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On the spectral sequence of the Swiss-cheese operad

EDUARDO HOEFEL

MURIEL LIVERNET

We prove that the homology of the Swiss-cheese operad is a Koszul operad. As a
consequence, we obtain that the spectral sequence associated to the stratification of
the compactification of points on the upper half plane collapses at the second stage,
proving a conjecture by A Voronov in [17]. However, we prove that the operad
obtained at the second stage differs from the homology of the Swiss-cheese operad.

18G55, 18D50

1 Introduction

An operad O is called differentiable when it is defined on the symmetric monoidal
category of differentiable manifolds. If each O.n/ is a manifold with corners whose
connected boundary components are cartesian products of O.k/ (with k < n) and
the operad structure is given by the inclusion map of the boundary strata, then the
operad is called stratified. To every stratified operad are associated dg-operads given
by the spectral sequence induced by a natural filtration on its singular chain complex:
the boundary strata filtration. Since that filtration is given by the codimension of the
boundary components, it is finite and hence converges to the homology H�.O/ at some
finite stage. One would naturally wonder whether the spectral sequence degenerates
and if the operad structure on the E1–term is isomorphic to the operad structure
on H�.O/.

In the present paper we study the spectral sequence of a stratified operad, given by
Kontsevich’s compactification [14], which is homotopically equivalent to the Swiss-
cheese operad SC . Among the related algebraic structures are Kajiura and Stasheff’s
OCHA [10; 12], Leibniz pairs (see Flato, Gerstenhaber and Voronov [3]) and extensions
of those considered by Dolgushev [2]. The relation between OCHAS, Leibniz pairs
and the Swiss-cheese operad has been carefully studied by the authors in [9], where
the 0th homology of the Swiss-cheese operad SC was related to the first row of the
spectral sequence associated to the Kontsevich compactification. One of the purposes
of [9] was to prove an SC analogue of the following fact concerning the little disks
operad D2 .
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Proposition The 0th homology of the operad D2 is Koszul dual to a suspension of
the top homology.

In the case of little disks, the 0th homology is the operad Com and the top homology
is a desuspension of the operad Lie. In fact, the above Proposition is a consequence
of a theorem, proved by Getzler and Jones, according to which the Gerstenhaber
operad H�.D2/ is, up to suspension, a self-dual Koszul operad.

We proved in [9] that the 0th homology of SC is a Koszul quadratic-linear operad, and
that its Koszul dual H0.SC/! , which is a dg-operad, has for homology a suspension of
the top homology. Note that in the context of SC , the top homology does not form an
operad, so by top homology we mean the smallest operad containing the top degrees
generators.

The little disks operad D2 is not stratified. However, by considering the real Fulton–
MacPherson compactification of the moduli space of points in the complex plane, we get
a homotopically equivalent stratified operad sometimes denoted F2 (see Salvatore [16]).
The same compactification procedure can be applied to the Swiss-cheese operad SC
(the homotopy equivalent stratified operad obtained is sometimes denoted H2 ). So,
by passing to a homotopy equivalent operad, we can assume that both little disks and
Swiss-cheese operads are stratified. Furthermore, two homotopy equivalent operads
give isomorphic homology operads. Hence, to avoid cumbersome notation we will
work with the stratified versions of little disks and Swiss-cheese, while keeping the
notation: D2 and SC .

The main result of this paper is Theorem 4.2.2, where we prove the conjecture by
A Voronov in [17] stating that the spectral sequence E.SC/ of the Swiss-cheese operad
collapses at the second stage. This is done by proving that the homology of the Swiss-
cheese operad is a quadratic-linear Koszul operad in the sense of Galvez-Carillo, Tonks
and Vallette in [5]. The same result is true for the homology of SCvor , a variant of SC .
The relation (modulo (de)suspension) between E1.SC/ and the cobar construction of
the cohomology cooperad H�.SC/ is well known [2], but in our setting it is slightly
different, so a proof is given in Lemma 4.1.1. We compute in Proposition 4.2.1 the
operad structure on E2.SC/DE1.SC/. To sum up we get the following.

Algebras over H�.SC/ are triples .G;A; f / where G is a Gerstenhaber algebra, A is
an associative algebra and f W G!A is a central map such that f .gg0/D f .g/f .g0/,
whereas algebras over E1.SC/ are triples .G;A; f /, where G is a Gerstenhaber alge-
bra, A is an associative algebra and f W G!A is a central map such that f .gg0/D 0.

We finally prove in Proposition 4.3.1 that the two operads are not isomorphic as operads,
though the S–module structures are the same.
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Note that this case differs from the little disks case: Getzler and Jones [6] have proven
that the spectral sequence associated to the stratification of D2 collapses at the second
stage and that E2.D2/Dƒ

�1.H�.D2/
!/ is isomorphic to e2 DH�.D2/.

The plan of the paper is the following. Section 2 is devoted to preliminaries and
notation. Section 3 is devoted to the homology of the operads SCvor and SC . As
in [9], in order to understand the structure of the operad scDH�.SC/, it is necessary to
first understand the operad SCvor , another version of the Swiss-cheese operad, whose
homology is quadratic. The end of Section 3 is devoted to the structure of H�.sc!/. We
use the techniques of distributive laws, as well as the results obtained in [9]. Section 4
concentrates on the spectral sequence of SC .

Acknowledgements This collaboration of the authors is funded by the MathAmSud
program “OPECSHA” coordinated by M Ronco, by Fundação Araucária (Brazil) grant
FA 490/6032 and by the réseau Franco-brésilien de mathématiques.

2 Preliminaries

2.1 On differential graded vector spaces

We work on a ground field k of characteristic 0. The category dgvs is the category
of lower graded k –vector spaces together with a differential of degree �1. Objects
in dgvs are called for short dgvs. The degree of x 2 V , where V is a dgvs is denoted
by jxj. We say that a dgvs V is finite dimensional if for each n, the vector space Vn

is finite dimensional.

The vector space homk.V;W / denotes the k –linear morphisms between two vec-
tor spaces V and W . When V and W are objects in dgvs, then we have that
the differential graded vector space of maps from V to W is

L
i2ZHomi.V;W /,

where Homi.V;W /D
Q

nhomk.Vn;WnCi/ together with the differential .@f /.v/D
dW .f .v//� .�1/jf jf .dV v/.

The graded linear dual of V in dgvs is V � D Hom.V; k/, where k is concentrated
in degree 0 with 0–differential. Consequently we have that .V �/n D .V�n/

� and
.@f /.x/D�.�1/nf .dV x/ for any f 2 .V �/n and x 2 V�nC1 . The suspension of a
dgvs V is denoted by sV and defined as .sV /n D Vn�1 .

2.2 On operads, 2–colored operads, cooperads

2.2.1 On the symmetric group The symmetric group acting on n elements is de-
noted by Sn . An element � 2Sn will be denoted by its image notation .�.1/ � � � �.n//.
The trivial representation of Sn is denoted by k , the signature representation by sgnn

and the regular representation by kŒSn�.
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2.2.2 Collections and S–modules In this article, we work with 2–colored (co)-
operads, either in the category of spaces, or in dgvs. The colors we consider are
denoted by c (for closed) and o (for open). A 2–collection P is a family of dgvs,
given by .P.cI d/ D P.c1; : : : ; cn; d//fci ;d2fc;ogg . Let c D .c1; : : : ; cn/ be an n–
tuple of colors. The symmetric group Sn acts on the set of n–tuples of colors by
c � � D .c�.1/; : : : ; c�.n//. An S–module is a 2–collection P endowed with an action
of the symmetric groups, sending .x 2P.c1; : : : ; cnI d/; � 2 Sn/ to x �� 2P.c �� I d/.

Note that it is an extension of the usual definition of an S–module, which is a family
of dgvs .Q.n//n�1 such that for each n, Q.n/ is a right Sn –module. We can consider
this collection as an S–module, where Q.cI d/ is Q.n/ if for all i; ci D c and d D c
and is 0 otherwise.

Given an S–module M , we may want to consider some truncation N of it, invariant
under the action of the symmetric groups. By definition a sub-S–module of N is a
sub-dgvs invariant under the induced action of the symmetric groups.

2.2.3 Operads The 2–collection I defined by I.cI c/Dk; I.oIo/Dk and I.cId/D 0

elsewhere, plays a special role. Indeed, a 2–colored operad is an S–module together
with a unit map �W I ! P and composition maps

 W P.c1; : : : ; cnI d/˝P.b1
I c1/˝ � � �˝P.bn

I cn/! P.b1; : : : ; bn
I d/;

which are associative, unital and respects the action of the symmetric groups.

We write f .g1; : : : ;gn/ for the image of f ˝g1˝� � �˝gn or f .id˝i
˝g˝id˝n�1�i/

whenever every g except one is the identity. We often use the same notation for f
in P or for f seen as an operation on variables. In that context, we use the Koszul
sign convention

.f ˝g/.a˝ b/D .�1/jajjgjf .a/˝g.b/:

Because of the action of the symmetric groups, one may only consider the spaces

P.n;mI d/D P.c; : : : ; c„ ƒ‚ …
n times

; o; : : : ; o„ ƒ‚ …
m times

I d/:

In this paper, we only consider 2–colored operads such that P.0; 0Ix/ D 0 and
P.1; 0I c/D k DP.0; 1I o/. They are naturally augmented, that is, there is a morphism
of operads P! I and SP denotes the kernel of this map.

Any operad P can be considered as a 2–colored operad with P.cI d/D P.n/ if for
all i; ci D c and d D c , P.oI o/D k and P.cI d/D 0 otherwise.

In the sequel, we often use the generic terminology of operads for either operads or
2–colored operads, or operads seen as 2–colored operads.
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2.2.4 Suspension of S–modules and operads The suspension of the S–module P
is

ƒP.n;mIx/D s1�n�mP.n;mIx/˝ sgnnCm:

If P is an operad, then the structure of P –algebra on the pair .Vc ;Vo/ is equivalent to
the structure of ƒP –algebra on the pair .sVc ; sVo/.

The suspension of the 2–collection P with respect to the color c is

ƒcP.n;mIx/D sıx;c�nP.n;mIx/˝ sgnn;

where ı denotes the Kronecker symbol. If P is an operad, then the structure of P –
algebra on the pair .Vc ;Vo/ is equivalent to the structure of ƒcP –algebra on the pair
.sVc ;Vo/.

2.2.5 Operads defined by generators and relations The free operad generated by
an S–module E is denoted by F.E/. It is weight graded by the number n of vertices
of the underlying trees and F .n/.E/ denotes the component of weight n.

A quadratic operad F.E;R/ is an operad of the form F.E/=.R/, where E is an
S–module, R is a sub-S–module of F .2/.E/ and .R/ is the ideal generated by R.
There are analogous notions of cooperads, free cooperads Fc.E/ cogenerated by E ,
and of cooperads cogenerated by an S–module V with correlation R denoted by
C.V;R/.

Describing an operad is equivalent to describing algebras over it. In the text, we say
that an operad P is generated by E with relations R written as

(�) r1 D r2:

This notation means that any P –algebra satisfies the relation (�). At the level of
operads, this is understood as R contains the element r1� r2 .

2.2.6 Koszul dual Any quadratic operad P D F.E;R/ admits a Koszul dual coop-
erad given by P ¡ D C.sE; s2R/.

The Koszul dual operad P ! of a finite dimensional quadratic operad P is

(1) P !
WD .ƒP ¡/�; or equivalently, P ¡

D .ƒP !/�:

When P is a binary quadratic operad, we can use the original definition of Ginzburg and
Kapranov [7] (see also Loday and Vallette [15, chapter 7]) to compute its Koszul dual
operad. Namely, if P D F.E;R/, then P ! D F.E_;R?/, where E_ DE�˝ sgn2

and R? denotes the orthogonal of R under the pairing F .2/.E/˝F .2/.E_/! k .
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2.2.7 Bar and cobar constructions As it is the case for algebras and coalgebras,
there is a pair of adjoint functors between operads and cooperads given by the bar
and cobar construction. We refer to [6] for a detailed account on this topic. Let us
only recall that the cobar construction of a cooperad C is denoted by �C and as a
(nondifferential) operad, is the free operad F.s�1 xC/ where xC is the coaugmentation
ideal of the cooperad. The differential is computed from the differential of C and the
cooperad structure. The bar construction is denoted BP and it is defined similarly.
When C is finite dimensional one has

.�C/� D B.C�/:

2.3 Two versions of the Swiss-cheese operad

Here we recall the two definitions for the Swiss-cheese operad we have introduced
in [9]. We denote by D2 the little disks operad.

For m; n > 0 such that mC n > 0, let us define SC.n;mI o/ as the space of those
configurations d 2 .2nCm/ such that its image in the disk D2 is invariant under
complex conjugation and exactly m little disks are left fixed by conjugation. A little
disk that is fixed by conjugation must be centered at the real line, in this case it is
called open. Otherwise, it is called closed. The little disks in SC.n;mI o/ are labelled
according to the following rules.

(i) Open disks have labels in f1; : : : ;mg and closed disks have labels in f1; : : : ; 2ng.

(ii) Closed disks in the upper half plane have labels in f1; : : : ; ng. If conjugation
interchanges the images of two closed disks, their labels must be congruent
modulo n.

There is an action of Sn � Sm on SC.n;mI o/ extending the action of Sn � feg on
pairs of closed disks having modulo n congruent labels and the action of feg �Sm on
open disks. Figure 1 illustrates a point in the space SC.n;mI o/.

The 2–collection SC is defined as follows. For m; n> 0 with mCn> 0, SC.n;mI o/
is the configuration space defined above and SC.0; 0I o/D∅. For n> 0, SC.n; 0I c/
is defined as D2.n/ and SC.n;mI c/D∅ for m> 1. The 2–colored operad structure
in SC is given, as usual, by insertion of disks.

There is a suboperad SCvor of SC defined by SCvor .n;mIx/D SC.n;mIx/, if xD c
or m> 1 and by SCvor .n;mIx/D∅, otherwise. The above definition says that SCvor

coincides with SC except for m D 0 and x D o , where SCvor .n; 0; o/ D ∅ for any
n> 0. The operad SCvor is equivalent to the one defined by Voronov in [17], while SC
coincides with the one defined by Kontsevich in [13].
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Figure 1: A configuration in SC.n;mI o/

Notation The homology of SC is denoted by sc while that of SCvor is denoted
by scvor .

2.4 Conventions and notation

2.4.1 Generators In the paper we will have specific generators in the different oper-
ads considered, mainly two families of elements. The first is ff2;g2; e0;2; e1;1; e1;0g

and the second family is fl2; c2; n0;2; n1;1; n1;0g.

The following array sum up the properties of the elements. The array must be read as
follows: f2 2M.c; cI c/ means that it is an operation on two closed variables giving
a closed variable; the representation is k , that is, f2 is a symmetric operation. The
degree is 0.

element f2 g2 e0;2 e1;1 e1;0

color M.c; cI c/ M.c; cI c/ M.o; oI o/ M.c; oI o/ M.cI o/
representation k k kŒS2� kŒS2� in M.c; oI o/˚M.o; cI o/ k

degree 0 1 0 0 0
element l2 c2 n0;2 n1;1 n1;0

color M.c; cI c/ M.c; cI c/ M.o; oI o/ M.c; oI o/ M.cI o/
representation sgn2 sgn2 kŒS2� kŒS2� in M.c; oI o/˚M.o; cI o/ k

degree 0 -1 0 0 -1

Given elements fx1; : : : ;xng with specific colors, representation and degrees, the S–
module hx1; : : : ;xni is the S–module generated by these elements, with the action of
the symmetric group indicated by the representation of the elements. For example he1;1i

is the S–module M where M.c; oI o/D ke1;1 , M.o; cI o/D ke1;1 � .21/ and is zero
elsewhere.
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2.4.2 Notation for operads The operad Ger , whose algebras are Gerstenhaber al-
gebras is the operad F.EGer;RGer/ with EGer D hf2;g2i and RGer is the space of
relations given by

f2.id˝f2/D f2.f2˝ id/;

g2.g2˝ id/ � ..123/C .231/C .312//D 0;

g2.id˝f2/D f2.g2˝ id/Cf2.id˝g2/ � .213/:

The suboperad generated by f2 is the operad ComD F.hf2i;RCom/ where RCom is
the first relation. The suboperad generated by g2 is the operad ƒ�1Lie.

The Koszul dual of the operad Ger is Ger!
D ƒGer (see eg [6]). It is described as

F.EƒGer;RƒGer/ with EƒGer D hl2; c2i and RƒGer is the space of relations given by

c2.id˝ c2/D�c2.c2˝ id/;

l2.l2˝ id/ � ..123/C .231/C .312//D 0;

l2.id˝ c2/D c2.l2˝ id/C c2.id˝ l2/ � .213/:

The suboperad generated by l2 is the operad LieDF.hl2i;RLie/, where RLie is the sec-
ond relation. The suboperad generated by c2 is the operad ƒCom. The operad Ass is de-
scribed as F.he0;2i;RAss/ where RAss is the relation e0;2.id˝e0;2/D e0;2.e0;2˝ id/.
Note that we also use this notation replacing e0;2 by n0;2 .

3 The homology operads scvor and sc

We prove in this section that the homology operad scvor is a quadratic Koszul operad
and that the homology operad sc is a quadratic-linear Koszul operad, extending the
results obtained for the 0th homology of SCvor and SC in [9].

3.1 The operad scvor is Koszul

Recall the following theorem.

Theorem 3.1.1 (A Voronov [17]) An algebra over scvor is a pair .G;A/, where G is
a Gerstenhaber algebra and A is an associative algebra over the commutative ring G .

An algebra over the commutative ring G corresponds to a degree 0 map �W G˝A!A

satisfying

�.cc0; a/D �.c; �.c0; a//D .�1/jcjjc
0j�.c0; �.c; a//;

�.c; aa0/D �.c; a/a0 D .�1/jajjcja�.c; a0/:

As a consequence we have the following.
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Corollary 3.1.2 The operad scvor has a quadratic presentation F.Ev;Rv/ where

Ev D hf2;g2; e0;2; e1;1i

and Rv is the sub-S–module of F .2/.Ev/ generated by the relations

� RGer , for the Gerstenhaber structure defined by f2 and g2 and RAss for the
associativity of e0;2 ;

� e1;1 is an action, with

e1;1.id˝ e1;1/D e1;1.f2˝ id/;

e1;1.id˝ e0;2/D e0;2.e1;1˝ id/D e0;2.id˝ e1;1/ � .213/:

Lemma 3.1.3 Algebras over the Koszul dual operad .scvor/! of scvor are of the form
.H;A; �/ where .H; Œ; �;�/ is a ƒGer–algebra, A is an associative algebra, and
�W H ˝A!A is a map of degree 0 that satisfies the relations

(2)

�.Œh; h0�; a/D�.h; �.h0; a//� .�1/jhjjh
0j�.h0; �.h; a//;

�.h; a � a0/D�.h; a/ � a0C .�1/jajjhja � �.h; a0/;

�.h� h0; a/D0:

Note that the first two equations indicate that the map induced by � from H to End.A/
has values in Der.A/ and is a morphism of Lie algebras.

Proof Because scvor has a binary quadratic presentation, we can use the direct
computation of its Koszul dual operad presented in Section 2.2.6. Let us denote
by .l2; c2; n0;2; n1;1/ the dual basis of .f2;g2; e0;2; e1;1/ in E_v . The degree of c2

is �1 and all the other elements have degree 0.

The Koszul dual operad of scvor is .scvor/! D F.E_v /=.R?v /. The pairing between Ev
and E_v induces a pairing between F .2/.Ev/ and F .2/.E_v /. One gets R?v .c; c; cI c/
is the ideal defining Ger! , that is RƒGer . Similarly R?v .o; o; oI o/ is the orthogonal of
the associativity relation for e0;2 , that is, the associativity relation for n0;2 .

The space F.Ev/.c; c; oI o/0 has dimension 3 and Rv.c; c; oI o/0 has dimension 1. As a
consequence, the dimension of R?v .c; c; oI o/0 is 2 and corresponds to the first relation.

The space F.Ev/.c; o; oI o/ has dimension 6 and Rv.c; o; oI o/ has dimension 2. Hence
the dimension of R?v .c; o; oI o/ is 4 and corresponds to the second relation.

The space F.Ev/.c; c; oI o/1 has dimension 1 and Rv.c; c; oI o/1 has dimension 0. As
a consequence, the dimension of R?v .c; c; oI o/�1 is 1 and corresponds to the third
relation.
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In terms of generators and relations, it expresses as the following.

Corollary 3.1.4 The operad .scvor/! has a binary quadratic presentation F.Ev! ;Rv!/,
where

Ev! D hl2; c2; n0;2; n1;1i

and Rv! is the sub-S–module of F .2/.Ev!/ generated by the relations

� RƒGer , for the ƒGer–structure defined by l2 and c2 and RAss for the associa-
tivity of n0;2 ;

� relations for n1;1 are

n1;1.l2˝ id/D n1;1.id˝ n1;1/ � .id� .213//;

n1;1.id˝ n0;2/D n0;2.n1;1˝ id/C n0;2.id˝ n1;1/ � .213/;

n1;1.c2˝ id/D 0:

Theorem 3.1.5 The operad scvor is Koszul.

Proof In order to prove that scvor is Koszul, we prove that .scvor/! is Koszul, using
the rewriting method explained in [15], and using a part of the computation made by
Alm in [1, AppendixA]. Recall that an algebra over .scvor/! is given by the following
data.

� A ƒGer–algebra H . We denote by Œx1;x2� the degree 0 bracket and by x1�x2

the degree �1 product.

� An associative algebra A. We denote by a1 � a2 the degree 0 product.

� A map �W H ˝A!A. We denote by x � a the element �.x; a/.

The rewriting rules are

.a1 � a2/ � a3 7! a1 � .a2 � a3/;

.x1 �x2/�x3 7! �x1 � .x2 �x3/;

ŒŒx1;x2�;x3� 7! �ŒŒx2;x3�;x1�� ŒŒx3;x1�;x2�;

Œx1;x2 �x3� 7! Œx1;x2��x3Cx2 � Œx1;x3�;

x1 � .a1 � a2/ 7! .x1 � a1/ � a2C a1 � .x1 � a2/;

.x1 �x2/ � a 7! 0;

Œx1;x2� � a1 7! x1 � .x2 � a1/�x2 � .x1 � a1/:

In order to study the confluence of critical monomials, it is enough to study the one
involving both x0s and a0s because the one involving only a0s corresponds to the
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computation for the operad Ass, and the one involving only x0s corresponds to the
computation for the operad ƒGer . We know that a way to prove the Koszulity of these
2 operads is precisely to use the confluence of the critical monomials.

Hence the critical monomials left are .x1 � ..a1 � a2/ � a3//, .Œx1;x2� � .a1 � a2//,
.ŒŒx1;x2�;x3��a1/, ..x1�x2/�.a1 �a2//, ...x1�x2/�x3/�a/ and .Œx1;x2�x3��a/.
The first three have been proven to be confluent by J Alm. The fourth critical monomial
can be rewritten either as

.x1 �x2/ � .a1 � a2/ 7! ..x1 �x2/ � a1/ � a2C a1 � ..x1 �x2/ � a2/

7! 0

or .x1 �x2/ � .a1 � a2/ 7! 0. The same is true for the fifth critical monomial.

The critical monomial Œx1;x2 �x3� � a can be rewritten either as

Œx1;x2 �x3� � a 7! x1 � ..x2 �x3/ � a/� .x2 �x3/ � .x1 � a/

7! 0

or

Œx1;x2 �x3� � a 7! .Œx1;x2��x3/ � aC .x2 � Œx1;x3�/ � a

7! 0:

Hence, all the critical monomials are confluent and .scvor/! is Koszul. As a consequence
scvor is a Koszul operad.

3.2 The operad sc is Koszul

In this section we follow closely the article by Imma Galvez-Carrillo, Andy Tonks and
Bruno Vallette [5] and our paper [9] in order to prove that the homology operad sc
is Koszul. Recall from the computation of F Cohen and A Voronov and from [9] the
following.

Proposition 3.2.1 An sc–algebra (G,A,f) is a Gerstenhaber algebra G and an associa-
tive algebra A together with a central morphism of associative algebras f W G!A.

Corollary 3.2.2 The operad sc has a presentation of the form F.E0;R0/ where

E0 D hf2;g2; e0;2; e1;0i

and the space of relations R0 is the sub-S–module of F .2/.E/˚F .3/.E/ defined by
the relations
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� RGer for the Gerstenhaber structure induced by f2 and g2 and RAss for the
associativity of e0;2 ;

� centrality of e1;0 : e0;2.e1;0˝ id/D e0;2.id˝ e1;0/ � .21/;

� a quadratic-cubical relation: e1;0.f2/D e0;2.e1;0˝ e1;0/.

This corollary shows clearly that this presentation is quadratic and cubic. In order to
apply the theory of [5], one needs a presentation which is quadratic and linear. However,
we will see in Proposition 4.2.1 that the quadratic operad F.E0/=.qR0/ obtained by
killing the cubical elements in the relations of R0 plays also an important role for the
study of sc.

The idea to obtain a presentation with quadratic-linear relations of sc is to add a new
generator, in order to replace the quadratic-cubical relation by quadratic-linear relations.
This new generator e1;1 , will correspond at the level of algebras to the operation
�.c; a/ WDf .c/a. Consequently, we introduce new relations in the operad corresponding
to the relations f .c/aD af .c/D �.c; a/ and �.c; f .c0//D f .cc0/D f .c/f .c0/, that
are present in the algebra setting.

Recall the theory explained in [5] for quadratic-linear operads. A quadratic-linear
operad is of the form F.E/=.R/ with R� F .1/.E/˚F .2/.E/. Such an R is called
quadratic-linear. We also ask the presentation to satisfy

(ql1) R\E D f0g,

(ql2) .R˝ECE˝R/\F .2/.E/�R\F .2/.E/.

Proposition 3.2.3 The operad sc has a presentation F.E;R/, where

E D hf2;g2; e0;2; e1;1; e1;0i

and the space of relations R is the sub-S–module of F .1/.E/˚F .2/.E/ defined by
RDRv˚R.e1;0/, where Rv is the space of quadratic relations of scvor and R.e1;0/

is the sub-S–module of F.E/ generated by the following relations:

� two quadratic-linear relations: e1;1D e0;2.e1;0˝ id/ and e1;1D e0;2.id˝e1;0/ �

.21/,

� a new quadratic relation: e1;1.id˝ e1;0/D e1;0.f2/.

Moreover this presentation satisfies (ql1) and (ql2).

Here we recall the definition of a Koszul quadratic-linear operad given in [5].
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Definition 3.2.4 Let q denote the projection F.E/� F .2/.E/ and let qR be the
image of R under this projection. A quadratic-linear operad PDF.E/=.R/ satisfying
(ql1) and (ql2) is said to be Koszul if qP WD F.E/=.qR/ is a quadratic Koszul operad.
Its Koszul dual cooperad is .P/¡ D ..qP/¡; @'/ where the differential @' depends on
the quadratic-linear relations.

In the case of sc presented as in Proposition 3.2.3, the projection of RDRv˚R.e1;0/

onto F .2/.E/ is qR D Rv ˚ qR.e1;0/, where qR.e1;0/ is the sub-S–module of
F .2/.E/ generated by the relations 0D e0;2.e1;0˝ id/, 0D e0;2.e1;0˝ id/.12/ and
e1;1.id˝ e1;0/D e1;0.f2/.

Consequently a qsc–algebra is an scvor –algebra .G;A; �/ endowed with a degree 0

linear map f W G!A satisfying f .c/aD af .c/D 0 and �.c; f .c0//D f .cc0/ for all
c; c0 2 G; a 2 A. As in [9], the operad qsc is obtained as the result of a distributive
law between the operad scvor and F.e1;0/. The distributive law is given by

(3)

scvor
ıF.e1;0/! F.e1;0/ ı scvor;

e0;2.e1;0˝ id/; e0;2.e1;0˝ id/.12/ 7! 0;

e1;1.id˝ e1;0/ 7! e1;0.f2/:

Proposition 3.2.5 The operad qsc is identical to the operad F.e1;0/ ı scvor , with
composition given by the distributive law (3).

Theorem 3.2.6 The operad qsc is a quadratic Koszul operad. As a consequence, there
exists a quadratic-linear presentation of the operad sc so that sc is a quadratic-linear
Koszul operad.

Proof From [15, Chapter8], one has that qscD F.e1;0/ ı scvor is Koszul since scvor

and F.e1;0/ are Koszul colored operads. By definition, it means that sc is a quadratic-
linear Koszul operad.

3.3 Description of the Koszul dual operad .sc/! of sc.

In Proposition 3.2.5, we have described qsc as a distributive law between scvor

and F.e1;0/. As a consequence .qsc/! D .scvor/! ıF.e1;0/
! , with the operad structure

given by the signed dual of the distributive law (3). Recall from Corollary 3.1.4 that
fl2; c2; n0;2; n1;1g is the dual basis of ff2;g2; e2;0; e1;1g that generates Ev! . From
relation (1), one has F.e1;0/

! D F.n1;0/ where n1;0 has degree �1. The dual of the

Algebraic & Geometric Topology, Volume 13 (2013)



2052 Eduardo Hoefel and Muriel Livernet

distributive law is given by

F.n1;0/ ı .scvor/!! .scvor/! ıF.n1;0/;

n1;0.l2/ 7! n1;1.id˝ n1;0/ � .id� .21//;

n1;0.c2/ 7! 0:

Consequently, a .qsc/! –algebra is an .scvor/! –algebra .H;A; �/ satisfying conditions
of Lemma 3.1.3, together with a linear map ˇW H !A of degree �1 satisfying

(4)
ˇ.Œh; h0�/D.�1/jhj�.h; ˇ.h0//� .�1/jhjjh

0jCjh0j�.h0; ˇ.h//;

ˇ.h� h0/D0:

In order to understand the structure of an .sc/! –algebra it is then enough to under-
stand the differential on the operad .qsc/! that comes from the nonquadraticity of the
operad sc.

Let 'W qR!E be defined by

'.e0;2.e1;0˝ id//D '.e0;2.id˝ e1;0/ � .21//D e1;1;

'.Rv/D 0;

'.e1;1.id˝ e1;0/� e1;0.f2//D 0:

The Koszul dual cooperad of qsc is .qsc/¡ D C.sE; s2qR/, with the notation of
Section 2.2.6. To ' is associated the composite map

.qsc/¡� s2qR
s�1'
���! sE:

There exists a unique coderivation z@' W .qsc/¡ ! Fc.sE/ which extends this map.
Moreover, z@' induces a square zero coderivation @' on the Koszul dual cooperad .qsc/¡ .
The Koszul dual cooperad of sc is by definition sc¡ D .C.sE; s2qR/; @'/.

Recall from (1) that .qsc/! D .ƒ.qsc¡//� . As a consequence, sc! D ..qsc/!; d'/,
where d' is obtained as a combination of transpose and signed suspension of @' .
Namely, sc! is a differential graded operad and we have the following Proposition.

Proposition 3.3.1 An algebra over sc! consists in a dg ƒGer–algebra .H; Œ; �;�; dH /,
a dg associative algebra .A; dA/, an action �W H ˝A! A and a degree �1 map
ˇW H ! A such that, for all h 2H; a 2 A, we have dA.ˇ.h//D �ˇ.dH h/ and that
the relations (2) and (4) are satisfied. Moreover, the following relation is satisfied:

(5) dA�.h; a/D �.dH h; a/C .�1/jhj�.h; dAa/Cˇ.h/a� .�1/jaj.jhjC1/aˇ.h/:
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Note that relation (5) says that the map ˇW H !A is central up to homotopy having
the map �W H˝A!A as the homotopy operator. For a geometrical description of the
above relations in terms of the Kontsevich compactification [14], we refer the reader to
the first author [8], Kajiura and Stasheff [11] and the authors [9].

Remark 3.3.2 There is a more compact way to understand what are sc! –algebras.
Let .A; dA/ be a dg associative algebra. Let Der.A/ be the dg Lie algebra of derivations
of A. For a given a 2 A we denote by Da the inner derivation which is defined by
Da.x/D ax� .�1/jajjxjxa. The graded k –vector space sA is a module over Der.A/
via the action Œd; sa�D .�1/jd jsd.a/. Consequently, there is a structure of graded Lie
algebra on DerC.A/D Der.A/˚ sA. A short computation shows that the differential
@C.dC sa/D @dCDa� sdA.a/ endows DerC.A/ with a structure of dg Lie algebra.
Furthermore, any dg Lie algebra is a dg ƒGer–algebra, setting the product to be 0.

As a consequence, one has the following.

An algebra over sc! consists in a dg ƒGer–algebra .H; Œ; �;�; dH /, a dg associative
algebra .A; dA/, and a morphism of dg ƒGer–algebras  W H ! DerC.A/.

Translating the proposition in the language of operads, one gets the following corollary.

Corollary 3.3.3 The differential graded operad .sc/! has a presentation F.E!;R!/,
where

E! D hl2; c2; n0;2; n1;1; n1;0i

and the vector space R! is the sub-S–module of F .2/.E!/ generated by the relations:

� RƒGer , for the ƒGer–structure defined by l2 and c2 and RAss for the associa-
tivity of n0;2 ;

� relations for n1;1 are

n1;1.l2˝ id/D n1;1.id˝ n1;1/ � .id� .213//;

n1;1.id˝ n0;2/D n0;2.n1;1˝ id/C n0;2.id˝ n1;1/ � .213/;

n1;1.c2˝ id/D 0I

� relations for n1;0 are

n1;0.l2/D n1;1.id˝ n1;0/ � ..12/� .21//;

n1;0.c2/D 0:

The differential is given by dn1;1D n0;2.n1;0˝ id/�n0;2.id˝n1;0/ �.21/ and vanishes
elsewhere.
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3.4 On the homology of sc!

In [9], we have considered the 0th homology operad of SC . In particular, the description
of H0.SC/! ([9, Proposition 6.3.2]) is the following.

Proposition 3.4.1 The differential graded operad H0.SC/! has a presentation given
by F.E0;R0/, where

E0 D hl2; n0;2; n1;1; n1;0i

and the vector space R0 is the sub-S–module of F .2/.E0/ generated by the relations:

� RLie , for the Lie–structure defined by l2 and RAss for the associativity of n0;2 ;

� relations for n1;1 are

n1;1.l2˝ id/D n1;1.id˝ n1;1/ � .id� .213//;

n1;1.id˝ n0;2/D n0;2.n1;1˝ id/C n0;2.id˝ n1;1/ � .213/I

� relations for n1;0 are

n1;0.l2/D n1;1.id˝ n1;0/ � ..12/� .21//:

The differential is given by dn1;1 D n0;2.n1;0˝ id/�n0;2.id˝n1;0/ � .21/ and is zero
on all the other generators.

From this, it is easy to prove the following corollary.

Corollary 3.4.2 The dg operad sc! is the operad composite ƒComıH0.SC/! together
with the distributive law given by

H0.SC/! ıƒCom!ƒCom ıH0.SC/!;
l2.id˝ c2/ 7! c2.l2˝ id/C c2.id˝ l2/ � .213/;

n1;1.c2˝ id/ 7! 0;

n1;0.c2/ 7! 0:

As a consequence we get the following.

Theorem 3.4.3 Algebras over the homology of the operad sc! are triples .H;A; ˇ/
where H is a ƒGer–algebra, A is an associative algebra and ˇW H !A is a central
map of degree �1 satisfying ˇ.x �y/D 0.
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Proof Recall from [9, Theorem 7.2.5] that algebras over the homology of the operad
H0.SC/! are triples .L;A; f / where L is a Lie algebra, A is an associative algebra
and f W L! A is a central map of degree �1. Using the Künneth formula for the
plethysm product ı of S–modules, as in Fresse [4, Lemma 2.1.3], we obtain that
H�.sc!/DƒCom ıH�.H0.SC/!/ with the distributive law given by

H�.H0.SC/!/ ıƒCom!ƒCom ıH�.H0.SC/!/;
Œl2�.id˝ c2/ 7! c2.Œl2�˝ id/C c2.id˝ Œl2�/ � .213/;

Œn1;0�.c2/ 7! 0;

where Œx� denotes the image of a cycle x in H�.H0.SC/!/.

4 On the spectral sequence

In this section we will show that the spectral sequence E.SC/ associated to the
stratification of the compactification of points in the upper half plane collapses at the
second stage. We prove that, as an S–module, E2.SC/ corresponds to the S–module
defined by sc, but prove that the operad structures are not isomorphic.

4.1 On the first sheet of the spectral sequence

For this section, we refer to [17; 8; 2].

For the compactification of points we are considering two different spaces: the
space C.n/ of configurations of n > 2 points in the disk modded out by the action
of the group of dilatations and translations, of dimension 2n� 3; the space C.n;m/,
with 2nCm> 2, of configurations of n points in the upper half plane, m points on
the line, modded out by the action of the group of dilatations and translations along the
line, of dimension 2nCm� 2.

The operad SC is homotopy equivalent to the Fulton–MacPherson compactification
of C.n/ for SC.n; 0I c/ and of C.n;m/ for SC.n;mI o/. Since C.1/ and C.0; 1/ are
not well defined, we introduce both SC.1; 0I c/ and SC.0; 1I o/ as the one point spaces
containing the identity element of the closed and open colors, respectively. It has been
proven by Getzler and Jones in [6], that the filtration associated to the stratification of
the compactification of C.n/ induces a spectral sequence E.D2/, whose first sheet
coincides with the cobar construction of the cooperad .Ger/¡ . Furthermore, the spectral
sequence collapses at the second stage, and E2.D2/ coincides, as an operad, with Ger .
We will then focus on the open part of the Swiss-cheese operad. From [8, Theorem 5.2],
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there is a stratification of C.n;m/ indexed by partially planar trees, which induces a
topological filtration

Fp
WD Fp. xC /D fclosure of the union of strata of dimension pg:

It yields a spectral sequence, whose first sheet is given by

E1.SC/p;q DHpCq.F
p;Fp�1/DH�q.Fp

nFp�1/:

Let T .n;m/p be the set of partially planar trees with n closed inputs, m open inputs,
the output being open and v WD 2nCm�p� 1 vertices. To any vertex vi of a tree
T 2 T .n;m/p is associated the triple .ni ;mi ;xi/ corresponding respectively, to its
closed, open inputs, and its output. One has the relation

(6)

vX
iD1

ni DnC

vX
iD1

ıxi ;c ;

vX
iD1

mi DmC

vX
iD1

ıxi ;o � 1:

Since any tree T 2 T .n;m/p is responsible for a strata CT WD
Qv

iD1 SC.ni ;mi Ixi/

one gets that

(7) E1.SC/.n;m/p;q D
M

T2T.n;m/p;
u1C���CuvD�q

vO
iD1

H ui .SC.ni ;mi Ixi//:

Because we are not exactly using the notation of [2], we need the following Lemma.

Lemma 4.1.1 The operad E1.SC/ coincides with the cobar construction of the coop-
erad .ƒcƒsc/� . More precisely, one has

E1.SC/.n;m/p;q D�..ƒcƒsc/�/.n;mI o/.2nCm�p�1/
pCq ;

where the upper index corresponds to the weight grading by the number of vertices of
the trees involved and the lower index corresponds to the total degree.

Proof Recall that for any cooperad C , �.C/ is the free operad F.s�1 xC/, where xC
is the coaugmentation ideal of the cooperad. Since E1.SC/ is also a free 2–colored

Algebraic & Geometric Topology, Volume 13 (2013)



On the spectral sequence of the Swiss-cheese operad 2057

operad, they have the same description in terms of trees. One has

H u.SC.n;mIx//D sc�.n;mIx/�u

D .ƒ�1sc�/.n;mIx/�uCnCm�1

D .ƒ�1
c ƒ�1sc�/.n;mIx/�uC2nCm�1�ıx;c

D .s�1ƒ�1
c ƒ�1sc�/.n;mIx/�uC2nCm�1�ıx;c�1:

Using the description of E1.SC/ in (7) and the formulas in (6), one gets
vX

iD1

.�ui C 2ni Cmi � 1� ıxi ;c � 1/D qC 2nCmC

vX
iD1

ıxi ;c C ıxi ;o � 2v� 1

D qC 2nCm� v� 1D qCp;

which explains the grading obtained. From [8; 2], we know the differentials of the two
operads coincide. As a consequence, the two differential graded operads coincide.

4.2 On the second sheet of the spectral sequence

Theorem 3.2.6 asserts that sc is a Koszul operad, which expresses that

�.sc¡/! sc

is a quasi-isomorphism of operads. Since all the graded vector spaces involved are
finite dimensional, there is a quasi-isomorphism of cooperads

sc�! .�.sc¡//� D B..sc¡/�/
(1)
D B.ƒ.sc!//:

Applying the bar-cobar adjunction we have a sequence of quasi-isomorphisms,

�.sc�/!�B.ƒ.sc!//!ƒ.sc!/:

Now applying the functor ƒ�1
c ƒ�1 to the above morphism and using Lemma 4.1.1,

we finally have the quasi-isomorphism

(8) E1.SC/D�..ƒcƒsc/�/!ƒ�1
c .sc!/:

Proposition 4.2.1 The operad E2.SC/ is the quadratic operad F.E0; qR0/, where

E0 D hf2;g2; e0;2; e1;0i

and the space of relations qR0 is the sub-S–module of F .2/.E0/ defined by the relations

� RGer for the Gerstenhaber structure induced by f2 and g2 and RAss for the
associativity of e0;2 ;
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� centrality of e1;0 : e0;2.e1;0˝ id/D e0;2.id˝ e1;0/ � .21/;

� the quadratic relation: e1;0.f2/D 0.

Equivalently, algebras over the operad E2.SC/ are triples .G;A; f / where G is a
Gerstenhaber algebra, A is an associative algebra, f W G ! A is a central degree 0

map satisfying f .gg0/D 0, for all g;g0 2G .

Proof The operad E2.SC/ is the homology of the dg operad E1.SC/. Due to
the quasi-isomorphism (8), it is the homology of the operad ƒ�1

c .sc!/. From the
computation of the homology of sc! obtained in Theorem 3.4.3, we get the result.

Theorem 4.2.2 The spectral sequence E.SC/ collapses at the second stage.

Proof Proposition 4.2.1 implies we have that, as an S–module, E2.SC/.n;mI o/D
Ger.n/˝Ass.m/DH�.SC/.n;mI o/. Because the spectral sequence converges to the
homology of SC , and because the dimension of the second sheet is the dimension of
the target, one gets that E.SC/ collapses at the second stage.

4.3 Conclusion

We have shown the following.

Algebras over H�.SC/ are triples .G;A; f / where G is a Gerstenhaber algebra, A is
an associative algebra and f W G!A is a central map such that f .gg0/D f .g/f .g0/,
whereas algebras over E1.SC/ are triples .G;A; f /, where G is a Gerstenhaber alge-
bra, A is an associative algebra and f W G!A is a central map such that f .gg0/D 0.

Note that the operad E1.SC/ D E2.SC/ obtained is exactly the quadratic operad
associated to the quadratic-cubical presentation of the operad sc of Corollary 3.2.2.
This is not a surprise because it is the graded operad associated to a filtration of sc.
Note also that there is no hope of having a theorem similar to the one obtained by
Getzler and Jones in [6] for the little disks operad, that is, an isomorphism between
E1.SC/ and sc. Indeed, one has the following.

Proposition 4.3.1 E2.SC/ and sc are not isomorphic.

Proof If they were, there would be a bijective morphism of operads 'W E2.SC/! sc.
Let f2;g2; e0;2; e1;0 denote the generators of E2.SC/ and f 0

2
;g0

2
; e0

0;2
; e0

1;0
the gen-

erators of sc.
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The generators we are concerned with are f2 and e1;0 . Note that E2.SC/.c; cI c/0
is 1–dimensional so f2 is a generator of this k –vector space. The same argument
holds for the choice of e1;0; f

0
2

and e0
1;0

. Hence, because of degree and arity reasons,
there exist �;� 2 k such that '.f2/ D �f

0
2

and '.e1;0/ D �e0
1;0

. But we have that
'.e1;0.f2//D '.0/D ��e0

1;0
.f 0

2
/ and e0

1;0
.f 0

2
/ 6D 0 2 sc.c; cI o/. So ��D 0, which

contradicts the fact that ' is bijective.
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