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Free actions on products of spheres
at high dimensions

OSMAN BERAT OKUTAN

ERGÜN YALÇIN

A classical conjecture in transformation group theory states that if G D .Z=p/r

acts freely on a product of k spheres Sn1 � � � � � Snk , then r � k . We prove
this conjecture in the case where the dimensions fnig are high compared to all the
differences jni � nj j between the dimensions.

57S25; 20J06

1 Introduction

Let G be a finite group. The rank of G , denoted by rk.G/, is defined as the largest
integer s such that .Z=p/s � G for some prime p . It is known that G acts freely
and cellularly on a finite complex homotopy equivalent to a sphere Sn if and only
if rk.G/D 1. This follows from the results due to P A Smith [12] and R Swan [13].
As a generalization of this, it has been conjectured by Benson and Carlson [3] that
rk.G/D hrk.G/ where hrk.G/ is defined as the smallest integer k such that G acts
freely and cellularly on a finite CW–complex homotopy equivalent to a product of
k spheres. This conjecture is often referred to as the rank conjecture. Note that one
direction of the Benson–Carlson conjecture is the following statement:

Conjecture 1.1 Let p be a prime. If GD .Z=p/r acts freely and cellularly on a finite
CW–complex X homotopy equivalent to Sn1 � � � � �Snk , then r � k .

This conjecture is a classical conjecture that was studied intensely through the 80’s
and it has been proven that the conjecture is true under some additional assumptions.
For example it is known that when the dimensions of the spheres are all equal, ie,
n D n1 D � � � D nk , then the conjecture is true for all primes p and for all positive
integers n except when p D 2 and nD 3; 7. This was proved by G Carlsson [6] in
the case where the G –action on the homology of X is trivial and the general case is
due to Adem and Browder [2]. The p D 2 and nD 1 case was proven later by Yalçın
[14]. More recently, B Hanke [10] proved that Conjecture 1.1 is true in the case where
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p � 3 dim X , ie, when the prime p is large compared to the dimension of the space.
In this paper, we prove Conjecture 1.1 for the other extreme, ie, when the dimensions
of the spheres are high compared to all the differences between the dimensions.

Theorem 1.2 Suppose G D .Z=p/r for a prime p and k; l are positive integers.
Then there is an integer N that depends only on k; l and G such that if G acts
freely and cellularly on a finite dimensional CW–complex X homotopy equivalent to
Sn1 � � � � �Snk where ni �N and jni � nj j � l for all i; j , then r � k .

The proof follows from a theorem of Browder [4] that gives a restriction on the order
of groups acting freely on a finite dimensional CW–complex in terms of homology
groups of the complex. We also use a method of gluing homology groups at different
dimensions, which we first saw in a paper by Habegger [9], and a crucial result on the
exponents of cohomology groups of elementary abelian p–groups, which is due to
Pakianathan [11].

At the end of the paper we also prove a generalization of Theorem 1.2 to non-free
actions, which was suggested to us by A Adem.

The paper is organized as follows: In Section 2, we list some well-known results
about hypercohomology and in Section 3, we introduce Habegger’s theorem on gluing
homology at different dimensions. In Section 4, we discuss the exponents of Tate
cohomology groups and in Section 5, we prove Theorem 1.2, which is our main
theorem.

2 Tate hypercohomology

Let G be a finite group and M be a ZG–module. The Tate cohomology of G with
coefficients in M is defined as follows:

yH i.G;M / WDH i.HomG.F�;M //

for all i 2 Z, where F� is a complete ZG –resolution of Z (see Brown [5, page 134]).
We can generalize this and define Tate hypercohomology of G with coefficients in a
chain complex C� of ZG–modules. To do this, we need to extend the contravariant
functor HomG.�;M / to HomG.�;C�/. We will define it as in Brown [5, page 5],
but instead of defining it as a chain complex, we consider it as a cochain complex.

Suppose C� and D� are chain complexes over ZG with differentials @C and @D ,
respectively. For all n 2 Z, let HomG.C�;D�/

n denote the set of graded G –module
homomorphisms of degree �n and define the boundary map ın by

ın.f /D f @C
� .�1/n@Df:
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Note that HomG.�;C�/ (resp. HomG.C�;�/) becomes a covariant (resp. contravari-
ant) functor from the category of chain complexes of ZG –modules to the category of
cochain complexes of abelian groups. Also, if C� is a chain complex concentrated at 0
with C0DM , then HomG.�;C�/ is naturally equivalent to the functor HomG.�;M /.

Now, we define the Tate hypercohomology of a finite group G with coefficients in
C� as

yH i.G;C�/ WDH i.HomG.F�;C�//

for all i 2 Z, where F� is a complete ZG–resolution of Z. We immediately have
yH i.G; †C�/ Š yH

iC1.G;C�/, where .†C�/i D Ci�1 for all i . Therefore, if C� is
a chain complex concentrated at n, then yH i.G;C�/Š yH

iCn.G;Cn/. Also note that
given a short exact sequence of chain complexes

0! C�!D�!E�! 0

of ZG –modules, there is a long exact sequence of the following form

� � � ! yH i.G;C�/! yH i.G;D�/! yH i.G;E�/! yH iC1.G;C�/! � � � :

An important property of Hom functor is that if P� is a chain complex of projective
ZG –modules and f�W C�!D� a weak equivalence of nonnegative chain complexes of
ZG –modules, then f�W HomG.P�;C�/!HomG.P�;D�/ is also a weak equivalence
(see Brown [5, page 29]). Actually, Brown proves this result by assuming P� is
nonnegative and C� and D� are arbitrary, but the same proof remains true if we
assume P� is arbitrary and C� and D� are nonnegative. Using this, we obtain the
following proposition:

Proposition 2.1 If C� is a nonnegative chain complex of ZG–modules with homol-
ogy concentrated at dimension n and Hn.C�/DM , then yH i.G;C�/Š yH

iCn.G;M /.

Proof Let Zn denote the group of n–cycles in C� . We have the following weak
equivalences:

C�W � � � ��! CnC1 ��! Cn ��! Cn�1 ��! � � �

id

x?? x?? x??
D�W � � � ��! CnC1 ��! Zn ��! 0 ��! � � �??y ??y ??y
E�W � � � ��! 0 ��! M ��! 0 ��! � � �

Therefore, yH i.G;C�/Š yH
i.G;D�/Š yH

i.G;E�/Š yH
iCn.G;M /.
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An exact sequence

K
f
�!L

g
�!M

of ZG –modules is called admissible if the inclusion map im.g/ ,!M is Z–split (see
Brown [5, page 129]). A ZG –module M is called relatively injective if HomG.�;M /

takes an admissible exact sequence to an exact sequence of abelian groups. Projective
ZG–modules are relatively injective (see Brown [5, page 130]). Since a complete
ZG–resolution F� of Z is an exact sequence of free ZG–modules, the sequence
FiC1! Fi! Fi�1 is admissible for all i . Hence if P is a projective ZG–module,
then the Tate cohomology group yH i.G;P /D 0 for all i . This result generalizes to
hypercohomology.

Proposition 2.2 If P� is a chain complex of projective ZG –modules which has finite
length, then yH i.G;P�/D 0 for all i .

Proof Recall that we say a chain complex C� has finite length if there are integers
n and m such that Ci D 0 for all i > n and i <m. By shifting P� if necessary, we
can assume that P� is a finite dimensional nonnegative chain complex and prove the
proposition by an easy induction on the dimension of P� .

We say that two chain complexes C� and D� are freely equivalent if there is a sequence
of chain complexes C� D E0

�; : : : ;E
n
� D D� such that either Ei

� is an extension of
Ei�1
� or Ei�1

� is an extension of Ei
� by a finite length chain complex of free modules.

Note that we say a chain complex D� is an extension of C� by a finite length chain
complex of free modules if there is short exact sequence of chain complexes either of
the form 0! C�!D�! F�! 0 or of the form 0! F�!D�! C�! 0, where
F� is a finite length chain complex of free modules. As a corollary of Proposition 2.2,
we have the following.

Corollary 2.3 If two chain complexes C� and D� are freely equivalent, then

yH i.G;C�/Š yH
i.G;D�/

for all i .

Before we conclude this section, we would like to note that there is a hypercohomology
spectral sequence that converges to the Tate hypercohomology yH�.G;C�/ for a given
chain complex C� of ZG–modules. One way to obtain this spectral sequence is to
consider the double complex Dp;qDHomG.Fp;C�q/ where the vertical and horizontal
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differentials are given by ı0DHomG.�; @/ and ı1DHomG.@;�/. Note that the total
complex Tot D�;� with

Totn D�;� D
M

pCqDn

Dp;q

and ın D ı0 � .�1/nı1 is a cochain complex homotopy equivalent to the cochain
complex HomG.F�;C�/. Filtering this double complex with respect to the index p

and then with respect to the index q , we obtain two spectral sequences

IE
p;q
2
D yH p.G;H�q.C�//) yH pCq.G;C�/;

IIE
p;q
1
D yH q.G;C�p/) yH pCq.G;C�/:

Note that using these two spectral sequences it is possible to give alternative proofs for
Propositions 2.1 and 2.2.

3 Habegger’s Theorem

In [9, pages 433–434], Habegger uses a technique to “glue” homology groups of a
chain complex at different dimensions. This technique will be crucial in the proof of
Theorem 1.2, so we give a proof for it here. Before we state Habegger’s Theorem, we
recall the definition of syzygies of modules.

For every positive integer n, the nth syzygy of a ZG–module M is defined as the
kernel of @n�1 in a partial resolution of the form

Pn�1

@n�1
���! � � � ! P1

@1
�! P0!M ! 0

where P0; : : : ;Pn�1 are projective ZG –modules. We denote the nth syzygy of M by
�nM and by convention we take �0M DM .

The nth syzygy of a module M is well-defined only up to stable equivalence. Recall
that two ZG–modules M and N are called stably equivalent if there are projective
ZG–modules P and Q such that M ˚P Š N ˚Q. Well-definedness of syzygies
up to stable equivalence follows from a generalization of Schanuel’s Lemma (see
Brown [5, page 193]). Since for any two stably equivalent modules M and N , we
have yH i.G;M /Š yH i.G;N / for all i , we will ignore the fact that syzygies are well-
defined only up to stable equivalence and treat �nM as a unique module depending
only on M and n. Alternatively, one can fix a resolution for every ZG–module M

and define �nM as the kernel of @n�1 in this unique resolution.

Theorem 3.1 (Habegger [9]) Let C� be a chain complex of ZG –modules and n;m

are integers such that m < n. If Hk.C�/ D 0 for all k with m < k < n, then C� is
freely equivalent to a chain complex D� such that:
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(i) Hi.D�/DHi.C�/ for every i ¤ n;m,

(ii) Hm.D�/D 0, and

(iii) there is an exact sequence of ZG –modules

0!Hn.C�/!Hn.D�/!�n�mHm.C�/! 0:

Proof Let Fn�1! � � � ! Fm!Hm.C�/! 0 be an exact sequence where the Fi

are free ZG –modules. Consider the following diagram

� � � ��! 0 ��! Fn�1 ��! � � � ��! Fm ��! Hm.C�/ ��! 0 ��! � � �

id

??y ??y
� � � ��! Cn ��! Cn�1 ��! � � � ��! Zm ��! Hm.C�/ ��! 0 ��! � � �

where Zm denotes the group of m–cycles in C� . Since all Fi are projective and the
bottom row has no homology below dimension n, the identity map extends to a chain
map between rows. Notice that this chain map gives a chain map f�W F�! C� as
follows

� � � ��! 0 ��! Fn�1 ��! � � � ��! Fm ��! 0 ��! � � �??y fn�1

??y fm

??y ??y
� � � ��! Cn ��! Cn�1 ��! � � � ��! Cm ��! Cm�1 ��! � � �

where the maps fi W Fi ! Ci for i >m are the same as the maps in the first diagram
above. The map fmW Fm! Cm is defined as the composition

Fm

f 0m
��!Zm ,! Cm

where f 0mW Fm!Zm is the map defined as the lifting of the identity map in the first
diagram.

Now, let D� be the mapping cone of f� . We have the following short exact sequence
of the form

0! C�!D�!†F�! 0

so C� is freely equivalent to D� . The corresponding long exact sequence of homology
groups is

� � � !Hi.F�/
f�
�!Hi.C�/!Hi.D�/!Hi�1.F�/! � � � :

Assume first that n > mC 1. Then F� has at least two terms and its homology is
nonzero only at two dimensions n� 1 and m. So, Hi.C�/ŠHi.D�/ for all i such
that i ¤m;mC 1; n� 1; n. At dimension m, the map f�W Hm.F�/!Hm.C�/ is an
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isomorphism, so we get Hm.D�/DHmC1.D�/D 0. At dimension n� 1, we have
Hn�1.C�/D 0, so we get Hn�1.D�/D 0. We also have a short exact sequence of the
form

0!Hn.C�/!Hn.D�/!Hn�1.F�/! 0:

Since Hn�1.F�/Š�
n�m.Hm.C�//, this gives the desired result.

If nDmC 1, then F� has a single term Fm , so we have a sequence of the form

0!Hn.C�/!Hn.D�/! Fm

f�
�!Hm.C�/!Hm.D�/! 0:

Since f� is surjective by construction, we conclude that Hm.D�/D 0 and there is a
short exact sequence of the form

0!Hn.C�/!Hn.D�/!�1.Hm.C�//! 0

as desired.

4 Exponents of Tate cohomology groups

To prove the main theorem, we need some results about the exponents of Tate cohomol-
ogy groups. We first recall some definitions. The exponent of a finite abelian group A

is defined as the smallest positive integer n such that naD 0 for all a 2A. We denote
the exponent of A by exp A. Note that if A! B! C is an exact sequence of finite
abelian groups, then exp B divides exp A � exp C . In this situation we sometimes write
exp B= exp A divides exp C to refer to the same fact even though exp B= exp A may
not be an integer in general.

The first result we prove is a proposition on the exponent of Tate cohomology group
with coefficients in a filtered module. First let us explain the terminology that we will
be using throughout the paper. Let M be a ZG–module and A1;A2; : : : ;An be a
sequence of ZG–modules. If M has a filtration 0 DM0 �M1 � � � � �Mn DM

such that Mj=Mj�1 Š Aj for all j , then we say M has a filtration with sections
A1�A2� � � � �An .

Proposition 4.1 Let M be a ZG–module which has a filtration with sections A1�

A2� � � � �An . Then, exp yH i.G;M / divides
Qn

jD1 exp yH i.G;Aj /.

Proof Let 0DM0 �M1 � � � � �Mn DM be the filtration of M with the sections
as above. Then for every j , we have an exact sequence of ZG –modules

0!Mj�1!Mj !Aj ! 0;
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which gives a long exact Tate cohomology sequence of the following form:

� � � ! yH i.G;Mj�1/! yH i.G;Mj /! yH i.G;Aj /! � � � :

From this we observe that

exp yH i.G;Mj /= exp yH i.G;Mj�1/

divides the exponent of yH i.G;Aj /. Multiplying these relations through all j D

1; : : : ; n, we get exp yH i.G;M / divides
Qn

jD1 exp yH i.G;Aj /.

In [4], Browder proves a theorem that gives an upper bound on the order of a finite
group G in terms of the exponents of cohomology groups with coefficients in homology
groups of a CW–complex on which G acts freely. Since we use this theorem in the
proof of our main theorem, we state it below and give a proof for it. The proof we give
here is slightly different than the original proof. It uses Theorem 3.1 and Proposition 4.1.

Theorem 4.2 (Browder [4]) Let C� be a nonnegative, free, connected chain complex
of dimension n. Then jGj divides

Qn
jD1 exp H jC1.G;Hj .C�//.

Proof Let us take C
.0/
� DC� and for j D 1 to n, define C

.j/
� to be the chain complex

obtained from C
.j�1/
� by applying the method in Theorem 3.1 for the dimensions

n� j and n. Since C� is a finite dimensional chain complex of free ZG –modules, by
Proposition 2.2, yH i.G;C�/D 0 for all i . Hence by Corollary 2.3 and Theorem 3.1,
we have yH i.G;C

.j/
� / D 0 for all i; j . Notice that C

.n/
� is a chain complex with

homology concentrated at n. Let us denote the homology of C
.n/
� at n by M . Hence,

by Proposition 2.1, we have yH i.G;M / D 0 for all i . By Theorem 3.1, M has a
filtration

0�Hn.C
.0/
� /� � � � �Hn.C

.n�1/
� /�Hn.C

.n/
� /DM

with sections Hn.C�/��
1Hn�1.C�/� � � � ��

n�1H1.C�/��
nH0.C�/. If we let

M 0 WDHn.C
.n�1/
� /, then M 0 has a filtration with sections

Hn.C�/��
1Hn�1.C�/� � � � ��

n�1H1.C�/

and there is a short exact sequence of the form

0!M 0
!M

�
�!�nH0.C�/! 0:

Note that H0.C�/Š Z, so we obtain an exact sequence of the form

� � � ! yH n.G;M /
��
��! yH n.G; �nZ/! yH nC1.G;M 0/! yH nC1.G;M /! � � � :
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Since yH i.G;M /D 0 for all i , we obtain

yH nC1.G;M 0/Š yH n.G; �nZ/Š yH 0.G;Z/Š Z=jGj:

Hence by Proposition 4.1, we get jGj D exp yH nC1.G;M 0/ divides the product
nY

jD1

exp yH nC1.G; �n�j Hj .C�//:

Since yH nC1.G; �n�j Hj .C�//ŠH jC1.G;Hj .C�//, this gives the desired result.

As a corollary of Theorem 4.2, Browder gives a proof for a theorem of G Carlsson
[6] that says that if G D .Z=p/r acts freely on a finite dimensional CW–complex
X ' .Sn/k with trivial action on homology, then r � k . The main observation is
that when G D .Z=p/r and M is a trivial ZG –module, the exponent of H i.G;M /

divides p for all i � 1. This follows easily by induction on r using properties of the
transfer map in group cohomology. So, from the relation given in Theorem 4.2, one
obtains that if G acts freely on a finite dimensional CW–complex X ' .Sn/k with
trivial action on homology, then jGj D pr divides pk , which gives r � k .

Note that the assumption that G acts trivially on the homology of X is crucial in the
above argument since for an arbitrary ZG–module, the exponent of H i.G;M / can
be as large as the order of jGj. In fact, if we take M D �i.Z/ for some positive
integer i , then we have H i.G;M /Š Z=jGj, so the exponent of H i.G;M / is equal
to jGj in this case. Taking the direct sum of all such modules over all i , one can obtain
a ZG–module M such that the exponent of H i.G;M / is equal to jGj for every
i � 0. The following theorem says that when M is finitely generated this situation
cannot happen and that the exponent of H i.G;M / eventually becomes small at high
dimensions.

Theorem 4.3 (Pakianathan [11]) Let G D .Z=p/r and M be a finitely generated
ZG –module. Then, there is an integer N such that the exponent of H i.G;M / divides
p for all i �N .

Proof By Theorem 7.4.1 in Evens [8, page 87], H�.G;M / is a finitely generated
module over the ring H�.G;Z/. Let u1; : : : ;uk be homogeneous elements generating
H�.G;M / as an H�.G;Z/–module and let N D1Cmaxj fdeg uj g. If u2H i.G;M /

such that i �N , then we can write uD
Pk

jD1 j̨ uj for some homogeneous elements
j̨ in H�.G;Z/ with deg j̨ �1 for all j . Since exp H i.G;Z/ divides p for all i �1,

we have p j̨ D 0 for all j . Hence we obtain puD
Pk

jD1p j̨ uj D 0 as desired.
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5 Proof of the main theorem

Let G D .Z=p/r and k , l be positive integers. We will show that there is an integer
N such that if G acts freely and cellularly on a CW–complex X homotopy equivalent
to Sn1 � � � � �Snk where jni � nj j � l and ni �N for all i; j , then r � k .

Suppose that G acts freely and cellularly on some CW–complex X homotopy equiva-
lent to Sn1�� � ��Snk where jni�nj j � l for all i; j . Let nDmaxfni j i D 1; : : : ; kg

and let ai D n� ni for all i . Consider the cellular chain complex C�.X / of the CW–
complex X . The complex C�.X / is a nonnegative, connected, and finite-dimensional
chain complex of free ZG –modules and has nonzero homology only at the following
dimensions other than dimension zero:

.1/ n� a1; n� a2; : : : ; n� ak

.2/ 2n� a1� a2; 2n� a1� a3; : : : ; 2n� ak�1� ak
:::

.j / j n� .a1C � � �C aj /; : : : ; j n� .ak�jC1C � � �C ak/
:::

.k/ kn� .a1C a2C � � �C ak/

If n> lk , then we have n> a1C� � �Cak , which implies that for all j , the dimensions
listed on the j th row are strictly larger than the dimensions listed on the .j � 1/st row.
Since this fact is crucial for our argument, we will assume that the integer N in the
statement of the theorem satisfies N > lk to guarantee that this condition holds.

Now we can apply Habegger’s argument given in Theorem 3.1 to glue all the homology
groups at the dimensions listed on the j th row above to the homology at dimension j n

for all j D1; : : : ; k . The resulting complex D� is a connected, finite-dimensional chain
complex of free ZG –modules that has homology only at dimensions 0; n; 2n; : : : ; kn.
Let Mj WDHjn.D�/ for all j D 1; : : : ; k . Note that by construction Mj is a finitely
generated ZG –module for all j since syzygies of finitely generated ZG –modules are
finitely generated when G is a finite group.

Now we can apply Theorem 4.3 to find an integer Nj for each j such that if i �Nj ,
then exp H i.G;Mj / divides p . Suppose that for a fixed G D .Z=p/r , k and l , there
are only finitely many possibilities for ZG–modules Mj up to stable equivalence.
Then by taking the maximum of the Nj over all possible Mj , we can find an integer
N max

j for each j such that if i �N max
j , then exp H i.G;Mj / divides p for all possible

Mj that may occur. Then we can take N Dmaxj N max
j and complete the proof in the
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following way. By Theorem 4.2, we have jGj D pr divides

kY
jD1

H jnC1.G;Hjn.D�//D

kY
jD1

H jnC1.G;Mj /:

So, if n�N , then pr divides pk , which gives r � k as desired.

Hence to complete the proof, it only remains to show that for fixed G D .Z=p/r , k

and l , there are only finitely many possibilities for ZG–modules Mj up to stable
equivalence. To show this, first note that for a fixed l , there are finitely many k –tuples
.a1; : : : ; ak/ with the property that 0 � ai � l for all i . So we can assume that we
have a fixed k –tuple .a1; : : : ; ak/. Let us also fix an integer j and show there are
only finitely many possibilities for Mj DHjn.D�/.

Let s1 < � � � < sm be a sequence of integers such that fj n� s1; : : : ; j n� smg is the
set of all distinct dimensions on the j th row of the above diagram. Note that the
complex D� is constructed with the repeated usage of Theorem 3.1, so the module
Mj DHjn.D�/ has a filtration

0DK0 �K1 � � � � �Km DMj

such that Ki=Ki�1 Š �
si .Ai/ where Ai D Hjn�si

.X /. For all i , the module Ai

is a Z–free ZG–module with Z–rank less than or equal to
�
k
j

�
, so by the Jordan–

Zassenhaus Theorem (see Corollary 79.12 in Curtis and Reiner [7, page 563]), there
are only finitely many possibilities for Ai up to isomorphism.

We will inductively show that there exist only finitely many possibilities for Ki up to
stable equivalence. For i D 1, we have K1 D�

s1.A1/ so this follows from the fact
that there are only finitely many possibilities for A1 and that syzygies are well-defined
up to stable equivalence. For i > 1, consider the following short exact sequence:

0!Ki�1!Ki!�si Ai! 0

By induction we know that there are only a finite number of possibilities for Ki�1 up to
stable equivalence. By a similar argument as above, the same is true for �si .Ai/. The
extensions like the ones above are classified by the ext-group Ext1ZG.�

si .Ai/;Ki�1/

and since both modules are Z–free, these ext-groups are well-defined up to stable
equivalence. So, it remains to show that

Ext1ZG.�
si .Ai/;Ki�1/D ExtsiC1

ZG
.Ai ;Ki�1/

is a finite group. Note that since both Ai and Ki�1 are finitely generated,

ExtsiC1
ZG

.Ai ;Ki�1/
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is a finitely generated abelian group. Moreover, since Ai is Z–free, it has an exponent
divisible by jGj. So, ExtsiC1

ZG
.Ai ;Ki�1/ is a finite group. This completes the proof of

Theorem 1.2.

We conclude this section with a generalization of Theorem 1.2 to non-free actions. The
exact statement is as follows.

Theorem 5.1 Suppose GD .Z=p/r for a prime p and k; l are positive integers. Then
there is an integer N that depends only on k; l and G such that if G acts cellularly on
a finite dimensional CW–complex X homotopy equivalent to Sn1 � � � � �Snk where
ni �N and jni �nj j � l for all i; j , then r � s � k where s is the largest integer such
that jGxj D ps for some x 2X .

Proof Let C� WD C�.X / denote the cellular chain complex of X and let "W C�! Z
be the map induced by the constant map X ! pt . The arguments in the proof of
Theorem 1.2 can be repeated to prove that there is an integer N such that if ni �N

and jni � nj j � l for all i; j , then

pk yH 0.G;Z/� imf"�W yH 0.G;C�/! yH 0.G;Z/g:

This can be seen by a spectral sequence argument or by the filtration argument given in
the proof of Theorem 4.2. To see it using the filtration argument, observe that the map
�� can be written as a composition

��W yH
0.G;C�/Š yH

0.G;C
.n/
� /ŠH n.G;M /

��
��! yH n.G; �nZ/Š yH 0.G;Z/

where the module M and the map �� are as given in the proof of Theorem 4.2.
Repeating the arguments in the proof of Theorem 1.2, we can show that there is an
integer N such that if ni �N and jni � nj j � l for all i; j , then exp yH nC1.G;M 0/

divides pk where M 0 is as in the proof of Theorem 4.2. Using the long exact sequence
given in the proof of Theorem 4.2, we can conclude that pk yH 0.G;Z/� im "� .

The inclusion given above implies that jGj D pr divides pk � exp yH 0.G;C�/. Hence
the proof will be complete if we can show that exp yH 0.G;C�/ divides ps where s

is the largest integer such that jGxj D ps for some x 2 X . However this is already
known to be true as proven by A Adem [1, Theorems 3.1 and 3.2]. So the proof is
complete.
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