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Non-left-orderable double branched coverings

TETSUYA ITO

We develop a method to show the fundamental group of the double branched covering
of links is not left-orderable by introducing a notion of coarse presentation. Like
usual group presentations, a coarse presentation is given by a set of generators and
relations, but inequalities are allowed as relations. By using coarse presentations,
we give a family of links whose double branched covering has non-left-orderable
fundamental group. Our family of links includes many known and new examples.

57M05; 57M12, 57M27

1 Introduction

A left ordering of a group G is a total ordering <G of G preserved by the left action of
G . That is, a<G b implies ga<G gb for all g; a; b 2G . G is called left-orderable
if G admits at least one left ordering. We adopt the convention that the trivial group
G D f1g is not left-orderable. As we will see in Section 5, this convention is natural
when we study the relationship between left orderings and topology of 3–manifolds.

For a link L in S3 , let †2.L/ be the double branched covering of L. In this paper
we study the non-existence of left orderings of �1.†2.L//, the fundamental group of
the double branched covering. The aim of this paper is to give a new method to show
�1.†2.L// is not left-orderable, by introducing a coarse presentation.

A coarse presentation is a generalization of a group presentation. Like a usual group
presentation, a coarse presentation is given by a set of generators and relations. The
main differences are:

(1) A coarse presentation allows us to include inequalities as its relations.

(2) Unlike a group presentation, a coarse presentation does not determine the whole
group structure: it rather provides partial information about group structure and
left-orderings.

For a link diagram D of a link L, we construct a coarse presentation, which we call
the coarse Brunner’s presentation, by generalizing a presentation of �1.†2.L// due
to Brunner [3].
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Using coarse Brunner’s presentations, we will give various families of links whose
double branched coverings have non-left-orderable fundamental group. In Theorem 4.1,
we will treat links represented by diagrams similar to alternating link diagrams. This
family of links contains alternating links, hence extends the result obtained in Boyer,
Gordon and Watson [1] and Greene [8]: the double branched covering of an alternating
link has non-left-orderable fundamental group. In Theorems 4.4 and 4.6, we will show
that the double branched coverings of links represented by some particular diagrams
have non-left-orderable fundamental group. These families of links contain positive
knots of genus two and many non-alternating links.

The reader should regard these theorems rather as examples of coarse presentation
arguments. In a similar manner, coarse Brunner’s presentations allow us to find a lot
of other examples of links whose branched double covering has non-left-orderable
fundamental groups.

Although it is possible to prove all results in this paper by using usual group presentations
(Brunner’s presentation), our coarse presentation argument has several benefits. First
of all, the coarse presentation is much simpler than the usual group presentation: it has
fewer generators and fewer relations. In particular, by using coarse presentations, a
proof of non-left-orderability becomes much simpler compared with a proof based on
usual group presentations.

Moreover, in the proof of non-left-orderability, coarse Brunner’s presentations allow
us to separate the role of the link diagrams into the local properties and the global
properties. That is, our proofs of non-left-orderability are valid if we replace a crossing
with certain algebraic tangles. Thus a coarse presentation argument provides a more
unified point of view in a proof of non-left-orderability.

The plan of this paper is as follows. In Section 2 we review standard notions of tangles
and a presentation of �1.†2.L// due to Brunner [3]. We construct the coarse Brunner’s
presentation in Section 3, and give a non-left-orderability criterion based on coarse
Brunner’s presentation (Theorem 3.11). By using coarse Brunner’s presentations, in
Section 4 we will provide families of links whose double branched coverings have
non-left-orderable fundamental group. In Section 5 we briefly discuss a relationship
between the results in this paper and the L–space conjecture, a conjecture on orderability
and Heegaard Floer homology.
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2 Presentation of the fundamental group of double branched
cover

2.1 Algebraic and rational tangles

First we review basic notions of tangles (see Kauffman and Lambropoulou [10] for
fundamental facts on rational tangles).

Let D be a diagram of a link L in S3 and consider the checker board coloring of D

chosen so that the color of the unbounded region is white. Let A be a tangle that is
a part of the diagram D . We define the east, west, south and north sides of A as in
Figure 1. In the rest of paper, we always assume that the west and east sides of a tangle
A are colored by black in the checker board coloring of D . We will often regard A as
an oriented arc from the east side to the west side. We call the north side of A (resp.
the south side of A) the left-adjacent region (resp. right-adjacent region) of A, and
denote it by Rl.A/ (resp. Rr .A/). See Figure 1.

north

east west

south

Rl .A/

Rr .A/

A A

Figure 1: Adjacent regions of tangles

Under this coloring convention, the elementary tangles Œ˙m� and Œ˙ 1
m
� .m 2Z�f0g/

are given by Figure 2. For two tangles P and Q, the (tangle) sum P CQ and the
(tangle) product P �Q are defined as in Figure 2.
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Œm� Œ�m�

Œ 1
m
� Œ� 1

m
�

P CQ

P �Q

P Q

P

Q

Figure 2: Elementary tangles and tangle sum, products

The isotopy class of the rational tangle Q. q
p
/ does not depend on a choice of the

continued fractions. In particular, for a non-zero integer m, the rational tangles Q.m/

and Q. 1
m
/ are isomorphic to the elementary tangles Œm� and Œ 1

m
�, respectively.

An algebraic tangle is a tangle obtained from rational tangles by repetitions of C and
� operations. Since rational tangles are obtained from elementary tangles by C and �
operations, an algebraic tangle is made of elementary tangles. In this paper we will use
elementary tangles as a building block of algebraic tangles.

2.2 Brunner’s presentation

In this section we review Brunner’s presentation of the fundamental group of double-
branched coverings. For a checker board coloring of a diagram D , the regions colored
by black define a (possibly non-orientable) compact surface that bounds L. We call
this surface the checker board surface.

The checker board surface is decomposed as a union of discs and twisted bands in
an obvious way. Among such decompositions, we choose the maximal one: the disc-
twisted band decomposition having the minimal number of twisted bands. Then we
associate the labeled planar graph G , which we call the decomposition graph, and the
oriented planar graph zG , which we call the connectivity graph, as follows.

The vertices of the decomposition graph G are the discs in the maximal disc-twisted
band decomposition. For a twisted band connecting two discs, we assign an edge of G

so that it connects corresponding vertices. The label of edge e is a non-zero integer
i.e/, the signed number of twistings, as defined in Figure 3. We call a component of
R2�G a region of the link diagram D . A region of D is identified with a white-colored
region of the diagram D .

The connectivity graph zG is obtained from G as follows. The vertices of zG are the same
as G . We connect two vertices by one edge if and only if there exists a twisted band

Algebraic & Geometric Topology, Volume 13 (2013)



Non-left-orderable double branched coverings 1941

n twists n twists

�n Cn

Figure 3: Labeled edge of the graph G

connecting two discs corresponding to the vertices. We choose an arbitrary orientation
of edges and make zG an oriented graph. We say an edge w of G corresponds to an
edge W of zG if w and W connect the same vertices. An orientation of edges in zG
induces an orientation of corresponding edges of G , so we will always regard G as an
oriented graph once we have fixed the connectivity graph zG .

By using these notions, Brunner’s presentation of �1.†2.L// is given as follows.

Theorem 2.1 (Brunner’s presentation of �1.†2.L// [3]) Let L be an unsplittable
link in S3 represented by a diagram D , and G and zG be the decomposition and
the connectivity graphs. Then the fundamental group of †2.L/ has the following
presentation, which we call Brunner’s presentation.

[Generators]

Edge generators fWig, the set of edges of the connectivity graph zG .

Region generators fRig, the set of regions of the link diagram D .

[Relations]

Local edge relations W D .Rl.w/
�1Rr .w//

a , where w is an edge of G with
label a, Rl.w/ and Rr .w/ are left- and right-adjacent regions of the edge w , and
W is an edge generator that corresponds to w .

Global cycle relations W ˙1
n � � �W ˙1

1
D 1 if the edge-path W ˙1

n � � �W ˙1
1

forms
a loop in R2 . Here W �1

i means the edge Wi with the opposite orientation.

Vanishing relation R0 D 1 where R0 is the unbounded region.

Here we use the convention that the composite W2W1 represents the edge path that
goes along W1 first, then goes along W2 .

Example 1 Let D be the knot diagram on the left in Figure 4. The decomposition
graph G and the connectivity graph zG are given in Figure 4. Brunner’s presentation
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of �1.†2.L// is given by*
A;B;C

W1; : : : ;W6

ˇ̌̌̌
ˇ

W1 DA2 W2 D B2 W3 D C

W4 D .B
�1A/2 W5 D .B

�1C /�1 W6 D .C
�1A/�1

W6W4W1 D 1 W �1
4

W �1
5

W2 D 1 W �1
6

W �1
3

W5 D 1

+

Here we used the vanishing relation to remove the trivial region generator.

�1

�1�1

C2 C2
C2

W1 W2

W3

W4

W5W6

A B

C

Figure 4: Example of Brunner’s presentation

3 Coarse Brunner’s presentation

In this section we construct the coarse Brunner’s presentation, and give a non-left-
orderability criterion (Theorem 3.11) based on the coarse Brunner’s presentation.

Our construction of the coarse Brunner’s presentation consists of three steps: First
we introduce a tangle-strand decomposition and a coarse decomposition graph, which
generalize a disc-band decomposition and a decomposition graph. Next we define a
tangle element, which generalizes an edge generator in Brunner’s presentation. We will
observe that tangle elements satisfy relations that generalize the global cycle relations
(Lemma 3.1). Finally, we introduce a generalization of the local edge relations, called
coarse edge relations, which are given by inequalities.

3.1 Coarse decomposition graph

Recall that Brunner’s presentation was constructed from a disc-band decomposition
of the checker board surface of a link diagram D . In a diagrammatic point of view,
a disc-band decomposition is regarded as a decomposition of D into integer tangles
and unknotted strands: integer tangles correspond to twisted bands, and the remaining
black-colored regions correspond to discs.

To get a “coarse” presentation, we use a coarser decomposition of D . We consider a
decomposition of D as a union of algebraic tangles and unknotted strands. We call
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such a decomposition of D a tangle-strand decomposition. A disc-band decomposition
is a special case of the tangle-strand decomposition where all algebraic tangles are
integer tangles.

As in a disc-band decomposition, a tangle-strand decomposition of D defines the
decomposition of the checker board surface as discs and subsurfaces corresponding
to tangles. For a tangle-strand decomposition, we construct the coarse decomposition
graph as follows. The vertex of � is a disc part of the tangle-strand decomposition.
For each algebraic tangle A, we assign an edge of � having the label A as in Figure 5,
oriented from the east side of A to the west side of A.

We call a connected component of R2�� a region of � . By definition, a region of �
is naturally regarded as a region of D , that is, a connected component of R2�G , so
it corresponds to a region generator of Brunner’s presentation. By abuse of notation,
we will regard a region R of � as an element of �1.†2.L// by considering the
corresponding region generator in Brunner’s presentation.

A A

Figure 5: The coarse decomposition graph �

3.2 Tangle elements: generators of the coarse Brunner’s presentation

In this section, we introduce a tangle element WA 2 �1.†2.L// for each tangle in a
tangle-strand decomposition of D .

First of all, we define WA for elementary tangles. In the connectivity graph G , an
elementary tangle Q appears as an edge W . We define WQ DW 2 �1.†2.L//, the
corresponding edge generator W in Brunner’s presentation.

For a general algebraic tangle A, we inductively define WA as follows. Assume that
A is made of n elementary tangles, so there exist algebraic tangles A0 and A00 made
of at most .n� 1/ elementary tangles such that ADA0CA00 or ADA0 �A00 . Then
we define WA by

WA D

�
WA00WA0 .ADA0CA00/;

WA0 .ADA0 �A00/:
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There is an alternative definition of WA in terms of edge-path of the connectivity
graph zG . Let v and v0 be the vertices of the connectivity graph zG that correspond
to the east and west sides of A, and let fGA be the subgraph of zG derived from the
sub-diagram A of D . Then WA is equal to an element of �1.†2.L// that corresponds
to the uppermost edge-path in fGA connecting v and v0 , as explained in Figure 6. This
is why we regard WA as a generalization of edge generators.

Av v0

A0 A00

A0

A00

WA

v v0
fGA

WA0 WA00fGA0 eGA00

WA0 fGA0

fGA00

Figure 6: Tangle element as edge-path of �G
We observe the following generalization of global cycle relations.

Lemma 3.1 (Global cycle relation for tangle elements) Let � be a coarse decompo-
sition graph. For an algebraic tangle A in a tangle-strand decomposition, let EA be
an edge of the coarse decomposition graph � . If an edge-path E˙1

An
� � �E˙1

A2
E˙1

A1
of �

forms a loop in R2 , then the corresponding element satisfies

W ˙1
An
� � �W ˙1

A2
W ˙1

A1
D 1:

Proof Assume that an edge-path

E˙1
An
� � �E˙1

A2
E˙1

A1

of � forms a loop in R2 . Regarding each EAi
as an edge-path of zG , the edge-path

E˙1
An
� � �E˙1

A2
E˙1

A1
, viewed as an edge-path of zG , forms a loop in R2 as well. Hence

by the global cycle relations of Brunner’s presentation, W ˙1
An
� � �W ˙1

A2
W ˙1

A1
D 1.

Algebraic & Geometric Topology, Volume 13 (2013)



Non-left-orderable double branched coverings 1945

3.3 Universal range and coarse edge relation

In this section we give a generalization of the local edge relations, which is the most
important point of coarse Brunner’s presentations.

For a left ordering <G of a group G , X 2G , and rational numbers aD q
p
; bD s

r
.a�b/,

p; q; r; s 2 Z, p; r > 0, let ŒŒa; b��X ;<G
be a subset of G defined by

ŒŒa; b��X ;<G
D

�
fg 2G jX q �G gp;gr �G X s;Xg D gX g if X �G 1;

fg 2G jX s �G gr ;gp �G X q;Xg D gX g if X �G 1:

We define
ŒŒa;C1��X ;<G

D

[
b>a

ŒŒa; b��X ;<G
;

ŒŒ�1; b��X ;<G
D

[
b>a

ŒŒa; b��X ;<G
;

ŒŒ�1;C1��X ;<G
D

[
a2Z>0

ŒŒ�a; a��X ;<G
:

If g commutes with X , then X mq �G gmp .m> 0/ if and only if X q �G gp . Hence
ŒŒa; b��X ;<G

does not depend on a choice of the representatives of rationals aD q
p

and
bD s

r
under the assumption p; r > 0. For a2Q[f�1g and b 2Q[fC1g .a� b/,

we define
ŒŒa; b��X D

\
<G2LO.G/

ŒŒa; b��X ;<G

where LO.G/ denotes the set of all left orderings of G . We say ŒŒa; b�� is an X –
universal range of g2G if g2 ŒŒa; b��X . By definition, if X D1 and g2 ŒŒ�1;C1��X ,
then g D 1. This is an important feature of an X –universal range.

The followings are basic properties of universal ranges.

Lemma 3.2 Let X;Y 2G , a; c 2Q[f�1g and b; d 2Q[fC1g such that a� b

and c � d .

(1) If Œa; b�� Œc; d � as a subset of Q[f˙1g, then ŒŒa; b��X � ŒŒc; d ��X as a subset
of G .

(2) Assume that g 2 ŒŒa; b��X and h 2 ŒŒc; d ��X .
(a) If ghD hg , or a; b; c; d 2 Z[f˙1g, then

gh 2 ŒŒaC c; bC d ��X :
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Here we interpret�
.C1/C r D r C .C1/D .C1/; r 2Q[fC1g;

.�1/C r D .�1/C r D .�1/; r 2Q[f�1g:

(b) Assume that 0 < a; c , or b; d < 0. If XY D YX , or a; b; c; d 2 1=Z D
f

1
n
j n 2 Zg[ f˙1g, then

g 2 ŒŒ.a�1
C c�1/�1; .b�1

C d�1/�1��X Y :

Here we interpret8<:
.C1/�1 D .�1/�1 D 0;

0�1 D .C1/ .a; c > 0/;

0�1 D .�1/ .b; d < 0/:

Proof Let <G be an arbitrary left ordering of G . (1) is obvious from the definition.

To prove (2)(a), let us put aD m
N

, bD M
N

, c D p
Q

and d D P
Q

, where m;M;N;p;P ,
Q 2 Z and N;Q > 0. We prove (2)(a) for the case X �G 1. The case X �G 1 is
similar. Then by hypothesis,

X m
�G gN

�G X M ; X p
�G hQ

�G X P ;

hence
X mQCNp

�G gNQhNQ
�G X MQCNP :

Since we have assumed that either N DQD 1 or that g and h commute,

X mQCNp
�G .gh/NQ

�G X MQCNP ;

which implies gh 2 ŒŒaC c; b C d ��X ;<G
. Since <G is arbitrary, this shows gh 2

ŒŒaC c; bC d ��X . The case that some of a; b; c; d are ˙1 is proved in a similar way.

Finally, we prove (2)(b) for the case a; c > 0 and X �G 1. The other cases are proved
in a similar way. Since g 2 ŒŒa; b��X .a> 0/, the assumption X �G 1 implies g �G 1.
Then in turn, g 2 ŒŒc; d ��Y .c > 0/ implies Y �G 1, so XY �G 1.

First we treat the case b; d ¤C1. Let us put aD m
N

, b D M
N

, c D p
Q

and d D P
Q

,
where m;M;N;p;P;Q 2 Z>0 . Then we have inequalities

X m
�G gN

�G X M ; Y p
�G gQ

� Y P :

Hence we conclude

X mpY mp
�G gNpCmQ; gNPCMQ

�G X MP Y MP :
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Since we have assumed p DmD 1 or X and Y commute,

.XY /mp
�G gNpCmQ; gNPCMQ

�G .XY /MP ;

that is, g 2 ŒŒ.a�1C c�1/�1; .b�1C d�1/�1��X Y .

Next we treat the case d DC1. Let us put aD m
N

, b D M
N

, c D p
Q

as before. The
proof of the lower bound

.XY /mp
�G gNpCmQ

is the same. We show the upper bound. g 2 ŒŒb;C1��Y implies g �G Y P for
sufficiently large integer P > 0.

For 0� i ,

.X�iYX i/iNP
DX�iY iNP X i

�G X�iY iNP

�G X�igiN
D giN X�i

�G giN X�im

�G giN g�iN
D 1

so
.X iYX�i/�G 1 .0� i/:

Hence

.XY /M DX M .X�.M�1/YX M�1/ � � � .X�1YX /Y �G X M
�G gN :

Thus, g 2 ŒŒ.a�1 C c�1/�1; .b�1 C .C1/�1/�1 D b��X Y . The case b D C1 is
similar.

Now we are ready to generalize a local edge relation. Let A be an algebraic tangle
in a tangle-strand decomposition of D , and let Rl.A/ and Rr .A/ be the left- and
right-adjacent regions of A, regarded as an element of �1.†2.L//.

Lemma 3.3 The tangle element WA commutes with .Rl.A/
�1Rr .A//.

Proof Assume that A is made of n elementary tangles. We prove the lemma by
induction on n.

If ADQ.m/ .m 2 Z/, then by local edge relation WA D .Rl.A/
�1Rr .A//

m , WA

commutes with .Rl.A/
�1Rr .A//. Assume that A D Q.˙ 1

m
/ .m 2 Z/. Let us

consider the subgraph of the decomposition graph G derived from sub-diagram A,

Algebraic & Geometric Topology, Volume 13 (2013)



1948 Tetsuya Ito

which consists of two vertices and m edges labeled by ˙1. By local edge relations,
we have equalities

WA D .R
�1
0 R1/

˙1
D .R�1

1 R2/
˙1
D � � � D .R�1

m�1Rm/
˙1;

where R0; : : : ;Rm are region generators taken as in Figure 7. Observe that R0 D

Rl.A/ and Rm DRr .A/. Hence

W ˙m
A D .R�1

0 R1/.R
�1
1 R2/ � � � .R

�1
m�1Rm/D .Rl.A/

�1Rr .A//;

so WA commutes with .Rl.A/
�1Rr .A//.

Q. 1
m
/

˙1

˙1

˙1

R0

R1

Rm�1

Rm

Figure 7: Subgraph of G corresponds to an elementary tangle Q. 1
m
/

Now assume that n > 1. There are algebraic tangles A0 and A00 made of at most
.n� 1/ elementary tangles such that ADA0CA00 or ADA0 �A00 .

If ADA0CA00 , then Rl.A/DRl.A
0/DRl.A

00/ and Rr .A/DRr .A
0/DRr .A

00/. By
induction, both WA0 and WA00 commute with .Rl.A/

�1Rr .A//, hence WADWA00WA0

commutes with .Rl.A/
�1Rr .A//.

If A D A0 �A00 , then Rl.A/ D Rl.A
0/, Rr .A

0/ D Rl.A
00/ and Rr .A

00/ D Rr .A/.
By induction, WA0 commutes with .R�1

l
.A0/Rr .A

0// and WA00 commutes with

.R�1
l .A00/Rr .A

00//:

On the other hand, the global cycle relation shows WA D WA0 D WA00 . Hence we
conclude WA commutes with

.R�1
l .A/Rr .A//D .Rl.A

0/�1Rr .A
0//.Rl.A

00/�1Rr .A
00//:

Based on this observation, we define a universal range of an algebraic tangle as follows.

Definition 3.4 A universal range of A is an .Rl.A/
�1Rr .A//–universal range of WA .

For a; b 2Q[f˙1g .a� b/, we denote A2 ŒŒa; b�� if ŒŒa; b�� is an .Rl.A/
�1Rr .A//–

universal range of WA . We say an algebraic tangle is bounded if A 2 ŒŒ�1;C1��.
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By applying Lemma 3.2, we are able to compute a universal range of an algebraic
tangle A in many cases.

Proposition 3.5 (Universal ranges of algebraic tangles) Let D be a link diagram and
A be an algebraic tangle in a tangle-strand decomposition of D .

(1) Assume that A is an elementary tangle. If ADQ.m/, then A 2 ŒŒm;m�� and if
ADQ. 1

m
/, then A 2 ŒŒ 1

m
; 1

m
��.

(2) Let A1 and A2 be algebraic tangles and assume that A1 2 ŒŒa; b��, and A2 2

ŒŒc; d ��, where a; c 2Q[f�1g and b; d 2Q[fC1g.
(a) Assume that A D A1CA2 . If a; b; c; d 2 Z[ f˙1g, or WA1

and WA2

commute, then
A 2 ŒŒaC c; bC d ��:

(b) Assume that ADA1 � A2 and that 0< a; c , or b; d < 0.
If a; b; c; d 2 1=ZD f1

n
j n 2 Z�f0gg[ f˙1g , or Rl.A1/

�1Rr .A1/ and
Rl.A2/

�1Rr .A2/ commute, then

A 2 ŒŒ.a�1
C c�1/�1; .b�1

C d�1/�1��:

Proof (1) was proved in Lemma 3.3, since we have seen that

WA D .Rl.A/
�1Rr .A//

m

if ADQ.m/, and that W m
A
D .Rl.A/

�1Rr .A// if ADQ. 1
m
/. (2) is nothing but a

restatement of Lemma 3.2.

Corollary 3.6 If QDQ. q
p
/ is a rational tangle, then WQ 2 ŒŒ

q
p
; q

p
��. That is,

W
p

Q
D .Rl.Q/

�1Rr .Q//
q:

Proof Let us write Q. q
p
/ as

Q
� q

p

�
D

�
� � �

��
Œa2nC1��

h
1

a2n

i�
C Œan�2�

�
� � � � �

h
1

a2

i�
C Œa1�

where a1; : : : ; a2nC1 is determined by the continued fraction:

q

p
D a1C

1

a2C
1

a3C � � �

We prove the corollary by induction on n. The case nD 0 is trivial.
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First assume that nD1, so Q. q
p
/D.Œa3��Œ

1
a2
�/CŒa1�. .Rl.Œa3�/

�1Rr .Œa3�// commutes
with WŒa3� . Since

W
a2

Œa3�
DW

a2

Œ 1
a2

�
D .Rl.Œ

1
a2
�/�1Rr .Œ

1
a2
�//;

we conclude .Rl.Œa3�/
�1Rr .Œa3�// commutes with .Rl.Œ

1
a2
�/�1Rr .Œ

1
a2
�//. So by

Proposition 3.5, �
Œa3��

h
1

a2

i�
C Œa1� 2

hh q

p
;

q

p

ii
:

To prove the case n> 1, let us write

Q
� q

p

�
D

�
Q0 �

h
1

a2

i�
C Œa1�;

where Q0 is a rational tangle

Q0 DQ
� q0

p0

�
D

�
� � �

��
Œa2nC1��

h 1

a2n

i�
C Œan�2�

�
� � � � �

h 1

a4

i�
C Œa3�:

Then .Rl.Q
0/�1Rr .Q

0// commutes with WQ0 . Since WQ0 DWŒ 1
a2

� ,

W
a2

Q0
DW

a2

Œ 1
a2

�
DRl

�h
1

a2

i��1
Rr

�h
1

a2

i�
:

So .Rl.Q
0/�1Rr .Q

0// commutes with .Rl.Œ
1

a2
�/�1Rr .Œ

1
a2
�//. By induction, Q0 2

ŒŒ q
0

p0
; q0

p0
��. Thus by Proposition 3.5(2),

QD
�
Q0 �

h
1

a2

i�
C Œa1� 2

hh q

p
;

q

p

ii
:

A universal range obtained from Proposition 3.5 might not be optimal, although in
most cases a universal range computed by Proposition 3.5 is sufficient to apply our
theorems described in next section.

In some cases, with some additional assumptions or more careful arguments, we will
often be able to compute a universal range even if one cannot apply Proposition 3.5, or
will be able to get a better universal range.

Example 2 Let us consider the algebraic tangle ADA1CA2 DQ.1
3
/CQ.1

4
/. We

do not know whether WA1
commutes with WA2

or not. So according to Proposition 3.5,
A 2 ŒŒ0; 2�� since Q.1

3
/ 2 ŒŒ0; 1�� and Q.1

4
/ 2 ŒŒ0; 1�� . However, in this case we can get a

better universal range as follows.
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Let X D .Rl.A/
�1Rr .A//, W1 DWA1

and W2 DWA2
. Then W 3

1
DW 4

2
DX . Let

<G be a left-ordering of �1.†2.L//. We consider the case 1�G X . The case 1�G X

is treated in a similar way. Now

W 3
A D .W1W2/

3
DW 3

1 .W
�2

1 W2W 2
1 /.W

�1
1 W2W1/W2:

Since .W �i
1

W2W i
1
/4 DX , W �i

1
W2W i

1
� 1 holds for all i . Thus, we get

W 3
A D .W1W2/

3
�G W 3

1 DX:

Similarly, we have

W 4
A D .W1W2/

4
DW1W 4

2 .W
�3

2 W1W 3
2 /.W

�2
2 W1W 2

2 /.W
�1

2 W1W2/:

Since .W �i
2

W1W i
2
/3 DX , W �i

2
W1W i

2
�G X for all i . Thus, we get

W 4
A D .W1W2/

4
�G X 5:

Thus A 2 ŒŒ1
3
; 5

4
��.

Next we compute a universal range of an algebraic tangle B DA�A3 where A3 D

Q.�1
4
/. Observe that one cannot apply Proposition 3.5(2)(b). However, in this situation

we are able to compute universal range as follows.

Let us put W3 DWA3
and Y D Rl.A3/

�1Rr .A3/, so XY D Rl.B/
�1Rr .B/. By

local edge relation, W �4
3
D Y and WB D WA D WA3

. In particular, Y commutes
with X . Since we observed

X �G W 3
A DW 3

B �G W 4
A DW 4

B �G X 5;

.XY /DXW �4
B �G W �1

B ;W �16
B DW 4

B W �20
B �G X 5Y 5

D .XY /5:

Hence B 2 ŒŒ�1;� 5
16
��.

3.4 Coarse Brunner’s presentations

Now we are ready to give coarse Brunner’s presentations. Let D be a link diagram.
We say a tangle-strand decomposition is nice if all tangles are bounded, that is, all
tangles have universal range A 2 ŒŒ�1;C1��. For a nice tangle-strand decomposition
let � be the coarse decomposition graph. Summarizing all relations obtained so far,
we get the following family of information about left-orderings and the group structure
of �1.†2.L//.

Definition 3.7 The coarse Brunner’s presentation CB associated to a nice tangle-
strand decomposition of a link diagram D is a set of generators and relations given as
follows.
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[Generators]

Tangle generator fWAg, the set of tangle elements (the set of edges of � ).

Region generator fRig, the set of connected components of R2 �� (the set of
regions of � ).

[Relations]

Local coarse relation WA 2 ŒŒmA;MA��.Rl .A/�1Rr .A// , where ŒŒmA;MA�� is a uni-
versal range of A.

Global cycle relation W ˙1
n � � �W ˙1

1
D 1 if the edge-path W ˙1

n � � �W ˙1
1

of �
forms a loop in R2 . Here W �1

i represents the path Wi with the opposite orienta-
tion.

Vanishing relation R0 D 1 where R0 corresponds to the unbounded region.

Example 3 Let us consider a tangle-strand decomposition of a link diagram on the
left in Figure 8, and assume that all tangles are bounded. The coarse decomposition
graph � is given on the right in Figure 8. Let ŒŒmi ;Mi �� be the universal range of Ai .
Then the coarse Brunner’s presentation associated to the tangle-strand decomposition
is given as follows:

[Generators]
W1;W2; : : : ;W6;A;B;C

[Local coarse relations]

W1 2 ŒŒm1;M1��A W2 2 ŒŒm2;M2��B

W3 2 ŒŒm3;M3��C�1 W4 2 ŒŒm4;M4��B�1A

W5 2 ŒŒm5;M5��B�1C W6 2 ŒŒm6;M6��C�1A

[Global cycle relations]

W6W4W1 D 1; W �1
4 W �1

5 W2 D 1; W �1
6 W �1

3 W5 D 1

Here we put WAi
DWi , and simplified relations by removing the trivial region generator.

To use coarse Brunner’s presentations to prove non-left-orderability, we need to add
one additional restriction.

First of all, we introduce a notion of positive definite tangles. An algebraic tangle
A is called positive definite (resp. negative definite) if A 2

S
a2Q>0

ŒŒa;C1�� (resp.
A 2

S
a2Q<0

ŒŒ�1; a��).
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A5

A3 A3

A5
A

1

A
2A

4

A6

A
1

A
2

A
4

A6

Figure 8: Example of coarse Brunner’s presentation

A positive definite tangle can be seen as a generalization of positive crossing in a coarse
presentation point of view. Recall that for a left-ordering <G of �1.†2.L// and an
edge generator W corresponding to positive twisted bands (positive crossings), by
local edge relation, W >G 1 if and only if Rl.W /�1Rr .W / >G 1. A positive definite
algebraic tangle has the same property:

Lemma 3.8 For a left-ordering <G of �1.†2.L// and the tangle element WA of a
positive definite tangle A, WA >G 1 if and only if Rl.A/

�1Rr .A/ >G 1.

Proof Let us put X D Rl.A/
�1Rr .A/. Since A is positive definite, there exist

rationals 0< m
N
�

M
N
.m;M;N 2Z>0/ such that WA 2 ŒŒ

m
N
; M

N
��X . If X >G 1, then

1<G X m
�G W N

A

so WA >G 1. Conversely, assume WA >G 1. If X �G 1, then

X M
�G W N

A �G 1;

which is a contradiction, so X >G 1.

Definition 3.9 An algebraic tangle A is called special if it is bounded and belongs to
the subset SA of algebraic tangles that is inductively defined as follows:

(1) An elementary tangle belongs to SA.

(2) If A;A0 2 SA, then ACA0 2 SA.

(3) If A;A0 2 SA, and if either A or A0 is positive or negative definite, then
A�A0 2 SA.

A special tangle-strand decomposition is a tangle-strand decomposition such that all
tangles are special.
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Remark 1 There are many special algebraic tangles. For example, a bounded tangle
obtained by applying Proposition 3.5 is special. In particular, rational tangles are
special.

By Proposition 3.5, an alternating algebraic tangle is special, and positive or negative
definite. The converse is not true. Let us consider an algebraic tangle C D BCQ.2/,
where B is the algebraic tangle given in Example 2. Then C is non-alternating, but
C 2 ŒŒ1; 27

16
�� so it is positive definite.

An important feature of special algebraic tangles is the following.

Lemma 3.10 Assume that �1.†2.L// is left-orderable. Let A be a special alge-
braic tangle in a tangle-strand decomposition. Let GA and fGA be the subgraph
of the decomposition and connectivity graph that correspond to the sub-diagram A.
If Rr .A/ D Rl.A/ D WA D 1, then all edge and region generators of Brunner’s
presentation that appear in the subgraphs GA and fGA are equal to 1.

Proof Assume that A is made of n elementary tangles. We prove by induction on n.
First of all, assume that A is an elementary tangle. If ADQ.m/, we have nothing to
prove. If ADQ.˙ 1

m
/, then by local edge relations, we have equalities

WA D .R
�1
0 R1/

˙1
D .R�1

1 R2/
˙1
D � � � D .R�1

m�1Rm/
˙1

where R0; : : : ;Rm are region generators taken as in Figure 7. By hypothesis, WA D

R0 DRm D 1, so we conclude Ri D 0 for all i .

Now we assume that A D A0 CA00 or A D A0 �A00 where A0 and A00 are special
algebraic tangles made of at most .n� 1/ elementary tangles.

Assume that ADA0CA00 . By assumption,

.Rl.A
0/�1Rr .A

0//D .Rl.A
00/�1Rr .A

00//D .Rl.A/
�1Rr .A//D 1:

Since A0 and A00 are bounded, WA0 ;WA00 2 ŒŒ�1;C1��1 , which implies WA0 D

WA00 D 1. By inductive hypothesis, all region and edge generators in GA and fGA are
trivial.

Next assume that ADA0 �A00 . By hypothesis,

Rl.A
0/DRl.A/DRr .A

00/DRr .A/DWA DWA0 DWA00 D 1:

By definition of special algebraic tangles, A0 or A00 is positive or negative definite. We
treat the case where A0 is positive definite. The other cases are similar.
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By Lemma 3.8, WA0 D 1 implies that .Rl.A
0/�1Rr .A

0// D Rr .A
0/ D 1. Thus

WA0 DWA00 D Rl.A
0/ D Rr .A

0/ D Rl.A
00/ D Rr .A

00/ D 1, hence by induction all
region and edge generators in GA and fGA are trivial.

Now we are ready to give a non-left-orderability criterion based on coarse Brunner’s
presentations. The next theorem says that to prove that �1.†2.L// is not left-orderable,
it is sufficient to show that all region generators in the coarse Brunner’s presentation
are trivial.

Theorem 3.11 (Non-left-orderability criterion) Let CB be the coarse Brunner’s
presentation associated to a special tangle-strand decomposition of D . If �1.†2.L//

is left-orderable, then there exists a region generator R of CB such that R¤ 1.

Proof Assume that all region generators of CB are trivial. All tangles are bounded,
so WA 2 ŒŒ�1;C1��1 hence WA D 1. Since all tangles are special, by Lemma 3.10
all region generators and edge generators in Brunner’s presentations are trivial. Hence
all generators of Brunner’s presentation are trivial, so �1.†2.L// D 1. Since we
adopted the convention that the trivial group is not left-orderable, this contradicts the
hypothesis. (In fact, if L is not the unlink, it is known that �1.†2.L//¤ 1, so this
cannot occur).

4 Non-left-orderable double branched covering

In this section we use coarse Brunner’s presentations to show that the double branched
covering of links represented by certain diagrams has non-left-orderable fundamental
group. As we have already mentioned, the reader might regard the proof of these
theorems rather as examples of how to show non-left-orderability via coarse Brunner’s
presentations. The arguments appearing in the following proofs are typical examples
of how one may deduce a contradiction assuming left-orderability of �1.†2.L//.

4.1 Diagrams that are close to alternating diagrams

The first example we treat is a link similar to an alternating link from the coarse
presentation point of view. The proof of the next theorem is inspired by an argument
of Greene in [8], and is regarded as an adaptation of Greene’s argument for coarse
Brunner’s presentation.

Theorem 4.1 Let D be a link diagram that admits a special tangle-strand decomposi-
tion such that all tangles are positive definite, or all tangles are negative definite. Then
�1.†2.L// is not left-orderable.
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Proof Assume that �1.†2.L// has a left ordering <G . We prove the case when all
tangles are positive definite. The negative definite case is proved in a similar way. Let
CB be the coarse Brunner’s presentation.

By Theorem 3.11 there are at least two (non-trivial) distinct region generators. Let R

be the region generator that is a <G –maximal among all region generators. With no
loss of generality, we may assume R>G 1, hence R is a bounded region. Since we
have assumed that there are at least two distinct region generators, we may choose R

so that there is a region generator R0 <G R that is adjacent to R.

Let us consider the global cycle relation W ˙1
1
� � �W ˙1

k
D 1 given by the edge-path

representing @R, where Wi denotes the tangle element of Ai . Since the property that
an algebraic tangle A is positive definite is independent of the choice of the orientations
of edges in � , we may choose the tangle-strand decomposition (orientation of edge)
so that the global cycle relation is given as W1 � � �Wk D 1. We choose orientations of
the edges so that Rl.Ai/DR holds for all i .

Rl.Ai/DR�G Rr .Ai/ so Rl.Ai/
�1Rr .Ai/�G 1 for all i . Ai is positive definite

so Wi �G 1 for all i . Moreover, we have assumed that for some i , inequality is strict:
Rl.Ai/

�1Rr .Ai/ <G 1. By Lemma 3.8, for such i , Wi <G 1. Thus, W1 � � �Wn <G 1,
which is a contradiction.

As a corollary, we recover a result of Boyer, Gordon and Watson [1; 8].

Corollary 4.2 The fundamental group of the double branched covering of an alternat-
ing link is not left-orderable.

Proof Let D be an alternating link diagram. By regarding each crossing of D as
a tangle part the elementary tangle Œ˙1�, we get the tangle-strand decomposition of
D . Since D is alternating, all tangle parts have the same sign. Thus by Theorem 4.1,
�1.†2.L// is not left-orderable.

As we have mentioned in Remark 1, there are positive definite, non-alternating special
algebraic tangles. So links in Theorem 4.1 contain a lot of non-alternating links as
well.

4.2 More non-left-orderable double branched coverings

Next we give other families of links whose double branched coverings have non-left-
orderable fundamental groups. These links are derived from certain quasi-alternating
diagrams. See Remark 2 given in Section 5.

Before proving the non-left-orderability, we observe the following rather obvious fact.
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Lemma 4.3 Let G be a group and A;X;Y 2 G . Assume that X p D Aq for some
positive integers p and q . For a left-ordering <G of G , if 1 �G Y �1AY (resp.
1�G Y �1AY ), then 1�G Y �1XY (resp. 1�G Y �1XY ).

Proof 1 �G .Y �1AY / �G .Y �1AY /q D Y �1AqY D Y �1X pY D .Y �1XY /p ,
so 1�G Y �1XY .

Theorem 4.4 Let L be a link in S3 that admits a special tangle-strand decomposition
as given in Figure 8 of Example 3. Let ŒŒmi ;Mi �� be a universal range of Ai . Assume
that one of the following conditions holds.

(1) m1;m2;m4 � 1, �1�m3;m5;m6 and M3;M5;M6 � 0

(2) m1;m2;m3;m4;m5 � 1 and A6 DQ.r/ where �1� r < 0.

Then the fundamental group of the double branched covering †2.L/ is not left-
orderable.

Proof Let us consider the coarse Brunner’s presentation associated to the tangle-strand
decomposition, which we have already given in Example 3. We will frequently use the
relation W2W1 DW3 obtained from the global cycle relations.

Assume that �1.†2.L// has a left-ordering <G . With no loss of generality, we may
assume A �G B . We will show that all region generators A;B;C are trivial. This
contradicts Theorem 3.11, so we conclude �1.†2.L// is non-left-orderable.

First we consider the case where the assumption (1) holds.

Case 1 A�G B �G C

B�1A�G 1 so the local coarse relation W4 2 ŒŒC1;C1��B�1A implies that W4 �G

B�1A�G 1. Similarly, we get W5 �G 1 and W6 �G 1. Then W3 DW5W �1
6
�G 1.

Since W3 2 ŒŒ�1; 0��C�1 , we get C �G 1 so we conclude A�G B �G C �G 1. By the
local coarse relation W1 2 ŒŒC1;C1��A , W1A�1 �G 1. Then we obtain an inequality

1�G W �1
4 DW1W6 �G W1.A

�1C /�G W1A�1
�G 1:

This implies that all inequalities appearing in the previous arguments must be equalities.
This happens only if AD B D C D 1.

Case 2 A�G C �G B

By arguments similar to those in Case 1, we get W4 �G B�1A�G 1, W5 �G 1 and
1�G W6 �G A�1C . Since W5 2 ŒŒ�1; 0��B�1C , W5.B

�1C /�G 1. Hence

W2 DW5W4 �G W5.B
�1A/D ŒW5.B

�1C /�.C�1A/�G W5.B
�1C /�G 1:
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By the local coarse relation W2 2 ŒŒ1;C1��B and the inequality W2 �G 1, we get
B �G 1. So A�G C �G B �G 1. Then as in the Case 1, we get an inequality

1�G W �1
4 DW1W6 �G W1.A

�1C /�G W1A�1
�G 1;

which leads to AD B D C D 1.

Case 3 C �G A�G B

By similar arguments, W4�G 1, W5�G 1 and W6�G 1. Hence W3DW5W �1
6
�G 1.

Since W3 2 ŒŒ�1; 0��C�1 , 1 �G W3 �G C , so 1 �G C �G A �G B . The inequality
1�G A and W1 2 ŒŒC1;C1��A implies W1 �G 1. However, this leads to

B �G W2 �G W2W1 DW3 �G C:

Thus, all inequalities appearing in this argument must be equalities. This happens only
if AD B D C D 1.

Next we consider the case the assumption (2) holds.

Case 1 A�G B �G C

In this case, W4 �G B�1A�G 1, W5 �G 1 and W6 �G 1. First of all, we determine
the sign of A;B and C . Assume that C <G 1 so A�G B�G C <G 1. Then W1<G 1,
W2 <G 1, W3 >G 1. This contradicts the relation W3 DW2W1 , so C �G 1. By a
similar argument, we get A�G 1. Then

W �1
2 DW1W �1

3 �G W1C DAW1A�1C �G AW1W6 DAW �1
4 �G AA�1B D B

hence W �1
2
�G B . Since W2 2 ŒŒC1;C1��B , this implies B �G 1.

Recall that we have assumed A6 DQ.r/ .�1� r < 0/. Let r D �q
p
.p; q 2 Z; p >

q > 0/. Then W
�p

6
D .C�1A/q so .W �1

6
A�1C /p D .A�1C /p�q . Since

.C�1B/�1.A�1C /.C�1B/D B�1CA�1B �G B�1C �G 1;

by applying Lemma 4.3, we get

.C�1B/�1.W �1
6 A�1C /.C�1B/�G 1:

Thus

1�G .C
�1B/�1W6C�1B �G .C

�1B/�1A�1C.C�1B/D B�1CA�1B

so we get an inequality 1�G W6C�1B �G A�1B . By obtained inequalities,

W �1
1 �G W �1

1 W �1
2 DW �1

3 DW6W �1
5 �G W6C�1B �G A�1B �G A�1:
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On the other hand, W1 2 ŒŒC1;C1��A implies that A�1 �G W �1
1

. This implies that
all inequalities appearing in this argument must be equalities, so AD B D C D 1.

Case 2 A�G C �G B or C �G A�G B

If B <G 1, then A;C;B <G 1 so we get W2 <G 1, W1 <G 1, and W3 �G 1. This
contradicts the relation W2W1 D W3 , so B �G 1. On the other hand, in this case,
W4 �G 1, W5 �G 1 so W2DW5W4 �G 1. However, W2 2 ŒŒC1;C1��B and B �G 1

implies that W2 �G 1, so all inequalities above must be equalities. This implies
AD B D C D 1.

Links in Theorem 4.4 contain an interesting family of knots. An oriented knot K is
called positive if K is represented by a diagram D having only positive crossings.

Corollary 4.5 Let K be a knot in S3 that is positive and genus two. Then the
fundamental group of the double branched covering †2.K/ is not left-orderable.

Proof By Corollary 4.2, �1.†2.L// is not left-orderable if L is alternating, so we
restrict our attention to non-alternating links. Jong and Kishimoto showed that a
non-alternating positive knot of genus two is represented by a diagram obtained from
three diagrams 9C

39
; 9C

41
and 12C

1202
by performing the t 0

2
–moves [9]. See Figure 9. A

knot diagram obtained from the diagram 9C
39

belongs to the diagrams in Theorem 4.4
(2), and a knot diagram obtained from the diagram 9C

41
and 12C

1202
belongs to the

diagrams in Theorem 4.4 (1). Thus the double branched coverings of these knots have
non-left-orderable fundamental group.

9C39 9C41 12C1202

t 02–move

Figure 9: Generators of genus two positive non-alternating knots and t 0
2

–move

Next we give another example of links having a more complicated tangle-strand
decomposition.
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Theorem 4.6 Let L be a link in S3 that admits a special tangle-strand decomposition
given in Figure 10, and let ŒŒmi ;Mi �� be a universal range of Ai . Assume the following
conditions hold.

(1) A1 DQ.r/ .Q 2 r; r � 1/ and A4 DA10 DQ.�1/

(2) m2;m3 � �1

(3) M2;M3;M5;M6;M7;M8;M9 < 0

Then �1.†2.L// is not left-orderable.

A7 A8 A9A10

A
1

A
2

A
3

A
4

A
5

A
6

A7 A8 A9A
1

A
2

A
3

A
4

A
5

A
6

A
1

0

Figure 10: Link diagram and the coarse decomposition graph

Proof The coarse decomposition graph is given on the right in Figure 10. We take
region generators A;B;C;D and E as shown on the right in Figure 10 and put
Wi DWAi

. First we write down the coarse Brunner’s presentation.

[Generators]
W1;W2; : : : ;W10;A;B;C;D;E

[Local coarse relations]

W1 2 ŒŒm1;M1��A W2 2 ŒŒm2;M2��B�1

W3 2 ŒŒm3;M3��E�1 W4 2 ŒŒm4;M4��A�1C

W5 2 ŒŒm5;M5��C�1D W6 2 ŒŒm6;M6��D�1E

W7 2 ŒŒm7;M7��C�1B W8 2 ŒŒm8;M8��D�1B

W9 2 ŒŒm9;M9��E�1B W10 2 ŒŒm10;M10��A�1B

[Global cycle relations]

W1 DW4W10; W9W8W7W10 DW2;

W4 DW5W7; W5 DW6W8; W6 DW3W9
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Here we remove the trivial region generator to make the presentation simple. By
the global cycle relations, W1 D W3W2 holds, and by assumption (1), W

q
1
D Ap

.r D q=p; q > p > 0/, W4 D C�1A and W10 D B�1A.

Assume that �1.†2.L// has a left ordering <G . With no loss of generality, we may
assume A�G B holds. As in the proof of Theorem 4.4, we prove non-left-orderability
by showing AD B D C DD DE D 1.

Case 1 B is the <G –maximal element among the non-trivial region generators
fA;B;C;D;Eg.

By the local coarse relations for W7; : : : ;W10 , we get W7;W8;W9;W10 �G 1. Since
W9W8W7W10 D W2 , W2 �G 1 as well. Since W2 2 ŒŒ�1; 0��B�1 , B �G 1. Thus,
all region generators A;B;C;D;E are either trivial or <G –negative. By the local
coarse relations of W1 and W3 , we obtain W1;W3 �G 1. By the global cycle re-
lations W4 D W5W7 , W5 D W6W8 and W6 D W3W9 , we get W4;W5;W6 �G 1.
From inequalities W4;W5;W6 �G 1 and their local coarse relations we conclude
A�G C �G D �G E �G B �G 1.

Since AW �1
1
�G 1 so

1DW4W10W �1
1 D .C�1A/.B�1A/.W �1

1 /�G C�1AB�1:

Thus, we get C �G AB�1 and 1 �G BC �G BAB�1 . As .A�1W1/
q D Ap�q ,

Lemma 4.3, B.A�1W1/B
�1 �G 1. Hence

W1B�1
�G AB�1

�G C:

Finally, we observe

E �G W3 DW1W �1
2 �G W1B�1

�G C:

Hence we conclude C �G E . Since we have already seen C �G E , this implies that
all inequalities appearing in this argument must be equality. This implies AD B D

C DD DE D 1.

Case 2 B is not the <G –maximal element among the non-trivial region generators
fA;B;C;D;Eg.

Since we have assumed A �G B , A is not <G –maximal. Assume that C is
<G –maximal. Then W5;W7 �G 1 and W4 �G 1. By the global cycle relation
W4 DW5W7 , we conclude these three inequalities must be equalities. This implies
AD B D C DD DE D 1.

Similarly, if D (resp. E ) is <G –maximal, then W6;W8 �G 1 and W5 �G 1 (resp.
W3;W9 �G 1 and W6 �G 1), which leads to the equality AD B D C DD DE D 1

via the global cycle relation W5 DW6W8 (resp. W6 DW3W9 ).
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5 Remarks on the L–space conjecture

We close the paper by giving a remark on the relationships between our work and the
L–space conjecture.

It is an interesting problem to study the relationships between orderability of the
fundamental groups of a 3–manifold M and its topology or geometry. Boyer, Rolfsen
and Wiest showed that if the fundamental group of M is not left-orderable, then M is
a rational homology 3–sphere [2].

As for the orderability of the fundamental groups of 3–manifolds, there is a remarkable
conjecture:

Conjecture 1 (L–space conjecture [1]) The fundamental group of a rational homol-
ogy 3–sphere M is non-left-orderable if and only if M is an L–space.

A rational homology 3–sphere M is an L–space if the rank of the Heegaard Floer
homology group bHF .M / is equal to jH1.M IZ/j, the cardinal of the 1st homology
group. L–spaces include spherical 3–manifolds, in particular, lens spaces (Ozsváth and
Szabó [12]). Recall that we have adopted the convention that the trivial group is not
left-orderable, so S3 is considered as an L–space with non-left-orderable fundamental
group.

This conjecture is verified for Seifert fibered spaces and non-hyperbolic geometric
3–manifolds [1]. There are many examples of 3–manifolds having non-left-orderable
fundamental groups (Da̧bkowski, Przytycki and Togha [7], Roberts and Shareshian [15],
and Roberts, Shareshian and Stein [16]): many of them are confirmed to be L–spaces
(Clay and Watson [6; 5] and Peters [14]). Conversely, many known L–spaces, such as
the double branched covering of alternating links, or L–spaces obtained from certain
Dehn surgeries are shown to have non-left-orderable fundamental group [1; 8]. (See
Corollary 4.2.)

Let us turn to the relationships between our results and the L–space conjecture. A link
is called quasi-alternating if it belongs to the set Q that is the smallest set of links
characterized by the following two properties:

(1) The unknot is in Q.

(2) If L has a diagram D with a crossing c such that
(a) the two smoothings D0 and D1 at c (See Figure 11) represent links L0 ,

L1 both of which belong to Q,
(b) det.L0/C det.L1/D det.L/,

then L belongs to Q. Such a crossing c is called a quasi-alternating crossing.

Algebraic & Geometric Topology, Volume 13 (2013)



Non-left-orderable double branched coverings 1963

D0 D1c

Figure 11: Smoothing D0 and D1

Alternating links are quasi-alternating. In fact, all crossing points of an alternating knot
diagram are quasi-alternating crossings. It is known that the double branched covering
of a quasi-alternating link L is an L–space [12].

Quasi-alternating links have a nice property with respect to a tangle replacement
operation: A link obtained by replacing a quasi-alternating crossing with a rational
tangle which extends the crossing is also quasi-alternating (Champanerkar and Kofman
[4]). From this property, we can confirm that many links in Theorem 4.1, Theorem 4.4
and Theorem 4.6 are quasi-alternating. So our results provide a lot of new examples of
L–spaces with non-left-orderable fundamental groups. For example, the positive knots
of genus two are quasi-alternating [9], hence by Corollary 4.5 their double branched
coverings are L–spaces having non-left orderable fundamental groups.

On the other hand, we do not know whether all links in our theorems are quasi-
alternating or not, and we do not know whether their double branched coverings †2.L/

are L–spaces or not, either. Thus our family of links also provides a lot of candidates
for a counter example to the L–space conjecture.

Remark 2 The diagrams in Theorem 4.4 and Theorem 4.6 are obtained by modifying
quasi-alternating, but non-alternating knot diagrams. The diagram in Theorem 4.4
is found by generalizing the diagrams 9C

41
and 9C

39
in Figure 9, and the diagram in

Theorem 4.6 is found by generalizing the quasi-alternating diagram in Ozsváth and
Szabó [13, Figure 4].

Using coarse Brunner’s presentation arguments, one can find links whose double
branched coverings have non-left-orderable fundamental group, by modifying quasi-
alternating diagrams in an appropriate way (that is, by replacing each crossing with
a special algebraic tangle having certain universal range). The main point is that the
obtained family of links might contain non-quasi-alternating links, so it is unknown
whether their double branched coverings are L–spaces or not.

Finally we remark that the coarse presentation method also can be applied to show non-
left-orderability of 3–manifolds obtained as not only the double branched coverings,

Algebraic & Geometric Topology, Volume 13 (2013)



1964 Tetsuya Ito

but also as Dehn surgeries, since the well-known Montesinos trick [11] relates some
Dehn surgeries and double branched covering constructions.

It is an interesting problem to construct a good coarse presentation from other construc-
tions of 3–manifolds, such as Dehn surgery, general branched coverings, Heegaard
splittings and open book decompositions.
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