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A finite-dimensional approach to
the strong Novikov conjecture
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The aim of this paper is to describe an approach to the (strong) Novikov conjecture
based on continuous families of finite-dimensional representations: this is partly
inspired by ideas of Lusztig related to the Atiyah–Singer families index theorem,
and partly by Carlsson’s deformation K–theory. Using this approach, we give
new proofs of the strong Novikov conjecture in several interesting cases, including
crystallographic groups and surface groups. The method presented here is relatively
accessible compared with other proofs of the Novikov conjecture, and also yields
some information about the K–theory and cohomology of representation spaces.

19K56, 19L99, 55N15, 57R20; 20C99, 46L80, 46L85

1 Introduction

The aim of this paper is to study the strong Novikov conjecture (see Kasparov [19]) for
a finitely presented group � . If we assume that � has a finite classifying space B� ,
one version of this conjecture states that the analytic assembly map

�W K�.B�/ �!K�.C
�.�//

is rationally injective; here the left hand side is the K–homology of B� and the right
hand side is the K–theory of the maximal group C �–algebra of � . We give a definition
of the analytic assembly map in Section 2 below. The strong Novikov conjecture
implies the classical Novikov conjecture on homotopy invariance of higher signatures,
as well as being closely related to several other famous conjectures.

In this article, inspired by work of Lusztig [20] on the classical Novikov conjecture,
we introduce an approach to the strong Novikov conjecture based on finite-dimensional
unitary representations of � . This approach is more elementary than the other main lines
of attack on this conjecture, such as Connes and Moscovici’s [13] approach via cyclic
homology, the Connes–Gromov–Moscovici approach [12] via Lipschitz cohomology,
or the work of Miscenko [23], Kasparov [19] and Baum–Connes–Higson [7] discussed
below.
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A naive version of our approach might proceed as follows. A finite-dimensional unitary
representation

(1) �W � �! U.n/

of � defines a vector bundle E� over B� via a well-known balanced product con-
struction. E� defines an element ŒE�� of the K–theory group K�.B�/ and thus a
“detecting homomorphism”

(2) ��W K�.B�/ �! Z

defined by pairing with ŒE��. As is well-known,1 �� factors through the analytic
assembly map �; hence �.x/ ¤ 0 for any x 2 K�.B�/ such that there exists
�W � ! U.n/ with ��.x/ ¤ 0. Thus if one can find “enough” representations to
detect all of K�.B�/, one would have proved the strong Novikov conjecture.

Unfortunately, this approach will not work: the bundles E� are flat, so Chern–Weil
theory tells us that any “detecting homomorphism” as in line (2) above is rationally
trivial on reduced K–homology. One possible way to salvage the idea in the paragraph
above is to use infinite-dimensional representations. This led to the Fredholm repre-
sentations of Miscenko [23], and subsequently to Kasparov’s KK–theory [19]; both of
these, and the closely related approach of Baum, Connes and Higson [7] to the Novikov
conjecture through the Baum–Connes conjecture, have proved enormously fruitful.

In this paper we suggest a different approach. The central idea is not to use a single
representation as in line (1) above, but instead a continuous family of representations

�W X �! Hom.�;U.n//

parametrized by a topological space X . Such a family defines a bundle E� over
X �B� and thus a detecting homomorphism

��W K�.B�/ �!K�.X /

from the K–homology of B� to the K–theory of X via slant product with ŒE�� 2
K�.B��X /. This map �� still factors through the analytic assembly map. The central
result of this paper is that for many interesting groups, there are enough detecting
homomorphisms of this type to “see” all of K�.B�/. The strong Novikov conjecture
follows.2 We also obtain some information about the K–theory and cohomology of the
representation varieties Hom.�;U.n//, which have received a good deal of attention

1It is also a special case of Proposition 4.1 below, to which we refer the reader for a proof.
2Given the restrictions Chern–Weil theory places on bundles associated to representations, one may

ask if similar restrictions exist for families. Baird and the first author [6] have shown that the Chern classes
ci of the bundle associated to an X–shaped family of representations vanish (rationally) for i greater
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recently from a number of authors (see, for instance, Adem and Gómez [1] and Baird [5]
for free abelian groups, and the first author [27] for surface groups).

The main precursor for these ideas is Lusztig’s thesis [20], where the Atiyah–Singer
index theorem for families (Atiyah [4]) was used to study the Novikov conjecture for
finitely generated free abelian groups3 [20, Section 4], as well as some nonabelian
groups [20, Section 5]. Our paper can be seen as an attempt to develop and conceptualize
the material in [20, Sections 4 and 5]. Developments in K–homology since Lusztig’s
work allow us to build a representation-theoretic framework that circumvents the family
index theorem: indeed, from a modern point of view, the use of the family index
theorem in [20] can be viewed as a way around the absence of a well-understood theory
of K–homology at that time. Our approach is perhaps then more elementary than that
of [20], in that it does not require the relatively deep results of [4].

Carlsson’s deformation K–theory motivated us to put Lusztig’s work in a more obviously
representation theortic-framework: in some sense, deformation K–theory develops
related ideas in homotopy theory and algebraic K–theory. Carlsson associates to a
group � a spectrum (in the sense of stable homotopy theory) Kdef.�/, built from
the (topological) category of finite-dimensional unitary representations of � (see the
first author’s [25] for a description of the construction). The homotopy groups of this
spectrum can be described in terms of spherical families of representations (see Baird
and the first author’s [6]), and the topological Atiyah–Segal map

��K
def.�/ �!K��.B�/

considered in [6] might be viewed as a sort of dual to the analytic assembly map. Our
results make this “duality” more precise: they show in particular that rational surjectivity
of this map implies rational injectivity of the analytic assembly map (however, from
the perspective of the Novikov conjecture, there is no reason to restrict attention to
spherical families, and indeed we gain some ground by allowing our families to be
parametrized by arbitrary spaces X ).

Our results on the Novikov conjecture are not new: the strong Novikov conjecture is
known for a huge class of groups, and we are not able to add any new cases (in fact, there
is no group which is known to lie outside the scope of current results on the conjecture).
However, we think the methods of this paper are interesting, and hope they encourage
connections between analytic approaches to the Novikov conjecture and some other
parts of topology. We have aimed to keep the paper as self-contained as possible,

than the rational cohomological dimension of X . Thus, as the rational cohomological dimension of �
increases, it becomes necessary to use higher-dimensional families to detect all of K�.B�/ .

3This is also related to Mukai duality [24] for the n–torus.
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avoiding the use of complicated general theories wherever we can: we hope this makes
the paper a good introduction to aspects of the theory, both for C �–algebraists who
know some topology, and topologists who know some C �–algebra theory.

Outline of the paper

Section 2 gives an elementary approach (based on Paschke duality) to one of the slant
products between K–theory and K–homology. We then use this and the Miscenko
bundle to define a version of the analytic assembly map.

Section 3 introduces a class of groups that we call FD (for “flatly detectable”): roughly
this consists of those groups � for which all classes in K�.B�/ can be detected by
families of representations as described in the introduction. We prove that FD contains
Z and is closed under taking free products, direct products and finite index supergroups,
whence it contains all crystallographic groups. We also prove that FD contains surface
groups: this uses results on Yang–Mills theory from the first author’s [29]. At the
end of the section we give some concrete examples of groups that are not in the class
FD , ask some open questions, and give an application to computing Betti numbers of
representation spaces.

Finally, Section 4 uses our explicit slant product to prove that the detecting maps arising
from families of flat bundles factor through the analytic assembly map. This completes
the paper by connecting Section 3 to the strong Novikov conjecture.

2 Slant products and assembly in analytic K–theory

In this section we use Paschke duality (as refined by Higson [16] and Higson–Roe
[17, Chapter 5]) to give a concrete description of one of the slant products in operator
K–theory. This slant product was perhaps first given an analytic definition by Atiyah
and Singer via their families index theorem [4], and subsequently by Kasparov in the
much broader context of his bivariant KK–theory (see for example [19]); our approach
is perhaps simpler and more direct than either of these, however. It is inspired by (but
not the same as) the slant product briefly discussed in Higson–Roe [17, Exercise 9.8.9].

We then use this slant product and the so-called Miscenko bundle to give a relatively
straightforward approach to the analytic assembly map

�W K�.B�/ �!K�.C
�.�//

in the case that � is a discrete group admitting a finite classifying space B� . All
of this could of course be done using Kasparov’s bivariant KK–theory [19], but our
approach seems simpler and more direct.
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See [17, Chapters 4 and 5] for background information on analytic K–theory and the
Paschke duality approach to K–homology theory used in what follows.

Definition 2.1 [17, Chapter 5] Let A be a C �–algebra. A representation of A on a
Hilbert space H is said to be nondegenerate if fa� j a 2A; � 2Hg is dense in H (for
example, if the representation is unital).

A representation of A on H is said to be ample if it is nondegenerate and no nonzero
element in A acts as a compact operator on H .

Let now zA be the unitization of A (even if A is already unital, in which case zAŠA˚C )
and fix an ample representation of zA. The dual of A is the C �–algebra

D.A/ WD fT 2 B.H/ j ŒT; a� 2K.H/ for all a 2 zAg;

ie the set of operators on H that commute with zA up to compact operators. It does
not depend on the choice of ample representation up to noncanonical isomorphism.
Moreover, the K–theory groups of D.A/, K�.D.A//, do not depend on the choice of
ample representation up to canonical isomorphism. For the purpose of this piece, we
follow [17, Definition 5.2.7], and define the i th K–homology group of A to be

Ki.A/ WDK1�i.D.A//:

Definition 2.2 Let A and B be C �–algebras, and let HA and HB be ample represen-
tations of zA and zB , respectively. Let the spatial tensor product A˝B be represented
on HA˝HB in the natural way. Consider also the C �–algebras

A˝K.HB/� B.HA˝HB/;

A˝B.HB/� B.HA˝HB/:

Define a function

� D �A;B
W .A˝B/˝D.B/ �!

A˝B.HB/

A˝K.HB/

(where we consider D.B/ as defined using HB ) by the formula

(3) � W .a˝ b/˝T 7�! a˝ bT I

note moreover that if a2A, b 2B and T 2D.B/, then the elements a˝b and 1˝T

in B.HA˝HB/ commute up to elements of A˝K.HB/, whence it follows that � is
actually a �–homomorphism.4

4It would perhaps be more natural to use the stable multiplier algebra M.A˝K.HB// where we
have used A˝B.HB/ ; the latter is certainly good enough for our purposes, however, and seems to have
functoriality properties that are somewhat simpler to analyze. The fact “K�.A˝B.HB//D 0”, which
we will use shortly, is also significantly easier to prove than its analog “K�.M.A˝K.HB///D 0”.
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The �–homomorphism � thus induces a map on K–theory that fits into the composition

(4) Ki.A˝B/˝Kj .D.B//�!KiCj .A˝B˝D.B//
��
�!KiCj

�
A˝B.HB/

A˝K.HB/

�
;

where the first map is the usual (external) product in operator K–theory ([17, Sec-
tion 4.7]). Now, the definition of K–homology in terms of dual algebras yields
Ki.D.B// D K1�i.B/. Moreover, using that K�.A ˝ B.HB// D 0 (noting that
ampleness implies that HB is infinite-dimensional, this follows from an easy Eilenberg
swindle argument, just as for B.HB/ itself) and the long exact sequence in K–theory
we have natural isomorphisms

Ki

�
A˝B.HB/

A˝K.HB/

�
ŠKi�1.A˝K.HB//ŠKi�1.A/:

Thus line (4) is equivalent to a map

Ki.A˝B/˝Kj .B/ �!K.iC.1�j//�1.A/DKi�j .A/:

We call the map in the line above the slant product in operator K–theory. If x 2

Ki.A˝B/ and y 2Kj .B/, we denote their slant product by x=y 2Ki�j .A/.

The appendix gives a proof that this slant product is the same as the relevant special
case of the Kasparov product (and thus that it agrees with the standard definitions in
the literature).

Example 2.3 Say in the above that ADC , so that A˝B is canonically isomorphic
to B , and the slant product reduces to a pairing

Ki.B/˝Kj .B/ �!Ki�j .C/Š

�
Z if i D j mod 2;

0 otherwise.

This pairing can be identified with the usual pairing between K–theory and K–homology
as we now explain. Assume throughout for simplicity that B is unital (which is in any
case all we will need).

Assume also, at least for the moment, that i D j D 0. It will suffice to show that the
pairing above agrees with the usual pairing between K–homology and K–theory when
Œp� 2K0.B/ is a class represented by some projection p 2Mn.B/, and Œu� 2K0.B/

is represented by some unitary u 2D.B/.

Now, according to [17, Proposition 4.8.3], the image of the element

Œp�˝ Œu� 2K0.B/˝K0.D.B//
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under the product map to K0.B˝D.B// can be represented by the unitary

p˝uC .1�p/˝ 1 2Mn.B/˝D.B/ŠMn.B˝D.B//:

Let Q.HB/D B.HB/=K.HB/ denote the Calkin algebra and for x 2 B.HB/ write x

for its image under the quotient map B.HB/!Q.HB/. Write un for the element of
Mn.B.HB// with all diagonal entries u, and all other entries zero. Then it is not hard
to check that the natural extension of �C;B to the matrix algebra Mn.B˝D.B// acts
as follows:

�C;B
W p˝uC .1�p/˝ 1 7�! punC .1�p/ 2

Mn.B.HB//

Mn.K.HB//
ŠMn.Q.HB//:

Using that p is a projection, and that p and un commute up to Mn.K.HB//, we have
that

punC .1�p/D p2unC .1�p/D punpC .1�p/;

whence the slant product of Œp� and Œu� is equal to the image of the class of punpC1�p

in K1.Q.HB// under the boundary map

@W K1.Q.HB// �!K0.K.HB//Š Z:

In this special case, however, this boundary map is concretely realized by the formula

K1.Q.HB// �! Z; Œv� 7�! Index.v/

(see for example [17, Proposition 4.8.8]); note that if v 2 Mn.Q.HB// is unitary,
then v 2Mn.B.HB// is Fredholm by Atkinson’s Theorem, so this makes sense. Our
conclusion, finally, is that the slant product is given by the integer

Index.punpC 1�p/;

which is the formula for the pairing between K–homology and K–theory from [17,
Section 7.2]. The only other case of interest is i D j D 1; this works analogously,
however, using the same product formula.

The following lemma, giving two simple naturality properties of the slant product, will
be needed later.

Lemma 2.4 (1) The slant product

Ki.A˝B/˝Kj .B/ �!Ki�j .A/

is functorial in the sense that if �W A! C is a �–homomorphism, x 2K�.A˝B/

and y 2K�.B/, then
��.x=y/D ..�˝ 1B/�x/=y

Algebraic & Geometric Topology, Volume 13 (2013)
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as elements of K�.C /.

(2) Let A, B , C be unital C �–algebras, x be a class in Ki.A˝B/, y be a class in
Kj .B/ and z be a class in Kk.C /. Then

.z˝x/=y D z˝ .x=y/

as elements of KiCk�j .C ˝A/.

Proof Look first at part (1). With notation as in Definition 2.2, note first that if

�˝ 1B.HB/W
A˝B.HB/

A˝K.HB/
�!

C ˝B.HB/

C ˝K.HB/

is the natural �–homomorphism induced by � , then the definition of

�A;B
W A˝B˝D.B/ �!

A˝B.HB/

A˝K.HB/

implies that

(5) �C;B
ı .�˝ 1B˝ 1D.B//D .�˝ 1B.HB// ı �

A;B:

It follows then from the definition of the slant product that, up to the isomorphism

(6) Ki

�
A˝B.HB/

A˝K.HB/

�
ŠKi�1.A/

(and similarly with A replaced by C ), the K–theory element ��.x=y/ is equal to

.�˝ 1B/�.�
A;B
� .x˝y//D �

C;B
� ..�˝ 1B˝ 1D.B//�.x˝y//

D �
C;B
� ...�˝ 1B/�x/˝y/

D ..�˝ 1B/�x/=y;

where we have used line (5) in the first equality and naturality of the K–theory product
in the second. Up to the isomorphism in line (6) again, this is exactly the statement of
the lemma.

Part (2) is a consequence of the formula in line (3) above, and naturality properties
of the K–theory product with respect to �–homomorphisms and boundary maps [17,
Proposition 4.7.6].

The following K–theory class is important for the definition of assembly.
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Definition 2.5 Let � be a (finitely presented) discrete group with finite classifying
space B� , and let C �.�/ denote the maximal group C �–algebra for � . Let E�

be the universal covering space of B� . Then the Miscenko bundle for � , denoted
M� , is the bundle over B� with fibers C �.�/ defined as the quotient of the space
E� �C �.�/ by the diagonal action

g � .z; a/ WD .gz;uga/;

where ug 2 C �.G/ is the unitary element of this C �–algebra corresponding to g .

Lemma 2.6 The C �–algebra

C.B�;C �.�//Š C �.�/˝C.B�/

acts naturally on the right of the space of sections of the Miscenko bundle, and this
space of sections is a finitely generated projective module over C �.�/˝C.B�/.

In particular, the Miscenko bundle defines a class

ŒM� � 2K�.C
�.�/˝C.B�//:

Proof We first define the C �.�/˝C.B�/-module structure on the sections of M� .
Let Cb.E�;C

�.�// denote the C �–algebra of continuous bounded functions from
E� to C �.�/, which admits a natural left � –action defined for z 2E� , g 2 � and
f 2 Cb.E�;C

�.�// by
.g �f /.z/ WD ugf .g

�1z/I

the space of sections of M� then clearly identifies with the fixed point subalgebra
Cb.E�;C

�.�//� , consisting of � –equivariant maps. Moreover, if � W E�! B� is
the canonical quotient, then the formula

.f � h/.z/ WD f .z/h.�.z//

for f 2Cb.E�;C
�.�//� and h2C.B�;C �.�// defines a right action of the algebra

C.B�;C �.�// on the sections of the Miscenko bundle; we must show that this makes
this space of sections into a finitely generated projective module over C.B�;C �.�//.

Note then that the Miscenko bundle is locally trivial (as it is locally isomorphic to the
bundle E� �C �.�/), so there exists a finite open cover of B� , say fU1; : : : ;Ung,
such that the closure of each Ui is contained in some open set Vi over which the
Miscenko bundle is trivial. Let f�ig

n
iD1

be a partition of unity subordinate to fUig
n
iD1

,
and for each i let  i be a function on B� that is equal to 1 on Ui and vanishes
outside Vi . For each i , let eUi and eVi be arbitrary choices of homeomorphic lifts of
Ui and Vi respectively, and by abuse of notation identify functions supported in eUi
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and Ui , and functions supported on eVi and Vi , without further comment. Then the
C.B�;C �.�//–module map

ˆW Cb.E�;C
�.�//� �! C.B�;C �.�//˚n;

f 7�!

nM
iD1

�
�if jeUi

�
;

includes Cb.E�;C
�.�//� as a submodule of the free module C.B�;C �.�//˚n , and

is moreover split by the C.B�;C �.�//–module map

‰W C.B�;C �.�//˚n
�! Cb.E�;C

�.�//� ;

.fi/
n
iD1 7�!

nX
iD1

 ifi jVi
I

this shows that Cb.E�;C
�.�//� is finitely generated and projective as required.

Definition 2.7 Let � , B� be as in the previous definition. Then the analytic assembly
map is the homomorphism

�W K�.B�/ �!K�.C
�.�//

defined by taking the slant product with the class of the Miscenko bundle ŒM� �, ie

�.x/D ŒM� �=x

for all x 2K�.B�/.

3 Families of representations and the class FD

Throughout this section, we let � denote a (finitely presented) group with finite
classifying space B� . For k 2 N , we let U.k/ denote the k –dimensional unitary
group, and

Repk.�/ WD Hom.�;U.k//

the space5 of k –dimensional unitary representations of � . Define

Rep.�/ WD
1G

kD1

Repk.�/:

5 Repk.�/ has the subspace topology inherited from the product topology on Map.�;U.k//DU.k/� .
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Definition 3.1 Let X be a finite CW–complex, and let

�W X �! Rep.�/

be a continuous map. We call � an X–family of representations, or simply a family of
representations. We write �x , a homomorphism from � to some U.k/, for the image
of x 2X under � .

Note that if �W X ! Rep.�/ is a family of representations, then the restriction of � to
any connected component of X must take values in Repk.�/ for some fixed k .

Using an X–family as in the above definition, one may form a vector bundle over the
space B� �X in the following way.

Definition 3.2 Let �W X ! Rep.�/ be a family of representations. Write X D

X1 t � � � tXn for the decomposition of X into connected components, and for each
i D 1; : : : ; n say the image of � restricted to Xi is contained in Repki

.�/.

Let E� be the universal covering space of B� . Consider the space
nG

iD1

E� �Xi �Cki

equipped with the � –action defined by

g � .z;x; v/ WD .gz;x; �x.g/v/:

The corresponding quotient space is a vector bundle over B� �X , which we denote
by E� .

We denote by ŒE�� 2K0.B� �X /DK0.C.X /˝C.B�// the topological K–theory
class of this bundle. Abusing notation, we also write ŒE�� for the element ŒE��˝1Q 2

K0.B� �X /˝Q.

Associated to each family of representations, we now obtain a “detecting map” as
follows.

Definition 3.3 Let �W X !Rep.�/ and ŒE�� 2K0.X �B�/ be as in Definitions 3.1
and 3.2 above. Then taking the slant product with ŒE�� 2 K0.X � B�/ defines a
homomorphism

��W K�.B�/ �!K�.X /; x 7�! ŒE��=x:

Abusing notation, we also write �� for the homomorphism

��˝ IdQW K�.B�/˝Q �!K�.X /˝Q

induced by �� .
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Definition 3.4 Let � be a (finitely presented) group with a finite model for the
classifying space B� . A class x in the rational K–homology group Ki.B�/˝Q is
said to be flatly detectable if there exists a family of representations

�W X �! Rep.�/

such that
��.x/ 2K�i.X /˝Q

is nonzero.

A group � is said to be in the class FD if it has a finite model for B� and if all
classes in K�.B�/˝Q are flatly detectable.

The above terminology stems from the fact that when the parameter space X is a point
and B� is a smooth manifold, the bundle E�! B� has a canonical flat connection.

Example 3.5 The trivial class Œ1� 2K0.B�/ is always flatly detectable: one checks
directly that it is detected by the trivial representation

�W pt �! Hom.�;U.1//:

The rest of this section is devoted to finding examples of groups in the class FD . The
first two results show that all finitely generated free groups are in FD .

Proposition 3.6 The group Z is in the class FD .

The proof we give below is based on an (unpublished) exposition of Higson–Roe of
the proof of the Novikov conjecture for Zn in Lusztig’s thesis [20]. Corollary 3.17
also covers this case, but for the sake of variety, we give a different proof here.

Proof We may of course take BZ to be a copy of the circle S1 , and will also take
X to be a copy of S1 (identified with the collection of complex numbers of modulus
1). Define �W X ! Hom.Z;U.1// by

�x W n 7�! xn:

Concretely, we may identify sections of the line bundle E� over S1 � S1 with the
space of functions f W R�R!C that satisfy f .zCn;xCm/D einxf .z;x/ for all
n;m 2 Z, z 2R and x 2R. Now, the formulas

rz D @=@z; rx D @=@x� 2� iz;
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define a connection on E� , with curvature given by

R.@=@z; @=@x/D 2� i;

ie with curvature two-form given by 2� idz^dx (all of this is just direct computation).
It follows from Chern–Weil theory (see, for example, Milnor–Stasheff [22, Appendix C])
that the Chern character of E� is given by a generator of H 2.S1 �S1IR/ŠR.

Now, by Example 3.5, it suffices to show that any nonzero element of K1.BZ/˝QŠQ
is flatly detectable. However, as is well-known, under the Chern isomorphism

ChW K0.S1
�S1/˝QŠH even.S1

�S1
IQ/;

the element 2� idz ^ dx corresponds to the element Œu�˝ Œu� 2 K0.S1 �S1/˝Q,
where uW S1!U.1/ is the canonical unitary identifying these spaces, which generates
K1.S1/Š Z: up to rational multiples, which is all we need, this follows from the fact
that the Chern character is a ring isomorphism, together with the Künneth formulas
in cohomology and K–theory, and that Ch.Œu�/D Œdx�. The result follows from this,
Lemma 2.4(2) and (rational) nondegeneracy of the pairing K1.S

1/˝K1.S1/!Z.

Permanence properties of the class FD

We now show that FD is closed under taking free products, direct products and finite
index supergroups.

Lemma 3.7 Say �1 and �2 are groups in the class FD . Then their free product
� D �1 ��2 is in the class FD .

Proof Let B�1 and B�2 be finite models for the classifying spaces of �1 and �2

respectively, and take B� to be their wedge sum. Let x be a nonzero element of
K�.B�/˝Q; we must show x is flatly detectable.

The Mayer–Vietoris sequence in K–homology (see Higson–Roe [17, Lemma 7.1.2],
Yu [35, Proposition 3.11] or, for a discussion using the viewpoint on K–homology
emphasized in the present article, see Roe [30, pp. 37–38]) can now be applied to the
covering of B� by the subspaces B�1 and B�2 . The projections of B� onto these
wedge summands give splittings for the inclusions B�1 ,!B� and B�2 ,!B� , and
hence the Mayer–Vietoris sequence gives rise to a natural direct sum decomposition

K�.B�/˝QD .K�.B�1/˝Q/˚ . eK�.B�2/˝Q/

(and similarly with the roles of �1 and �2 reversed). Without loss of generality,
assume that we can write x D x1˚x2 with respect to this decomposition, where x1
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is nonzero. Using the assumption that �1 is in the class FD , there exists a family of
representations �1W X ! Rep.�1/ such that �1

�.x1/ ¤ 0. The map �1 gives rise to
�W X ! Rep.�/ by extending trivially on �2 and using the universal property of the
free product.

Now, the bundle E� restricted to B�1�X �B��X is equal to E�1 by construction,
and is equal to an external product C˝F when restricted to B�2 �X , where C is
the trivial bundle on B�2 and F is some bundle over X (trivial on each connected
component, but we do not need this). We then have that

��.x/D ŒE��=x D ŒE�1 �=x1C .C˝F /=x2 D �
1
�.x1/ChC;x2i˝F

using Lemma 2.4(2) and Example 2.3. As x2 is an element of the reduced K–homology
of B�2 , however, hC;x2i D 0, whence

��.x/D �
1
�.x1/¤ 0;

completing the proof.

More generally, if �1 , �2 are in the class FD and �i W A! �i are split inclusions for
i D 1; 2, then the amalgamated free product � D�1�A�2 is in FD ; this follows from
a minor elaboration of the argument above, which is omitted. It is not true that the class
FD is preserved by arbitrary free products with amalgam: see Proposition 3.19 below.

Our next goal is to prove that the class FD is preserved under direct products, and
thus in particular that it contains all finitely generated free abelian groups. In order to
avoid using (somewhat nontrivial; see [17, Chapter 9]) facts about external products in
K–homology, the following definition is useful.

Definition 3.8 Let � be a (finitely presented) group with a finite model for the
classifying space B� .

The Künneth theorem in K–theory (due to Atiyah; see [3, Corollary 2.7.15]) implies
that the external product induces a natural isomorphism

.K�.B�/˝Q/˝Q .K
�.X /˝Q/ŠK�.B� �X /˝Q:

If �W K�.X /˝Q!Q is any linear functional, we may thus define a natural map

K�.B� �X /˝Q
1˝�
���! .K�.B�/˝Q/˝Q Q

Š
�!K�.B�/˝Q;

which by abuse of notation we denote 1˝� . We write K�FD.B�/ for the subset of
K�.B�/˝Q consisting of classes of the form .1˝�/ŒE��, where �W X !Rep.�/ is
a family of representations, and �W K�.X /˝Q!Q is a linear functional as above.
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Lemma 3.9 With notation as above, K�FD.B�/ is a subspace of K�.B�/ ˝ Q.
Moreover, these two vector spaces are equal if and only if � is in the class FD .

Proof It is clear that K�FD.B�/ is closed under scalar multiplication; we will show
it is closed under addition. Let .1˝�i/ŒE�i � be elements of K�FD.B�/ for i D 1; 2,
where �i W Xi! Rep.�/ and �i W K

�.Xi/˝Q!Q. Define

�W X1 tX2 �! Rep.�/

by �x D �
i
x whenever x 2 Xi , i D 1; 2. Then, after identifying K�.Xi/˝Q with

subspaces of K�.X1 t X2/˝Q in the natural way for i D 1; 2, we have ŒE�� D
ŒE�1 �C ŒE�2 �, and closure under addition follows from this.

The remaining claim follows from Lemma 2.4(2) and rational nondegeneracy of the
pairing between K–theory and K–homology (see for example [17, Theorem 7.6.1]).

Proposition 3.10 Let �1; �2 be in the class FD . Then the direct product �D�1��2

is in the class FD .

Proof Let B�1 and B�2 be finite models for the classifying spaces of �1 and �2

respectively, and take B� to be their direct product.

The Künneth theorem in K–theory [3, Corollary 2.7.15] implies that the external
K–theory product induces a natural isomorphism

(7) .K�.B�1/˝Q/˝ .K�.B�2/˝Q/ŠK�.B�1 �B�2/˝Q

of graded abelian groups. Identifying the two sides in line (7), Lemma 3.9 implies that
it suffices to show that any class of the form x1˝ x2 , with xi 2K�.B�i/˝Q for
i D 1; 2, is in K�FD.B�/.

Now, by assumption and Lemma 3.9, there exist families �i W Xi ! Rep.�i/ and
functionals �i W K

�.Xi/˝Q!Q such that xi D .1˝�i/ŒE�i �. Define a new family
�W X1 �X2! Rep.�/ by “pointwise tensor product”,6 ie

�W .x1;x2/ 7�! ..g1;g2/ 7�! �1
x1
.g1/˝ �

2
x2
.g2//:

6This tensor product map arises from a choice of continuous tensor product map U.n/�U.m/!

U.nm/ ; for example one may take the standard Kronecker product of matrices .A;B/ 7! A ˝ B ,
which commutes with inverses, transposes and conjugation, and hence maps U.n/�U.m/ to U.nm/ .
Since the entries of A˝B are just products of entries from A and B , continuity is immediate. Since
.A ˝ B/.C ˝ D/ D AC ˝ BD , this yields a continuous map Hom.�;U.n// � Hom.�;U.m// !
Hom.�;U.nm// .
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From the construction of � , it follows that

ŒE��D ŒE�1
�˝ ŒE�2

� 2K0..X1 �B�1/� .X2 �B�2//

and thus that (modulo Künneth isomorphisms)

1˝�1˝�2W .K
�.B�/˝Q/˝ .K�.X1/˝Q/˝ .K�.X2/˝Q/ �!K�.B�/˝Q

takes ŒE�� to x1˝x2 as required.

Our next goal is to prove that FD passes to finite index supergroups; this combines
with the previous results to imply, for example, that all torsion-free crystallographic
groups are in FD . This requires an analysis of the transfer map in K–theory (see for
example [2, pages 250–251], where the image of a bundle under transfer is called the
direct image bundle).

As an elementary treatment of the K–theory transfer seems to be missing from the
literature, we give an essentially self-contained account below. See [32] for a treatment
of transfer in a more general context. The treatment below is inspired by KK–theory,
and could be developed completely in that context; we will not do this here.

Definition 3.11 Let Y be a finite CW–complex with fundamental group � and uni-
versal cover eY . Let �0 be a finite index subgroup of � , and Y0 the corresponding
finite cover of Y .

Note that Y0 is homeomorphic to the balanced product eY �� .�=�0/, whence C.Y0/

is naturally isomorphic to

T Y0

Y
WD Cb.eY � .�=�0//

�
D Cb.eY ;C.�=�0//

� :

There is moreover clearly a right C.Y /D Cb.eY /� module-structure defined on T Y0

Y
.

The transfer map7 in K–theory, denoted t W K�.Y0/!K�.Y /, is the homomorphism
induced on finitely generated projective modules over C.Y0/ by the formula

E 7�!E˝C.Y0/ T
Y0

Y
:

The following simple lemma records some properties of the transfer map.

7It does of course agree with the more classical notion, as for example in [32, pages 7–8], but we do
not need this.
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Lemma 3.12 (1) The K–theory transfer is well-defined.

(2) Let � W Y0! Y be a covering map and t W K�.Y0/!K�.Y / be the correspond-
ing transfer map as in Definition 3.11 above. Let E�0

be the “flat”8 bundle
over Y induced by the quasiregular representation of � on l2.�=�0/. Then the
composition

t ı��W K�.Y / �!K�.Y /

is equal to the (internal) K–theory product with ŒE�0
� 2K�.Y /. In particular,

t ı�� is a rational isomorphism.

(3) With notation as in part (2), let �W X ! Rep.�0/ be a family of representations.
Let

Ind.�/W X �! Rep.�/

be the family defined by “pointwise induction”.9 Then if E� , EInd.�/ are the
bundles over Y0�X and Y �X defined by � , Ind.�/ respectively, we have that

t ŒE��D ŒEInd.�/� 2K�.Y /:

(4) For any finite covering Y0!Y and any space X , the transfer map for the product
covering Y0 �X ! Y0 �X satisfies t.y � x/ D t.y/� x for all y 2 K�.Y0/

and x 2K�.X /.

Proof (1) For the case of K0 , this follows from the fact that T Y0

Y
is finitely generated

and projective, both as a left C.Y0/–module and as a right C.Y /–module. The first of
these is obvious – it is a free rank one module over C.Y0/ – while the second follows
from the fact that it is equal as a C.Y /–module to the sections of the bundle over Y

induced by the representation of � on l2.�=�0/. The case of higher K–groups can be
considered by taking suspensions (this is probably most easily seen with the “analyst’s
suspension”: taking the tensor product with C0.R/, and using K–theory with compact
supports).

(2) The homomorphism ��W C.Y /! C.Y0/ induces a left C.Y /–module structure
on C.Y0/; write … for the corresponding C.Y /–C.Y0/–module. The composition
t ı�� is then equal to the map on K�.Y / induced by taking tensor product with the
(finitely generated, projective) C.Y /–module

…˝C.Y0/ T
Y0

Y
I

8 Y may not be a manifold, so this does not literally make sense.
9Pointwise induction arises from a choice of continuous induction map Hom.�0;U.n// !

Hom.�;U.nŒ� W �0�// . This map depends on a choice of coset representatives for �0 in � . A detailed
discussion can be found in [28].
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this module simply is the sections of E�0
, however.

The remaining statement follows from Chern–Weil theory in case Y and Y0 are mani-
folds (not necessarily closed): indeed, rationally, taking the product with E�0

is simply
multiplication by j�=�0j. The general case follows on replacing Y by a homotopy
equivalent manifold (which need not be closed) and Y0 with the corresponding cover.

(3) Assume for simplicity of notation that X is connected (for the general case,
consider each connected component separately), in which case we may assume that
under each �x , � acts on some fixed Ck . The space of sections of E� is then given by

Cb.eY �X;Ck/�0 ;

(where the fixed points are taken for a �0 –action analogous to the �–action in
Definition 3.2) while that for EInd.�/ is given by

Cb.eY �X;Cb.�;C
k/�0/� I

it is not difficult to see that tensoring the former over C.Y0/ by T Y0

Y
yields the latter,

which is the claim.

(4) Let E , F be finitely generated projective modules over C.Y0/, C.X / respectively
(ie spaces of sections of bundles over the respective spaces). It suffices to show that

.E˝F /˝C.X�Y0/ T
Y0�X

Y �X
Š .E˝C.Y0/ T

Y0

Y
/˝F;

which is a straightforward computation.

Lemma 3.13 Say � is a group with finite classifying space, and that �0 is a finite
index subgroup of � in the class FD . Then � is in the class FD .

Proof Let B� be a finite classifying space for � , and B�0 the finite cover of B�

corresponding to the inclusion �0 ,! � , which is a finite classifying space for �0 .
Let x be an element of K�.B�/˝Q; by Lemma 3.9, it suffices to show that x is in
K�FD.B�/. Now, by part (2) of Lemma 3.12,

t W K�.B�0/˝Q �!K�.B�/˝Q

is surjective (where, as usual, we have abused notation, writing “t ” for “t ˝ IdQ ”),
whence there exists y 2K�.B�0/˝Q with t.y/D x . As �0 is in the class FD , and
by Lemma 3.9 again, there exist �W X !Rep.�0/ and �W K�.X /˝Q!Q such that
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y D .1˝�/ŒE��. To complete the proof, note that the diagram

K�.B�0 �X /˝Q
t //

1˝�

��

K�.B� �X /˝Q

1˝�

��
K�.B�0/˝Q

t // K�.B�/˝Q

commutes by part (4) of Lemma 3.12, whence using part (3) of Lemma 3.12,

x D t.y/D t..1˝�/ŒE��/D .1˝�/.t ŒE��/D .1˝�/ŒEInd.�/�;

and we are done.

Surface groups

Our next goal is to show that fundamental groups of compact, aspherical surfaces
are in FD . This will rely on Yang–Mills theory, and in particular on a result of
the first author from [29]. To begin, we need to analyze the classifying map for the
bundle E� associated to a family of representations. In order to do this, we will
need to consider a functorial model B.�/ for classifying spaces, eg Milnor’s infinite
join construction [21] or Segal’s simplicial model [33]. These have the property that
homomorphisms �W G!H induce continuous maps B.�/W BG! BH , and in fact if
G and H are topological groups, this gives rise to a continuous map

Hom.G;H /
B
�!Map�.BG;BH /:

(Continuity of this map is most easily checked using Segal’s model, which gives a
model for the classifying space so long as G and H are Lie groups, which suffices
for our purposes.) A continuous map �W X !Hom.G;H / now has an associated map
B ı �W X !Map�.BG;BH /, which has an adjoint X �BG! BH (this adjoint is
continuous so long as X is locally compact and Hausdorff, eg if X is a CW–complex).
We will denote this adjoint by �_ . The functorial model B.�/ has an associated
functorial model E.�/ for the universal bundle, so that EG!BH is a universal (left)
principal G –bundle. Moreover, there is a continuous mapping

Hom.G;H /
E
�!Map.EG;EH /;
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such that for any �W G ! H , E.�/W EG ! EH is �–equivariant in the sense that
E.�/.g � e/D �.g/ �E.�/.e/. Moreover, the diagram

(8)
EG

��

E.�/ // EH

��
BG

B.�/ // BH

commutes for each �W G!H .

Lemma 3.14 Let �W X ! Hom.�;U.n// be an X–family of representations. Let
B� be a finite model for the classifying space of � , and let f W B� ! B� be a
classifying map for the universal � –bundle E�! B� . Then the composite map

B� �X
f�IdX
����! B� �X

�_

�! BU.n/

is a classifying map for the principal U.n/–bundle associated to E� .

Proof The principal U.n/–bundle associated to E� is simply

.E� �X �U.n//=�

��
B� �X;

where � acts by g �.e;x;A/D .g �e;x; �x.g/A/. This can be viewed as a left principal
U.n/–bundle, via the action A � Œe;x;B�D Œe;x;BA�1�. There is then an analogous
left principal U.n/–bundle over B� �X , formed by replacing E� with E� in the
previous construction. We will construct a commutative diagram of left principal
U.n/–bundles as follows:

.E� �X �U.n//=�
zf�Id� Id //

��

.E� �X �U.n//=�

��

˛ // EU.n/

��
B� �X

f�Id // B� �X
�_ // BU.n/

The map zf W E�!E� is the unique map of principal bundles covering f , and hence
the left-hand square commutes by construction. Moreover, zf � Id� Id induces a
U.n/–equivariant map between these quotient spaces, and hence the left-hand square
is a pull-back diagram of principal U.n/–bundles. The map ˛ is defined by

˛.Œe;x;A�/DA�1
�E.�x/.e/:
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It follows from the properties of E.�x/ listed above that this is a U.n/–equivariant
map, and that the right-hand diagram commutes. Thus the right-hand square is also a
pullback diagram of principal U.n/–bundles, completing the proof.

The next technical but simple lemma comes down to the relationship of the “analyst’s
suspension” X �R and the “topologist’s suspension” X ^S1 , and a way of making
sense of the slant product on reduced K–theory and K–homology.

Lemma 3.15 Let � be a group with a finite model B� for its classifying space. Let
x be an element of eK i.B�/ which is nonzero after tensoring with Q. Then for each
k � 0 there exists

yk 2
eK i
.B� ^S2kCi/D eK0

.B� ^S2k/

such that if
� W B� �S2kCi

�! B� ^S2kCi

is the natural quotient map then the slant product ��.yk/=x is a well-defined element
of K�.S2kCi/ and is nonzero.

Proof Let x0 2 B� and 1 2 S2kCi be the respective basepoints, and identify
S2kCinf1g with R2kCi . Recall that the K–theory (respectively, K–homology) of a
locally compact, noncompact space Y is identified with the reduced K–theory (resp.
K–homology) of the one point compactification Y C , which is in turn identified with
K�.C0.Y // (resp. K�.C0.Y //). The statement of the lemma can thus be rewritten as
follows: for any rationally nontrivial element x 2Ki.C0.B�nfx0g// and any k � 0

there exists
yk 2Ki.C0.B�nfx0g/˝C0.R

2kCi//

such that if

�W C0.B�nfx0g/˝C0.R
2kCi/ �! C0.B� �S2kCi

nf.x0;1/g/

is the natural inclusion then

0¤ ��.yk/=x 2K0.S2kCi/:

To make sense of the slant product here we think of K�.C0.B� �S2kCinf.x0;1/g//

as a subring of K�.C.B� �S2kCi//.

This is not difficult, however: take any element z 2Ki.C0.B�// such that x=zDhx; zi

is nonzero (which exists by rational nondegeneracy of the pairing), let yk D z ˝ b

(where b 2K0.R2kCi/ is the Bott generator), and apply Lemma 2.4(2).
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Theorem 3.16 Let � be a group with a finite model B� for its classifying space. Say
there exists K > 0 such that for each k >K , there exists N DN.k/ > 0 such that for
n>N , the natural map

�k Hom.�;U.n//
B�
�! �k Map�.B�;BU.n//

is surjective. Then � 2 FD .

Proof We need to show that each K–homology class on B� is flatly detectable. Since
the unit element is detected by the trivial representation, it will suffice to work with
reduced K–homology. By Lemma 3.15, we know that for each rationally nonzero
x 2 eK i.B�/ and each k > 0, there exists yk 2

eK0.B�^S2kCi/ such that ��.yk/=x

is nonzero, where � is the quotient map B� �S2kCi! B� ^S2kCi .

Choose k large enough that 2k C i > K , and let N D N.2k C i/ be the number
guaranteed by the hypothesis. Now yk has the form yk D ŒV � � ŒW � for some
bundles V;W over B� ^S2kCi . The bundles V and W are then classified by maps
˛V ; ˛W W B�^S2kCi!BU.n/ for some n, and we may assume that n>N . Moreover,
we can assume these maps are based, and hence correspond to classes ˛V ; ˛W 2

�2kCi Map�.B�;BU.n//. Choose a classifying map f W B�! B� for the universal
bundle E�!B� , and a homotopy inverse gW B�!B� (note that g classifies E� ).
By abuse of notation, g will also denote the induced map B�^S2kCi!B�^S2kCi

and the map Map�.B�;BU.n//! Map�.B�;BU.n// induced by precomposition
with g . Then g�V and g�W are classified by the adjoints of the elements g�˛V and
g�˛W (respectively).

Our hypothesis now yields classes �V ; �W 2 �2kCi Hom.�;U.n// such that B��V D

g�˛V and B��W D g�˛W . By Lemma 3.14 the bundle E�V
is classified by the map

B� �S2kCi f�Id
���! B� �S2kCi

�_
V
��! BU.n/:

By definition, �_
V
D .b; z/D ˛V .z/.g.b//. So in fact, E�V

is classified by

B� �S2kCi f�Id
���! B� �S2kCi g�Id

���! B� �S2kCi �
�! B� ^S2kCi ˛V

�! BU.n/:

Since g ıf is homotopic to the identity, we conclude that E�V
Š ��V . Similarly, we

have E�W
Š ��W .

Since yk D .ŒV �� ŒW �/, we have

0¤ .��yk/=x D .Œ�
�V �� Œ��W �/=x D .ŒE�V

�� ŒE�W
�/=x;

so we must have either .�V /�.x/ D ŒE�V
�=x ¤ 0 or .�W /�.x/ D ŒE�W

�=x ¤ 0; in
either case we conclude that x is flatly detectable.
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Corollary 3.17 Let M 2 be a compact, aspherical surface (possibly with boundary).
Then �1M 2 2 FD .

Proof If @M 2 ¤∅, then �1M 2 is isomorphic to a finitely generated free group Fm .
This case follows from Proposition 3.6 and Lemma 3.7 above, but we give a different
proof here for the sake of variety.

Note then that the natural map

Hom.Fm;U.n//D U.n/m �!Map�.BFm;BU.n//

is a weak equivalence for each n: this map can be identified with the natural weak
equivalence U.n/m ' .�BU.n//m D Map�.

W
m S1;BU.n//, using the fact that

BFm '
W

m S1 . For further details, see Ramras [29, proof of Theorem 4.3]. Thus Fm

satisfies the hypotheses of Theorem 3.16.

The case of closed, aspherical surfaces follows from Theorem 3.16 together with [29,
Theorem 3.4], which states that the natural map

Hom.�1M 2;U.n// �!Map�.B�1M 2;BU.n//

induces an isomorphism on homotopy groups in dimensions 0< �< n� 1.

Closing remarks on FD

To complete this section, we discuss the class FD a little more broadly, and give an
application to computing the Betti numbers of representation varieties.

For the reader’s convenience, the next corollary summarizes what are perhaps the most
natural examples we know to be in the class FD .

Corollary 3.18 The following classes of groups are in the class FD :

� Finitely generated free groups.

� Finitely generated free abelian groups.

� Torsion-free crystallographic groups.

� Fundamental groups of compact, aspherical surfaces.

On the other hand, the class FD seems likely to be quite restrictive. The next result
gives an explicit example of some groups that are not in the class FD , and in particular
shows that FD is not closed under free products with amalgam.

Recall first that Burger and Mozes [11] have shown that there exist (infinitely many)
groups � with the following three properties:
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(1) � is equal to a free product with amalgam F �G F , where F and G are
nonabelian finitely generated free groups, and G is embedded in F as a finite
index subgroup in two different ways.

(2) There is a classifying space for � which is a two-dimensional finite CW–
complex.

(3) � is simple.

Proposition 3.19 Let � be one of the groups constructed by Burger and Mozes with
the properties listed 1, 2, 3 above. Then � is not in FD .

Proof Infinite, finitely generated, simple groups have no nontrivial finite-dimensional
representations (due to the fact that finitely generated linear groups are residually finite),
whence the only flatly detectable classes in K�.B�/ are multiples of the unit class. It
thus suffices to show that eK0.B�/˝Q is nontrivial.

Consider the Mayer–Vietoris sequence associated to a free product decomposition in
point (1) above [10, Corollary 7.7], a part of which is

0 �!H2.�IQ/ �!H1.GIQ/ �!H1.F IQ/˚H1.F IQ/ �! � � � :

Let g denote the rank of G and f the rank of F , so the above gives a sequence

0 �!H2.�IQ/ �!Qg
�!Qf

˚Qf
�! � � � ;

where moreover the map Qg ! Qf ˚Qf is of the form � ˚  for some maps
�; W Qg!Qf . Multiplicativity of Euler characteristics under taking finite (graph)
covers implies that

1�g D ŒF WG�.1�f /; ie g D ŒF WG�.f � 1/C 1

(although two different embeddings of G into F are used, the two images of G in F

necessarily have the same index – this follows by the above formula – so the notation
ŒF WG� is unambiguous). As the index ŒF WG� and the rank f are both larger than 1,
this forces g > f . It follows that the map

�˚ W Qg
�!Qf

˚Qf

cannot be injective, and thus that H2.B�IQ/ D H2.�IQ/ is not zero. The Chern
character isomorphism now implies that eK0.B�/˝Q is nontrivial, and we are done.

Note that the strong Novikov conjecture is certainly true for � as above, however, eg
by using the results of [36]. Other examples similar to the groups of Burger and Mozes
could be extracted from work of Wise [34], and another source of similar examples is
explained in Ramras [26, Section 2.1].
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We suspect the following groups are also not in the class FD , although we were unable
to prove this (and would be happy to be proved wrong!).

Questions 3.20 Are the following groups in the class FD?

� The integral Heisenberg group.
� Infinite property (T) groups.

The case of property (T) groups seems plausible as any family of finite-dimensional
representations (parametrized by a connected space) consists of representations that
are all mutually equivalent, as is essentially contained in [8, Theorem 1.2.5]. The
reason this does not yield a proof is that it does not preclude the existence of interesting
topology within each equivalence class of representations.

The questions below seem natural and interesting.

Questions 3.21 � It follows from Proposition 3.19 that there exist free products
with amalgam � D �1 �A �2 such that �1; �2;A are all in FD , but � is not.
Are there “reasonable” conditions on a free product with amalgam which imply
it is in FD?

� Which torsion-free one relator groups are in FD (possibly all)?
� Which three-manifold groups are in FD (possibly all)?
� One could define a larger version of the class FD by considering families of

quasirepresentations, ie maps �! U.n/ that agree with a homomorphism on
a given set of generators up to some � . What sort of groups have this weaker
property (which should also imply the strong Novikov conjecture)? Recent work
of Dadarlat [15; 14]10 investigating assembly and quasirepresentations (among
other things) seems very relevant here.

We end this section by noting some consequences of our results for the topology of
unitary representation varieties. The identity map Id on Hom.�;U.n// may be viewed
as the universal n–dimensional family of representations, and we denote the associated
bundle by U DEId! Hom.�;U.n//�B� .

Proposition 3.22 If � is in FD , then for sufficiently large n there is a rationally
injective map

K�.B�/ �!K�.Hom.�;U.n///

given by x 7! U=x . Consequently, the sum of the (even, or odd) Betti numbers of
Hom.�;U.n// is at least that of � .

10We would like to thank Marius Dadarlat for sharing these preprints with us.
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Proof Since � is in FD , every rational K–homology class x 2K�.B�/˝Q satisfies
��.x/¤ 0 2K�.X / for some family of representations �W X ! Hom.�;U.n//. By
Part 1 of Lemma 2.4, we have ��.ŒU �=x/D ŒE��=x D ��.x/, so

ŒU �=x 2K�.Hom.�;U.n///˝Q

must be nonzero as well. As we have assumed B� has the homotopy type of a finite CW–
complex, K�.B�/˝Q is finitely generated, so any sufficiently large n works for all
x2K�.B�/ (note here that E�˚1DE�˚E1 , so .�˚1/�.x/D��.x/C1�.x/D��.x/

for any x 2 eK�.B�/). The statement about cohomology follows from consideration
of the Chern character.

4 Families of representations and analytic assembly

In this section, we relate groups in the class FD from Section 3 back to the analytic
assembly map from Section 2. The main result is as follows.

Proposition 4.1 For each family of representations �W X ! Hom.�;U.k//, the de-
tecting map ��W K�.B�/ ! K�.X / in Definition 3.3 factors through the analytic
assembly map

�W K�.B�/ �!K�.C
�.�//

defined in Definition 2.7.

To prove this, we will need a lemma relating the Miscenko bundle M� and the bundle
E� associated to � . Note first that if �W X ! Repk.�/ is a family of representations,
then � defines a �–homomorphism

�]W C �.�/ �!Mk.C.X //;

ug 7�! .x 7! �x.g//:

Lemma 4.2 The image of the Miscenko line bundle ŒM� � 2 K0.C
�.�/˝C.B�//

under the map induced by the �–homomorphism

�]˝ 1C.B�/W C
�.�/˝C.B�/ �!Mk.C.X //˝C.B�/

identifies naturally with the class ŒE�� 2K0.B� �X / from Definition 3.2 above.

Proof Recall from the proof of Lemma 2.6 that the space of sections of the Miscenko
bundle identifies naturally with Cb.E�;C

�.�//� . It follows that the image of ŒM� �

under �]˝ 1C.B�/ is the class in K�.C.B� �X;Mk.C/// of the module

Cb.E�;C
�.�//� ˝C.B�;C�.�// C.B� �X;Mk.C//;
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where we used the natural isomorphism C.B�;Mk.C.X ///Š C.B� �X;Mk.C//,
and the tensor product is defined via the left action of C.B�;C �.�// on the space
C.B� �X;Mk.C// coming from �]˝ 1C.B�/ . Define now a � action on the space
Cb.E� �X;Mk.C// by

.g �f /.z;x/ WD �x.g/f .g
�1z;x/;

and let Cb.E� �X;Mk.C//
� denote the fixed points. There is an isomorphism of

C.B� �X;Mk.C//–modules

Cb.E�;C
�.�//� ˝C.B�;C�.�// C.B� �X;Mk.C//

Š
�! Cb.E� �X;Mk.C//

�

defined for f 2 Cb.E�;C
�.�//� and h 2 C.B� �X;Mk.C// by

f ˝ h 7�! ..z;x/ 7! �x.f .z//h.�.z/;x//

(where we have extended �x from � to C �.�/). Hence the image of ŒM� � in
K0.C.B� �X;Mk.C/// is represented by the finitely generated projective module

Cb.E� �X;Mk.C//
�
I

the essential point is that this is the space of sections of the endomorphism bundle of
E� , which completes the proof. More concretely, the image of this module under the
Morita equivalence isomorphism

K�.C.B� �X;Mk.C///ŠK�.B� �X /

is given by

Cb.E� �X;Mk.C//
�
˝C.B��X ;Mk.C// C.B� �X;Ck/:

Define a � –action on Cb.E� �X;Ck/ by

.g �f /.z;x/ WD �x.g/f .g
�1z;x/I

then there is an isomorphism

Cb.E� �X;Mk.C//
�
˝C.B��X ;Mk.C// C.B� �X;Ck/

Š
�! Cb.E� �X;Ck/� ;
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defined for f 2 Cb.E� �X;Mk.C//
� and h 2 C.B� �X;Ck/ by

f ˝ h 7�! ..z;x/ 7! f .z;x/h.�.z/;x//

(here � W E�!B� is the canonical quotient). However, Cb.E��X;Ck/� is simply
the space of sections of E� , and we are done.

Proof of Proposition 4.1 Consider a family of representations

�W X �! Rep.�/:

We will show that the following diagram commutes:

(9)

K�.B�/
� //

�� &&

K�.C
�.�//

.�]/�
��

K�.X /:

Using Definition 2.7, and Lemmas 2.4 and 4.2, we have that if

ŒM� � 2K0.C.B�/˝C �.�//

is the Miscenko bundle and x 2K�.B�/, then

..�]/� ı�/.x/D .�
]/�.ŒM� �=x/D ..�

]
˝ 1C.B�//�ŒM� �/=x D ŒE��=x D ��.x/;

where �� is as in Definition 3.3. The result follows.

Corollary 4.3 Let � be a group with finite classifying space B� and let x in
K�.B�/˝Q be a flatly detectable class. Then

.�˝ IdQ/.x/ 2K�.C
�.�//˝Q

is nonzero. In particular, if � is a group in the class FD , then the analytic assembly
map is rationally injective.

Proof If x2Ki.B�/˝Q is flatly detectable, then (Definition 3.4) there exists a family
�W X ! Rep.�/ such that .��˝ IdQ/.x/ is nonzero in K�i.X /˝Q. Commutativity
of Diagram (9) now shows that .�˝ IdQ/.x/ is nonzero as well. If � is in the class
FD , then every class in K�.B�/˝Q is flatly detectable, so we find that the kernel
of �˝ IdQ is trivial, as desired.

Corollary 4.3 is enough to imply, for example, the Novikov conjecture for � (a proof
may be found in [18]; note that the argument there is phrased in terms of the reduced
C �–algebra of � , but also applies to C �.�/), and that (if a closed manifold) B� does
not admit a metric of positive scalar curvature (see [31]).
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Appendix A: The slant product and the Kasparov product

In the main part of the piece (Definition 2.2), we have introduced a slant product in
operator K–theory in order to give an elementary picture of the assembly map. The
more usual way of describing the assembly map is via the Kasparov product; see for
example [19, Section 6], where the assembly map is denoted ˇ . In this appendix, we
show that our slant product agrees with the Kasparov product. More precisely, we
prove the following result.

Proposition A.1 The slant product

Ki.A˝B/˝Kj .B/ �!Ki�j .A/

from Definition 2.2 agrees naturally with the Kasparov product

KKi.C;A˝B/˝KKj .B;C/ �! KKi�j .C;A/:

Proof For the sake of simplicity (and as it is the only case we need), assume that A

and B are unital C �–algebras. Using a suspension argument, it suffices to consider
the case i D j D 0.

It suffices to show that if p2Mn.A˝B/ defines a class Œp�2K0.A˝B/ and u2D.B/
defines a class Œu� 2 K0.B/, then (under the natural identifications of these groups
with the corresponding KK–groups) the two products agree. We start by constructing
KK–elements corresponding to p and u; we use the standard Kasparov picture of KK
(with graded formalism).

� Let l2 denote the Hilbert space l2.N/. We may consider p as defining a bounded
operator on the Hilbert–(A˝B )–module A˝B˝ l2 , which is supported on

A˝B˝ spanfı0; : : : ; ın�1g:

Using Kasaprov’s Stabilization Theorem [19, page 151], there exists a partial isometry
v 2M.A˝B˝K.l2// such that v�v D 1�p and vv� D 1.

Let yl 2 denote the Hilbert space l2
ev˚ l2

od , where each summand is a copy of l2 , and
grade yl 2 by stipulating that the first summand is even and the second odd. Define an
operator F on

(10) A˝B˝yl 2
Š .A˝B˝ l2

ev/˚ .A˝B˝ l2
od/

by

F D

�
0 v�

v 0

�
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(where of course the matrix decomposition reflects the direct sum decomposition in line
(10)). The pair .A˝B˝yl 2;F / then defines an element ŒF � 2 KK0.C;A˝B/ which
corresponds to Œp� 2K0.A˝B/ under the natural isomorphism KK0.C;A˝B/Š

K0.A˝B/.

� Let HB be the ample B–Hilbert space on which D.B/ is defined, and let bHB

denote the Hilbert space HB
ev˚HB

od , which is defined analogously to yl 2 above. bHB

is equipped with the natural action of B (by even operators). Define

G D

�
0 u�

u 0

�
2 B. bHB/

and note that the pair . bHB;G/ defines an element ŒG� 2 KK0.B;C/ that corresponds
to Œu� 2K0.B/ under the natural isomorphism KK0.B;C/ŠK0.B/.

Note that to take the Kasparov product of ŒF � and ŒG�, we must first replace ŒG� with
the element Œ bHB˝A;G˝ 1� 2 KK.A˝B;A/; by an abuse of notation, however, we
still denote this element ŒG�.

We must now compute the Kasparov product ŒF �˝ ŒG� 2 KK0.C;A/. The Hilbert–A–
module for this element is

(11) .A˝B˝yl 2/˝A˝B . bHB
˝A/ŠA˝yl 2

˝ bHB:

We will use the decomposition

.A˝ l2
ev˝HB

ev/˚ .A˝ l2
od˝HB

od/˚ .A˝ l2
ev˝HB

od/˚ .A˝ l2
od˝HB

ev/

of this module to write operators on it as 4 � 4 matrices. Note now that a G ˝ 1–
connection (see [9, Section 18.3]) is given by

yG D

0BB@
0 0 1˝u� 0

0 0 0 �1˝u�

1˝u 0 0 0

0 �1˝u 0 0

1CCA ;
whence [9, Proposition 18.10.1] implies that the product ŒF �˝ ŒG� can be represented
by the pair

(12) .A˝yl 2
˝ bHB;F y̋ 1C ..1�F2/

1
2 y̋ 1/ yG/:

Now, the natural (even) action of A˝B ˝K.l2/ on A˝HB ˝ l2 extends to the
multiplier algebra, so we may treat the operators p , v and v� as acting directly on
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A˝HB˝ l2 . Having adopted this convention, the operator from line (12) above is
equal to

�
0 v�

v 0

�
y̋ 1C

 �
1� v�v 0

0 1� vv�

�1
2

y̋ 1

!0BB@
0 0 1˝u� 0

0 0 0 �1˝u�

1˝u 0 0 0

0 �1˝u 0 0

1CCA

D

0BB@
0 0 0 v�

0 0 v 0

0 v� 0 0

v 0 0 0

1CCAC
0BB@

p 0 0 0

0 0 0 0

0 0 p 0

0 0 0 0

1CCA
0BB@

0 0 1˝u� 0

0 0 0 �1˝u�

1˝u 0 0 0

0 �1˝u 0 0

1CCA

D

0BB@
0 0 p.1˝u�/ v�

0 0 v 0

p.1˝u/ v� 0 0

v 0 0 0

1CCA :
Passing back to the ungraded picture, the class of the cycle0BB@A˝yl 2

˝ bHB;

0BB@
0 0 p.1˝u�/ v�

0 0 v 0

p.1˝u/ v� 0 0

v 0 0 0

1CCA
1CCA

in KK0.C;A/ corresponds under the isomorphism

KK0.C;A/ŠK1

�
M.A˝K.l2˝ bHB//

A˝K.l2˝ bHB/

�
.ŠK0.A//

to the K1 –class defined by�
p.1˝u/ v�

v 0

�
2M.A˝K.l2

˝ bHB//

(this element is indeed unitary modulo A˝K.l2˝ bHB/). Modulo A˝K.l2˝ bHB/,
however, we have that�

p.1˝u/ v�

v 0

�
D

�
p.1˝u/p v�

v 0

�
D

�
p.1˝u/pC .1�p/ 0

0 1

��
p v�

v 0

�
I

moreover, the second matrix in the product satisfies X 2DI , and is thus K–theoretically
trivial. Hence the class we have is��

p.1˝u/pC .1�p/ 0

0 1

��
2K1

�
M.A˝K.l2˝ bHB//

A˝K.l2˝ bHB/

�
I
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using the fact that the inclusion

A˝B.l2˝ bHB/

A˝K.l2˝ bHB/
,!

M.A˝K.l2˝ bHB//

A˝K.l2˝ bHB/

induces an isomorphism on K–theory and the argument of Example 2.3, however, it is
not difficult to see that the image of this in K0.A/ is precisely the same as the slant
product Œp�=Œu� from Definition 2.2.
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