
msp
Algebraic & Geometric Topology 13 (2013) 2001–2037

Closed surfaces and character varieties

ERIC CHESEBRO

The powerful character variety techniques of Culler and Shalen can be used to
find essential surfaces in knot manifolds. We show that module structures on the
coordinate ring of the character variety can be used to identify detected boundary
slopes as well as when closed surfaces are detected. This approach also yields new
number theoretic invariants for the character varieties of knot manifolds.
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1 Introduction

Suppose that N is a compact, irreducible 3–manifold with torus boundary and that
X is an irreducible algebraic component of the SL2C–character variety for N . It is
known that the dimension of X is at least one Cooper, Culler, Gillet, Long and Shalen
[6]. Often, interesting topological information about N may be obtained from the
algebraic geometry of X.

Let C � X be an affine algebraic curve and zC ! C a birational map from a smooth
projective curve. This map is defined for all but finitely many points. These points are
called ideal points. For  2 �1N and � 2 X, define I .�/D �. /. This determines a
rational function I W zC !C . This paper concerns the following landmark result of
Culler and Shalen.

Theorem 1.1 (Culler and Shalen) If yx is an ideal point, there is an associated non-
empty essential surface † in N .

(1) † may be chosen to have empty boundary if and only if I˛ is regular at yx for
every peripheral element ˛ 2 �1N .

(2) Otherwise, there exists a unique slope with the property that if ˛ 2 �1N repre-
sents this slope, then I˛ is regular at yx . In this case, every component of @†
represents the slope corresponding to ˛ .
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When an essential surface arises from X and this theorem, we say that the surface is
detected by X.

Since 1983, case (2) of Theorem 1.1 has been carefully studied. Many famous papers
have provided both applications and insight for this case. Notably, the Culler–Shalen
norm of Culler, Gordon, Luecke and Shalen [9] and the A–polynomial of [6] can tell us
exactly which slopes are detected. These tools are remarkably effective and have been
used in proofs of several famous theorems including the Smith Conjecture (Shalen
[24]) and the Cyclic Surgery Theorem [9].

It is well-known that if dim.X/ > 1, then X detects a closed essential surface. Not
much is known about case (1) of Theorem 1.1 when dim.X/D 1. Also, it is difficult to
interpret global properties of X in terms of the topology of N . This paper introduces
new functions that relate detected boundary slopes and essential closed surfaces in the
manifold to module structures of the coordinate ring CŒX�. In the spirit of Cooper and
Long [7], these functions also contain number theoretic information about X.

The trace ring T .X/ is the subring (with unity) of the coordinate ring CŒX� that is
generated by fI j  2�1N g. Define TQ.X/ to be the smallest Q–algebra in CŒX� that
contains T .X/. Suppose that ˛ 2 �1N is primitive and peripheral. Then CŒX�, TQ.X/

and T .X/ have the structure of a CŒI˛ �–module, a QŒI˛ �–module and a ZŒI˛ �–module,
respectively. Let RkC

X .˛/, RkQ
X .˛/ and RkZ

X .˛/ denote the ranks of these modules.
Note that the functions I˛ are well-defined on slopes. Hence, these rank functions may
be viewed as functions on S , the set of slopes for N . It is clear that

(1) RkC
X � RkQ

X � RkZ
X :

The following theorem is the main theorem of this paper.

Theorem 1.2 Let X be an irreducible component of X.N / and X 2 fC;Q;Zg. Then

(1) The function RkX
X W S! ZC [ f1g is constant with value 1 if and only if X

detects a closed essential surface.

(2) Otherwise, RkX
X .˛/D1 if and only if X detects the slope ˛ .

We begin by proving the theorem for XD C . A straightforward application of this
case yields a proposition of independent interest.

Proposition 1.3 Let Xı be the union of the irreducible components X0 of the SL2C–
character variety such that

(1) X0 detects a closed essential surface if and only if X does, and
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(2) for each slope ˛ , X0 detects a surface with boundary slope ˛ if and only if X

does.

Then Xı is defined over Q.

This proposition, together with Theorem 1.1, also allows us to improve the result to
include XDQ. As an application of this result, we prove another proposition. It is of
independent interest, but is also used to prove the main theorem in the case XD Z.

Proposition 1.4 If X contains the character of a non-integral representation that detects
a closed essential surface, then X detects a closed essential surface.

Together with data compiled by Goodman, Heard and Hodgson, this proposition gives
many examples of hyperbolic knot manifolds for which the hyperbolic components of
their character varieties detect closed essential surfaces.

In addition to our main result, we begin an investigation of the basic properties of the
functions RkX

X and include computations for several examples. It is easy to prove the
following two propositions.

Proposition 1.5 Suppose that N is a knot manifold and H1.N IZ/Š Z, generated
by ˛ . Let XA � X.N / be the curve consisting of all abelian representations of �1N .
Then

RkC
XA
.˛/D RkZ

XA
.˛/D 1:

Proposition 1.6 If N is a knot manifold and X is a norm curve component of X.N /,
then RkC

X .˛/� 2 for every slope ˛ .

As a corollary to Theorem 1.2, we have the following.

Corollary 1.7 Suppose N is the exterior of a two-bridge knot and h�; ˇ j!ˇD�!i is
the standard presentation for �1N . If X� X.N / is an irreducible algebraic component
defined over Q, then X is defined by an irreducible polynomial of the form

In
�ˇ �

n�1X
jD0

pj .I�/I
j

�ˇ
:

The set fIj

�ˇ
gn�1
0

is a free basis for CŒX � as a CŒI��–module, TQ.X/ as a QŒI��–
module and T .X/ as a ZŒI��–module.
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We point out that, with the appropriate definitions, these results also hold for the
PSL2C–character variety. In what follows, we use X to indicate that we are working
in the SL2C setting and Y in the PSL2C setting. When N � S3 is a knot exterior,
we reserve �;� 2 �1N to be a longitude, meridian pair. We write XA and YA for
the algebraic sets of abelian characters. When N is hyperbolic, we use the notation
X0 and Y0 to indicate algebraic components of the character varieties that contain a
discrete faithful character.

Below, we list the results of our calculations in five different examples. The last example
is of particular interest. It shows that the inequalities (1) need not be equalities and
that, although T .X/ must always be torsion free as a ZŒI� �–module, it need not be a
free module.

(1) Suppose N is the exterior of a trefoil knot. Then X.N /D XA[X, where XA

is a curve of abelian characters and X is a curve that contains an irreducible
character. We have

RkZ
X .�/D 1:

This shows that the converse to Proposition 1.5 does not hold.

(2) Suppose N is the exterior of the figure-eight knot. We have

RkZ
X0
.�/D RkZ

Y0
.�/D 2;

RkC
Y0
.�/D RkZ

Y0
.�/D 4;

RkC
Y0
.�2�/D RkZ

Y0
.�2�/D 5:

(3) Suppose N DM003 . Then �1N Dh; � j��2��3i. Define �D .�2� /�1

and �D .� /�1��. Then � and � are primitive, peripheral and generate a
peripheral subgroup of N . We have

RkC
X0
.�/D RkZ

X0
.�/D 4:

Also, I� 2 T .Y0/ and

RkC
Y0
.�/D RkZ

Y0
.�/D 2:

Note that, since Y0 is a norm curve, these ranks achieve their minimum possible
value. In contrast to examples (1) and (2), the PSL2C–rank is strictly smaller
than the SL2C–rank (at �). As with examples (1) and (2), all of these ZŒI��–
modules are free.

(4) Suppose N is the exterior of the knot 820 . N is hyperbolic, so we consider X0 .
The diagram in Figure 1 gives a Wirtinger presentation for �1N , which reduces
to h�;  j �.��/�1 3.��/�1��2i, where  D �� .
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�
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�

Figure 1: The knot 820 labelled with Wirtinger generators

The functions I� , I and I� give an embedding of X0 into C3 . I and
I� both satisfy irreducible integral dependencies in ZŒI��Œx� of degree 5. It
follows that B D fI i

 I
j
� j 0 � i; j � 4g is a generating set for CŒX0� as a

CŒI��–module, TQ.X0/ as a QŒI��–module and T .X0/ as a ZŒI��–module.
Notice that jBj D 25.
A Groebner basis argument shows that relations amongst the elements of B are
plentiful and, in fact, f1; I ; I2

 ; I
3
 ; I

2
 I�; I�g is a free basis for each of the

above modules. Hence,

RkC
X0
.�/D RkZ

X0
.�/D 6

and T .X0/ is a free ZŒI��–module.

(5) Suppose N is the once punctured hyperbolic torus bundle from Section 5 of Dun-
field [11]. Then �1N D h˛; ˇ; � j �˛��1 D .ˇ˛ˇ/�1; �ˇ��1 D ˇ˛.ˇ˛ˇ/�3i.
The elements � and �D Œ˛; ˇ� form a basis for the peripheral subgroup of N

and the functions

t D I� ; uD I˛� ; v D Iˇ� ; w D I˛ˇ� ; x D I˛; y D Iˇ; z D I˛ˇ

give an embedding of X.N / into C7 . For � 2 f0; 1g, we have an irreducible
algebraic component X� � X.N / that contains a discrete faithful character.

(a) f1; z; z2; z3;y; zy; z2y; z3yg is a free basis for CŒX� � as a CŒI��–module.
Hence, RkC

X�
.�/D 8.

(b) f1; z; z2; z3;y; zy; z2y; z3y; t; zt; z2t; z3t;yt; zyt; z2yt; z3ytg is a free ba-
sis for T .X�/ as a QŒI��–module. Hence, RkQ

X�
.�/D 16.

(c) f1;y;y2;y3; t;u; v; w;x; z;yt;yu;yx;y2x;xt;xu; vyg generates T .X�/

as a ZŒI��–module. However, T .X�/ is torsion free but not free as a ZŒI��–
module. In particular, RkZ

X�
.�/D 17.
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The projection .t;y; z/W X0[X1!C3 is an isomorphism onto its image and
the relation

RkQ
X�
.�/ < RkZ

X�
.�/

reflects the fact that the inverse of this isomorphism is not defined over Z. The
equality

RkQ
X�
.�/D 2 �RkC

X�
.�/

reflects the fact that X� is not defined over Q.
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2 Algebraic geometry

Throughout this section we take k to be an algebraically closed field. All varieties are
defined over k . When X is an irreducible variety we write kŒX� and k.X/ to denote
the ring of regular functions on X and the function field for X, respectively. If p 2 X,
define OX;p to be the ring of germs of functions that are regular on neighborhoods of
p . We have a surjective homomorphism kŒX�! k given by f 7! f .p/. Let mp be the
maximal ideal that is the kernel of this map. By Theorem 3.2 part (c) of Hartshorne [14],
OX;p is isomorphic to the localization kŒX�mp

. We use this isomorphism to identify
these two rings and think of OX;p as a subring of k.X/.

Definitions Suppose A� B are commutative rings and 1B 2A.

(1) An element b2B is integral over A if there is a number n2ZC and f˛ig
n�1
0
�A

such that
bn
C˛n�1bn�1

C � � �C˛0 D 0:

This equation is called an integral dependence relation of b over A.

(2) B is integral over A if every element of B is integral over A.

(3) The integral closure A of A in B is the set of all elements of B which are
integral over A.

(4) If ADA, then A is integrally closed in B .

By Corollary 5.3 of Atiyah and Macdonald [1], the integral closure of A in B is a ring.
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Definitions Suppose that X is an affine variety.

(1) X is a normal variety if kŒX� is integrally closed in k.X/.

(2) A normalization of X is an irreducible normal variety X� and a regular birational
map �W X� ! X, where kŒX� � is integral over �� .kŒX�/.

If X is an affine variety and p 2 X, then the quotient mp=m
2
p has the structure of a

k –vector space.

Definitions Suppose that X is an affine variety.

(1) A point p 2 X is non-singular if dim.mp=m
2
p/ equals the dimension of X.

(2) X is non-singular if every point in X is non-singular.

Theorem 1 in Chapter II, Section 5.1 of Shafarevich [23] states that non-singular affine
varieties are normal.

If mp is principal, then dim
�
mp=m

2
p

�
D 1. Theorem 2 in Chapter II, Section 5.1 of

[23] implies that if X is a normal affine algebraic curve and p 2X, then mp is principal.
Thus, we have the following well-known theorem.

Theorem 2.1 Suppose X is an irreducible affine algebraic curve. X is non-singular if
and only if X is normal.

The following theorem is a direct consequence of Theorems 4 and 5 in Chapter II,
Section 5.2 in [23] (and the first part of the proof of Theorem 4).

Theorem 2.2 If X is an irreducible affine algebraic curve, then X has a normalization
�W X� ! X. Moreover, the normalization is unique, affine and its coordinate ring is the
integral closure of �� .kŒX�/.

The projective coordinates on projective space Pn give distinguished open affine subsets
fUig

n
0

, which cover Pn . So if X � Pn is an irreducible projective variety, then we
have the distinguished affine open subsets Ui \X, which cover X. We say that X is
non-singular if Ui \X is non-singular for every i D 0; : : : ; n.

Definition Suppose that X is an irreducible affine curve and let �W X� ! X the
normalization of X. As in [14, Chapter 6], there is a smooth projective curve zX (unique
up to isomorphism) so that X� is isomorphic to an open set in zX. The projective variety
zX is called the smooth projective model for X.
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Henceforth, we identify X� with its image in zX and we let �W zX Ü X� be the rational
map that is the identity on X� .

Definition The ideal points of X are the points in the set I.X/D zX�X� . It follows
from the uniqueness of normalizations and smooth projective models that I.X/ is
well-defined.

We have dominant birational maps

zX
�Ü X�

�
�! X:

The induced maps

k.zX/
��

 � k.X�/
��

 � k.X/

are isomorphisms. Moreover, ��.kŒX�/� kŒX� �.

Now suppose that Y is an affine variety and 'W X!Y is a regular map with '.X/DY .
Then '�W k.Y /! k.X/ is a field monomorphism and '�.kŒY �/� kŒX�.

Definition A hole in 'W X! Y is a point yp 2 I.X/ such that .'��/� .kŒY �/�OzX; yp .

Remark If yp is a hole in 'W X! Y , since yp … X� , there is an element f 2 kŒX� with
.��/�.f / …OzX; yp . Also, if ' is a birational map, then ' is surjective if and only if '
has no hole.

Lemma 2.3 If 'W X! Y has a hole, then kŒX� is not integral over '�.kŒY �/.

Proof Suppose yp is a hole. Take a distinguished open affine set Ui � Pn with
yp 2 Ui . Set X yp D Ui \ zX. By Theorem 2.1, X yp is a non-singular affine curve so
kŒX yp � is integrally closed. Recall that OXyp; yp

is isomorphic to the localization kŒX yp �myp .
Proposition 5.13 of [1] gives that this localization is integrally closed. The inclusion-
induced isomorphism k.zX/ ! k.X yp/ restricts to an isomorphism OzX; yp ! OXyp; yp

.
Hence OzX; yp is integrally closed.

The point yp is a hole in 'W X! Y so .'��/�.kŒY �/�OzX; yp . Since OzX; yp is integrally
closed, every element of k.zX/ that is integral over .'��/�.kŒY �/ is an element of
OzX; yp . We have f 2 kŒX� with .��/�.f /…OzX; yp , hence .��/�.kŒX�/ is not integral over
.'��/�.kŒY �/ and so kŒX� is not integral over '�.kŒY �/.

Theorem 2.4 Suppose X is an irreducible affine algebraic curve and 'W X! Y is a
regular map with '.X/D Y . Then ' has no hole if and only if kŒX� is integral over
'�.kŒY �/.
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Proof By Lemma 2.3, we need only show that if ' has no hole, then kŒX� is integral
over '�.kŒY �/.

Assume, to the contrary, that kŒX� is not integral over '�.kŒY �/. Since �� is injective,
this implies that kŒX� � is not integral over .'�/�.kŒY �/. Taking integral closures in
k.X�/ we have

kŒX� �D kŒX� �© .'�/�.kŒY �/:

Take f 2kŒX� ��.'�/�.kŒY �/. By the structure theorem of integrally closed noetherian
rings (Mumford [20]), there is a valuation ring R � k.X�/ with f … R and k �

.'�/�.kŒY �/�R.

Claim ��.R/DOzX; yp for some yp 2 zX.

Using the claim, ��.f / …OzX; yp so yp 2 I.X/. Moreover, .'�/�kŒY ��R so

.'��/�.kŒY �/� ��.R/DOzX; yp:

That is, yp is a hole in ' , a contradiction.

The claim follows from Corollary 6.6 of [14] since it gives an open set XR in zX and a
point yp 2 XR such that ��.R/DOXR; yp DOzX; yp .

It is well-known that, in this setting, kŒX� is integral over f �.kŒY �/ if and only if
kŒX� is a finitely generated f �.kŒY �/–module (see for example Proposition 5.1 and
Corollary 5.2 of [1]). Hence, we have the following immediate corollary.

Corollary 2.5 Suppose X is an irreducible affine algebraic curve and 'W X! Y is
a regular map with '.X/ D Y . Then ' has no hole if and only if kŒX� is a finitely
generated '�.kŒY �/–module.

Remarks Suppose that kŒX� is a finitely generated '�.kŒY �/–module.

(1) Since X is irreducible, kŒX� has no zero divisors. Hence kŒX� is a torsion free
'�.kŒY �/–module.

(2) We can be more concrete about a basis for kŒX� as a '�.kŒY �/–module. Let
fxig

m
1

be coordinate functions for X. By Theorem 2.4, each xi is integral over
'�.kŒY �/. Let ni be the degree of an integral dependence for xi and define
S D fx˛1

1
� � �x

˛m
m j 0 � ˛i < nig. Every element of kŒX� may be expressed

as a '�.kŒX�/–linear combination of the elements from the finite set S . (See
Proposition 2.16 of [1].)
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3 Character varieties, boundary slopes and closed essential
surfaces

Definition A knot manifold is a connected, compact, irreducible, orientable 3–manifold
whose boundary is an incompressible torus.

Let N be a knot manifold and � D �1.N /. Denote the set of SL2C–representations
of � as R.N / and the set of characters of representations in R.N / as X.N /. Let
t W R.N /! X.N / be the map that takes representations to their characters. In Culler
and Shalen [10], it is shown that R.N / and X.N / are affine algebraic sets defined over
C and the map t is regular. We will refer to R.N / and X.N / as the representation
variety and character variety for N .

Culler and Shalen revealed deep connections between essential surfaces in N and
the character variety X.N /. We briefly outline some of their results below. For more
background, see [10], the survey article Shalen [25] or [9, Chapter 1].

Definitions Suppose that X is a non-empty algebraic subset of X.N /.

(1) Given  2 � , the trace function for  on X is the regular function I 2 CŒX�
defined by I .�/D �. /.

(2) Let T .X/ be the subring (with 1) in CŒX� generated by fI j  2 �g. T .X/ is
called the trace ring for X.

The following proposition gives that, as a ring, T .X/ is finitely generated.

Proposition 3.1 (Corollary 4.1.2 of González-Acuña and Montesinos-Amilibia [12])
Let fig

n
1

be a generating set for � . Then T .X/ is generated, as a ring, by the constant
function 1 along with the functions in the set

fIV j;V D j1
� � � jk

; where 1� k � 3 and 1� j1 < � � �< jk � ng:

The smallest C–algebra containing T .X/ is the coordinate ring CŒX�. Therefore, a
generating set fig

n
1

for � gives an embedding of X into C2n�1 by taking the functions
IV to be coordinate functions. It is straightforward to see that under this embedding,
X.N / is cut out by polynomials with coefficients in Z.

We have a regular map @W X.N /! X.@N / from X.N / to the character variety for
the peripheral subgroup (well-defined up to conjugation) of � given by restricting
characters. For a non-empty algebraic subset X of X.N /, let @X denote the Zariski
closure of @.X/.
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Definitions (1) The unoriented isotopy class of an essential simple closed curve in
@N is called a slope. We denote the set of slopes on N as S .

(2) A boundary slope is a slope that is realized as a boundary component of an
essential surface in N .

Each slope corresponds to a pair f˙ag � H1.@N IZ/. The inverse of the Hurewicz
isomorphism is an isomorphism H1.@N IZ/! �1@N . This gives a monomorphism
eW H1.@N IZ/!� , which is well-defined up to conjugation. Since traces are invariant
under inversion and conjugation, the function f˙ag 7! Ie.a/ is well-defined. When
˛ D f˙ag is a slope we write I˛ D Ie.a/ .

Assume now that X� X.N / is an irreducible affine curve and let

zX
�Ü X�

�
�! X

be the corresponding maps and varieties as defined in Section 2. The following theorem
is well known and fundamental; see Theorem 2.2.1 and Proposition 2.3.1 of [10]. It is
a translation of Theorem 1.1 into the language of Sections 2 and 3 of this paper.

Theorem 3.2 (Culler and Shalen) For every ideal point yx of X, there is an associated
non-empty essential surface † in N .

(1) † may be chosen to have empty boundary if and only if

.@��/�.CŒ@X�/�OzX;yx :

(2) Otherwise, there exists a unique slope ˛ such that I˛ 2OzX;yx . In this case, every
component of @† represents the slope ˛ .

Theorem 3.2 is broadly applicable. For instance, Kronheimer and Mrowka show that
if N is the exterior of a non-trivial knot in S3 , then X.N / contains a curve with
infinitely many irreducible characters [17]. Also, if the interior of N admits a complete
hyperbolic structure with finite volume and �� is the character of a discrete faithful
representation, then there is a unique algebraic component X0 � X.N / that contains
�� . Furthermore, X0 is a curve (see Thurston [26] and Shalen [25]). We refer to such
a curve as a hyperbolic curve.

Definitions (1) Suppose that X� X.N / is an irreducible affine curve and yx is an
ideal point of X. A non-empty essential surface †�N is associated to yx if it
is contained in a surface given by yx and Theorem 3.2.

(2) Suppose that X is an algebraic subset of X.N /. A surface † is detected by
X if there is an ideal point yx of an irreducible affine curve in X so that † is
associated to yx .
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(3) If an essential surface †�N is detected by X (associated to yx ) and @†¤∅ the
boundary slope represented by a component of @† is detected by X (associated to
yx ). The slope is weakly or strongly detected (associated) depending on whether
yx satisfies case (1) or case (2) of Theorem 3.2, respectively.

Remark It is natural to ask if, whenever N contains a closed essential surface, there
is a closed essential surface in N detected by X.N /. The author is not certain if the
answer is known to be no, however there are compelling reasons to believe that the
answer is no; see for example Chesebro and Tillmann [5] or Remark 5.1 in Dunfield [11].

We conclude this section with some applications of the work in Section 2.

Theorem 3.3 Suppose N is a knot manifold and X is an irreducible algebraic subset
of X.N /. The following are equivalent.

(1) X does not detect a closed essential surface.

(2) dim.X/D dim.@X/D 1 and @W X! @X does not have a hole.

(3) CŒX� is integral over @�.CŒ@X�/.

(4) CŒX� is a finitely generated @�.CŒ@X�/–module.

Proof As mentioned earlier, conditions (3) and (4) are equivalent by Proposition 5.1
and Corollary 5.2 of [1].

If dim.X/ > dim.@X/, then CŒX� is transcendental over @�.CŒ@X�/ and so condition (3)
cannot hold. The inequality dim.X/ > dim.@X/ also implies that X contains a curve C

to which Theorem 3.2 applies. This yields a closed essential surface detected by X.
Hence, conditions (2) and (3) both imply that dim.X/D dim.@X/.

We have established that each of the four conditions implies that dim.X/D dim.@X/.
By Proposition 2.4 of [6], dim.X/� 1. Also dim.@X/� 1, otherwise for any slope ˛
on @N , there is a curve in X to which Theorem 3.2 can be applied to give an essential
surface in N with boundary slope ˛ . This contradicts Hatcher’s theorem [15] that N

has only finitely many boundary slopes. So, if any of conditions (1) through (4) hold,
then dim.X/D dim.@X/D 1.

The theorem now follows from Theorems 2.4, 3.2 and Corollary 2.5.

Given a trace function I 2CŒX�, let CŒI � denote the C–subalgebra of CŒX� generated
by I . Consider the regular map I W X!C and the induced map I� W CŒx�!CŒX�.
If I is non-constant on X, then I� is injective and CŒI � is naturally isomorphic
to CŒx�. Moreover, ZŒx� is naturally isomorphic to the Z–submodule ZŒI �� T .X/

generated by all finite powers of I . For instance, if ˛ is a slope that is not detected
by X, since dim.X/� 1, Theorem 3.2 implies that I˛ is non-constant on X.
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Theorem 3.4 Suppose N is a knot manifold, X is an irreducible algebraic subset of
X.N / and ˛ is a slope. The following are equivalent.

(1) X does not detect a closed essential surface and ˛ is not detected by X.

(2) CŒX� is integral over CŒI˛ �.

(3) As a CŒI˛ �–module, CŒX� is finitely generated and free.

Proof As with conditions (3) and (4) of the previous theorem, we know that (3)
implies (2) and that (2) implies that CŒX� is a finitely generated CŒI˛ �–module. CŒX�
is an integral domain so, as a CŒI˛ �–module, CŒX� is torsion free. CŒI˛ � is a PID so
CŒX � is a free CŒI˛ �–module.

It remains to show that (1) and (2) are equivalent.

Assume first that (2) holds. Theorem 3.3 shows that X does not detect a closed essential
surface and dim.X/D1. Hence I˛ is not constant. We have the regular map I˛W X!C
and I˛.X/DC . Since CŒX� is integral over CŒI˛ �, Theorem 2.4 shows that I˛W X!C
does not have a hole. By Theorem 3.2, ˛ is not strongly detected by X. Since X does
not detect a closed essential surface, ˛ cannot be weakly detected by X.

Now suppose that (1) holds. As in the proof of Theorem 3.3, we have that dim.X/D 1.
Consider the regular map I˛W X!C . Either I˛.X/DC or I˛ is constant on X. But
since dim.X/D 1, Theorem 3.2 implies that if I˛ is constant on X, then ˛ is strongly
detected by X or X detects a closed essential surface. So we must have I˛.X/DC .

By Theorem 2.4, it suffices to show that the regular map I˛ does not have a hole.
Again, we appeal to Theorem 3.2 and notice that if I˛ has a hole, then either ˛ is
strongly detected or X detects a closed essential surface.

Definition Let X� X.N / be an irreducible algebraic subset. The C–rank function is
the map

RkC
X W S! ZC[f1g;

where RkC
X .˛/ is the rank of CŒX� as a CŒI˛ �–module.

Remarks Using Theorem 3.4, we make the following observations.

(1) If X does not detect a closed essential surface, RkC
X .˛/D1 if and only if ˛ is

strongly detected by X.

(2) X detects a closed essential surface if and only if TrC
X .S/D f1g.

(3) By Lemma 1.4.4 of [9], there are only finitely many boundary slopes strongly
detected by X. Avoiding this finite set, choose ˛ 2 S . Then X detects a closed
essential surface if and only if RkC

X .˛/D1.
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For X an irreducible algebraic component of X.N /, we define Xı to be the union of
the irreducible components X0 of X.N / such that

(1) X0 detects a closed essential surface if and only if X detects a closed essential
surface and

(2) for every slope ˛ , X0 detects ˛ if and only if X detects ˛ .

Proposition 3.5 If X is an irreducible algebraic component of X.N /, then Xı is
defined over Q.

Proof By a theorem of Weil [18, Chapter III, Theorem 7], it suffices to prove that Xı

is invariant under the action of Aut.C/ on X.N / (see [6, Proposition 2.3], and Boyer
and Zhang [3, Section 5]).

First, we assume that X does not detect a closed essential surface. Theorem 3.4 implies
that Xı is the union of the irreducible algebraic components X0 of X.N / such that, for
every slope ˛ , CŒX0� is integral over CŒI˛ � if and only if CŒX� is integral over CŒI˛ �.

Let � 2 Aut.C/, X0 an irreducible component of Xı , and ˛ 2 S . Define X00 D �.X0/.
The set �.X0/ is an irreducible algebraic component of X.N /. To prove the proposition
we need only show that CŒX00� is integral over CŒI˛ � if and only if CŒX0� is integral
over CŒI˛ �.

The automorphism � determines an automorphism on any complex polynomial ring by
acting on the coefficients. This automorphism descends to an isomorphism �W CŒX0�!
CŒX00�. Since �W C ! C restricts to the identity on Q and I˛ is represented by a
polynomial with integer coefficients we have �.I˛/ D I˛ . Therefore, if p 2 CŒI˛ �,
then �.p/ 2 CŒI˛ �. So if f 2 CŒX0� is integral over CŒI˛ �, we can apply � to an
integral dependence relation for f over CŒI˛ � to obtain one for �.f / over CŒI˛ �.
To prove the converse, we apply ��1 to any integral dependence relation for CŒX00�
over CŒI˛ �.

The case when X does detect a closed essential surface follows from the above argument
along with Lemma 5.3 of [3].

Definition Suppose X� X.N / is an algebraic set. The rational trace ring TQ.X/ is
the smallest Q–algebra that contains T .X/.

Theorem 3.6 Suppose N is a knot manifold, X is an irreducible algebraic subset of
X.N / and ˛ 2 S . The following are equivalent.

(1) X does not detect a closed essential surface and ˛ is not detected by X.
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(2) TQ.X/ is integral over QŒI˛ �.

(3) As a QŒI˛ �–module, TQ.X/ is a finitely generated and free.

Proof The first paragraph of the proof of Theorem 3.4 shows that (2) and (3) are
equivalent. Theorem 3.4 shows that (2) implies (1).

It remains to show that (1) implies (2). Suppose then that X does not detect a closed
essential surface and ˛ is not detected by X. TQ.X/ is generated by T .X/ as a
Q–algebra, so it suffices to show that elements of T .X/ are integral over QŒI˛ �.

Let fXj g
n
1

be the set of irreducible algebraic components of Xı and take f 2 T .X/.
The map CŒXı�!CŒX� induced by inclusion is given by restriction and is surjective.
Take F 2CŒXı� such that F jX D f . Let � W Xı!C2 be the map .F; I˛/. Let .x;y/
be the coordinates on Im.�/ determined by x� D F and y� D I˛ .

Fix j 2 f1; : : : ; ng. By Theorem 3.3, I˛W Xj ! C is non-constant and �.Xj / is an
irreducible plane curve. Let Pj 2 CŒx;y� be an irreducible polynomial that defines
�.Xj /. Xı is defined over Q (Proposition 3.5) and � is given by polynomials with
Z–coefficients, so we may assume that

P D

nY
jD1

Pj 2 ZŒx;y�:

For each j , Theorem 3.4 gives that F jXj is integral over CŒI˛ �. This means that
there is a polynomial in CŒx;y� that is zero on �.Xj / and monic as a polynomial in
.CŒx�/Œy�. Select one such polynomial pj with minimal degree. Then pj is irreducible
and must differ from Pj only by multiplication by some j̨ 2C . We have

P D
Y

Pj D

�Y
j̨

�
�

�Y
pj

�
:

Hence
Q

j̨ 2 Z and
�Q

˛�1
j

�
� P gives an integral dependence relation for f

over QŒI˛ �.

Definition Suppose X�X.N / is an irreducible algebraic subset. The Q–rank function
is the map

RkQ
X W S! ZC[f1g;

where RkQ
X .˛/ is the rank of TQ.X/ as a QŒI˛ �–module.

It will require more work to show that there are related theorems which work over Z.
We begin by establishing some lemmas concerning valuations.
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4 Valuations

Lemma 4.1 Suppose �W F�!ƒ is a valuation on the field F . Assume that

cxk
D

k�1X
iD0

aix
i

for some c;x; ai 2 F and k 2 ZC such that c ¤ 0, �.c/D 0 and �.ai/� 0 for every
i . Then �.x/� 0.

Proof If every ai is zero, then x D 0 and so �.x/D1, so we may assume that at
least one of the ai is non-zero. Let j be such that �.aj /C j �.x/ is minimal in the
set f�.ai/C i�.x/ j 0� i < kg. We have

k�.x/D �.c/C k�.x/� �.aj /C j �.x/

so
.k � j /�.x/� �.aj /� 0:

Hence �.x/� 0.

The following lemma is essentially Lemma 2.2 of [7].

Lemma 4.2 Suppose p 2 Z is a prime and h 2 ZŒt � is irreducible over Z and of the
form

h.t/D c0C c1t C � � �C ck�1tk�1
C ckpr tk ;

where .ck ;p/D 1 and ck ¤˙1. Let b 2C be any root of h. Then there is a valuation
� on Q.b/ with �.p/D 0 and �.b/ < 0.

Proof Since .ck ;p/D 1 and h 2 ZŒt � we know that r is an integer and at least zero.
Now, for i 2 f0; : : : ; k�1g, define ai D cip

k�1�i . We have p.k�1/r ci D ai.p
r /i , so

p.k�1/r h.t/D a0C a1.p
r t/C � � �C ak�1.p

r t/k�1
C ck.p

r t/k

Set d D pr b and

h�.t/D a0C a1t C � � �C ak�1tk�1
C ck tk :

Then h� 2 ZŒt � and h�.d/D 0. We have

ckdk
D

k�1X
iD0

aid
i :
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Let �p be an extension of the p–adic valuation to Q.b/. Since .ck ;p/D1, �p.ck/D0.
Also, for every i , ai 2 Z so �.ai/� 0. Hence, Lemma 4.1 implies that �p.d/� 0.

Since h is irreducible over Z and Q.b/DQ.d/, it follows that h� is irreducible over
Z. Hence, neither b nor d is integral over Z. By Corollary 5.2 of [1], we have a
valuation � on Q.b/ with �.d/ < 0. The restriction of � to Q cannot be the p–adic
valuation and (again using Lemma 4.1) cannot be trivial. Therefore, �jQ D �q for
some prime q 2 Z that is different from p . Thus �.p/D 0. Also

�.b/D �.dp�r /D �.d/� r�.p/D �.d/ < 0:

5 T.X/ as a ZŒI˛�–module

Throughout this section, N is a knot manifold and � is its fundamental group. Next,
we introduce some terminology from Schanuel and Zhang [22].

Definition A representation �W �! SL2C is algebraic non-integral if the image of
� is in SL2F , where F is a number field and ��. / is not an algebraic integer for
some  2 � . If � is an algebraic non-integral representation we abbreviate this by
saying that � is an ANI–representation.

Similar to Theorem 3.2, the following result again follows from the work of Culler and
Shalen. See Lemma 2 of [22].

Theorem 5.1 For every ANI–representation � of � there is an associated non-empty
essential surface †�N . Suppose that ˛ 2 S is not a boundary slope. The surface †
may chosen to have empty boundary if and only if I˛.��/ is an algebraic integer.

Definitions (1) Suppose that � is an ANI–representation of � and † � N is a
non-empty essential surface. † is associated to � if it is contained in a surface
given by � and Theorem 5.1.

(2) Suppose that X is an algebraic subset of X.N /. A surface † is ANI–detected
by X if there is an ANI–representation � of � whose character lies on X and †
is associated to � .

Proposition 5.2 If X is an irreducible algebraic subset of X.N / and N contains a
closed essential surface that is ANI–detected by X, then N contains a closed essential
surface detected by X.
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Proof Assume that X does not detect a closed essential surface and suppose for
a contradiction that there is a closed essential surface in N associated to an ANI–
representation �W �! SL2F with �� 2 X. Take  2 � with ��. / non-integral and
choose ˛ 2 S not a boundary slope. By Theorem 5.1, ��.˛/ is an algebraic integer.

The integral closure of Z in F is the intersection of all valuation rings of F [1, Corollary
5.22]. Thus, there is a valuation � on F with �.I .��// < 0 and �.I˛.��//� 0. By
Theorem 3.6, there is a polynomial

f .x;y/D cxr
C

r�1X
jD0

qj .y/x
j

with c 2 Z � f0g, qj 2 ZŒy� and f .I ; I˛/ D 0 on X. Since �.I˛.��// � 0, we
know that �.qj .I˛.��/// � 0. But then, Lemma 4.1 implies that �.I .��// � 0, a
contradiction.

Example 5.3 In [8], Cooper and Long ask whether there is a one-cusped manifold
whose character variety detects a closed essential surface. This was answered by
Tillmann in [27], where he presented a calculation which shows that the character variety
of the Kinoshita–Terasaka knot (11n42) detects a closed essential surface. Together with
data collected by Goodman, Heard and Hodgson [13], http://www.ms.unimelb.edu.
au/~snap/, Proposition 5.2 gives many more examples.

Suppose that N is a one-cusped hyperbolic 3–manifold and let X0 be an algebraic
component of X.N / that contains the character of a discrete faithful representation �0 .
By Theorem 5.1 and Proposition 5.2, if �0 is an ANI–representation, then N contains
a closed essential surface detected by X.N /.

For all manifolds in the Callahan–Hildebrand–Weeks census of cusped hyperbolic
manifolds with up to 7 tetrahedra [4], and for all complements of hyperbolic knots and
links up to 12 crossings, Goodman, Heard and Hodgson use the computer program Snap
to attempt to (among other things) decide whether or not the holonomy representation
is an ANI–representation. They find 252 such manifolds, 21 of which are complements
of knots in S3 (this is almost certainly not a complete list). The knots are 9a30, 9a31,
10a89, 10a96, 10a103, 11n97, 12n156, 12n245, 12n246, 12n260, 12n494, 12n508,
12n518, 12n600, 12n602, 12n604, 12n605, 12n694, 12n888, 12a1205 and 12a1288.

Roughly, the following theorem is proven by applying Theorem 3.6 and arguing as
in [7].

Theorem 5.4 Suppose N is a knot manifold, X is an irreducible algebraic subset of
X.N / and ˛ 2 S . The following are equivalent.
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(1) X does not detect a closed essential surface and ˛ is not detected by X.

(2) T .X/ is integral over ZŒI˛ �.

(3) T .X/ is a finitely generated ZŒI˛ �–module.

Proof As with Theorem 3.6, we need only argue that (1) implies (2). Suppose that
(1) is true and take  2 � . Our goal is to show that I is integral over ZŒI˛ �, so we
may assume that I is not everywhere zero on X. By Theorem 3.3, dim.X/D 1 and
by Theorem 3.4, I˛ must be non-constant on X.

By Theorem 3.6, there is a polynomial f .y; z/ 2 ZŒy; z� of the form

f .y; z/D cyr
C

r�1X
jD0

qj .z/y
j

with qj 2 ZŒz� such that c ¤ 0, f .I ; I˛/ is the zero function on X and the greatest
common divisor of the coefficients of f is one. Choose f among all such polynomials
to have smallest possible total degree. Then, since I˛ and I are not everywhere zero
on X, neither y nor z divides f .

Take k 2N large enough such that f .y;xy�k/ has no two terms with the same degree
in y . Take l 2 Z as small as possible such that

g.x;y/D ylf .y;xy�k/

is a polynomial in ZŒx;y�. Then g.x;y/ is of the form

g.x;y/D cys
C

s�1X
jD0

aj xtj yj ;

where the tj are distinct integers, the greatest common divisor of the aj is one,
g.I˛Ik

 ; I /D 0 on X and neither x nor y divides g .

We know that I˛ is non-constant on X so there must be a point yx 2 zX with I˛.yx/D 0.
If I˛Ik

 is constant on X, then I˛ DKI�k
 for some K 2 C . Hence, yx is an ideal

point of X. By Theorem 2.2.1 and Proposition 2.3.1 of [10], either X detects a closed
essential surface or an essential surface with boundary slope ˛ . Both are contradictions
so I˛Ik

 must be non-constant on X. Therefore, we may choose a prime p such
that gcd.c;p/D 1 and for every root b of g.p;y/ there is a character �� 2 X with
��.˛/ ���. /

k D p and ��. /D b .

Take

g.p;y/D � �

uY
jD0

hj .y/
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a complete factorization of g.p;y/ over Z. So � 2 Z and each hj is irreducible over
Z. We claim that c divides �. The leading coefficient of g.p;y/ is c . If we denote
the leading coefficient of hj as cj , we have c D �c0 � � � cu . If c doesn’t divide �, then
there is some ci with gcd.˛; ci/ > 1. Write ci D ptd , where gcd.p; d/D 1. Since
gcd.c;p/D 1 we must have gcd.c; d/> 1, in particular d ¤˙1. Let b be a root of hi .
By our choice of p , there is �� 2 X which corresponds to the solution g.p; b/. Using
Hilbert’s Nullstellensatz, we may assume that the entries of the matrices in �.�1N / lie
in a number field F . By Lemma 4.2, we have a valuation � on Q.b/ with �.p/D 0

and �.b/ < 0. Take an extension of � to F . We have �.I .��// < 0 and

0D �.I˛.��/I .��/
k/D �.I˛.��//C k � �.I .��//:

Since k � 0 we must have �.I˛.��// � 0. Hence, N contains a closed essential
surface that is ANI–detected by X. Proposition 5.2 shows that this is a contradiction,
so we must have that c divides �.

The constant � divides every coefficient of g.p;y/ and c divides �, so c divides every
coefficient of g.p;y/. But the coefficient for zj is aj ptj and gcd.c;p/D 1. Hence c

divides each aj . The only integers that divide every aj are ˙1. Therefore f .I ; I˛/
is an integral dependence relation for I over ZŒI˛ �.

Definition Let X� X.N / be an irreducible algebraic subset. The Z–rank function is
the map

RkZ
X W S! ZC[f1g;

where RkZ
X .˛/ is the rank of T .X/ as a ZŒI˛ �–module.

Corollary 5.5 Suppose N is a knot manifold, X is an irreducible algebraic subset of
X.N / that is defined over Q and ˛ 2 S . The following are equivalent.

(1) X does not detect a closed essential surface and ˛ is not detected by X.

(2) Every f 2 T .X/ satisfies a monic irreducible polynomial with coefficients in
ZŒI˛ �.

Proof By Theorem 3.4, we need only argue that (1) implies (2). Assume that X

does not detect a closed essential surface and let f be a non-zero element of T .X/.
By Theorem 3.3, X is a curve. Since X does not detect a closed essential surface,
I˛ is non-constant on X. Let V be the Zariski closure of the image of X under the
map .f; I˛/. V must be an irreducible affine curve defined over Q. Let p 2QŒx;y�
be a defining equation for V . By multiplying by an integer, we may assume that
p 2 ZŒx;y� and that if c divides every coefficient of p , then c D˙1. The proof of
Theorem 5.4 shows that p is monic as a polynomial in ZŒI˛ �. Since V is irreducible,
p is irreducible.
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Definition A knot manifold is called small if it does not contain a closed essential
surface.

Corollary 5.6 Let X be an irreducible algebraic subset of X.N /, where N is a small
knot manifold. A slope ˛ is detected by X if and only if RkZ

X .˛/¤1.

6 PSL2C–character varieties

The theorems from Sections 3 and 5 also apply in the PSL2C setting after making
appropriate definitions and using virtually identical arguments. See Boyer and Zhang
[2] for details in what follows.

As usual, let N be a compact irreducible orientable 3–manifold with torus boundary
and let � D �1N . Denote the set of PSL2C–representations of � as R.N /. PSL2C
acts on R.N / by conjugation. Let xt W R.N /!Y.N / denote the corresponding algebro-
geometric quotient. R.N / and Y.N / are affine algebraic sets and the map xt is a
surjective regular map. Y.N / is called the PSL2C–character variety for N and a point
in Y.N / is called a PSL2C–character. As with the SL2C–character variety, every
irreducible algebraic component of Y.N / has dimension at least one [6].

We would like to relate Y.N / to SL2C–character varieties and define T .Y/, where Y

is an irreducible algebraic subset of Y.N /. First we claim that there is a well-defined
equivalence class of Z2 –central extensions

(2) 1! Z2!
y�! �! 1

and a finite regular map from the SL2C–character variety X.y�/ of y� to Y.N / that
contains Y in its image.

First note that if x�1; x�2 2 R.N / have the same image under xt , then the representations
are either both reducible or are both irreducible. Hence we may refer to the points of Y

as being either reducible or irreducible.

Suppose that every element of Y is reducible and choose x�2Y smooth in Y.N /. There
is a diagonal representation x� 2 xt�1.x�/. This representation determines an extension
(2) and a lift y�W y�!SL2C of x� . Moreover, the isomorphism class of y� is independent
of our choices of x� and x� . The natural epimorphisms SL2C! PSL2C and y�! �

together induce a regular map �W X.y�/!Y.N /. In fact, the image of � is the quotient
of X.y�/ under the natural action of H 1.y�IZ2/. Moreover, Y � Im.�/.

Otherwise Y contains an irreducible character which is a smooth point of Y.N /. Let
x� be such a point and x� 2 xt �1 . Exactly as before, we obtain an extension (2) and a lift
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y� of x� to y� . Again, the isomorphism class of y� is independent of our choices, we
obtain a finite regular map �W X.y�/! Y.N /, the image of � is the quotient of X.y�/

by H 1.y�IZ2/, and Y � Im.�/.

In either case, the induced map ��W CŒIm.�/�!CŒX.y�/� is injective. We define the
trace ring T .Im.�// to be

T .Im.�//D .��/�1.Im.��/\T
�
X.y�/

�
/:

The inclusion Y! Im.�/ induces an epimorphism CŒIm.�/�!CŒY�. Define T .Y/

to be the image of T .Im.�// under this epimorphism.

Note that if  2 � and y1; y2 2
y� are the preimages of  , then I2

y1
D I2
y2

. It follows

that there is a well-defined squared trace function I2
 2 T .Y/.

To obtain results in the PSL2C–setting corresponding to those in Sections 3 and 5,
we use the PSL2C–definitions rather than SL2C–definitions and replace I˛ with the
squared trace function I2

˛ whenever I˛ is not in the PSL2C–trace ring.

Remark The equivalence classes of extensions (2) are in bijective correspondence
with the elements of H 2.�IZ2/.

7 Ranks and examples

Throughout this section we assume that N is a knot manifold and � D �1N . For an
irreducible algebraic set X� X.N /, observe that

(3) RkC
X � RkQ

X � RkZ
X :

Among other things, this section gives examples that show that these inequalities need
not be equalities.

If R is a ring, M is an R–module, and S � M , we write hSiR to denote the
R–module generated by S .

7.1 Abelian curves

Suppose that H1.N IZ/ŠZ. There is a curve XA � X.N / consisting of all characters
of representations which that through H1.N IZ/. Let ˛ 2 � be a peripheral element
whose image in H1.N IZ/ generates H1.N IZ/.

Every character in XA is the character of a diagonal representation and the image
subgroup in SL2C is generated by the image of ˛ . It follows that every trace function
Iˇ 2 T .XA/ is represented by a polynomial in ZŒI˛ �. Using the single coordinate I˛
on XA , we have XADC . In particular, we have the following well-known proposition.
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Proposition 7.1 Suppose that N is a knot manifold and H1.N IZ/Š Z. Let XA �

X.N / be the curve consisting of all abelian representations of �1N . Then:

(1) XA has exactly one ideal point. This ideal point detects the unique boundary
slope which is trivial in H1.N IZ/.

(2) T .XA/D ZŒI˛ �.

So, by the proposition, T .XA/ is a free ZŒI˛ �–module with rank one.

7.2 Norm curves

Recall the following definition from [3].

Definition An algebraic curve component X of X.N / is called a norm curve compo-
nent if I W X!C is non-constant for every non-trivial peripheral element of � .

For example, if N is hyperbolic, there is a hyperbolic curve X0 � X.N /. By Proposi-
tion 3.1.1 of [10], X0 is a norm curve component.

Proposition 7.2 Suppose that N is a knot manifold and X is an irreducible algebraic
subset of X.N /. Let ˛ be a slope. If X is a norm curve component, then RkC

X .˛/� 2.

Proof Suppose that X is a norm component and that RkC
X .˛/ < 2. The dimension of

X is one, so we must have RkC
X .˛/D 1. Hence, f �CŒI˛ �DCŒX� for some f 2CŒX �.

Now
CŒI˛ �D f

�1f �CŒI˛ �D f
�1
�CŒX�DCŒX�:

Therefore, X has exactly one ideal point. On the other hand, [3, Proposition 4.5] and
Theorem 3.2 show that X strongly detects at least two boundary slopes, so X must
have more than one ideal point.

7.3 Two-bridge knots

Suppose that K is a two bridge knot. Define N D S3 �K and � D �1N . Let
h�; ˇ j !ˇ D �!i be the standard presentation for � as given in Section 4.5 of
Maclachlan and Reid [19]. The element � 2 � is a meridian for the knot.

Suppose that X is an algebraic component of X.N / which is defined over Q. Let
x D I� and y D I�ˇ in T .X/. It is shown in Hatcher and Thurston [16] that N is
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small and the slope represented by � is not a boundary slope. By Corollary 5.5, we
have a set of polynomials fpj g

n
jD0

in ZŒx�, where X is given as the zero set in C2 of

P .x;y/D yn
�

nX
jD0

pj .x/y
j

and P is irreducible in CŒx;y�. Let B D fyj gn�1
jD0
� T .X/. Since P is zero in

T .X/, B generates T .X/ as a ZŒx�–module, TQ.X/ as a QŒx�–module and CŒX� as a
CŒx�–module. In particular,

(4) RkZ
X .�/� n:

Proposition 7.3 B is a free basis for CŒX� as a CŒx�–module, TQ.X/ as a QŒx�–
module and T .X/ as a ZŒx�–module.

Proof First, we induct on k to show that Mk D h1;y; : : : ;y
kiCŒx� is free of rank

kC 1 whenever k � n� 1. The base case is immediate since M0 DCŒx�.

Since Mk DMk�1 C hy
ki, to see that Mk DMk�1 ˚ hy

ki, it is enough to show
that Mk�1 \ hy

ki D f0g. Let f be an element of Mk�1 \ hy
ki. Then we have

fpj g
k
jD0
�CŒx� such that

f D

k�1X
jD0

pj .x/y
j
D pk.x/y

k :

Hence,

�pk.x/y
k
C

k�1X
jD0

pj .x/y
j
2 .P /�QŒx;y�:

But k < n and P is irreducible, so each pj must be zero.

Therefore, B is a free basis for CŒX� as a CŒx�–module, and using the inequalities (3)
and (4) we have

RkC
X .�/D RkQ

X .�/D RkZ
X .�/D n:

QŒx� is a PID, so B is a free basis for TQ.X/ as a QŒx�–module.

To see that B is a free basis for T .X/ as a ZŒx�–module, it remains only to show that
this module is free. To do this, we show that h1;y; : : : ;yk�1iZŒx�\ hy

kiZŒx� D f0g,
whenever k � n� 1. If f is in this intersection, then it is in Mk�1\hy

kiCŒx� , which
we have already seen is trivial.
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Example 7.4 Let K be a trefoil knot. A calculation shows that X.N / D XA [ X,
where XA is a curve of abelian characters and X is a curve that contains an irreducible
character. The polynomial P that defines X is y � 1. Therefore,

RkC
X .�/D RkQ

X .�/D RkZ
X .�/D 1:

Proposition 7.2 reaffirms the well-known fact that X is not a norm curve.

Example 7.5 Let K be the figure-eight knot. A calculation shows that X.N / D

XA[X0 , where X0 is a hyperbolic curve. The polynomial P that defines X0 is

y2
C .�1�x2/yC .�1C 2x2/:

Therefore
RkC

X0
.�/D RkQ

X0
.�/D RkZ

X0
.�/D 2:

H 1.N IZ2/ŠZ2 with generator � . H 1.N IZ2/ acts on X0 by �.x;y/D .�x;y/. It
follows that T .Y0/ can be identified with the subring (with 1) of T .X0/ generated by
x2 and y . Moreover, Y0 can be identified with the zeros of y2C.�1��/yC.�1C2�/,
where � D x2 . We have

RkC
Y0
.�/D RkQ

Y0
.�/D RkZ

Y0
.�/D 2:

Let � D Œˇ; ��1� Œ�; ˇ�1�. Then � commutes with � and represents the boundary
slope determined by a Seifert surface. Since �.�/ is the identity, l D I� 2 T .Y0/. If
we take .l; �;y/ as coordinates on Y0 , then the ideal determined by Y0 is generated
by the following polynomials in CŒl; �;y�:

p1 D .�1� 4l/C .�11C 4l/yC .16� l/y2
� 7y3

Cy4;

p2 D 2� l � 5�C �2;

p3 D 1� 2�CyC �y �y2;

p4 D .2l/C �C .5� l/yC 5y2
Cy3:

Let M D h1;y;y2;y3iCŒl� . The first polynomial describes the image of Y0 under the
map � 7! .L.�/;y.�//. Hence, p1 is irreducible and M is free of rank 4. The last
polynomial shows that �iyj 2M for every i; j 2 ZC . It follows that

RkC
Y0
.�/D RkQ

Y0
.�/D RkZ

Y0
.�/D 4:

Let s D I�2� . Then s 2 T .Y0/. Similar calculations show that f1;y;y2;y3; �g

generates CŒY0� as a CŒs�–module and that

RkC
Y0
.�2�/D RkQ

Y0
.�2�/D RkZ

Y0
.�2�/D 5:
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7.4 Other examples

Example 7.6 Let N be the Snappea census manifold M003 from [4]. N is a finite
volume hyperbolic 3–manifold with a single cusp. h; � j��2��3i is a presentation
for � D�1N . The elements �D .�2� /�1 and �D .� /�1�� together generate
a peripheral subgroup. Define

mD I�; x D I ; y D I�; z D I�:

Let X0 � X.N / be a hyperbolic curve and let Y0 be the image of X0 in the PSL2C–
character variety. We can take .m;x;y; z/ as coordinates on X0 . The ideal in
CŒm;x;y; z� determined by X0 is generated by the following three polynomials:

p1 D z4
�mz2

� z2
C 1;

p2 D�z2
CmCy;

p3 D�z3
CmzC zCx:

The first polynomial is irreducible and gives that h1; z; z2; z3iCŒm� is free of rank 4.
The last two polynomials show that x;y 2 h1; z; z2; z3iCŒm� . It follows that CŒX0�D

h1; z; z2; z3iCŒm� and

RkC
X0
.�/D RkQ

X0
.�/D RkZ

X0
.�/D 4:

Let �Dz2 . It is straightforward to check that m2T .Y0/ and that .m; �/ can be taken as
coordinates on Y0 . As such, Y0 is the zero locus of the polynomial �2C.�m�1/�C1.
It follows that

RkC
Y0
.�/D RkQ

Y0
.�/D RkZ

Y0
.�/D 2:

We see that these ranks achieve the smallest possible value for the rank of a norm curve.
In contrast to Example 7.5, RkC

Y0
.�/ < RkC

X0
.�/.

Example 7.7 Let N be the exterior of the knot 820 . The knot 820 is hyperbolic. Let
X0 � X.N / be a hyperbolic curve. As outlined in the introduction to this paper, �
is generated by a pair of elements � and  , where � is a meridian. Define x D I� ,
y D I and z D I� . The functions x;y; z give an embedding of X0 into C3 .
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Let G D fgj g
5
1
� ZŒx;y; z�, where:

g1 D 1C 5yC 7y2
C 2y3

� 2y4
�y5

� 2x2
� 6yx2

� 3y2x2
Cy4x2

Cx4
Cyx4

g2 D�x� 3yx�y2x�y3xCx3
Cyx3

Cy2zCy3z

g3 D�1� 4y � 3y2
Cy3

Cy4
Cx2

C 2yx2
�y3x2

Cy2xz

g4 D xC 3yxC 2y2x�x3
�yx3

� z� 2yz�y2zCx2z

g5 D 2C 6y � 2y3
� 3x2

�yx2
C 2y2x2

Cxz� 3yxzC z2

G is a Groebner basis for the ideal .G/ with respect to the pure lexicographic order on
monomials in CŒx;y; z� determined by the relationship y < x < z . Furthermore, .G/
is the kernel of the natural map CŒx;y; z�!CŒX0�.

We use the symbol � to indicate congruence modulo .G/ in CŒx;y; z� and we write
LM.f / for the leading monomial of f 2CŒx;y; z� with respect to our chosen mono-
mial order. For 1�j �5, let mjDLM.gj /. Then .mj /

5
1
D .yx4;y3z;y2xz;x2z; z2/

and mj <mjC1 .

Oertel’s work in [21] shows that N is a small knot manifold, so Corollary 5.5 implies
that there are integral dependencies for y and z over ZŒx� given by irreducible poly-
nomials. The polynomial g1 is the polynomial for y and a quick calculation produces
the polynomial

z5
� 2xz4

C .�2C 3x2/z3
C .12x� 9x3

Cx5/z2

C.�18x2
C 10x4

�x6/zC .6x3
� 2x5/ 2 .G/

for z . These polynomials also show that the set B D fyizj j 0 � i; j � 4g is a
generating set for CŒX0� as a CŒx�–module, TQ.X0/ as a QŒx�–module and T .X0/

as a ZŒx�–module. However, B is too large to be a basis for any of these modules.

Theorem 7.8 The set B0 D f1;y;y2;y3; z;y2zg is a free basis for CŒX0� as a CŒx�–
module, TQ.X0/ as a QŒx�–module and T .X0/ as a ZŒx�–module. In particular,

RkC
X0
.�/D RkQ

X0
.�/D RkZ

X0
.�/D 6:

The proof of Theorem 7.8 follows from the following lemmas.

Lemma 7.9 If 0� k � 4, then the rank of h1;y; : : : ;ykiCŒx� is kC 1.

Proof The proof uses the same argument as Proposition 7.3.
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Lemma 7.10 If k � 1, then there is a polynomial P 2CŒx;y� such that

x2kz � P C z.1C 2yCy2/k :

Proof Induct on k and use the polynomial g4 .

Lemma 7.11 If k � 3, then there is a polynomial P 2CŒx;y� such that

ykz � P ˙y2z:

Proof Induct on k and use the polynomial g2 .

Lemma 7.12 If k � 1, then there is a polynomial P 2 CŒx;y� and d0; : : : ; d4 2 C
such that

xkz � P C d0zC d1yzC d2y2zC d3xzC d4xyz:

Proof The lemma is trivial if k D 1.

If k is even, a straightforward application of Lemmas 7.10 and 7.11 gives numbers d0 ,
d1 and d2 such that xkz is equivalent to a polynomial in

d0zC d1yzC d2y2zCCŒx;y�:

If k � 3 is odd, we apply the result in the even case to obtain c0; c1; c2 2 C , where
xkz is equivalent to a polynomial in

c0xzC c1xyzC c2xy2zCCŒx;y�:

To finish the proof, notice that g3 shows that xy2z is represented by a polynomial in
CŒx;y�.

Lemma 7.13 Suppose p 2CŒx;y�, g 2CŒx�, and d0; : : : ; d4 2C . Define

f D pC z.gC d0C d1yC d2y2
C d3xC d4xy/:

If f 2 .G/, then f D p .

Proof The proof is by induction on deg.g/.

If deg.g/D 0, then g 2C and

f D pC .gC d0/zC d1yzC d2y2zC d3xzC d4xyz 2 .G/:

Since G is a Groebner basis for .G/, some mj must divide the leading term of the
polynomial on the right. This forces f D p .
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Let k � 1 and assume that the result holds for polynomials with degree less than k .
Suppose that gD

Pk
0 cj xj . By Lemma 7.12, we have q 2CŒx;y� and r0; : : : ; r4 2C

such that
ckxkz � qC r0zC r1yzC r2y2zC r3xzC r4xyz:

Therefore,

pC qC

� k�1X
jD0

cj xj

�
zC .d0C r0/zC .d1C r1/yzC .d2C r2/y

2z

C.d3C r3/xzC .d4C r4/xyz 2 .G/:

By the inductive hypothesis, we have

c2 D � � � D ck�1 D 0;

c0C d0C r0 D 0;

c1C d3C r3 D 0;

d1C r1 D d2C r2 D d4C r4 D 0:

Hence,
f D p� r0zC d1yzC d2y2z� r3xzC d4xyz:

As before, we must have f D p since G is a Groebner basis for .G/.

Lemma 7.14 For every k 2 ZC ,

h1;y; : : : ;yk ; ziCŒx� D h1; : : : ;y
k
iCŒx�˚hziCŒx�:

Proof Take h2 h1;y; : : : ;ykiCŒx�\hziCŒx� . Then there are polynomials p 2CŒx;y�
and g 2CŒx� such that p represents h in CŒX0� and p ��gz . Define f D pCgz

and notice that f 2 .G/. By Lemma 7.13, p 2 .G/ and hD 0.

Lemma 7.15 hB0iCŒx� is a free CŒx�–module with rank 6.

Proof Lemmas 7.9 and 7.14 reduce the problem to showing that the intersection

(5) h1; : : : ;y3; ziCŒx�\ hy
2ziCŒx�

is trivial.

Since g3 2 G , we have that h1; : : : ;y3;xy2ziCŒx� D h1; : : : ;y
4iCŒx� . Together with

Lemmas 7.9 and 7.14, this shows that h1; : : : ;y3;xy2z; ziCŒx� is free with rank six.

Now suppose that h is an element of the intersection (5). Then xh is an element of
both h1; : : : ;y3; ziCŒx� and hxy2ziCŒx� . But we know that the intersection of this
module is trivial. Hence, hx D 0 and so hD 0.
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Now to prove Theorem 7.8, we need only show that B0 spans the modules in question.
This is straightforward using the polynomials G .

Example 7.16 N is the once-punctured hyperbolic torus bundle from Section 5 of
[11]. For more details in the calculations that follow, see [11]. We have

� D h˛; ˇ; � j �˛��1
D .ˇ˛ˇ/�1; �ˇ��1

D ˇ˛.ˇ˛ˇ/�3
i:

The elements � and � D Œ˛; ˇ� form a basis for a peripheral subgroup of N . The
functions

t D I� ; uD I˛� ; vD Iˇ� ; wD I˛ˇ� ; xD I˛; yD Iˇ; zD I˛ˇ; l D I�

give an embedding of X.N / into C8 . X.N / contains exactly two hyperbolic curves:
we label them X� , where � 2 f0; 1g. It is straightforward to verify that X� strongly
detects the slopes represented by t and l t and does not detect a closed essential surface.
This is done in [11]. It is also easy to use Theorem 3.4 to confirm these facts.

Theorem 7.17 Let � 2 f0; 1g.

(1) RkC
X�
.�/D 8,

(2) RkQ
X�
.�/D 16, and

(3) RkZ
X�
.�/D 17.

(4) As a ZŒl �–module, T .X�/ is torsion free but not free.

We prove Theorem 7.17 as a series of lemmas.

Suppose k is a field, let RD kŒx0; : : : ;xn�, and I �R and ideal. Take < to be the
monomial order generated by xi < xj iff i < j and let G D fgj g

r
1

be a Groebner basis
for I with respect to <. Write mj D LT .gj /. For f 2 R, write xf to denote its
image in R=I .

Lemma 7.18 Suppose that mj 2 kŒx1; : : : ;xn� for every j . If fnj g
k
1

is a collection
of monomials in kŒx1; : : : ;xn� such that

(1) the kŒx0�–submodule of R=I generated by fxnj g
k�1
1

is free of rank k � 1,

(2) ni < nj for every i < j , and

(3) nk is not divisible by any mj ,

then the kŒx0�–submodule generated by fxnj g
k
1

is free of rank k .
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Proof Suppose f 2R and

xf 2 hxn1; : : : ; xnk�1ikŒx0�\ hxnkikŒx0�:

Then there is a set of polynomials fpj g
k
1
� kŒx0� such that

xf D�pkxnk D

k�1X
jD1

pjxnj :

In particular,

g WD

kX
jD1

pj nj 2 I:

If pk D 0, then xf D 0 and we are done. Otherwise, let cxs
0

be its leading term. Then,
by (2), LT .g/D cxs

0
nk . Since g 2 I and G is a Groebner basis for I , we must have

that LT .g/ is divisible by some mj . This contradicts (3), so we must have pk D 0.

Let I be the kernel of the natural map CŒl; t;u; v; w;x;y; z�!CŒX� �. The following
polynomials are in I :

8uC tyz� ty3z; 4v� 6tyC ty3; 4wC 2tz� ty2z; 2x�yz:

Remark Recall that Groebner bases can be used to solve the ideal membership
problem.

This shows that the projection given by .l; t;u; v; w;x;y; z/ 7! .l; t;y; z/ restricts to
an isomorphism (defined over Q) from X0[X1 onto its image. Hence, we have natural
identifications of CŒX� � and CŒX0[X1� with quotients of CŒl; t;y; z�. Define

g1 D 16C .�4� 2l/z2
C z4;

g2 D .�8� 2l/C z2
C 2y2;

g3 D 2t C .�1/� � iz2;

hD�8C .2C l/z2
C 2t2;

and GDfg1;g2;g3g. Let < be the pure lexicographic monomial order for CŒl; t;y; z�
induced by the relationship l < z < y < t . It can be easily verified that G is a Groebner
basis for .G/ and .G/ is the kernel of the natural map CŒl; t;y; z�!CŒX� �. Similarly,
fg1;g2; hg is a Groebner basis for the ideal it generates and this ideal is the kernel of
the natural map CŒl; t;y; z�!CŒX0[X1�.
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Lemma 7.19 The set

BC D f1; z; z
2; z3;y; zy; z2y; z3yg

is a basis for CŒX� � as a CŒl �–module.

Proof Since the natural map CŒl; t;y; z�=.G/!CŒX� � is an isomorphism, we need
only show that BC is a CŒl �–module basis for CŒl; t;y; z�=.G/.

Let M � CŒl; t;y; z�=.G/ be the CŒl �–submodule generated by BC . Lemma 7.18
shows that M is free with rank 8.

The polynomial g3 shows that t may be expressed in terms of z . So, to finish the
proof, it is enough to show that yj zk 2M for every pair of integers j ; k � 0. By
definition of BC and g1 , zj 2M, for every integer j � 0. Using g2 , we also have
that y2zj 2M, for every integer j � 0. Now, using this fact and the definition of BC ,
we conclude that if f 2M, then yf 2M. In particular, yj zk 2M for every pair of
integers j ; k � 0. Therefore, MDCŒl;y; z�=.G/.

Lemma 7.20 The set
BQ D BC [ tBC

is a basis for TQ.X�/ as a QŒl �–module.

Proof The natural map CŒl; t;y; z�! CŒX� � restricts to a surjection QŒl; t;y; z�!
TQ.X�/. The kernel of this map is .G/\QŒl; t;y; z�. We claim that fg1;g2; hg is a
Groebner basis for this ideal with respect to the monomial order <. It is immediate
to verify that this is a Groebner basis for .g1;g2; h/, so we need only show that
.g1;g2; h/ D .g1;g2;g3/\QŒl; t;y; z�. The inclusion .g1;g2; h/ � .g1;g2;g3/\

QŒl; t;y; z� is clear. To prove the opposite, suppose f 2 .G/ \QŒl; t;y; z�. Then
f .�/ D 0 for every � 2 X� . Observe that complex conjugation induces a bijection
X0 ! X1 . So f .x�/ is also zero. In particular, f is zero on X0 [ X1 . Therefore
f 2 .g1;g2; h/.

Let M � TQ.X�/ be the QŒl �–submodule generated by BQ . Since fg1;g2; hg is a
Groebner basis for the kernel of the map QŒl; t;y; z�! TQ.X�/, Lemma 7.18 shows
that M is free with rank 16. The remainder of the proof follows an argument similar
to the last part of the proof of Lemma 7.19.

Let
BZ D f1;y;y

2;y3; t;u; v; w;x; z; ty;uy;xy;xy2; tx;ux; vyg:

Lemma 7.21 BZ�fvyg is a basis for TQ.X�/ as a QŒl �–module.
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Proof The following equations hold in CŒX� �:

z2
D 2..4C l/�y2/ z3

D 2..4C l/z� 2xy/

yz D 2x yz2
D 2..4C l/y �y3/

yz3
D 2..8C 2l/x� 2xy2/ tz D .l C 4/w� 2uy

tz2
D 2..l C 4/t � 2ux/ tz3

D 2..l2
C 6l C 4/w� 2.l C 2/uy/

tyz D 2tx tyz2
D 2..l � 2/tyC 4v/

tyz3
D 4..l C 2/tx� 4u/

So, every element of BQ can be expressed as a QŒl �–linear combination of the elements
from BZ�fvyg. Since the rank of this module equals jBZ�fvygj, this set is a basis.

Lemma 7.22 BZ generates T .X�/ as a ZŒl �–module.

Proof The following equations hold in CŒX� �. It is tedious but straightforward to use
them to show that BZ generates T .X�/ as a ZŒl �–module.

y2z D 2yx x2uD 2uCxt uy2x D .6C l/xu� .6C l/t

yz D 2x x2
D�y2

C .6C l/ yxt D .6C l/w� 2uy

yw D 2u y4
D .6C l/.y2

� 2/ zy2x D 2.�y3
C .6C l/y/

zyuD 2xu zxuD .6C l/w� 2uy zyx D 2.�y2
C .6C l//

y3z D 2y2x zx D .4C l/y �y3 vyuD 3y2x� 2.6C l/x

zuD yt u2
D .�6� l/Cy2 vy2x D .6C l/.3w�yu/

xw D yt tyuD 2xy � .6C l/z wy3
D 2..4C l/u�xt/

zw D 2t y2uD .4C l/u�xt x2y D�y3
C .6C l/y

wy2
D 2uy y3z D .6C l/.yx� z/ x2t D�2xuC .6C l/t

wyx D 2ux xv D .6C l/w� 3uy uy3
D .6C l/.yu�w/

xyuD 3ty � 2v uv D 3yx� .6C l/z uw D�.4C l/yCy3

x2y2
D 2.6C l/ tw D 2yx� .4C l/z wyuD 2.y2

� .6C l//

ty2x D 4uC 2xt wxuD 2yx� .6C l/z wyt D 2.y2x� .4C l/x/

wy2x D 6yt � 4v u2y D .�6� l/yCy3 u2x D .�6� l/xCy2x

vyx D�luC 3xt 2vy D .6C l/t � lxu tuD y2x� .4C l/x

yxuD 3ty � 2v vy2
D .3� l/yt C lv w2

D 2..�4� l/Cy2/

zv D 2xt � 2u zxt D .l � 2/yt C 4v wv D 2y2x� 2.3C l/x
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t2
D .�4� 6l � l2/C .2C l/y2 t2x D .�4� 6l � l2/xC .2C l/y2x

t2y D .�4� 6l � l2/yC .2C l/y3 txuD .�12� 8l � l2/C .4C l/y2

uxt D .�12� 8l � l2/C .4C l/y2 vxt D 2.l C 3/yx� .l C 6/.l C 1/z

wxt D .�4� 6l � l2/yC .2C l/y3 vyt D 2..l C 3/y2
� .l C 1/.l C 6//

vxuD .�6� 7l � l2/yC .3C l/y3 tv D .l C 1/y3
� .5l C l2/y

v2
D .�12l � 2l2/C .3C 2l/y2

Lemma 7.23 Define

M1 D
˝
BZ�ft;ux; vyg

˛
ZŒl� � T .X�/ and M2 D

˝
t;ux; vy

˛
ZŒl� � T .X�/:

Then T .X�/DM1˚M2 .

Proof Lemma 7.22 shows that T .X�/ DM1 CM2 , so we need only show that
M1\M2 D f0g.

Suppose f 2M1\M2 and label the elements of BZ�ft;ux; vyg as fbj g
14
1

. Then
we have fpj g

14
1
[fqj g

3
1
� ZŒl � with

f D

14X
jD1

pj bj D q1t C q2uxC q3vy:

This yields the expression

2q3vy D�2q1t � 2q2uxC 2

14X
jD1

pj bj :

However, BZ�fvyg is a QŒl �–basis for TQ.X�/, so the only way to write 2vy as a
ZŒl �–linear combination in BZ�fvyg is listed in the proof of Lemma 7.22, namely

2vy D .6C l/t � lux:

Hence pj D 0 for every 1� j � 14.

Lemma 7.24 M2 is not projective.

Proof Let

� W

3M
1

ZŒl �!M2
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be the epimorphism given by .p; q; r/ 7! pt C quxC rvy . Argue as in the proof of
Lemma 7.23 to see that ker.�/ is generated by .l C 6;�l;�2/. Let J be the ideal
.2; l/� ZŒl � and view J as a ZŒl �–module. The map

�W

3M
1

ZŒl �! J

given by .p; q; r/ 7! �2qC lr is also an epimorphism. We have ker.�/� ker.�/, so
there is an epimorphism  WM2! J with � D �. In particular,

 .t/D 0;  .ux/D�2;  .vy/D l:

Let �W ZŒl �˚ZŒl �! J be the epimorphism given by .p; q/ 7! 2pC lq .

Suppose for a contradiction, that M2 is projective. Then  lifts to an epimorphism

 WM2! ZŒl �˚ZŒl �:

For 1� j � 3, we have .pj ; qj / 2 ZŒl �˚ZŒl � with

 .t/D .p1; q1/;  .ux/D .p2; q2/;  .vy/D .p3; q3/:

Then
0D  .t/D �.p1; q1/D 2p1C lq1;

�2D  .ux/D �.p2; q2/D 2p2C lq2;

l D  .vy/D �.p3; q3/D 2p3C lq3:

Notice that the constant terms of p1 and p3 must be zero and the constant term of p2

is �1. Apply  to the equation 2vyC lux D .6C l/t to see that the equation

2p3C lp2 D .6C l/p1

must hold in ZŒl �. For a contradiction, observe that the degree-one coefficient of the left
hand side of this equation is odd and on the right hand side the coefficient is even.

Lemma 7.25 The ZŒl �–module T .X�/ is torsion-free but not free and RkZ
X�
.�/D 17.

Proof CŒX� � is an integral domain, so T .X�/ is torsion free as a ZŒl �–module. Direct
summands of free modules are projective. Therefore, by Lemmas 7.23 and 7.24, T .X�/

is not a free ZŒl �–module.

By Lemma 7.22, RkZ
X�
.�/ � 17. Suppose that faj g

16
1

generates T .X�/ as a ZŒl �–
module. Then every element of BZ can be written as a ZŒl �–linear combination of
the aj . By Lemma 7.20, faj g

16
1

is a free QŒl �–basis for TQ.X�/. It follows that the
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ZŒl �–module generated by faj g
16
1

is also free. This is a contradiction because we know
that T .X�/ is not a free ZŒl �–module. Therefore, RkZ

X�
.�/D 17.
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