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Cohomology of Kac–Moody
groups over a finite field

JAUME AGUADÉ

ALBERT RUIZ

We compute the mod p cohomology algebra of a family of infinite discrete Kac–
Moody groups of rank two defined over finite fields of characteristic different from p .

55R35, 81R10, 20G44

1 Introduction

A functorial definition of discrete Kac–Moody groups over any commutative ring was
established by Tits in 1987 [24] and there is now a great deal of interest in these objects,
as illustrated by the recent monograph by Rémy [20] and by some of the references
it contains. The work of Kac and Peterson [17] and Kitchloo [18] on the classifying
spaces BK.C/ of the topological Kac–Moody groups over the complex field were the
starting point for the study of these objects from the point of view of the so-called
homotopical group theory (see the address by Grodal at the 2010 ICM [15]). Since
then, some significant progress has been made in this area. For instance, we know, by
Broto and Kitchloo [7], that the mod p cohomology of BK.C/ is noetherian. In the
case of rank two, the mod p cohomology of BK.C/ has been explicitly computed in
[4] by Aguadé, Broto, Kitchloo and Saumell, and the self maps of BK.C/ have been
described and classified by Aguadé and Ruiz in [6].

The main results in this paper (Proposition 8.2 and Theorem 8.3) provide an explicit
description of the cohomology algebra H�.BGD.k/IFp/ for GD.k/, a discrete infinite
Kac–Moody group of rank two over a finite field k of characteristic different from p

(under some restrictions, as stated in Theorem 8.3). To arrive to this result we need
detailed descriptions of the root system (Section 3), the parabolic subgroups and the
Lévi subgroups (Section 4) of GD.k/. The modular invariant theory of the dihedral
group plays also a main role in our computation (Sections 6 and 7). Some of these
partial steps in the main result may also have interest in their own. Nevertheless, we
would like to emphasize that, in spite of the rather technical aspect of some parts of
this paper, the path to the computation of the cohomology algebra H�.BGD.k/IFp/
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is essentially straightforward: First, the problem is reduced to Lévi components (see
Proposition 4.3) whose cohomology can be described (Proposition 4.5 to Proposition 4.9
and Proposition 5.1); then, we work out the appropriate kernel and cokernel calculations
(see Theorem 7.2) for a Mayer–Vietoris sequence argument.

In the classic case of a finite Weyl group, Friedlander [13] discovered that there is
a homotopy equivalence between the p–completion of the classifying space of the
Chevalley group over the field Fq and the homotopy fixed points of an unstable Adams
map  q defined on the classifying space of the corresponding compact connected Lie
group. These results where extended to p–compact groups by Broto and Møller [8] and,
recently, to some families of p–local compact groups by González [14], obtaining, in
both cases, the corresponding p–local finite group. In the section of this paper we see
that this result does not generalize to the Kac–Moody group case (infinite Weyl group).
This suggests a discrepancy between the algebraic and the homotopical definitions of
Kac–Moody groups over finite fields, in the case of an infinite Weyl group.
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reaching beyond. This overlap is described in Remarks 4.4 and 9.1.

The authors are partially supported by grants FEDER-MICINN MTM2010-20692 and
2009SGR-1092.

2 Kac–Moody groups over a field

In this preliminary section we recall the basic notions and notation of Kac–Moody
groups over a field. Our main references are the original paper by Tits [24] and the
book by Rémy [20].

A Kac–Moody group functor depends on a set of data D consisting of a n�n generalized
Cartan matrix A, a free abelian group ƒ, and elements ˛1; : : : ; ˛n2ƒ and h1; : : : ; hn2

ƒ_ D Hom.ƒ;Z/ such that hhi ; j̨ i D Aij . From these data D one can construct a
functor GD.�/ from commutative rings to groups which coincides with the classic
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Chevalley–Demazure functor if A is a Cartan matrix. When restricted to fields, the
functor GD.�/ can be characterized by a small set of axioms.

Let k be a field and let kC and k� be the additive and multiplicative groups of
k , respectively. The abelian group T D Hom.ƒ; k�/ plays the role of a maximal
torus in GD.k/ through a monomorphism �W T ! GD.k/. For each 1 � i � n

there is a homomorphism �i W SL2.k/ ! GD.k/ as well as two monomorphisms
xCi ;x

�
i W k

C ! GD.k/ such that xCi .r/ D �i

�
1 r
0 1

�
and x�i .r/ D �i

�
1 0
�r 1

�
. The

kernel of each �i is central in SL2.k/. The group GD.k/ is generated by T and the
images of all the �i . Each �i sends diagonal matrices into the maximal torus T as
follows: for any r 2 k� we have

(�) �i

�
r 0
0 r�1

�
.�/D rhi .�/:

T normalizes UCi D xCi .k
C/ and U�i D x�i .k

C/ by the formula

(��) t x˙i .r/ t�1
D x˙i .t.˛i/

˙1r/

for any r 2 k .

The equations !i.aj /D aj �Aij ai , i; j D 1; : : : ; n define an action of a group W (the
Weyl group) on Qa1˚� � �˚Qan . The orbit ˆDW fa1; : : : ; ang is the root system of
GD.k/. Every root is an integral linear combination of fa1; : : : ; ang with coefficients
all positive or all negative. We talk of positive roots ˆC and negative roots ˆ� . W is
a finite group if and only if the matrix A is a Cartan matrix (ie A is the product of a
diagonal matrix and a positive-definite symmetric matrix). The root system depends
only on the matrix A and not on the full data D . The Weyl group W acts also on ƒ
(and on T ) by !i.�/D �� hhi ; �i˛i , for � 2ƒ and i D 1; : : : ; n.

GD.k/ is a group with a double BN –pair. There are Borel subgroups BC , B� ,
standard parabolic subgroups PCI , P�I for any I � f1; : : : ; ng, root groups Ua for any
a 2ˆ, and all the rich theory of double BN –pairs applies.

From a topological point of view, one of the most remarkable properties of Kac–Moody
groups with infinite Weyl group, which does not hold in the classic case of a finite
Weyl group, is the following.

Theorem 2.1 [19] Let G be a Kac–Moody group with an infinite Weyl group and
let C denote the poset of proper standard parabolic subgroups PI of G . Then there is a
homotopy equivalence BG ' hocolimC BPI .

The purpose of this paper is to compute H�.BGD.k/IFp/ when the free abelian group
ƒ is of rank two, k is a finite field, the Weyl group of GD.k/ is infinite and p is an
odd prime different from the characteristic of the field k .
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Throughout this paper we fix the following notation:

(1) p; ` are different primes, p is odd and k is a finite field of order q and charac-
teristic `.

(2) a; b are positive integers such that ab � 4 and A is the generalized Cartan
matrix

AD

�
2 �a

�b 2

�
:

Without loss of generality, we assume a� b .

(3) ni ;mi ; si ; ti for i D 1; 2 are integers such that�
s1 t1
s2 t2

��
n1 n2

m1 m2

�
DA:

We denote �D s1t2� s2t1 , r D n1m2� n2m1 , so that �r D 4� ab .

(4) ƒ is a free abelian group of rank two, ƒDZe1˚Ze2 , and ƒ_ DZe_
1
˚Ze_

2

is its Z–dual.

(5) ˛1; ˛22ƒ and h1; h22ƒ
_ are the elements ˛iDnie1Cmie2 , hiDsie

_
1
Ctie

_
2

,
i D 1; 2.

(6) G is the Kac–Moody group GD.k/, where D consists of the matrix A, the
lattice ƒ and the elements f˛1; ˛2g and fh1; h2g.

In particular, we want to emphasize that through all this paper the prime p is always
assumed to be odd and different from the characteristic of the field k .

3 The root system in rank two

In this section we will study the root system ˆ associated to the generalized Cartan
matrix A. Recall that ˆ is the orbit of the basis vectors of Q2 under the action of the
infinite dihedral group W D h!1; !2i acting as

!1 D

�
�1 a

0 1

�
; !2 D

�
1 0

b �1

�
:

This root system ˆ has been studied in [17], [18], [21] and [23]. The lattice ƒ and the
elements ˛1; ˛2 2ƒ, h1; h2 2ƒ

_ do not play any role in this section.

If we write � D !1!2 , then the matrices in W can be described as follows (see [18],
[21]):

�n
D

�
d2nC1 �d2n

c2n �c2n�1

�
; �n!1 D

�
�d2nC1 d2nC2

�c2n c2nC1

�
;
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where the integers cn , dn are defined inductively for any integer n as follows:

c0 D d0 D 0; c1 D d1 D 1;

cnC1 D bdn� cn�1; dnC1 D acn� dn�1:

The following proposition lists many properties of these integers that we will use in
this section.

Proposition 3.1

(1) c2nC1 D d2nC1 , bd2n D ac2n .

(2) c2n � 0 .b/, c2nC1 � .�1/n .b/, d2n � 0 .a/, d2nC1 � .�1/n .a/.

(3) c�n D�cn , d�n D�dn .

(4) If aD 1 and b D 4, then d2n D n, c2n D 4n, c2nC1 D d2nC1 D 2nC 1.

(5) If ab > 4, let � > 1 be a real root of X 4� .ab� 2/X 2C 1. Then

cn D

8̂̂̂<̂
ˆ̂:

�2n� 1

�n�1.�2� 1/
n odd,

b.�2n� 1/

�n�2.�4� 1/
n even.

(6) cn; dn > 0 for n> 0.

(7) For ab > 4 the function f .n/D c2nC1� c2n�1 , n> 0, is strictly increasing.

(8) If a; b > 1 then the sequences fcng, fdng are strictly increasing.

(9) The sequences fc2ng, fd2ng, fc2nC1g, fd2nC1g are strictly increasing.

(10) If .a; b/¤ .1; 4/ then d2n < d2nC1 < d2nC4 for n� 0.

(11) If aD 1 then for n> 1 we have d2nC1 <minf.b� 1/d2n; .b� 2/d2n�1g.

Proof Properties (1)–(6) are either evident or can be easily proven by induction
(see [21]).

To prove (7), use (5) to obtain a formula for f .n/ and then check that .d=dx/f .x/ > 0

(see Ruiz [21]). To prove (8) by induction notice that if n is odd then

cnC1 D bdn� cn�1 D bcn� cn�1 � 2cn� cn�1 > cn

and if n is even then

cnC1 D bdn� cn�1 D acn� cn�1 � 2cn� cn�1 > cn

and similarly with fdng.
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To prove (9) it is enough to consider the case a D 1. If b D 4, the result follows
from (4). If b � 5 we know from (7) that fc2nC1g is strictly increasing. Then,
d2n D .c2nC1C c2n�1/=b and c2n D bd2n are also strictly increasing.

In (10) we can also assume aD 1 and b � 5. If we write d2nC1� d2n as a function
of � using (5) then we see that d2n < d2nC1 . We have

�4
D .b� 2/ �2

� 1� 3 �2
� 1> �2

C 1:

Then if k D 2nC 1 we see that �2kC2 > �2k C �2k�2� 1 and so

�2kC6
� 1> �2.�2k

� 1/.�2
C 1/

which implies dkC3 > dk .

If aD 1 we have

d2nC1 D bd2n� d2n�1 D .b� 1/d2n� d2n�1C d2n

and
d2n D d2n�1� d2n�2 < d2n�1

for n> 1. This proves the first inequality in (11). To get the second one, observe

d2nC1 D bd2n� d2n�1 D .b� 1/d2n�1� bd2n�2

D .b� 2/d2n�1C bd2n�2� d2n�3� bd2n�2

< .b� 2/d2n�1

if n> 1.

In this section, it is convenient to denote by fu0; v0g the standard basis of Q2 . We
will use the following notation (i � 0):

ui D �
iu0 D .d2iC1; c2i/; vi D �

�iv0 D .d2i ; c2iC1/;

ui D �
i!1v0 D .d2iC2; c2iC1/; vi D �

�i!2u0 D .d2iC1; c2iC2/:

It is clear that these are the positive roots ˆC of the infinite root system ˆ. Recall, by
Tits [24], that a set of roots ‰ is called prenilpotent if there are elements !;!0 2W

such that !‰ �ˆC and !0‰ �ˆ� . This notion plays a crucial role in the theory of
infinite Kac–Moody groups. The remainder of this section is devoted to investigate
when does a pair of roots form a prenilpotent set of roots and also when is the sum of
two roots again a root. This is essential to understand the structure of the unipotent
subgroups of G (Proposition 4.1).
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We write
AD fui ;ui j i � 0g; B D fvi ; vi j i � 0g:

Proposition 3.2 If e; w 2A (respectively B ), then the pair fe; wg is prenilpotent.

Proof If e; w 2A and N > 0 is large enough then we have ��N e; ��Nw 2ˆ� . If
e; w 2 B then we may use �N for N > 0 large enough.

Proposition 3.3 If e; w 2A (respectively B ) and a> 1, then eCw 62ˆ.

Proof If e; w 2A and eCw 2B then for N > large enough �N .eCw/2ˆ� while
�N .e/; �N .w/ 2 ˆC . Hence, if eCw 2 ˆ then eCw 2 A. Moreover, W leaves
invariant the quadratic form

Q.X;Y /D bX 2
C aY 2

� abXY

and Q.e/DQ.w/DQ.eCw/ is impossible. Hence, any relation eCw 2ˆ should
be one of these (i; j ; k � 0): (1) ui Cuj D uk , (2) ui Cuj D uk , (3) ui Cuj D uk ,
(4) ui Cuj D uk .

Each of these equalities can be translated into an equality between coefficients cn , dn

as follows:

.d2iC1; c2i/C .d2jC1; c2j /D .d2kC2; c2kC1/;(1)

.d2iC1; c2i/C .d2jC2; c2jC1/D .d2kC1; c2k/;(2)

.d2iC1; c2i/C .d2jC2; c2jC1/D .d2kC2; c2kC1/;(3)

.d2iC2; c2iC1/C .d2jC2; c2jC1/D .d2kC1; c2k/:(4)

In each case, reducing modulo a or b and applying Proposition 3.1(2) we get a
contradiction. If we start with e; w 2 B and assume eCw 2ˆ, then applying ��N

for N large enough we obtain a relation e0Cw0 2ˆ with e0; w0 2A, which we have
seen is not possible.

The above result fails for aD 1 since in this case one sees immediately that

u0Cu1 D u1

and applying ���2 to this equality,

v1C v0 D v0:

So, applying respectively �˙i , we obtain relations

(���) ui CuiC1 D uiC1; viC1C vi D vi :
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Proposition 3.4 If aD 1, b > 4, e; w 2A (respectively B ) and eCwD f 2ˆ, then
the equality eCw D f is as in (���) above.

Proof Assume eCwD f 2ˆ with e; w 2A, the case of e; w 2 B being equivalent.
The same arguments as in Proposition 3.3 imply that eCwD f has to be one of these
equalities (i; j ; k � 0): (3) ui Cuj D uk , (4) ui Cuj D uk .

Notice that if ij k>0 then ��1 gives a relation of the same type with smaller subscripts.
Hence, we can assume that at least one of the subscripts i; j ; k is equal to zero.

Equation (3) implies

d2iC1C d2jC2 D d2kC2; c2i C c2jC1 D c2kC1:

Hence d2kC2 > d2jC2 and since the sequence fd2ng is strictly increasing, we get
k > j . Also, since the sequence fc2nC1g is strictly increasing, we get i > 0. Hence,
we can assume j D 0, which amounts to

d2iC1C 1D d2kC2; c2i C 1D c2kC1:

Then,

bd2i � d2i�1 D d2iC1 D d2kC2� 1D d2kC1� d2k � 1D bd2i � d2k :

Using Proposition 3.1(10) we have d2iC2 > d2i�1 D d2k < d2kC1 and so i D k ,
which is impossible since this would imply 1C d2kC1 D d2kC2 D d2kC1� d2k .

On the other side, equation (4) implies

d2iC2C d2jC2 D d2kC1; c2iC1C c2jC1 D c2k :

In particular, k > 0 and without loss of generality we can assume i D 0. We have

1C d2jC2 D d2kC1; 1C c2jC1 D c2k ;

and then

1C d2jC2 Dd2kC1 D c2k � d2k�1 D 1C d2jC1� d2k�1;

d2jC2 Dd2jC1� d2j ;

and so d2j D d2k�1 < d2kC2 (using Proposition 3.1(10)) and j < k C 1 because
fd2ng is strictly increasing. On the other hand, also by Proposition 3.1(10), we have
d2k�2< d2k�1D d2j and since fd2ng is strictly increasing we have k�1< j . Hence,
j D k . Then, c2k D 1C c2kC1 D 1C c2k � c2k�1 , which yields k D 1.

The only remaining case is aD 1, bD 4. In this case, the roots are explicitly computed
in Proposition 3.1(4) and the following result can be easily obtained.
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Proposition 3.5 If aD 1, bD 4, e; w 2A (respectively B ) and eCwD f 2ˆ, then
the equality eCw D f is

ui CuiC2k�1 D uiCk

for some i � 0; k > 0 (respectively vi C viC2kC1 D viCk ).

To summarize, we have seen that in the root system ˆ the sum of two positive roots of
the same type (A or B ) is almost never a root. The only exceptions are

ui CuiC1 D uiC1; i � 0; which occur for aD 1,

ui CuiC2k�1 D uiCk ; i � 0; k > 0; which occur for .a; b/D .1; 4/,

for type A and similarly for type B . Our final step in this section is to compute, in
each of the cases eCw 2ˆ above, the sets .NeCNw/\ˆ.

Proposition 3.6 If e; w 2A (respectively B ) and eCw 2ˆ, then

.NeCNw/\ˆD feCwg:

Proof We know that we can assume aD1. Consider first the case nu0Cmu1Df 2ˆ,
n;m> 0. Then, there are only two possibilities: either f D ui or f D ui . In the first
case, we can solve nu0Cmu1 D ui for n;m and get

nD .b� 1/ d2iC2� .b� 2/ d2iC1;

mD d2iC1� d2iC2:

Then, nDd2iC1�.b�1/ d2i and then Proposition 3.1(11) yields nD0. If nu0Cmu1D

ui then we can also solve for n;m:

nD .b� 1/ d2iC1� .b� 2/ c2i ;

mD c2i � d2iC1:

Hence, nD d2iC1� .b� 2/ d2i�1 and Proposition 3.1(11) yields nDmD 1.

In the general case of nui C muiC1 2 ˆ we can apply ��1 enough times to get
nu0Cmu1 2ˆ, which we have already ruled out.

It remains only the case .a; b/D .1; 4/, where we have to consider

nui CmuiC2k�1 2ˆ; i � 0; k > 0:

Using ��i we can assume that i D 0. Recall that the explicit values of cn and dn are
given by Proposition 3.1(4). Then, the solutions for nu0Cmu2k�1 D uj are

nD 1�
j

2k � 1
; mD

j

2k � 1
;
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which are not possible. Also, the solutions for nu0Cmu2k�1 D uj are

nD 2�
2j � 1

2k � 1
; mD

2j � 1

2k � 1
;

which are only possible for nDmD 1. The proposition is proven.

4 The parabolic subgroups and the Lévi decomposition

In the case of the Kac–Moody group G that we are considering, the poset of the proper
(positive) parabolic subgroups consists of only three groups P¿ D BC , P1 , P2 and
Theorem 2.1 reduces to the fact that BG is the homotopy colimit of the diagram
BP1 BP¿! BP2 . This is equivalent, by Brown [9, Theorem 7.3], to saying that
G is the amalgamated product of P1 and P2 over BC . In this section we want to
investigate the group-theoretical structure of these groups.

Like in the case of a finite Weyl group, by Rémy [20, 6.2], there is a Lévi decomposition
for parabolic subgroups of Kac–Moody groups PI DHI ËVI . In particular, we have
that P¿ D B D T ËUC , where UC is the subgroup generated by all positive root
groups. The proof of our main theorem requires understanding the structure of the
group UC . This structure follows from the study of the root system that we have done
in Section 3. Using the notation that we introduced there, we have:

Proposition 4.1 [17, Proposition 4.3 and Remark 2] Let UA (respectively UB ) be
the subgroup generated by all root groups Ue for e 2A (respectively e 2 B ). Denote
E D

L1
0 kC . Then:

(1) UC D UA �UB .

(2) If a> 1, then both UA and UB are isomorphic to E .

(3) If aD 1, then both UA and UB are extensions of E by E .

Proof (1) is, by Kac and Peterson, in [17, 4.3]. (2) and (3) follow from the analysis
in Section 3. If a> 1 we have seen that the sum of two roots in A (respectively B ) is
not a root. Hence, UA and UB are abelian groups generated by countably many root
groups, each one isomorphic to kC . If aD 1 we have seen that in some cases, the sum
of two roots in A can be a root (see Propositions 3.4 and 3.5). However, the subgroup
of UA generated by the root groups Uui

for i � 0 is abelian, isomorphic to E and
normal in UA . Also, it follows from Propositions 3.4, 3.5 and 3.6 that the quotient of
UA by this normal subgroup is also abelian and isomorphic to E . The same holds
for UB .
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To determine the structure of the subgroups VI we need the following lemma.

Lemma 4.2 Let K and M be groups and assume N is a normal subgroup of index r

in K . Consider the inclusion N �M <K �M . Then the normal closure of N �M in
K �M is isomorphic to the free product N � .�r

iD1
M /.

Proof There is an easy topological proof for this lemma. The inclusion N C K

can be realized topologically by a pointed map of classifying spaces � W BN ! BK

which is a regular r –fold covering. Let fx1; : : : ;xr g be the fiber of � over the base
point of BK and consider the map � 0W eX !X defined as follows. X D BK _BM ,eX D BN _ .BM /1 _ � � � _ .BM /r , where each .BM /i is glued to BN at the point
xi and the map � 0 is defined so that � 0jBN D � and � 0j.BM /i D id.

Then, � 0 is clearly also a regular covering and � 0� identifies �1. eX /ŠN � .�r
iD1

M /

to a normal subgroup of K �M . Hence, the normal closure of N �M in K �M is
contained in �1. eX /.

On the other side, if i is a path in BN from the base point to the point xi , then
the copy of M in �r

iD1
M corresponding to the summand .BM /i is sent by � 0� to

the conjugate Œ�i �
�1M Œ�i � in K �M . Hence, �1. eX / is contained in the normal

closure of N �M in K �M .

We are now ready to prove that for our cohomology computations we can replace the
parabolic subgroups PI by the Lévi subgroups HI .

Proposition 4.3 For each I   f1; 2g, the homomorphism PI ! HI induces an
isomorphism in cohomology with coefficients in Fp .

Proof PI is an extension of HI by VI , hence it is enough to prove that the groups VI

are p–acyclic. Recall that we are assuming that p is prime to the order of k and so the
group kC is p–acyclic. For I D¿ we have V¿DUC and Proposition 4.1 shows that
UC is indeed p–acyclic. Consider V1 . According to Rémy [20, 6.2] V1 is the normal
closure in UC of the subgroup generated by the root groups Ue for e 2ˆC� fu0g.
Proposition 4.1 and Lemma 4.2 allow us to compute this normal closure and we see
that it is also mod p acyclic.

Remark 4.4 The mod p triviality of the unipotent subgroups of Kac–Moody groups
over finite fields of characteristic different from p has been proved independently by
Foley in [12].
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This last result implies that if we take coefficients in Fp , then the cohomology of G

is isomorphic to the cohomology of the group H1 �T H2 . Notice that the hypothesis
p ¤ ` is crucial.

The remainder of this section is devoted to study the structure of the groups Hi D

hT;UCi ;U
�
i i D hT; �i.SL2.k//i as well as the homomorphism �W T ! Hi . It is

possible that the next results are implicitly contained in the literature on Kac–Moody
groups, but we prefer to work out all details in a self-contained way. Recall from
Section 2 the meaning of the integers ni , mi , si , ti for i D 1; 2. Recall also the action
of the Weyl group W on ƒ given by !i.�/ D �� hhi ; �i˛i , for � 2 ƒ. Since the
analysis for H1 is the same as for H2 , we omit all subscripts i D 1; 2 and we write
H , n, m, s , t , ! to simplify the typography.

The homomorphism �W SL2.k/!H can have a nontrivial central kernel. We say that
H is monic if � is injective. The property (�) in Section 2 shows that H is monic if
and only if `D 2 or s; t are relatively prime. Notice also that gcd.s; t/ 2 f1; 2g.

The proof of the following proposition is straightforward.

Proposition 4.5 Assume H is monic and consider  W k� ! k� � k� given by
 .�/D .�s; �t /. Then, there is a split exact sequence of abelian groups

k� //
 // k� � k�

� // // k�

with �.�; �/D��t� s . If s; t are relatively prime, a section is given by �.�/D .���; ��/,
where �;� are integers such that �sC�t D 1. If s; t are both even, then `D 2 and a
section is given by �.�/D ..�1=2/�m; .�1=2/n/.

Proposition 4.6 Let E D SL2.k/Ì k� with action given by

� �
�

x y
z t

�
D

�
x �r y

��r z t

�
for some integer r . Then, E Š GL2.k/ if r is odd and E Š SL2.k/�k� if r is even.

Proof If r D 2r 0� 1, consider the homomorphism

.M; �/ 7�!M
�
�r 0 0

0 �1�r 0

�
from SL2.k/Ì k� to GL2.k/. If r D 2r 0 , consider the homomorphism

.M; �/ 7�!
h
M
�
�r 0 0

0 ��r 0

�
; �
i

from SL2.k/Ì k� to SL2.k/� k� .
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Let H denote any of the groups GL2.k/, SL2.k/�k� and let � be the homomorphism
�W T !H given by

�.�; �/D
�
� 0
0 �

�
2 GL2.k/ and �.�; �/D

h�
� 0

0 ��1

�
; �
i
2 SL2.k/� k�:

Let ! be the automorphism of ƒ given by !.e; v/ D .v; e/ if H D GL2.k/ and
!.e; v/D .�e; v/ if H D SL2.k/� k� .

We say that H is split if n;m are both even. With this notation, we can state the
following structure theorem.

Proposition 4.7 Assume H is monic. Let H D SL2.k/ � k� if H is split and
H D GL2.k/ if it is not. Then:

(1) There is an isomorphism  W H ŠH such that this diagram is commutative:

T
� //

 jT
��

H

Š 
��

T
� // H

(2)  jT is induced by M W ƒ!ƒ given by

M D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

 
1
2
n �t

1
2
m s

!
if H is split,

1
2

 
n� t �n� t

mC s �mC s

!
if H is not split.

(3) M�1!M D ! .

Proof Recall that H D h�.SL2.k//;T i and T normalizes SL2.k/ according to the
formula (��) in Section 2. Since H is monic we have that s; t are relatively prime
and we can apply Proposition 4.5. We have a commutative diagram were each row is
an exact sequence and the bottom row is the split exact sequence in Proposition 4.5:

SL2.k/ // // SL2.k/Ì k� // // k�

SL2.k/ //
� // H

ı

OO

� // // k�

k�

OO

// � // T

�

OO

� // // k�

k� //
 // k� � k�

Š ˛

OO

� // //
k�

�
oo
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This proves that H Š SL2.k/Ì k� . To compute the action, choose �;� such that
�sC�t D 1 and let r D �m��n. It is easy to see that r is even if and only if n;m

are both even, ie if H is split. Then we conclude that the action of k� on SL2.k/ is
given by

� �

�
x y

z t

�
D

�
x �r y

��r z t

�
and then Proposition 4.6 proves the first part of this proposition.

To compute the matrix M , notice that ı is given by ı.g/D .��1.g ��.g/�1/; �.g//.
Then, some diagram chasing yields

M D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

 
�� r 0t ��C r 0t � t

�C sr 0 ��� sr 0C s

!
r D 2r 0� 1, H not split, 

�� r 0t �t

�C r 0s s

!
r D 2r 0, H split.

It is easy to see that these matrices coincide with the ones in (2). Knowing these explicit
values for M , the equality in (3) is immediate.

Consider now the case in which H is not monic. This means that `¤ 2 and s D 2s0 ,
t D 2t 0 .

Proposition 4.8 Assume H is not monic and consider  W k�! k� � k� given by
 .�/D .�s; �t /. Let d D .q� 1/=2. There is an exact sequence of abelian groups

k�=f˙1g //
 0 // k� � k�

� 0 // // k� � f˙1g;

where  0 is induced by  and � 0 is given by � 0.�; �/D .��t 0� s0 ; .�n�m/d /.

Proof Since H is not monic, we have that q is odd and .s; t/ D 2. We know
that ns0 C mt 0 D 1. The injectivity of  0 as well as the identity � 0 0 D 1 are
clear. Notice that .�; 1/ D � 0.��m; �n/. Also, if � is a generator of k� , we have
.1;�1/D � 0.� s0 ; � t 0/. This proves the surjectivity of � 0 . Assume � 0.�; �/D .1; 1/.
If n is even, then m is odd and this implies that � is a square � D  2 . Then,
.�; �/D  0.�n=2m/. The case m even is similar. Finally, if n;m are both odd, we
have .�; �/d D 1 and so �; � are both squares or both nonsquares. If � D ı2 , � D  2 ,
then .�; �/ D  0.ınm/. If � , � were both nonsquares, the equality �t 0 D � s0 is in
contradiction to ns0Cmt 0 D 1 with n;m odd.
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Notice that this exact sequence is always split over k� � f1g, a section being given by
�.�; 1/D .��m; �n/. But one sees easily that this exact sequence is not always split
over f1g � f˙1g.

Proposition 4.9 Assume H is not monic. Let �W T ! PGL2.k/� k� be given by

�.�; �/D
�h�

� 0
0 1

�i
; �
�

and let !W ƒ!ƒ be given by !.e; v/D .�e; v/. Then:

(1) There is an isomorphism  W H ŠPGL2.k/�k� such that the following diagram
is commutative:

T
� //

 jT
��

H

Š 

��
T

� // PGL2.k/� k�

(2)  jT is induced by M W ƒ!ƒ given by

M D
�

n �t=2
m s=2

�
:

(3) M�1!M D ! .

Proof Since H is not monic, �W SL2.k/! H factors through a monomorphism
�0W PSL2.k/!H which fits into a commutative diagram

PSL2.k/ //
�0 // H

� 0 // // k� � f˙1g

k�=f˙1g

OO

// �0 // T

�

OO

� 0 // // k� � f˙1g

k�=f˙1g //
 0 // k� � k�

Š ˛

OO

� 0 // // k� � f˙1g;

where the bottom row coincides with the exact sequence in Proposition 4.8. This bottom
exact sequence is split over k� � f1g and a section is �.�; 1/D .��m; �n/. In general,
it is not split over f1g � f˙1g. However, the top exact sequence is split. To see this,
consider the element

ˇ D �
�

0 �1
1 0

�
�˛.� s0 ; � t 0/ 2H;

where � 2 k� is a generator. Then � 0.ˇ/D .1;�1/ and an easy computation using
formulas (�) and (��) in Section 2 shows that ˇ2 D 1. Hence, H is a semidirect
product H Š PSL2.k/Ì .k� � f˙1g/.
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Then, if we compute the induced action of k� � f˙1g on PSL2.k/, it turns out that
k� acts trivially, while f˙1g acts through�

x y
z t

�
7!

�
t ���1z
��y x

�
:

It is easy to identify this extension. Consider the homomorphism �W PGL2.k/!f˙1g

which sends to �1 all matrices whose determinant is not a square. The kernel of � is
PSL2.k/ and we have an extension

PSL2.k/ //
�0 // PGL2.k/

� // // f˙1g:

This extension has a section given by

�1 7�!
�

0 ���1

1 0

�
and the action of f˙1g on PSL2.k/ is exactly the same as above. This proves that
H Š PGL2 � k� .

We want to compute now the homomorphism

k� � k�
˛ // T

� // H
ı // PSL2.k/Ì .k� � f˙1g/ // PGL2.k/� k�:

We omit the details of this computation which is straightforward once we have an
explicit section of the extension and we recall that ı is given by

ı.g/D .�0�1.g�.� 0.g/�1//; � 0.g//:

Once we have the matrix M , the equality in (3) follows immediately.

5 Cohomology of the parabolic subgroups

We have seen in Proposition 4.3 that the proper parabolic subgroups PI have the same
mod p cohomology as their Lévi factors, which are T , H1 , H2 . We have also seen in
Proposition 4.7 and Proposition 4.9 that the groups H1 , H2 are isomorphic to GL2.k/,
SL2.k/�k� or PGL2.k/�k� . In this section we recollect some known facts about the
cohomology of these finite groups. Most of this can be found in Adem and Milgram [1]
and Fiedorowicz and Priddy [11]. Recall that we are always assuming that p is an odd
prime different from `.

If q 6� ˙1 .p/, then p does not divide the order of these groups and cohomology is
trivial in all cases.
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Let D D k� � k� Š .Z=.q� 1/Z/2 be the subgroup of diagonal matrices in GL2.k/.
If q � 1 .p/, then H�.BGL2.k/IFp/ is a ring of invariants, namely

H�.BGL2.k/IFp/ŠH�.BDIFp/
C2 ;

where C2 is a cyclic group of order two acting on D by permuting the two factors.
Also, if r is such that q� 1D spr with s prime to p , then

H�.BDIFp/ŠH�.BZ=pr Z�BZ=pr ZIFp/

and
H�.BGL2.k/IFp/Š Fp Œx2;x4�˝E.y1;y3/

(the subscripts denote the degrees of the generators) with secondary Bocksteins of
height r relating the exterior generators to the polynomial generators.

If q � �1 .p/, then H�.BDIFp/ is trivial but H�.BGL2.k/IFp/ is also a ring of
invariants. If qC 1D spr with s prime to p , then

H�.BGL2.k/IFp/ŠH�.BZ=pr ZIFp/
C2 Š Fp Œx4�˝E.y3/;

where C2 acts on Z=pr Z by multiplication by �1.

The case of SL2.k/D Sp2.k/ is similar. If q ��1 .p/ then

H�.B.SL2.k/� k�/IFp/ŠH�.BSL2.k/IFp/ŠH�.BGL2.k/IFp/:

If q � 1 .p/ then

H�.BSL2.k/IFp/ŠH�.B.D\SL2.k//IFp/
C2 Š Fp Œx4�˝E.y3/;

where C2 acts on D\SL2.k/Š Z=.q� 1/Z as multiplication by �1.

Let us consider now the case of PGL2.k/. If q��1 .p/ then H�.Bk�IFp/ is trivial
and the extension k�� GL2.k/� PGL2.k/ gives an isomorphism

H�.BPGL2.k/IFp/ŠH�.BGL2.k/IFp/:

On the other side, if q� 1 .p/ and r is such that q�1D spr with s prime to p , then
the Sylow p–subgroup of PGL2.k/ is cyclic,

SylD
˚��

x 0
0 1

�� ˇ̌
x 2 k�; xpr

D 1
	
Š Z=pr Z;

and it is easy to compute the stable elements in H�.BSylIFp/. It turns out that the
only automorphism of Syl that appears is the involution x 7! x�1 and so

H�.BPGL2.k/IFp/ŠH�.BSylIFp/
C2 Š Fp Œx4�˝E.y3/:

If we apply all this to the parabolic subgroups H1 , H2 in G , we obtain the following.
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Proposition 5.1 Let H be one of the Lévi subgroups of G and let ! 2 W be the
corresponding generating reflection. Then, H�.BH IFp/ is trivial unless q �˙1 .p/.
If q � 1 .p/ then H�.BH IFp/ŠH�.BT IFp/

! . If q ��1 .p/ then H�.BT IFp/

is trivial and H�.BH IFp/ Š Fp Œx4�˝E.y3/ with a Bockstein relating y3 to x4 .
These isomorphism are induced by the inclusion of T in H .

Proof This follows from Propositions 4.7 and 4.9 and the discussion above.

In this paper we are assuming that p is an odd prime. It happens that the situation at
the prime two is far more complex, even for the Lévi factors. For example, if p D 2

and q� 3 .4/, we have H�.BDIFp/ŠH�.BZ=2Z�BZ=2ZIF2/Š F2Œu1; v1� and
H�.BGL2.k/IF2/ is the subalgebra of H�.BDIF2/ generated by the elements

x1 D u1C v1; x3 D u1v
2
1 Cu2

1v1; x4 D u2
1v

2
1 ;

(see Fiedorowicz and Priddy [11, page 342]). Then, H�.BGL2IF2/ is neither a
polynomial ring nor a ring of invariants. Actually,

H�.BGL2.k/IF2/Š F2Œx4;x1;x3�=.x
2
3 Cx4x2

1/:

6 The Weyl group and its invariants

The Weyl group W of the Kac–Moody group G is an infinite dihedral group. There
are two relevant integral representation of W . First, there is the action of W on Q2

given by the root system, as studied in Section 3. On the other side, W acts on the
lattice ƒ by !i.�/D �� hhi ; �i˛i for i D 1; 2. In this section we are interested in
the representation given by the action of W on ƒ˝Zp .

The integral p–adic representations of an infinite dihedral group were classified by
Aguadé, Broto and Saumell in [5] (see also Aguadé [2]) using some explicit invariants
which can be easily computed. Let us denote by �p the p–adic valuation.

Theorem 6.1 [5; 2] Assume p is an odd prime. There are invariants �.�/ 2 Zp ,
ı1.�/; ı2.�/ 2 f0; 1; 2; : : : ;1g which classify all representations �W W ! GL2.Zp/.
These invariants can take any value in their range, subject to the relation ı1C ı2 D
�p.�/C �p.� � 1/. If a representation � is given by

!1 D
�

1 0
0 �1

�
and !2 DM�1

�
1 0
0 �1

�
M

with M D
�

x y
z t

�
(any representation is like that), then

�.�/D xt=det.M /; ı1.�/D �p.xz/ and ı2.�/D �p.yt/:
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There is also a similar result for p D 2 which is more complex and will not be needed
in this work (see [5] and [2]).

Let us apply this result to classify the action of W on ƒ˝Zp . Recall from Section 2
the meaning of the integers a, b , �, r .

Proposition 6.2 The p–adic representation of the Weyl group of G given by the action
of W on ƒ˝Zp is classified by �D ab=4, ı1D �p.a/C�p.�/, ı2D �p.b/C�p.r/.

Proof The representation is given by the matrices

!i D

�
1� sini � tini

� sini 1� tini

�
; i D 1; 2:

The matrices Pi D
�

ti ni
�si mi

�
for i D 1; 2 have determinant 2 and satisfy

P�1
i !iPi D

�
1 0
0 �1

�
:

Hence, the matrix M in Theorem 6.1 is M D P�1
2

P1 D
1
2

�
�a r
�� �b

�
.

The action of W on ƒ gives an action of W on T DHom.ƒ; k�/ and on H 1.T IFp/.
Of course, H 1.T IFp/ vanishes unless q � 1 .p/. In this case, H 1.T IFp/ D Fp

2

and we have a representation of W in GL2.Fp/, which is the reduction modulo p of
the p–adic representation of W studied in Proposition 6.2 and factors through some
finite dihedral group Wp . We are interested in these representations and in their rings
of invariants. The mod p reductions of the representations of an infinite dihedral group
in GL2.Zp/ were studied by Aguadé, Broto, Kitchloo and Saumell (see [4, Table 1]).
Let us summarize the results of [4] that we need here. We denote by P a polynomial
algebra P D Fp Œx;y� with two generators of degree 2, with the given action of Wp .
There are six types of representations:

� Type I � � 0 .p/, ı1; ı2> 0. Wp is elementary abelian of order 4 and its invariants
are PW D Fp Œx

2;y2�.

� Type II A representation in this type is given, up to the outer automorphism of W ,
by � � 0 .p/, ı1 D 0; ı2 > 0. Wp is a dihedral group of order 4p and its invariants
PWp form a polynomial ring on generators y2 , x2.xp�1�yp�1/2 .

� Type III Wp is of order two. � 6� 0 .p/, ı1; ı2 > 0, PW D Fp Œx;y
2�.

� Type IV This type occurs when � 6� 0 .p/, ı1 D 0, ı2 > 0. Wp is then a dihedral
group of order 2p in GL2.Fp/ which is studied in Smith [22, pages 128–129]. The
invariants are polynomial in degrees 2 and 4p namely PW D Fp Œx; .yxp�1�yp/2�.
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� Type V This type occurs when � 6� 0 .p/, ı1 > 0, ı2 D 0. Wp is then a dihedral
group of order 2p in GL2.Fp/ which is also studied in [22, pages 128–129]. The
invariants are polynomial in degrees 4 and 2p namely PWDFp Œy

2;x.xp�1�yp�1/�.

� Type VI This type occurs when � 6� 0 .p/, ı1 D ı2 D 0. The order 2m of
the dihedral group Wp is twice the multiplicative order of the roots (in Fp2 ) of the
polynomial X 2� 2.2� � 1/X C 1. Thus, p �˙1 .m/. In particular, the order of Wp

is prime to p and then the invariants PW form a polynomial ring on generators z4 ,
t2m of degrees 4 and 2m, respectively. (See [4].)

Let us study in more detail the invariant theory of the representations of type VI. What
follows is probably known, but we have not been able to find references for everything
that we need in this paper. Hence, this may have some independent interest.

Proposition 6.3 Let � be the representation of type VI of the dihedral group of order
2m in GL2.Zp/ classified by � 2 Zp . Let � 2 Fp2 be a primitive mth root of unity.
Then, there is a basis x;y such that the ring of invariants Fp Œx;y�

D2m D Fp Œf;g�,
where the polynomials f;g can be chosen as follows:

(1) If p � 1 .m/, then f D xy , g D xmCym .

(2) If p ��1 .m/, then f D x2C .2� 4�/xyCy2 .

(3) If p ��1 .m/, let uD �x�y , v D �y �x . Then, g D umC vm if m is even,
m¤ 2, and g D .umC vm/=.� � ��1/ if m is odd.

Proof If p � 1 .m/, then � 2 Fp and the matrices

! D

�
0 1

1 0

�
; � D

�
� 0

0 ��1

�
;

generate the representation � . The computation of the invariants of this representation
is trivial:

Fp Œx;y�
D2m D Fp Œf;g�; f D xy; g D xm

Cym:

If m D pC 1, then � 62 Fp , but � i C ��i and .� i � ��i/=.� � ��1/ are in Fp for
all values of i (they are invariant under the Frobenius). Let  D � C ��1 . Actually,
�; ��1 are the roots of the irreducible polynomial X 2�X C1 and so � 2 Fp2 . Also,
 D 4� � 2. Let us consider the matrices

! D

�
0 1

1 0

�
; � D

�
 1

�1 0

�
; !; � 2 GL2.Fp/:
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If we extend scalars to Fp2 , then the change of basis given by P D
�
� �1
�1 �

�
transforms

!; � into

P�1!P D

�
0 1

1 0

�
; P�1�P D

�
� 0

0 ��1

�
;

and we see that !; � generate a dihedral group D2m � GL2.Fp/ which gives the
representation � . Like before, the computation of the invariants over Fp2 is trivial:

Fp2 Œu; v�D2m D Fp2 Œf;g�; f D uv; g D upC1
C vpC1;

but we are interested in having explicit descriptions of the invariants over Fp .

We have f D uv D��.x2 � xyC y2/ and thus ���1f is a degree two invariant
in Fp Œx;y�

D2m . (Notice that  2 � 4 D .� � ��1/2 is not a square in Fp and so no
change of basis can produce a degree two invariant of the form xy , in contrast to what
is written in [22, page 137].)

Let us consider now the invariant g.u; v/. If we write it in the basis x;y we have

g D upC1
C vpC1

D

pC1X
iD0

.�1/i
�

pC 1

i

�
.� i
C ��i/xiyp�iC1:

Hence, g 2 Fp Œx;y� and we have seen that Fp Œx;y�
D2m D Fp Œ�

�1uv;upC1C vpC1�.

Consider now the general case p � �1 .m/, m ¤ 2. If mr D pC 1, then !; �r in
GL2.Fp/ produce the representation � of D2m in GL2.Fp/ and its invariants over
Fp2 are generated by f D uv and gm D umC vm . Like before, x2�xyCy2 is an
invariant in degree two. The situation with respect to gm is slightly more complicated.
If m is even, then

gm D um
C vm

D

mX
iD0

.�1/i
�

m

i

�
.� i
C ��i/xiym�i

2 Fp Œx;y�

and Fp Œx;y�
D2m D Fp Œx

2� xyCy2;umC vm� like before. On the other side, if m

is odd we have

gm D um
C vm

D

mX
iD0

.�1/m�i

�
m

i

�
.� i
� ��i/xiym�i

62 Fp Œx;y�

and so gm=.� � �
�1/ 2 Fp Œx;y�. Thus, we have

Fp Œx;y�
D2m D Fp

�
x2
� xyCy2;

umC vm

� � ��1

�
:
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7 The structure of Coker.�/

In this section we will continue the study of the invariant theory of a dihedral group of
type VI that we introduced in Section 6. So, p is an odd prime and D is a dihedral group
with a representation in GL2.Fp/ of type VI, classified by � 2 Fp , � ¤ 0. The order
of D is 2m, where m is the order of the roots of X 2� 2.2� � 1/X C 1. Depending
on the values of a, b , �, r (see Proposition 6.2), the Weyl group of the Kac–Moody
group G acting on H 1.T IFp/ provides an example of such a representation, but this
section is written independently of the theory of Kac–Moody groups.

We use the following notation. P DFp Œv; v
0� is a polynomial algebra on two generators

of degree two. S D Fp Œv; v
0�˝E.u;u0/ is the tensor product of P and an exterior

algebra on two generators of degree one. We consider P as a subalgebra of S . From
a topological point of view, we can think of P and S as H�.BS1 �BS1IFp/ and
H�.BZ=p�BZ=pIFp/, respectively.

Let us consider the following (graded) derivations acting on S . d has degree �1 and
is given by

d.u/D d.u0/D 0; d.v/D u; d.v0/D u0:

ı has degree C1 and is given by

ı.v/D ı.v0/D 0; ı.u/D v; ı.u0/D v0:

Under the identification S ŠH�.BZ=p�BZ=pIFp/, ı corresponds to the Bockstein
homomorphism. It is easy to see that if x 2 P is a polynomial of degree 2n, then
ıd.x/D nx .

D acts on the algebras P and S and it is clear that the derivations d and ı commute
with this action. From Proposition 6.3 we know that the ring of invariants of P under
D is a polynomial algebra PD D Fp Œx4;x2m� and we have explicit descriptions of the
generators x4;x2m . If we consider the action of D on S , [22, Theorem 9.3.2] says
that the ring of invariants is

SD
D Fp Œx4;x2m�˝E.dx4; dx2m/:

D is generated by two elements !1; !2 of order two and we can also consider the
rings of invariants of each generating reflection S!1 , S!2 .

Let � be the PD linear map

S!1 ˚S!2 �! S

defined by �.t; h/D t Ch. We want to investigate the structure of S D Coker.�/ as a
PD–module.
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Let us introduce now two relative invariants ˛ , J of D in S .

˛ D uu0; J D

ˇ̌̌̌
ˇ @x4

@v
@x4

@v0

@x2m

@v
@x2m

@v0

ˇ̌̌̌
ˇ :

Of course, J is the Jacobian of the algebraically independent polynomials x4 and x2m

and so it does not vanish. It is a polynomial of degree 2m in P . One sees immediately
that both ˛ and J are relative invariants of D with respect to the determinant: for any
g 2D we have g˛ D det.g/ ˛ and gJ D det.g/J .

Since the derivations d and ı commute with the action of D on S , we can define two
new relative invariants as follows.

˛0 D ı.˛/D vu0� v0u; J 0 D
1

m
d.J /:

Notice that ı.J 0/D J .

Proposition 7.1 Œ˛�, Œ˛0�, ŒJ �, ŒJ 0� are PD–linearly independent elements in S .

Proof Let f Œ˛0�CgŒJ �D0 in S with f;g2PD . This means that there are p1 2S!1 ,
p2 2 S!2 such that

f ˛0CgJ D p1Cp2:

Applying !1 and subtracting we get

2f ˛0C 2gJ D p2�!1p2:

Applying !2 we get
�2f ˛0� 2gJ D p2�!2!1p2:

Notice that ˛0 and J are left invariant by !2!1 . Hence, applying !2!1 and adding,
we get

�4f ˛0� 4gJ D p2� .!2!1/
2p2:

Inductively, we get

�2mf ˛0� 2mgJ D p2� .!2!1/
mp2 D 0:

Since m is prime to p , this yields f ˛0CgJ D 0 in S . But gJ 2 P and so f ˛0 2 P

and this can only happen if f;g D 0.

We have proven that Œ˛0� and ŒJ � are PD–linearly independent in S . Consider now a
vanishing linear combination f Œ˛�CgŒ˛0�C hŒJ �C l ŒJ 0�D 0. This means that there
are p1 2 S!1 , p2 2 S!2 such that

f ˛Cg˛0C hJ C lJ 0 D p1Cp2:
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If we apply the derivation ı we get

f ˛0C hJ D ı.p1/C ı.p2/D 0

and the argument above yields f D hD 0. Then, g˛0C lJ D p1Cp2 and again this
implies g D l D 0.

The following consequence of the proposition above is a key step in our computation
of the cohomology of the Kac–Moody group G . It displays an interesting parallelism
to the computations on H�.BK.C// in the case of finiteness rank two that appear in
Aguadé [3].

Theorem 7.2 S is a free PD–module with basis fŒ˛�; Œ˛0�; ŒJ �; ŒJ 0�g.

Proof We know that the free PD–module with basis fŒ˛�; Œ˛0�; ŒJ �; ŒJ 0�g is a submodule
of S . It is enough to prove that both graded vector spaces have the same Poincaré
series. The kernel of � is SD . It is very easy to write down the Poincaré series of S ,
S!1 ˚S!2 and SD . Then, a straightforward computation with power series proves
that the Poincaré series of S is as expected.

The computation of the multiplicative structure of H�.BGIFp/ in the next section
requires that we work out some relations that hold in S . Let y3Ddx4 , y2m�1Ddx2m .
Let �;  be as in the proof of Proposition 6.3.

Theorem 7.3 The following identities hold in S :

(1) y3J 0 Dm�x2m˛ , y2m�1J 0 D 2m2�xm�1
4

˛ ,

(2) y3J D 2x4J 0�m�x2m˛
0 , y2m�1J Dmx2mJ 0� 2m2�xm�1

4
˛0 ,

where the coefficients � and � are as follows:

(a) �D 1 if p � 1 .m/; �D  2� 4 if p ��1 .m/.

(b) �D 1 if p � 1 .m/; �D  2� 4 if p ��1 .m/ and m¤ 2 is even; �D�1 if
p ��1 .m/ and m is odd.

Proof The identities in (2) follow from (1) applying the derivation ı . To prove (1)
consider

y3J 0 D
1

m
dx4 dJ D

1

m
J .x4;J .x4;x2m//˛;

y2m�1J 0 D
1

m
dx2m dJ D

1

m
J .x2m;J .x4;x2m//˛;
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where J .f;g/ denotes the determinant of the Jacobian matrix of the polynomials
f;g . To compute these double Jacobians, notice that the Jacobian is a relative invariant
of the determinant and so if we change bases then the Jacobian is multiplied by the
determinant of the change of basis matrix.

We will use the descriptions of x4 and x2m as given in Proposition 6.3.

If p � 1 .m/, then x4 D vv
0 , x2m D v

mC .v0/m . Then, a trivial direct calculation
gives

J .x4;J .x4;x2m//Dm2x2m;

J .x2m;J .x4;x2m//D 2m3xm�1
4 :

If p � �1 .m/, we extend scalars as to have the mth root of unity � in our field of
coefficients. Then x4 and x2m have simple descriptions in a new base w;w0 which is
related to the basis v; v0 through a matrix P of determinant �2� 1 (see the proof of
Proposition 6.3).

If p��1 .m/ and m is even, m¤ 2, then x4 D��
�1ww0 and x2m Dw

mC .w0/m .
In this new basis, the computation of the double Jacobians is as easy as in the case
p � 1 .m/. We get

J .x4;J .x4;x2m//D �
�2.�2

� 1/2m2x2m Dm2. 2
� 4/x2m;

J .x2m;J .x4;x2m//D��
�1.�2

� 1/22m3.ww0/m�1
D 2m3. 2

� 4/xm�1
4 :

If p��1 .m/ and m is odd, then x4D��
�1ww0 and x2mD .w

mC.w0/m/=.����1/.
Then

J .x4;J .x4;x2m//D �
�2.� � ��1/�1.�2

� 1/2m2.wm
C .w0/m/

Dm2. 2
� 4/x2m;

J .x2m;J .x4;x2m//D��
�1.� � ��1/�2.�2

� 1/22m3.ww0/m�1

D�2m3xm�1
4 :

8 The cohomology of BG

The preceding sections have provided all ingredients that we need to compute the
cohomology algebra of the Kac–Moody group G with coefficients in the field Fp . By
Theorem 2.1 we know that BG is homotopy equivalent to the push out of

BP1 � BP¿ �! BP2:
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By Proposition 4.3 we know that H�.BGIFp/ Š H�.B.H1 �T H2/IFp/. We
have computed H1 and H2 in Section 4 and we have computed H�.BHi IFp/ in
Proposition 5.1. Then, the obvious tool to use to compute H�.B.H1 �T H2/IFp/

is the Mayer–Vietoris exact sequence. The following lemma on the behavior of the
connecting homomorphism of the Mayer–Vietoris exact sequence will be useful.

Lemma 8.1 Let

A
i1 //

i2

��

l

  

B1

j1

��
B2

j2 // X

be a push out diagram and let �W H�.A/!H�.X / be the connecting homomorphism
of the corresponding Mayer–Vietoris exact sequence (coefficient ring omitted). Then,
for any x 2H�.X /, t 2H�.A/, we have �.l�.x/ t/D x�.t/.

Proof Let us assume that all maps in the diagram are cofibrations. Then, � is defined
through this commutative diagram (see Dold [10, page 49]):

H�.A/
� //

ı
��

H�.X /

H�.B1;A/ H�.X;B2/;
k�

Š
oo

r�

OO

where r and k are the obvious inclusions, ı is the connecting homomorphism for the
couple .B1;A/ and k is an isomorphism because of excision. The way that ı behaves
with respect to cup products (see Dold [10, page 220]) gives

ı.i�1 .b1/ t/D b1 ı.t/; for b1 2H�.B1/; t 2H�.A/:

Then, an easy calculation using �D r�.k�/�1ı gives the formula of the lemma.

Let us deal first with the easy case in which q 6� 1 .p/. If .A1; �1/ and .A2; �2/

are augmented graded Fp –algebras, let us denote by A1 _A2 the augmented graded
algebra defined as the kernel of �1� �2W A1˚A2! Fp .

Proposition 8.2 If q 6� ˙1 .p/ then H�.BGIFp/ Š Fp . If q � �1 .p/ then
H�.BGIFp/ŠA_A with AD Fp Œx4�˝E.y3/ (subscripts denote degrees).
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Proof This follows immediately from the Mayer–Vietoris exact sequence

� � � �!H��1.BT /
�
�!H�.BG/

 
�!H�.BH1/˚H�.BH2/

�
�!H�.BT /�! � � �

and Proposition 5.1.

Of course, the relevant case is when q � 1 .p/. In this case, the computation of
H�.BGIFp/ will be made under the following stability hypothesis:

(SH) The prime p is large enough so that ab.ab� 4/ is prime to p .

This hypothesis implies that the representation of the Weyl group W of G is of type VI
(see Proposition 6.2). In the geometric language of Aguadé [2], these representations
are the ones which have transversally intersecting geodesic paths (see [2, Section 4]).

We use the notation of Section 7. In particular SW D Fp Œx4;x2m�˝E.y3;y2m�1/

and PW D Fp Œx4;x2m�. We are ready for the main result of this paper:

Theorem 8.3 Assume that q � 1 .p/ and the stability hypothesis (SH) is satisfied.
Then H�.BGIFp/ is a SW–module with generators 1; ˛3; ˛4;J2m;J2mC1 (subscripts
denote degrees) and relations

(1) y3˛3 D 0; y2m�1˛3 D 0,

(2) 2x4˛3�y3˛4 D 0; mx2m˛3�y2m�1˛4 D 0,

(3) y3J2m�m�x2m˛3 D 0; y2m�1J2m� 2m2�xm�1
4

˛3 D 0,

(4) y3J2mC1Cm�x2m˛4� 2x4J2m D 0;

y2m�1J2mC1C 2m2�xm�1
4 ˛4�mx2mJ2m D 0;

where the parameters � and � are as follows:

(1) If p � 1 .m/, then �D �D 1.

(2) If p ��1 .m/, then �D ab.ab� 4/ and �D ab.ab� 4/ if m¤ 2 is even and
�D�1 if m is odd.

The algebra structure of H�.BGIFp/ is determined by the above relations and the fact
that all products between the generators ˛3; ˛4;J2m;J2mC1 vanish.
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Proof As discussed above, we have a Mayer–Vietoris exact sequence (coefficients in
Fp are assumed)

� � � �!H��1.BT /
�
�!H�.BG/

 
�!H�.BH1/˚H�.BH2/

�
�!H�.BT /�! � � �

By Proposition 5.1 we know that H�.BHi/ Š S!i , i D 1; 2, where !1; !2 are the
generators of the Weyl group W . Then, the kernel of � is SW and if we denote
S D Coker.�/ as in Section 7, we have a short exact sequence

0 �! S
x�
�!H�.BG/

 
�! SW

�! 0:

Notice that  is a ring homomorphism and SW is a free graded algebra. Hence,
we can choose a section � of � which is a ring homomorphism. This section turns
H�.BG/ into an SW–module. Then, Lemma 8.1 implies that � is SW–linear. We
have that the above short exact sequence is an exact sequence of PW –modules. Both S
and SW are free PW –modules (Theorem 7.2) and so H�.BG/ is a free PW –module
with basis

1; �.y3/; �.y2m�1/; �.y3/�.y2m�1/;

˛3 D
x�Œ˛�; ˛4 D

x�Œ˛0�; J2mC1 D
x�ŒJ �; J2m D

x�ŒJ 0�:

To complete the proof we should compute all products between these generators. First of
all, notice that � is a connecting homomorphism which arises from a map BG!†BT

and so all products in the image of � vanish. In S we have y3˛ D y2m�1˛ D 0

and this implies the relations (1) in H�.BG.k//. Applying ı we get the relations (2).
Relations (3) and (4) follow from the identities in S proven in Theorem 7.3 and the
fact that  2� 4D ab.ab� 4/ in this case.

9 Comparing BG and the fixed points of an Adams map

There is a well know result by Friedlander [13] that relates the classifying space of a
Chevalley group over a finite field k to the homotopy fixed points of an unstable Adams
map from the classifying space of the corresponding compact connected Lie group,
after completion at a prime different to the characteristic of k . More precisely, let
p; ` be different primes, k a finite field of order q and characteristic `, K a compact
connected Lie group and K.q/ the Chevalley group over k of type K . Then, there is
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a homotopy pullback diagram

BK.q/^p //

��

BK^p

�
��

BK^p
.1; q/ // BK^p �BK^p ;

where  q is an unstable Adams map of exponent q . This result was generalized by
Broto and Møller in [8] to the case in which K is a p–compact group, and by González
[14] to the case where K is in a particular family of p–local compact groups. Then,
K.q/ turns out to be a p–local finite group. In this final section we want to investigate
if such a pullback diagram could also exist in the context of Kac–Moody groups.

Let K denote the unitary form of a connected, simply connected, not compact Kac–
Moody group as in [16], [18] and [7] and assume that K is of rank two, uniquely
determined by two positive integers a; b with ab > 4. In the case of rank two, there
is a satisfactory theory of Adams maps  qW BK! BK developed in [6] and so, for
a prime p and a prime power q with p − q , it makes sense to consider the space X

defined as the homotopy pullback

X //

��

BK^p

�
��

BK^p
.1; q/// BK^p �BK^p :

If Friedlander’s theorem were true for Kac–Moody groups, then this space X should
be homotopy equivalent to BGD.Fq/

^
p , where GD.Fq/ is the corresponding discrete

Kac–Moody group. Interestingly enough, this is not true: we will see that, in some
particular cases, X and BGD.Fq/

^
p do not have the same mod p cohomology.

Consider GDGD.Fq/ the discrete Kac–Moody group associated to the data D consist-
ing of the generalized Cartan matrix AD

�
2 �a
�b 2

�
and the matrix

�
n1 n2
m1 m2

�
D
�

1 0
0 1

�
(see

Section 2). Let us choose the data a; b;p; q such that the following holds. p and q are
odd and relatively prime. p does not divide ab.ab� 4/, q 6� ˙1 .p/ and qm � 1 .p/,
where m is the multiplicative order in Fp2 of the roots of X 2C .2� ab/X C 1. It
is easy to see that these choices are possible. Under these hypothesis, the mod p

cohomology of the classifying space of the (discrete) Kac–Moody group G is trivial
(Proposition 8.2).
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The mod p cohomology of the classifying space of the unitary, connected, simply
connected, Kac–Moody group K DK.a; b/ is computed in [4]:

H�.BKIFp/D Fp Œx4;y2m�˝E.z2mC1/:

Let  qW BK! BK be an unstable Adams map as defined in [6]. When restricted to
a maximal torus of K ,  q is the q–power map. Let X be defined by the homotopy
pullback above. We will show that the mod p cohomology of X does not vanish in
positive degrees.

Consider the Serre spectral sequence in mod p cohomology for the fibration sequence

K �! BK
�
�! BK �BK:

The cohomology of the topological group K , by [18], is as follows:

H�.KIFp/DE.zx3; zy2m�1/˝�Œzz2m�:

(� denotes a divided power algebra.) Then, it is obvious that the elements zx3 and
zy2m�1 in the spectral sequence have to be transgressive to x4 ˝ 1 � 1 ˝ x4 and
y2m˝ 1� 1˝y2m , respectively. Then, pulling back by .1;  q/� to the Serre spectral
sequence for K!X ! BK we see that in this spectral sequence the element zy2m�1

is transgressive to .1� qm/y2m D 0 and so it survives to H 2m�1.X IFp/.

A similar phenomenon happens also in the case q �˙1 .p/.

This discrepancy between classifying spaces of infinite Kac–Moody groups over finite
fields and the homotopy fixed points of the corresponding Adams maps deserves further
study.

Remark 9.1 The difference between the cohomology of the classifying space of rank
2 infinite Kac–Moody groups over finite fields and the homotopy fixed points of the
corresponding Adams map has been proved independently by Foley in [12].
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