fibrant approximation r W PX !

RPX is a weak equivalence. Suppose that f W X ! Y is a map of fibrant I–spaces
such that Uf is a weak equivalence. By Lemma 13.1, the vertical arrows in the
following commutative diagram are weak homotopy equivalences:

hocolimI X
f // hocolimI Y

X.0/

'

OO

'

��

// Y .0/

'

OO

'

��
hocolimI UX

Uf // hocolimI UY

Hence the top map is a weak homotopy equivalence, so U detects weak equivalences
between fibrant objects.
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By Proposition 16.3(ii), � is a weak homotopy equivalence, so we just need to show that
Ur is a weak homotopy equivalence. Consider the following commutative diagram:

hocolimI PX
Ur // hocolimI RPX

hocolimJ PX

i�

OO

��

// hocolimJ RPX

OO

��

.RPX /.0/
'oo

'

hh

'vv

'

~~

hocolimJ PX //

��

hocolimJ RPX

��
hocolimI PX

r // hocolimI RPX

The four maps from .RPX /.0/ are weak homotopy equivalences by Lemma 13.1. The
fibrant approximation map r induces a weak homotopy equivalence by definition. The
three vertical maps on the left are weak homotopy equivalences by Proposition 16.3(i),
Lemma A.5 and Proposition 9.4. It follows that Ur is also a weak homotopy equiva-
lence.

17 The model structure on FCPs

In this section we will construct the model structure on the category of D–FCPs, where
DD I or I . The main technical point is the following lemma.

Lemma 17.1 If X is a cofibrant D–space, then the functor X �D .�/ preserves weak
homotopy equivalences.

Proof We may assume that X is an FI–cell complex. Since applying .�/� Y to
an h–cofibration is again an h–cofibration, and weak equivalences of D–spaces are
well-grounded, we may induct over the cell structure of X . It now suffices to prove
the result when X D Fd .�/D DŒd �.

Let Y be a D–space. By a comparison of right adjoints, we have a natural isomorphism
.DŒd � � Y /.n/ Š D.d ˚ � ; n/ ˝D Y . Write Aut.c/ D AutD.c/ for the group of
automorphisms of an object c of D, and notice that Aut.c/ is a compact Lie group
in both of our examples. By the coequalizer description of the coend, there is an
isomorphism

(17.2) D.d ˚� ; n/˝D Y Š Aut.n/�Aut.c/ Y .c/;
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where c is an object of D with a chosen isomorphism d ˚ c Š n. The group Aut.c/
acts on Aut.n/ via the group homomorphism d ˚�W Aut.c/! Aut.n/, and the iso-
morphism is natural in the variable n. Evaluating the level-wise homotopy equivalence
�W B.D;D;Y /! Y at c induces a map

id��.c/W Aut.n/�Aut.c/B.D.�; c/;D;Y / �! Aut.n/�Aut.c/ Y .c/

of fiber bundles over Aut.n/=Aut.c/. Since it is a homotopy equivalence on each
fiber, id��.c/ is a homotopy equivalence. The definition of � and naturality give a
commutative diagram

Aut.n/�Aut.c/B.D.�; c/;D;Y /
id��.c/ //

Š

��

Aut.n/�Aut.c/ Y .c/

Š

��
B.D.d ˚�; n/;D;Y /

�
// D.d ˚�; n/˝D Y;

where the right vertical arrow is the identification (17.2) and the left vertical arrow
passes Aut.n/ �Aut.c/ .�/ through the bar construction and then uses (17.2) (with
Y D D.d 0;� /) level-wise. It follows that � is a homotopy equivalence as well.

We will now consider the homotopy colimit of the map � over n. The canonical
interchange isomorphism and the level-wise homotopy equivalence B.�;D;D/' �

give a homotopy equivalence:

B.�;D;B.D.d ˚�;� /;D;Y //Š B.B.�;D;D.d ˚�;�//;D;Y / �! B.�;D;Y /:

All together, we have constructed a natural chain of homotopy equivalences

hocolimD DŒd ��Y ' hocolimD Y:

Therefore DŒd �� .�/ preserves weak equivalences and the proof is complete.

We can now deduce the monoid axiom and the pushout-product axiom.

Proposition 17.3 (Monoid axiom) For any acyclic cofibration i W A!X and any D–
space Y , the induced map i � idY W A�Y !X �Y is a weak homotopy equivalence
and an h–cofibration. Furthermore, cobase changes and sequential colimits of such
maps are also weak homotopy equivalences and h–cofibrations.

Proof We may assume that i is a relative K–cell complex. Since every cofibration
is in particular an h–cofibration, by inducting over the cell structure of i , we are
reduced to the case when i is a generating acyclic cofibration. In particular, i is an
h–cofibration so i � idY is as well. Let qW Y 0! Y be a cofibrant approximation of
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Y . Since the domain and codomain of the generating cell i W A! X are cofibrant,
Lemma 17.1 proves that idA� q , idX � q and i � idY 0 are all weak equivalences. It
follows that i � idY is a weak equivalence as well. The second claim follows since
weak homotopy equivalences of D–spaces are well-grounded.

The pushout-product axiom follows from the monoid axiom, as in [14, 12.6]. This
completes the proof that D–spaces is a monoidal model category.

Proposition 17.4 (Pushout-product axiom) Let i W A! X and j W Y !Z be cofi-
brations of D–spaces, and assume that i is a weak homotopy equivalence. Then the
pushout-product

i � j W .X �Y /[A�Y .A�Z/ �!X �Z

is a weak homotopy equivalence.

As in the proof of [14, 12.1], we can now deduce the following result using a version
of [34, 4.1] for compactly generated topological model categories.

Theorem 17.5 For DD I and I , the category of D–FCPs is a compactly generated
topological model category with fibrations and weak equivalences created by the
forgetful functor to D–spaces. A cofibration of D–FCPs whose source is a cofibrant
D–space is a cofibration of D–spaces. Since the unit D–space � is cofibrant, it follows
that every cofibrant D–FCP is cofibrant as a D–space,

The following result is an immediate consequence of the Quillen equivalence between
I–spaces and I–spaces.

Theorem 17.6 The adjunction .P ;U/ restricts to give a Quillen equivalence between
the categories of I–FCPs and I–FCPs.

18 The model structure on commutative FCPs

We will now construct the positive model structure on commutative I–FCPs and
commutative I–FCPs, then show that they are Quillen equivalent. The arguments are
formally similar to those of [14], and we will not go into full detail when unnecessary.
In order to state the main results in this section, write FCI and KC for the generating
cofibrations and generating acyclic cofibrations for the positive model structure on
D–spaces. The sets CFCI and CKC result from applying the free commutative
monoid functor C to the elements of FCI and KC . In this section, we will use D to
denote either I or I .
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Theorem 18.1 The category CDU of commutative D–FCPs is a compactly generated
topological model category with fibrations and weak equivalences created in the positive
stable model structure on D–spaces. The set of generating cofibrations if CFCI and
the set of generating acyclic cofibrations is CKC .

Theorem 18.2 The prolongation functor P and forgetful functor U induce a Quillen
equivalence between the categories of commutative I–FCPs and commutative I–FCPs.

We will employ an alternative description of the product � in the categories of I–
spaces and I–spaces. Recall the diagram category † with objects n and morphisms the
permutations. Consider the category †U of unbased †–spaces. Using the Cartesian
monoidal structure of U, we have the symmetric monoidal product �† on †U defined
by left Kan extension of the external Cartesian product along ˚W †�†!†. Let �
be the commutative monoid in †U defined by �.n/ D � for all n. The product of
�–modules X �� Y is defined as the coequalizer of †–spaces:

X �† ��† Y //// X �† Y // X �� Y:

To avoid confusion, we will temporarily write the internal product of I–spaces as �I .

Proposition 18.3 The category IU of unbased I–spaces is isomorphic to the category
of �–modules in †U. Furthermore, this isomorphism is symmetric monoidal: for
I–spaces X and Y , their product X �I Y as I–spaces is naturally isomorphic to their
product X �� Y as �–modules.

Proof A �–module X consists of an underlying functor †!U along with associative
and unital natural transformations

��X.m/ �!X.n/:

These give the maps X.�/W X.m/!X.n/ that define X on the canonical inclusions
�W m! n of I . Since every morphism in I can be factored as a canonical inclusion
followed by a permutation, this gives the extension of X to an I–space. Conversely,
for an I–space X the maps X.�/W X.m/!X.n/ define a �–module structure on the
underlying †–space. This correspondence of structures is functorial.

It remains to give a natural isomorphism X �I Y ŠX �� Y for I–spaces X and Y .
Both sides of these bifunctors have right adjoints defined by internal function objects
and thus preserve colimits. On the other hand, every I–space is a colimit of represented
I–spaces IŒm�D I.m;� /. Consequently, it suffices to prove the result for represented
I–spaces:

IŒm��� IŒn�Š IŒm��I IŒn�:
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A long series of adjunctions shows that IŒm��I IŒn�Š IŒm˚ n�, and the analogous
result is true for represented †–spaces †Œm�D†.m;� / (this is essentially [14, 1.8]).
As a �–module, IŒm� is the free �–module ��† †Œm�. The desired isomorphism
follows:

IŒm��� IŒn�Š .��††Œm�/�� .��††Œn�/Š ��††Œm˚n�Š IŒm˚n�

Š IŒm��I IŒn�:

The point of considering I–spaces as �–modules is that it makes the computation of
the internal Cartesian product of I–spaces much easier. The product of †–spaces is
given by the formula

.X �† Y /.m/D
a

aCbDm

†m �†a�†b
X.a/�Y .b/:

We use the coequalizer definition of �� to deduce the following:

Lemma 18.4 Let X and Y be I–spaces. Then .X �I Y /.m/ is the coequalizer of
the following diagram:a

aCbDm

†m �†a�†b�†c
X.a/�Y .c/ ////

a
aCbDm

†m �†a�†b
X.a/�Y .b/:

Here the top map is defined using the inclusion †a �†b!†aCb and the map

X.ida˚�/W X.a/DX.a˚ 0/ �!X.a˚b/;

while the bottom map is defined using †b �†c!†bCc and

Y .�˚ idc/W Y .c/D Y .0˚ c/ �! Y .b˚ c/:

We have the corresponding results for I–spaces, proved in the same way. Let O be the
category of finite-dimensional inner product spaces and linear isometric isomorphisms.

Proposition 18.5 The category IU of I–spaces is isomorphic to the category of
�–modules in OU. Furthermore, this isomorphism is monoidal: for I–spaces X and
Y , their product X �I Y as I–spaces is naturally isomorphic to their product X �� Y

as �–modules.

The full subcategory of O consisting of the inner product spaces Rn is a skeletal
subcategory, so the analog of the coequalizer in Lemma 18.4 may be computed in the
following way. Make the abbreviations O.n/ D O.Rn/ and X.n/ D X.Rn/ for an
I–space X .
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Lemma 18.6 Let X and Y be I–spaces. Then .X�I Y /.m/ is naturally isomorphic
to the coequalizer of the following diagram:a

aCbCcDm

O.m/�O.a/�O.b/�O.c/X.a/�Y .c/

�� ��a
aCbDm

O.m/�O.a/�O.a/X.a/�Y .b/

The following lemma is an analog of [14, 15.5]

Lemma 18.7 Let DD I or I . Let n� 1, and suppose that K is a †n –equivariant CW
complex. Let d ¤ 0 be an object of D and let X be a D–space. Then the quotient map

qnW E†n �†n
Fd˚nK�X �! Fd˚nK=†n�X

is a level-wise homotopy equivalence. More generally, if .n1; : : : ; nj / is a j –tuple of
positive integers, .d1; : : : ; dj / is a j –tuple of objects of D with each di ¤ 0, and K is
a .†n1

� � � � �†nj /–equivariant CW complex, then the quotient map qn1;:::;nj defined
on the D–space

.E†n1
� � � � �E†nj /�†n1

�����†nj
F

d
˚n1
1
˚���˚d

˚nj

j

K�X

by collapsing E†n1
� � � � �E†nj to a point is a level-wise homotopy equivalence.

Proof We will give the proof for I–spaces; the argument for I–spaces is similar.
For ease of notation, we assume without loss of generality that the object d is of the
form Rd . We have isomorphisms Fd˚nK.a/ŠI.Rnd ;Ra/�KDO.a/�O.a�nd/K ,
where the group †n permutes the entries of the n–fold product d˚n and acts on K .
By the description of � in Lemma 18.6, .Fd˚nK.a/�X /.m/ is the coequalizer of:a

aCbCcDm

O.m/�O.a�nd/�O.b/�O.c/K �X.c/

�� ��a
aCbDm

O.m/�O.a�nd/�O.b/K �X.b/

In the coequalizer, all summands are identified with the .a; b/D .nd;m�nd/ summand,
which is left unchanged, so we have

.Fd˚nK�X /.m/ŠO.m/�O.m�nd/K �X.m� nd/:
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The group †n acts on K and acts on O.nd/ by permuting the summands in .Rd /n ,
and thus acts on O.m/ via the inclusion O.nd/!O.m/. Passing to orbits, we have

.Fd˚nK=†n�X /.m/ŠO.m/�†n�O.m�nd/K �X.m� nd/

and similarly

.E†n �†n
Fd˚nK�X /.m/Š .E†n �O.m//�†n�O.m�nd/K �X.m� nd/:

The quotient map E†n�O.m/!O.m/ is a .†n�O.m�nd//–equivariant homotopy
equivalence. This proves the first claim. The second claim is proved in the same way,
but with more expansive notation.

In order to make inductive arguments over cell attachments, we will use a certain
filtration on the pushout CB [CA X of a commutative FCP along a free map of
commutative FCPs Cf W CA!CB . We first describe a filtration on the n–fold �–
product of a pushout of D–spaces. This material is described in more generality in [27,
Sections A.6 and A.15] and is also related to the filtration in [8, Section 12].

Given two maps f W A!B and gW A0!B0 , the pushout product f �g is the induced
map

f � gW B�A0[A�A0 A�B0 �! B�B0:

We write f �nW Qnf ! B�n for the n–fold iterated pushout product of f . Now let

X
g
 �A

f
�! B

be a diagram of D–spaces and write P .g; f / for its pushout.

Lemma 18.8 There is a sequence of D–spaces Pn
i .g; f / and maps

X �n
D Pn

0 .g; f / �! Pn
1 .g; f / �! � � � �! Pn

n .g; f /Š P .g; f /�n

whose composite is the canonical map X �n! P .g; f /�n . The spaces Pn
i .g; f / can

be inductively described by †n –equivariant pushout squares of the form:

†n �†n�i�†i
X �.n�i/�Qif

id �f�i

//

��

†n �†n�i�†i
X �.n�i/�B�i

��
Pn

i�1
.g; f / // Pn

i .g; f /

Furthermore, if f is a generating positive cofibration in FCI , then the maps id�f �i

and Pn
i�1
.g; f /! Pn

i .g; f / are h–cofibrations of D–spaces.
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See [27, A.8] for a construction of the filtration. The claim about h–cofibrations follows
from Lemma 18.12 below.

Let f W A! B be a map of D–spaces and let X and Y be commutative D–FCPs.
Consider the following pushout diagram of commutative D–FCPs,

CA

Cf

��

// X

f
��

CB // Y;

in which the map CA!X is induced by a map of D–spaces gW A!X .

Lemma 18.9 There is a sequence of D–spaces

X D P0Y �! P1Y �! � � � �! PnY �! � � �

whose transfinite composition is the canonical map f W X ! Y . The D–spaces PnY

can be inductively described by pushout squares of the form

X �Qnf=†n
id �f�n=†n //

��

X �B�n=†n

��
Pn�1Y // PnY;

where f �nW Qnf !B�n is the n–fold iterated pushout-product map. Furthermore, if
f is a coproduct of generating positive cofibrations in FCI , then the maps id�f �=†n

and Pn�1Y ! PnY are h–cofibrations of D–spaces.

The lemma follows from [27, A.16]. We will apply the filtrations fPn
i .f;g/g and

fPnY g in situations where f is a coproduct of maps in FCI :

f D
a
˛

Fd˛ i˛W
a
˛

Fd˛Sq˛ �!

a
˛

Fd˛Dq˛C1:

The iterated pushout product f �nW Qnf ! B�n then takes the form

(18.10) f �n
D

a
.˛1;:::;˛n/

Fd˛1
˚���˚d˛n

.i˛1
� � � �� i˛n

/D
a
˛

Fd˛ .i˛/;

where

i˛1
� � � �� i˛n

W S1
^Sq˛1 ^ � � � ^Sq˛n �!Dq˛1

C1
� � � � �Dq˛nC1
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is the iterated pushout product of the maps i˛W S
q˛!Dq˛C1 in the category of spaces.

The coproduct runs over sequences ˛ D .˛1; : : : ; ˛n/ and the symmetric group †n

acts on f �n by permuting the sequences. The orbit of the summand of f �n indexed
on the sequence

˛ D .˛1; : : : ; ˛1„ ƒ‚ …
n1

; : : : ; j̨ ; : : : ; j̨„ ƒ‚ …
nj

/

is isomorphic to:

(18.11) †n �†n1
�����†nj

Fd˛ .i˛/

D†n �†n1
�����†nj

F
d
˚n1
˛1
˚���˚d

˚nj

j̨

�
i�n1
˛1
� � � �� i

�nj
j̨

�
:

Lemma 18.12 If f is a coproduct of generating positive cofibrations in FCI , then
the iterated pushout product f �n is a †n –equivariant h–cofibration of D–spaces.

Proof (Compare [27, 7.1]) The iterated pushout products of the map i˛ are h–
cofibrations of topological spaces, and the functor Fd preserves h–cofibrations since
it is a left adjoint. Furthermore, we may choose homotopy extensions along i�k

˛ to be
†k –equivariant, ie the map i�k

˛ is a †k –equivariant h–cofibration. It follows that
the map Fd˛ .i˛/ is a .†n1

� � � � �†nj /–equivariant h–cofibration, and after passage
to orbits we see that f �n is a †n –equivariant h–cofibration.

Proposition 18.13 Let X be a positive cofibrant D–space and let n � 1. Then
E†n �†n

X �n is also positive cofibrant and the quotient map

qnW E†n �†n
X �n

�!X �n=†n

is a weak homotopy equivalence.

Proof The space E†n is a †n –equivariant CW complex constructed with free †n –
cells. The induced filtration on the inclusion X �n! E†n �†n

X �n is by positive
cofibrations.

For the second claim, we may assume that X is an FCI –cell complex and induct up
the cellular filtration. Suppose that for all n� 0 the natural transformation

qnW E†n �†n
.�/ �! .�/=†n

is a weak homotopy equivalence on X �n and let Y be the pushout of the diagram

X
g
 �A

f
�! B;
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where f D
`
˛ f˛ is a coproduct of maps in FCI . Apply the functor .�/�n to the

diagram, then consider the filtration Pn
i .f;g/ on Y �n from Lemma 18.8. By analysis

of the pushout diagram describing Pn
i .f;g/, it suffices to prove that qn is a weak

homotopy equivalence on

†n �†n�i�†i
X �.n�i/�Qif and †n �†n�i�†i

X �.n�i/�B�i :

Using the description of Qif in (18.10), we see that Qif is positive cofibrant. Hence
E†i�†i

Qif is also positive cofibrant. There is a .†n�i�†i/–equivariant homotopy
equivalence E†n'E†n�i�E†i , so by Lemma 17.1, qn�i induces a weak homotopy
equivalence

E†n �†n�i�†i
X �.n�i/�Qif �!X �.n�i/=†n�i � .E†i �†i

Qif /:

By analyzing the †i orbits of Qif as in (18.11) and making use of the second
claim in Lemma 18.7, we see that qi induces a level-wise homotopy equivalence on
X �.n�i/=†n�i �Qif . It follows that qn induces a weak homotopy equivalence on
†n �†n�i�†i

X �.n�i/ �Qif . A similar argument shows that qn induces a weak
homotopy equivalence on †n �†n�i�†i

X �.n�i/�B�i as well.

It is an immediate consequence of the proposition that the functor C preserves weak
homotopy equivalences between positive cofibrant D–spaces. In particular, every map
in CKC is a weak homotopy equivalence. It is straightforward to prove that the functor
C preserves h–cofibrations of D–spaces, as in [7, XII.2.3]. We can now use the same
proof as in [14, 15.9, 15.11] to prove the next lemma, which says that CFCI and
CKC both satisfy the cofibration hypothesis [14, 5.3].

Lemma 18.14 Let L denote either CFCI or CKC .

(i) If i W A ! B is a coproduct of maps in L, then in any pushout diagram of
commutative FCPs

A

i
��

// X

j

��
B // Y

the cobase change j is an h–cofibration of D–spaces.

(ii) The colimit of a sequence of maps of commutative FCPs that are h–cofibrations
in DU is their colimit as a sequence of maps in DU.

Following the proof of [14, 15.4], we see that every relative CKC–cell complex is
a weak homotopy equivalence. Combined with the cofibration hypothesis for CFCI
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and CKC , this verifies the hypotheses for the model structure lifting result [14, 5.13].
This completes the construction of the model structure on commutative FCPs and the
proof of Theorem 18.1.

We now turn to proving that the adjunction .P ;U/ between commutative I–FCPs and
commutative I–FCPs is a Quillen equivalence. We will use an inductive argument that
is general enough to be useful in a few different circumstances.

Proposition 18.15 For X a cofibrant commutative I–FCP, the following maps are
weak homotopy equivalences:

(i) The unit �W X !UPX of the adjunction .P ;U/.

(ii) The map hocolimJ PX ! hocolimI PX induced by the inclusion of categories
J ! I .

For X a cofibrant commutative I–FCP, the following maps are weak homotopy equiv-
alences:

(iii) The map �W QX !OX induced by a choice of one-dimensional subspace of
the universe U (see Section 9, in particular Lemma 9.7).

(iv) The canonical projection � W hocolimJ X ! colimJ X from the homotopy
colimit to the colimit.

Proof Write  W F ! G for any of the four maps. We will repeatedly use the fact
that all of the functors in (i)–(iv) preserve colimits and tensors with spaces. First
consider the effect of  on a CFCI –cell complex constructed in a single stage of cell
attachment. Consider the pushout diagram of commutative FCPs

CA

Cf

��

// �

f
��

CB // X;

where f D
`
f˛ is a coproduct of generating cofibrations f˛W Fm˛

Sq˛!Fm˛
Dq˛C1

in FCI . Consider the filtration fPnX g of f given by Lemma 18.9. The diagram
space PnX is the pushout of the diagram

Pn�1X  �Qnf=†n

f�n=†n
������! B�n=†n:

Assume inductively that  is a weak equivalence on Pn�1X . Since f �n=†n is an
h–cofibration, it suffices to prove that  is a weak homotopy equivalence on the middle
and right entries.
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Consider the following commutative diagram:

F.E†n �†n
Qnf /

 //

Fqn

��

G.E†n �†n
Qnf /

Gqn

��
F.Qnf=†n/

 

// G.Qnf=†n/

By the description of Qnf in (18.10), we see that Qnf is a positive cofibrant diagram
space. Hence E†n �†n

Qnf is also positive cofibrant by Proposition 18.13. Each of
the four natural transformations under consideration is a weak homotopy equivalence
on positive cofibrant diagram spaces (Proposition 16.3, Lemma 9.7 and Lemma 9.2).
Thus the top map in the diagram is a weak homotopy equivalence. We will now prove
that the vertical maps in the diagram are weak homotopy equivalences in each of the
three cases.

(i) Recall the description of the domain Qnf of the iterated pushout product in
(18.10). Using the †n –equivariant decomposition into summands of the form (18.11),
we may apply the second claim of Lemma 18.7. This proves that qnW E†n�†n

Qnf !

Qnf=†n is a level-wise homotopy equivalence. Since P commutes with colimits
and is strong symmetric monoidal, there is a natural isomorphism between UPqn and
the map

UqnW U.E†n �†n
Qn.Pf // �!UQn.Pf /=†n:

The map Pf is a coproduct of generating cofibrations in FI
CI , and so using the

same argument as for Qnf , we see that qn is a level-wise homotopy equivalence on
Qn.Pf /. Since U preserves level-wise homotopy equivalences, the claim follows.

(ii) Since qn is a level-wise homotopy equivalence, both hocolimJ qn and hocolimI qn

are weak homotopy equivalences.

(iii) Recall the description of Qnf in (18.10) and set K D S1 ^Sq˛1 ^ � � � ^Sq˛n .
From the definition of Q we see that

Q.Qnf=†n/Š ��†n

a
.˛1;:::;˛n/

Ic..V˛1
˚ � � �˚V˛n

/˝U;U /�K

and

Q.E†n �†n
Qnf /ŠE†n �†n

a
.˛1;:::;˛n/

Ic..V˛1
˚ � � �˚V˛n

/˝U;U /�K:

The map Qqn induced by projecting E†n to a point is a homotopy equivalence
because the symmetric group acts freely on the coproduct of spaces of isometries.
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A similar argument using the definition of O shows that the analogous map Oqn is
also a homotopy equivalence.

(iv) There is a natural isomorphism colimJ X Š OX (Lemma 9.6), so we have
already proved the claim for the colimit functor. The case of the homotopy colimit
functor is proved in the same way.

Returning to the general case, it now follows that the map  is a weak homotopy
equivalence on Qnf=†n . A similar argument proves that  is a weak homotopy
equivalence on B�n=†n . Thus  is a weak homotopy equivalence on PnY . Passing
to colimits, we have proved that  is a weak homotopy equivalence on CFCI –cell
complexes constructed in a single stage of cell attachment.

Now we inductively assume that  is a weak homotopy equivalence on CFCI –cell
complexes that can be constructed in n stages, and consider the case of an CFCI –cell
complex X that is constructed in nC 1 stages. Write X DXn�CA CB , where Xn

is a CFCI –cell complex constructed in n stages and Cf W CA!CB is induced by
a coproduct f D

`
f˛ of generating cofibrations in FCI . Following the proof of

[14, 15.9], we write X as a two-sided bar construction X Š B.Xn;CA;CT /, where
T D

`
˛ Fd˛ .�/ is a coproduct of free diagram spaces on a point. This bar construction

is proper and all of the functors occurring in (i)–(iii) preserve geometric realization of
simplicial diagram spaces and h–cofibrations, so it suffices to prove that  is a weak
homotopy equivalence on the diagram space of q–simplices:

Xn� .CA/�q�CT ŠXn�C.Aq� � �qAqT /:

This CFCI –cell complex can be constructed in n stages, so the result follows by the
induction hypothesis.

As a consequence of the weak equivalences (i) and (ii), the proof of Theorem 16.4 can
be extended to prove Theorem 18.2. Notice that the comparison between X.0/ and
hocolim X in the cited proof can be replaced by X.1/ and hocolim X in the case of
positive fibrant X by use of Lemma 13.2.

Appendix: Topological categories, the bar construction and
L–space structures

We gather here the basic theory of bar constructions and homotopy colimits defined
over topological categories. Much of this material has appeared elsewhere (see [9] and
the references therein), but it will be useful to lay out exactly what we need. In this
paper a topological category does not mean a category enriched in topological spaces,
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but rather a category internal to topological spaces. Thus a topological category D

consists of a space of objects ob D, a space of morphisms mor D and structure maps

s; t W mor D �! ob D;

i W ob D �!mor D;

ıW mor D�ob D mor D �!mor D;

that are appropriately associative and unital. Notice that mor D is a space over .ob D/2

via s and t and that ob D is a space over .ob D/2 via the diagonal map. We will
further require that i is an h–cofibration of spaces over .ob D/2 , as holds in all of the
examples that we use. We write A�D B for the pullback A�ob D B of spaces over
ob D. A left D–module X consists of a space X along with a map t W X! ob D and
an action map

�W mor D�D X �! X

that is associative and unital. A right D–module Y is the same structure except that
we label the structure map by sW Y! ob D and D acts on the right:

�W Y�D mor D �! Y:

Forgetting the topology on ob D, a left D–module X determines a continuous functor
X W D ! U of categories enriched in spaces. A right D–module Y determines a
continuous functor Y W Dop!U.

Definition A.1 Let D be a topological category, X a left D–module and Y a right D–
module. The bar construction B.Y;D;X/ is the geometric realization of the simplicial
space with q–simplices defined by

Bq.Y;D;X/D Y�D mor D�D � � � �D mor D�D X;

where mor D appears q times. Insertion of identity arrows via i W ob D ! mor D

provides the degeneracy maps and the composition in D along with � and � provide
the face maps. Our assumption that i is an h–cofibration insures that B�.Y;D;X/ is
proper.

We write � for the D–module given by the identity map ob D! ob D. Its underlying
functor is constant at the one-point space �. When YD�, the bar construction defines
the (topological) homotopy colimit of X over D:

hocolimD XD B.�;D;X/:
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First let us record a basic commutation relation. The bivariance of D.�;�/ makes
mor D the total space of a D–bimodule that we denote by D. Let X be a left D–
module. Considering X as a constant simplicial space, we have a simplicial map
��W B�.D;D;X/! X defined on q–simplices as the .qC 1/–fold iteration �qC1 of
the left-module structure map. Its geometric realization � is a map of left D–modules.
Given a right D–module Y, we define a map of right D–modules �W B.Y;D;D/!Y

in a similar way. The bimodule structure of D allows iterated bar constructions
B.Y;D;B.D;D;X// and B.B.Y;D;D/;D;X/ that are canonically isomorphic.

Lemma A.2 The following diagram of spaces commutes up to homotopy:

B.Y;D;B.D;D;X//
Š //

B.id;id;�/ ))

B.B.Y;D;D/;D;X/

B.�;id;id/uu
B.Y;D;X/

Proof The iterated bar constructions are the geometric realizations of the bisimplicial
space B�;�.Y;D;D;D;X/ with .p; q/–simplices:

Y�D .mor D/p �D mor D�D .mor D/q �D X:

Of course the products .mor D/p are really pullbacks over ob D so that the mor-
phisms are composable. The order in which the simplicial directions are realized
determines the order of iteration of the bar construction. Both B.Y;D;B.D;D;X//

and B.B.Y;D;D/;D;X/ are canonically isomorphic to the geometric realization of
the diagonal simplicial space d�B.Y;D;D;D;X/ with q–simplices:

dqB.Y;D;D;D;X/D Bq;q.Y;D;D;D;X/:

Under these identifications, the two routes in the diagram are the geometric realizations
of the maps of simplicial spaces f;gW d�B.Y;D;D;D;X/! B�.Y;D;X/ given by
f D �

qC1
X and g D �

qC1
Y . We will define a simplicial homotopy from f to g .

Let d 0i , respectively d 00i , denote the i th face map of the bisimplicial space in the first (p ),
respectively second (q ), direction. We also write d 0i and d 00i for the effect of these maps
on the diagonal simplicial space. Define hi W dqB.Y;D;D;D;X/! BqC1.Y;D;X/

by
hi D .d

0
0/

id 00i � � � d
00
q ; 0� i � q .

Notice that hi applies the last face map in the second direction q� i times, then applies
the first face map in the first direction i times. In symbols (omitting the objects from
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the notation),

hi.yI�
0
q; : : : ; �

0
1I�I�

00
q ; : : : ; �

00
1 Ix/

D .xI�0q; : : : ; �
0
iC1; .�

0
i � � ��

0
1��

00
q � � ��

00
iC1/; �

00
i ; : : : ; �

00
1 Iy/:

It is straightforward to check that hi defines a simplicial homotopy from f to g .

We can think of the topological bar construction B.Y;D;X/ as a derived or homotopy
coherent version of the tensor product of functors Y˝D X. The latter is a version of
an enriched coend that takes the topology on ob D into account. We define Y˝D X as
the coequalizer of the last two face maps in the simplicial space giving rise to the bar
construction:

Y�D mor D�D X
� //
�
// Y�D X // Y˝D X:

Notice that there is a canonical quotient map � W B.Y;D;X/!Y˝D X. From this per-
spective, it is not clear that Y˝D X agrees with the enriched coend

R d2D
Y .d/�X.d/

of the bifunctor Y �X . The latter is calculated as the coequalizer of the diagrama
c;d2ob skD

Y .d/�D.c; d/�X.c/
////
a

d2ob skD

Y .d/�X.d/

and does not depend on the topology of ob D. We will now give a general procedure
for constructing D–modules for which the tensor product �˝D � agrees with the
coend.

Construction A.3 Let X be a D–space and let .mor D/d denote the space of mor-
phisms with source d , ie the pullback of sW mor D ! ob D along the inclusion
d W � ! ob D. Define X to be the enriched coend

R d2D
.mor D/d � X.d/. The

target map t W .mor D/d ! ob D induces a map t W X! ob D and the left action of
mor D on .mor D/d defined by the composition map ı in D defines a left D–module
structure on X. Similarly, given a functor Y W Dop!U, we have the right D–module
YD

R d2D
Y .d/�d .mor D/, where d .mor D/ is the space of morphisms with target d .

Proposition A.4 Suppose that X is a D–space and Y is a Dop –space, and let X and
Y be the left and right D–modules defined as above. Then Y˝D X is canonically
isomorphic to the enriched coend

R d2D
Y .d/�X.d/.

Proof Notice that d .mor D/˝D .mor D/c Š D.c; d/. By taking the product with
Y .d/ on the left and X.c/ on the right, then passing to coends over c and d , we see
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that the coequalizer defining Y˝D X is isomorphic toZ d2DZ c2D

Y .d/�D.c; d/�X.c/Š

Z d2D

Y .d/�X.d/:

We write Y ˝D X for the tensor product of functors Y˝D X, where Y and X are
defined as in Construction A.3.

Here is a version of Bousfield–Kan’s cofinality criterion for topological homotopy
colimits:

Lemma A.5 Let F W C! D be a functor of topological categories and let X be a
left D–module. Suppose that for every object d 2 ob D, the classifying space of the
comma category .d # F / (considered with the topology inherited from C and D) is
contractible. Then the map of topological homotopy colimits

hocolimC X ıF �! hocolimD X

is a homotopy equivalence.

This is proved by Meyer’s thoroughly general approach to bar constructions [24, Sec-
tion 4.3], where in the cited source his X is our X ıF , his X 0 is our X , and the choice
of admissible pair is given by H the homotopy equivalences and M all commutative
squares. To verify the condition on H in the source, note that hocolim.d#F /X D

B.d # F /�X.d/ since in this case the functor X is the constant functor at X.d/.
Thus the map required to be in H is the projection B.d # F /�X.d/!X.d/, which
is a homotopy equivalence by the assumption on .d # F /.

In the applications of Lemma A.5, we will check that B.d # F / is contractible by
showing that .d # F / has an initial object.

Remark A.6 An object 0 2 ob D of a topological category is initial if and only if it is
initial in the underlying category internal to sets and the map !W ob D!mor D sending
d to the unique morphism 0! d is continuous. The usual proof that a category with
initial object has a contractible classifying space then goes through. For example, in the
case of the continuous functor F W Dı!D from D with the discrete topology to D with
its given topology, the comma category .d # F / has the initial object .idW d ! F.d//

as an ordinary category. However, in general the map ! will not be continuous, so this
is not an initial object of .d # F / considered as a topological category.

The following lemma is [24, 4.4.1]. Note that the squares labeled (v) in the cited source
are pullbacks and so belong to the class M.
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Lemma A.7 Suppose that E!B is a morphism of left D–modules such that the map
of underlying spaces is a fibration. Then the induced map of topological homotopy
colimits hocolimD E! hocolimD B is a quasifibration.

We now record the definition of the topology on functor categories.

Definition A.8 Let P and D be topological categories. Define a topology on the
category Fun.P;D/ of functors and natural transformations as follows. The space of
objects is given the subspace topology induced by the inclusion

ob Fun.P;D/�U.mor P;mor D/

that send a functor � to its effect on morphisms:

.�W A! B/ 7�! .�.�/W �.A/! �.B//:

The space of morphisms is given the subspace topology induced by the inclusion

mor Fun.P;D/�U.ob P;mor D/�U.mor P;mor D/2

that sends a natural transformation ˛W � ! � 0 to the triple ..˛A/A; �; �
0/ consisting of

its components .˛AW �.A/! � 0.A//A and its source and target .�.�/; � 0.�//� .

We will now describe the topologies on the categories of isometries used in this
paper. The space I.V;W / of linear isometries from V to W is topologized as a
subspace of U.V;W /. If V � W , there is a canonical identification I.V;W / Š

O.W /=O.W �V /. Infinite-dimensional inner product spaces are topologized as the
colimit of their finite-dimensional subspaces and spaces of isometries Ic.U

0;U / of
possibly infinite-dimensional inner product spaces are topologized using the compact
open topology. This means that

Ic.U
0;U /D lim

V 0�U 0
colim
V�U

I.V 0;V /;

where V 0 and V run through finite-dimensional subspaces. From this definition it is
straightforward to verify that composition in Ic is continuous.

Throughout, we use a fixed universe U : this is an inner product space isomorphic to
R1 . Let W be a real inner product space, finite-dimensional or infinite-dimensional,
and consider the category J .W / of finite-dimensional inner product subspaces V �W

with morphisms the inclusions V � V 0 . The space of objects is the following disjoint
union of Grassmanians:

obJ .W /D
a
n�0

Ic.R
n;W /=O.n/:
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The space of morphisms is the space of flags of subspaces of W of length two:

morJ .W /D
a

0�m�n

Ic.R
n;W /=O.m/�O.n�m/:

More generally, the space NqJ .W / of q–simplices in the nerve of J .W / is the space
of flags of subspaces of V of length qC 1:

(A.9)
a

0�n0�����nq

Ic.R
nq ;W /=O.n0/�O.n1� n0/� � � � �O.nq � nq�1/:

In the case of W D U , we have described the topology on J D J .U /. Now consider
the category I| of finite-dimensional inner product spaces V � U a for a � 0 and
linear isometries (not necessarily respecting the inclusion into U a ). The space of
objects of I| is defined by

ob I|
D f0gq

a
a>0

a
n>0

Ic.R
n;U a/=O.n/:

Notice that the only zero-dimensional object is 0 � U 0 . The inner product spaces
0� U a for a> 0 do not appear in this category. The space of morphisms is

mor I|
D ob I|

q

a
a;b>0

a
0<m�n

Ic.R
n;U b/�O.n/ I.Rm;Rn/�O.m/ Ic.R

m;U a/:

Here the copy of ob I| represents the space of maps 0! V , and a point Œf; �;g�
of the other summand corresponds to the morphism f ı � ı g�1W Im.g/! Im.f /.
The source and target maps are defined by projecting to the third and first factors,
respectively. Composition is defined using the composition in the middle factor. The
direct sum taking V � U a and W � U b to V ˚W � U aCb is well-defined and
continuous on both ob I| and mor I| . It follows that I| is a permutative topological
category under direct sum, ie a symmetric monoidal topological category whose unit
and associativity isomorphisms are identity maps. There is a canonical inclusion of
topological categories J ! I| which is the identity on objects. On morphisms, it
sends an inclusion V �W in U to the point ŒfW ; �; fV � of the aD b D 1 summand,
where � is the canonical inclusion Rm �Rn and fW W R

n! U and fV W R
m! U

are representatives for W and V chosen such that fW ı �D fV .

Notice that the functor I|! I sending V � U a to V is an equivalence of categories,
even though it is not injective on objects. Throughout the paper, whenever we form
a bar construction involving I , we implicitly use the category I| in place of I by
precomposing functors with domain I along the equivalence I|! I .
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We have used one more category of isometries. Let I.W / be the full subcategory
of I| with objects the finite-dimensional inner product subspaces V � W . Thus
ob I.W /D obJ .W / and mor I.W / is topologized as a subspace of mor I| . Notice
that I.U / is not the same category as I , and that the inclusion J ! I| factors as
J ! I.U /! I| .

In order to take topological homotopy colimits of an I–space X over each of the
categories J .W /, I.W / and I| , we use Construction A.3 to define three left modules
associated to X , one over each of these categories. We write X.D/ for the left D–
module associated to X , where DD J .W /, I.W / or I| . By writing the coend that
defines X as a coequalizer, we find that

X.I.W //D X.J .W //D
a
n�0

Ic.R
n;W /�O.n/X.Rn/;

X.I|/DX.0/q
a
a>0

a
n>0

Ic.R
n;U a/�O.n/X.Rn/:

In each of the three cases the structure map X.D/! ob D collapses X.Rn/ to a point.
These are all O.n/–bundles and in each case we identify the fiber over an n–plane V

with the space X.V /.

We record here the following generalization of (A.9) that describes the q–simplices of
the homotopy colimit of X.J .W //:

(A.10) Bq.�;J .W /;X/

D

a
0�n0�����nq

Ic.R
nq ;W /�O.n0/�O.n1�n0/�����O.nq�nq�1/X.Rn0/:

We will now construct actions by the linear isometries operad L [17]. The j th –space
of L is L.j / D Ic.U

j ;U /, and an L–space is an algebra over L in spaces. An
L–category is a topological category D such that ob D and mor D are L–spaces and
such that the category structure maps are maps of L–spaces. A left LD–algebra X is a
left D–module X over an L–category such that X is an L–space and the structure maps
t W X! ob D and �W mor D�ob D X! X are maps of L–spaces. Right LD–algebras
are defined similarly. We also have variants of all these notions for the operad L with
L.0/D�, L.1/DL.1/ and L.j /D∅ for j > 1. An algebra over L in spaces is the
same thing as an L–space as defined in Section 7. We are interested in these structures
because the bar construction of LD–algebras is an L–space.

Lemma A.11 If D is an L–category and X and Y are left and right LD–algebras,
then the bar construction B.Y;D;X/ is an L–space. The analogous statement holds
with L replaced by L.
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Proof Since all spaces and maps involved are L–spaces and maps of L–spaces, the
simplicial bar construction B�.Y;D;X/ is a simplicial L–space. Thus its geometric
realization is an L–space as well.

Proposition A.12 Let X be an I–space. Then:

(i) J and I.U / are L–categories.

(ii) X.J / and X.I.U // are left LD–algebras.

(iii) hocolimJ X and hocolimI.U /X are L–spaces and the map from the former to
the latter induced by J ! I.U / is a map of L–spaces.

Suppose further that X is a commutative I–FCP. Then:

(iv) X.J / and X.I.U // are left LD–algebras.

(v) hocolimJ X and hocolimI.U /X are L–spaces and the map from the former to
the latter induced by J ! I.U / is a map of L–spaces.

Proof (iii) and (v) follow from (ii) and (iv), respectively, using the preceding lemma.
We will start with (iv) and prove (i) along the way.

We define the action of L on the space X.J /D X.I.U // as the composite

(A.13) Ic.U
j ;U /�

jY
iD1

Ic.R
ni ;U /�O.ni /Xni

�! Ic.U
j ;U /� Ic.R

n;U j /�O.n/Xn

ı
�! Ic.R

n;U /�O.n/Xn

of the map

.
 I Œf1;x1�; : : : ; Œfj ;xj �/ 7�! Œ
; .f1˚ � � �˚fj /; �.x1; : : : ;xj /�

followed by composition in Ic . Here nD n1C� � �Cnj and we omit from the notation
the canonical isomorphism Rn1˚� � �˚Rnj ŠRn . The map �W Xn1

�� � ��Xnj !Xn

is the FCP multiplication of X . Notice that the †j –equivariance follows from the
commutativity of the FCP X . The L–space structure on obJ D ob I.U / is the case
of X.V /D �, and so the projection

t W X.J /D X.I.U // �! obJ D ob I.U /

is a map of L–spaces.
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We now define the action of L on

mor I.U /D
a

0�m�n

Ic.R
n;U /�O.n/ I.Rm;Rn/�O.m/ Ic.R

m;U /:

On each summand of the coproduct this is given by

Ic.U
j ;U /�

jY
iD1

Ic.R
ni ;U /�O.ni / I.R

mi ;Rni /�O.mi / Ic.R
mi ;U /

�! Ic.R
n;U /�O.n/ I.Rm;Rn/�O.m/ Ic.R

m;U /;�

 I Œf1; �1;g1�; : : : ; Œfj ; �j ;gj �

�
7�!

�

 ı

M
i

fi ;
M

i

�i ; 
 ı
M

i

gi

�
:

If fi and gi represent subspaces Vi � U and Wi � U , then the action of 
 2 L.j /

takes the j –tuple of isometries .�1W V1!W1; : : : ; �j W Vj !Wj / to the isometry


 ı
�M

i

�i

�
ı 
�1

W 

�M

i

Vi

�
�! 


�M
i

Wi

�
:

It is clear that this action stabilizes the subspace morJ �mor I.U / of inclusions, so
morJ is an L–space as well. For both J and I.U /, it is immediate that the source,
target and composition maps preserve the L–action. This finishes the proof of (i). It
is also straightforward to check that the left module structure map � for X.J / and
X.I.U // is a map of L–spaces, so we have proved (iv) as well.

To get the action of L, specialize all of the L–actions to the case j D 1. This does
not depend on the FCP structure of X , so (ii) follows.
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