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Graph manifolds, left-orderability
and amalgamation

ADAM CLAY

TYE LIDMAN

LIAM WATSON

We show that every irreducible toroidal integer homology sphere graph manifold has
a left-orderable fundamental group. This is established by way of a specialization of
a result due to Bludov and Glass [3] for the amalgamated products that arise, and in
this setting work of Boyer, Rolfsen and Wiest [6] may be applied. Our result then
depends on known relations between the topology of Seifert fibred spaces and the
orderability of their fundamental groups.
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1 Introduction

A group G is said to be left-orderable if there exists a strict total ordering < of G such
that g < h implies fg < f h for all f;g; h in G . This is equivalent to the existence
of a positive cone P �G , which is a subset of elements of G satisfying P �P � P ,
and P tf1gtP�1 DG . To see that these notions are equivalent, given a left-ordering
of a group G observe that

P WD fg 2G j g > 1g

is a positive cone; conversely if P �G is a positive cone then

g < h” g�1h 2 P

defines a left-ordering of G . We adopt the convention that P ¤∅, so that the trivial
group is not left-orderable.

Left-orderability is not preserved under many classical group operations. For example,
if G is a left-orderable group it is easy to see that a quotient of G may or may not be
left-orderable. In fact it is a relatively simple exercise to prove that a quotient G=N

is left-orderable if and only if N is a relatively convex subgroup of G (that is, N

is convex relative to some left-ordering on G ). On the other hand, the question of
left-orderability of other classical constructions is not so simple. Both HNN–extensions
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and free products with amalgamation present considerable difficulty when attempting
to determine necessary and sufficient conditions for them to be left-orderable, and
related problems remained open for many years (see for example [26, Problem 15.34]).
However with recent work, left-orderability of free products with amalgamation and
graphs of groups is now well understood (Bludov and Glass [2; 3] and Chiswell [9]).

At the same time, there has been increasing interest in left-orderable groups from a
topological perspective, with particular interest in the left-orderability of the fundamen-
tal groups of 3–manifolds. Many tools in 3–manifold theory involve decomposing the
manifold into simpler pieces along incompressible surfaces, resulting in a fundamental
group that can be presented as a free product with amalgamation or a graph of groups. As
such, these new results from the field of orderable groups should facilitate left-ordering
of the fundamental groups of many 3–manifolds that contain incompressible surfaces. In
particular, if a 3–manifold M admits a JSJ decomposition (see Section 3, in particular
Theorem 3.1) into components that are well understood from an orderability standpoint,
then it should be possible to determine whether or not �1.M / is left-orderable. Our
main theorem is the product of this approach.

Theorem 1.1 Let Y be an irreducible, toroidal graph manifold. If Y is an integer
homology 3–sphere, then �1.Y / is left-orderable.

A remark on conventions

We include Seifert fibred spaces as graph manifolds; these arise when the JSJ decom-
position is trivial. As such, not every toroidal graph manifold admits a non-trivial JSJ
decomposition (though the converse always holds). We also include the connect sum
of graph manifolds as a graph manifold. Indeed, Theorem 1.1 is a special case of
Theorem 3.10 (proved in Section 3) treating the reducible case.

Organization

The plan of this paper is as follows. In Section 2, we review the necessary definitions
and recent results pertaining to left-orderability of amalgamated free products. We
also prove our main topological application of these results, which connects the JSJ
decomposition of a 3–manifold with the manifolds obtained by Dehn filling the JSJ–
pieces along their torus boundaries. Section 3 is devoted to the proof of Theorem 1.1.
As a quick consequence, we answer a question of Da̧bkowski, Przytycki and Togha [10,
Problem 1(iii)]. This, together with other examples and generalizations, is provided in
Section 5, while Section 4 contains a brief discussion of some of the motivation for
Theorem 1.1 coming from Heegaard Floer homology.
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2 Requisite group theory and relevant background

We begin with the definitions that are required to state a result of Bludov and Glass
[3]. If a group G is left-orderable, we denote the set of all positive cones in G by
LO.G/, we think of LO.G/ as the set of all left-orderings of G . The set LO.G/ comes
equipped with a natural G –action by conjugation, defined by g.P /D gPg�1 for all
g 2 G and P 2 LO.G/. In terms of left-orderings, this action can be described as
follows: given a left-ordering < of G , an element g sends < to the ordering <g ,
which is defined according to the rule

h<g f ” hg < fg:

Definition 2.1 A set L� LO.G/ of left-orderings is normal if it is G –invariant.

Definition 2.2 Suppose that Gi is a left-orderable group, Hi is a subgroup of Gi

and let Li � LO.Gi/ denote a set of left-orderings of Gi for i D 1; 2. Suppose that
�W H1!H2 is an isomorphism. Then � is compatible for .L1;L2/ if

.8P1 2L1/.9P2 2L2/ such that .8h1 2H1/.h1 2 P1) �.h1/ 2 P2/:

One of the main results of [3] is the following.

Theorem 2.3 (Bludov and Glass [3, Theorem A]) Suppose that Gi are left-orderable
groups, and Hi is a subgroup of Gi for i D 1; 2. Let �W H1!H2 be an isomorphism.
The free product with amalgamation

G1 �G2.H1

�
ŠH2/

is left-orderable if and only if there exist normal families Li 2 LO.Gi/ .i D 1; 2/ such
that � is compatible for .L1;L2/ and ��1 is compatible for .L2;L1/.
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In general, using this theorem to left-order free products with amalgamation seems to
be quite difficult. Unless the groups in question have a very well-understood structure,
verifying the existence of normal, compatible families of left-orderings can be an
intractable problem. (It is possible in some cases; see Section 5.)

However, there are several immediate corollaries of this theorem that are very useful
when attempting to left-order amalgamated products, as the compatibility and normality
conditions become easier to verify. The following will be most useful for our purposes.

Corollary 2.4 (Bludov and Glass [3, Corollary 5.3]) Suppose that Gi are left-
orderable groups with rank one abelian subgroups Hi , i D 1; 2. Let � WH1!H2 be
an isomorphism. Then

G1 �G2.H1

�
ŠH2/

is left-orderable.

Our main group-theoretic result will be an application of Theorem 2.3 to the decompo-
sition of a 3–manifold M along an incompressible torus into components M1 and M2

having toroidal boundaries. The key observation is that in this special case, applying
Theorem 2.3 can be reduced to an application of Corollary 2.4 by using Dehn filling
and the following theorem from 3–manifold topology:

Theorem 2.5 (Boyer, Rolfsen and Wiest [6, Theorem 1.1]) Suppose that M is a
compact, connected, P2 –irreducible 3–manifold. Then �1.M / is left-orderable if and
only if there exists a nontrivial homomorphism from �1.M / to a left-orderable group.

Remark This paper is concerned with integer homology spheres and as such P2 –
irreducible may be replaced with irreducible by appealing to orientability.

To state and prove our key group-theoretic result, we recall the notion of Dehn filling.
Suppose that M is a 3–manifold with incompressible torus boundary. A slope ˛ is
a primitive element in the projective homology H1.@M IZ/=f˙1g of the boundary.
The result of Dehn filling M along the slope ˛ is the 3–manifold M.˛/ obtained by
identifying the boundary of a solid torus D2�S1 to @M in such a way that @D2�f�g

is glued to ˛ . The following definition is natural in this setting:

Definition 2.6 Given a 3–manifold M with torus boundary, a slope ˛ will be called
left-orderable if �1.M.˛//Š �1.M /=hh˛ii is a left-orderable group.

It is our convention that the trivial group is not left-orderable, so any left-orderable slope
˛ generates a proper normal subgroup hh˛ii of �1.M / and �1.M.˛// is non-trivial.
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Theorem 2.7 Suppose that M1 and M2 are 3–manifolds with incompressible torus
boundaries, and �W @M1 ! @M2 is a homeomorphism such that Y D M1 [� M2

is irreducible. If there exists a left-orderable slope ˛ such that ��.˛/ is also a left-
orderable slope, then �1.Y / is left-orderable (here, �� is the induced homomorphism
on fundamental groups).

Proof Let Gi denote the fundamental group �1.Mi/ for i D 1; 2, each equipped
with an inclusion fi W Z˚Z!Gi that identifies the peripheral subgroup with Z˚Z,
satisfying �� ı f1 D f2 . Write q1W G1! G1=hh˛ii and q2W G2! G2=hh��.˛/ii for
the natural quotient maps.

Suppose that ˛ and ��.˛/ are left-orderable slopes, and consider hh˛ii \ �1.@M1/.
Since this intersection is a nontrivial subgroup of �1.@M1/ Š Z ˚ Z and ˛ is
primitive, the intersection is isomorphic to either Z Š h˛i;Z ˚ nZ � �1.@M1/,
or Z˚Z Š �1.@M1/. If hh˛ii \ �1.@M1/ Š Z˚ nZ, then the quotient �1.M.˛//

would have torsion, so this case does not arise when ˛ is a left-orderable slope. The
same observation holds for the left-orderable slope ��.˛/, so we break our proof into
two cases.

First consider the case where hh˛ii \ �1.@M1/ and hh��.˛/ii \ �1.@M2/ are both
infinite cyclic. Here, � induces an isomorphism x� between subgroups

x�W q1.�1.@M1//! q2.�1.@M2//;

satisfying x� ı q1 ıf1 D q2 ıf2 . The subgroups q1.�1.@M1// and q2.�1.@M2// are
both infinite cyclic, and by the universal property for pushouts, we have a unique
homomorphism

hW G1 �� G2 �!G1=hh˛ii �x� G2=hh��.˛/ii

resulting from the following diagram:

Z˚Z
f2 //

f1 ��

G2

��

q2

$$
G1

//

q1
,,

G1 �� G2

h

**UUUUUU G2=hh��.˛/ii

��
G1=hh˛ii // G1=hh˛ii �x� G2=hh��.˛/ii

:

Note that h is nontrivial (in fact, surjective) since the maps q1 and q2 are surjective.

Because the slopes ˛ and ��.˛/ are both left-orderable slopes, the group

G1=hh˛ii �x� G2=hh��.˛/ii
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is a free product of left-orderable groups amalgamated along a cyclic subgroup. The
image of the map h is therefore a left-orderable group by Corollary 2.4, so that
�1.Y /ŠG1 �� G2 is left-orderable, by Theorem 2.5.

On the other hand, suppose that either

hh˛ii \�1.@M1/D �1.@M1/; or hh��.˛/ii \�1.@M2/D �1.@M2/;

or both. Without loss of generality, suppose that ˛ satisfies hh˛ii\�1.@M1/D�1.@M1/.
In this setting we have an alternative construction for h as follows.

Z˚Z
f2 //

f1 ��

G2

�� 1

��

G1
//

q1
//

G1 �� G2
h

((Q
QQQ

G1=hh˛ii

Note that this is well defined since hh˛ii contains the entire peripheral subgroup
�1.@M1/, and h is again surjective. Now as ˛ is a left-orderable slope, G1=hh˛ii is
left-orderable and h provides the required homomorphism to a left-orderable group so
that �1.Y / is left-orderable by Theorem 2.5.

We record a second group theoretic proposition for later use. Recall that a splicing of
knots K1 and K2 in homology spheres Y1 and Y2 is a 3–manifold Y DM1[� M2

where �.�1/D �2 and �.�1/D �2 . Here, the pair f�i ; �ig is the preferred framing
for each knot Ki . In particular, �i bounds a surface in Mi D Yi XKi for i D 1; 2. It
follows by construction that Y is an integer homology sphere.

Proposition 2.8 Let Y be an irreducible 3–manifold that results from splicing knots
K1 and K2 in integer homology spheres Y1 and Y2 respectively. If �1.Y1/ is left-
orderable, then �1.Y / is left-orderable.

Proof In the integer homology sphere Y DM1[M2 , one can pinch M2 onto a solid
torus to obtain a degree one map f W Y !Y1 . This degree one map induces a surjection
f�W �1.Y /! �1.Y1/, so by Theorem 2.5 the group �1.Y / is left-orderable.

3 The proof of Theorem 1.1

3.1 JSJ decompositions for integer homology spheres

Given a 3–manifold Y containing an essential torus T we have that �1.T /Š Z˚Z
is a subgroup of �1.Y /. As a result, �1.Y / may be viewed naturally as a free product
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with amalgamated subgroup Z˚Z. This observation is particularly important in light
of the following result of Jaco and Shalen [20], and Johannson [22].

Theorem 3.1 (Jaco and Shalen, and Johannson) Every compact, orientable, irre-
ducible 3–manifold Y with torus boundary components contains a (possibly empty)
minimal collection of essential tori T , unique up to isotopy, such that each component
that results from cutting Y (denoted Y XT ) along T is either Seifert fibred or atoroidal.

The resulting decomposition of Y along such a collection of tori is referred to as
the JSJ decomposition of Y . Notice that there is a natural quotient from Y to an
underlying graph �Y that encodes the JSJ decomposition: the vertices are obtained by
collapsing the components of Y X T to points, and the edges correspond to collapsing
T � I to the interval I , for each torus T 2 T . As a result we have a surjection
H1.Y IZ/! H1.�Y IZ/ so that whenever H1.Y IZ/ D 0 the corresponding graph
�Y is a tree. In particular, given a torus T 2 T we have that Y XT is disconnected
if Y is an integer homology sphere; this observation will provide a key step to our
induction in the proof of Theorem 1.1.

Lemma 3.2 Let Y be a toroidal integer homology sphere, and suppose that Y D

M1 [� M2 where �W @M1 ! @M2 is a homeomorphism identifying the two torus
boundaries. Then Y may be viewed as a splicing of knots Ki in integer homology
spheres Yi for i D 1; 2.

Proof Let Y be a toroidal integer homology sphere, and denote the connected compo-
nents of Y XT by M1 and M2 . Since Y is an integer homology sphere, an application
of the Mayer–Vietoris theorem gives an isomorphism

H1.S
1
�S1
IZ/ŠH1.M1IZ/˚H1.M2IZ/:

Applying the long exact sequence for the pair .Mi ; @Mi/ we conclude that
H1.Mi IZ/Š Z for i D 1; 2; let �i denote the longitudinal slope in @Mi (the unique
simple closed curve that bounds in Mi ). Note that jH1.M1[f M2IZ/jD�.f .�1/; �2/

for any homeomorphism f W @M1! @M2 , where � measures the minimal geometric
intersection number between slopes.

Now denote by �W @M1! @M2 the homeomorphism reconstructing Y ŠM1[� M2 .
This homeomorphism yields a preferred meridian for each Mi as follows. Since
�.�.�1/; �2/ D 1 we define �1 D �

�1.�2/ and �2 D �.�1/. By construction, the
pair f�i ; �ig yields a basis for the peripheral subgroup of each �1.Mi/. Now specifying
Ki in each Yi DMi.�i/ as the core of the surgery torus produces a knot with meridian
�i and longitude �i . This shows that Y is a splicing of knots K1 and K2 in the sense
that �.�1/D �2 and �.�1/D �2 .
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We will always make this choice of preferred basis where possible. In this way, n–
surgery and 1=n–surgery on Ki are well defined as n�C� and �C n� Dehn filling
on Mi , respectively. Moreover, such a choice lets us unambiguously refer to a slope
p�C q� as a reduced rational p=q , where 1=0 denotes the trivial surgery, so that
M.p=q/ denotes Dehn filling along the slope p=q . Note that it is not restrictive to
assume that q � 0. By construction, H1.M.p=q//Š Z=jpjZ.

With these observations and conventions in place, the family of manifolds considered
in Theorem 1.1 are as follows:

Definition 3.3 A graph manifold is a compact, orientable, connected 3–manifold for
which each prime component Y has JSJ decomposition along a family of tori T such
that the components of Y X T are Seifert fibred.

This class of manifolds was introduced by Waldhausen [35]. Note that Seifert fibred
spaces are graph manifolds; these arise precisely when T is empty. This definition
also allows for graph manifolds obtained by connect sum of graph manifolds.

Our proof of Theorem 1.1 will be an induction on the number of tori in the collection
T , so we record the following fact.

Lemma 3.4 Let Y be a graph manifold with torus boundary, and minimal collection
T of tori decomposing Y into Seifert fibred components M1; : : : ;Mk . Let ˛ be any
slope on the boundary of Y . Then Y .˛/ is also a graph manifold, and Y .˛/ admits
a minimal collection of tori T 0 decomposing Y .˛/ into Seifert fibred pieces with
jT 0j � jT j.

Proof Observe that each torus in the collection T embeds naturally in the manifold
Y .˛/. If Mi denotes the Seifert fibred component of Y X T that contains @Y , then
Y .˛/XT has components M1; : : : ;Mi.˛/; : : : ;Mk . By Heil [19], the manifold Mi.˛/

is either Seifert fibred, or is a connected sum of lens spaces and possibly copies of
S1�S2 . In either case, since every manifold M1; : : : ;Mi.˛/; : : : ;Mk is either Seifert
fibred or a connect sum of Seifert fibred pieces, the collection jT j of tori embedded
in Y .˛/ will cut the prime components of Y .˛/ into Seifert fibred pieces. Therefore
Y .˛/ is a graph manifold. Moreover, if jT 0j is the collection of cutting tori from the
JSJ decomposition of Y .˛/, then jT 0j � jT j since T 0 is minimal.

For repeated use in this paper, we single out a particular fact used in these arguments:

Lemma 3.5 Suppose that M is Seifert fibred with torus boundary, and H1.M IZ/Š
Z. Then the 0–filling and every 1=n–filling of M is Seifert fibred and prime, and all
but finitely many of the n=1–fillings are Seifert fibred and prime.

Proof This follows immediately from the work of Heil [19; 32].
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3.2 Surgeries on Seifert knots

In this section we gather the material that will allow us to apply Theorem 2.7 and
Proposition 2.8 to prove Theorem 1.1.

Theorem 3.6 (Boyer, Rolfsen and Wiest [6, Corollary 3.12]) Suppose that Y is a
Seifert fibred integer homology sphere. If �1.Y / is not left-orderable, then Y is either
S3 or the Poincaré homology sphere †.2; 3; 5/.

This points to a strategy of proof for Theorem 1.1 that employs Theorem 2.7. Namely,
we may induct in the number of Seifert pieces of a graph manifold provided some
control of S3 and †.2; 3; 5/ (in particular, Seifert fibred knots in these manifolds)
may be established.

Lemma 3.7 Let K be a non-trivial knot in Y D S3 or †.2; 3; 5/ such that the
complement Y XK is Seifert fibred. At most finitely many of the slopes 1=n are not
left-orderable.

Proof In light of Lemma 3.5 and Theorem 3.6, it suffices to show that Y1=n.K/ is
not S3 or †.2; 3; 5/ for all but finitely many n. If Y D S3 , then K is a .p; q/–
torus knot. After a possible change of orientation, we may assume p; q > 0. In this
case, S3

1=n
.K/ D †.p; q; jpqn � 1j/. This is not S3 or †.2; 3; 5/ for jnj � 2. If

Y D†.2; 3; 5/, after a choice of orientation,

Y1=n.K/D†.2; 3; 5; j30n� 1j/; †.2; 3; j6n� 5j/;

†.2; 5; j10n� 3j/; or †.3; 5; j15n� 2j/;

depending on whether K is a regular fibre, or the singular fibre of order 2, 3 or 5
respectively. Again, for jnj � 2, we never obtain S3 or †.2; 3; 5/.

Lemma 3.8 Let K be a nontrivial knot in Y DS3 or †.2; 3; 5/ such that the comple-
ment is Seifert fibred. Then for all but finitely many positive integers or all but finitely
many negative integers n, the slope n=1 is left-orderable.

Proof For the case of Y DS3 , it is shown in Nakae [29] that for either all ˛2 .�1;1/

or all ˛ 2 .�1; 1/, S3
˛.K/ admits a taut foliation. When S3

˛.K/ is Seifert fibred with
base orbifold S2 , the existence of a taut foliation is equivalent to the existence of a
horizontal foliation. By [6, Theorem 1.3], this is equivalent to the fundamental group
being left-orderable. Therefore, �1.S

3
n=1
.K// is left-orderable for either all n> 0 or

all n< 0.
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Now, we consider the case that Y D†.2; 3; 5/. More generally, necessary and sufficient
conditions for horizontal foliations on a Seifert manifold, and thus for left-orderability,
are given explicitly in terms of the Seifert invariants in Eisenbud, Hirsch and Neumann
[15], Jankins and Neumann [21], and Naimi [28]. We record two of the sufficient
conditions, which will be useful for us. The first is that if a Seifert manifold † with
`� 4 singular fibres has �.`� 2/� b � �2, then † has left-orderable fundamental
group. The second is the following. Consider a Seifert fibred space † with bD�1 and
Seifert invariants b1=a1< � � �<b`=a` , where 0<bi <ai . If there exist relatively prime
integers 0<k <m and a permutation of � of the indices such that b�.1/=a�.1/<k=m,
b�.2/=a�.2/ < .m � k/=m and b�.i/=a�.i/ < 1=m for all other i , then † has left-
orderable fundamental group.

First, consider the case of n=1–surgery on a regular fibre in †.2; 3; 5/. For all but
finitely many n, this will be a Seifert manifold with 4 singular fibres and b D �2.
Therefore, �1 will be left-orderable. We now consider the case that K is a singular
fibre. In this case, the result of n=1–surgery will generically be a Seifert manifold with
three-singular fibres and b D �1. Up to orientation, the Seifert invariants for n=1–
surgery on the singular fibres of order 2, 3 and 5 are given by f1=3; 3=5; 1=.15� n/g,
f1=2; 2=5; 1=.10�n/g and f1=2; 1=3; 1=.6�n/g, respectively. Each of these manifolds
satisfies the second sufficient condition discussed above for all n< 0.

We also record the following similar lemma for use in the proof of Theorem 1.1, which
is essentially a compilation of known surgery results.

Lemma 3.9 Suppose that K � Y is a knot in an integer homology sphere graph
manifold Y , �1.Y / is not left-orderable, and set M D Y XK . Then M.1=n/ is
irreducible and �1.M.1=n// is infinite for all but finitely many n.

Proof First suppose that M is Seifert fibred. Since Y is not left-orderable, M is the
complement of a knot in S3 or in †.2; 3; 5/, as already observed, Lemma 3.5 shows
that M.1=n/ is irreducible for all but finitely many slopes. The result in this case then
follows from Lemma 3.7.

If M is not Seifert fibred (i.e., M contains a JSJ torus) then at most three of the
manifolds M.1=n/ are reducible, by Gordon and Luecke [17]. To show that only
finitely many surgeries on a manifold M containing a JSJ torus can yield a finite
fundamental group, we consider two cases. First, if M does not decompose along
incompressible tori into one or two cable spaces and a Seifert fibred space over the
2–disk with two exceptional fibres, then at most three slopes yield a finite fundamental
group, by Theorem B of Boyer and Zhang [7]. In the case that M does admit such a
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decomposition, then at most six slopes yield a finite fundamental group, by Theorems
6 and 8 of Bleiler and Hodgson [1].

3.3 A generalization and proof of Theorem 1.1

We now have the material in place to prove Theorem 1.1, which is an immediate
consequence of the following:

Theorem 3.10 Let Y be a graph manifold other than S3 , none of whose prime
components is a Poincaré homology sphere. If Y is an integer homology sphere, then
�1.Y / is left-orderable.

Proof First, observe that if Y D Y1# � � � #Ym , then �1.Y / is a free product of the
groups �1.Yi/. It is well known that if G is a free product of the groups Gi , then
G is left-orderable if and only if each nontrivial Gi is left-orderable (Vinogradov
[34]). Therefore, �1.Y / will be left-orderable if and only if each nontrivial �1.Yi/ is
left-orderable. Hence, for the remainder of the proof we may assume that Y is prime.

We now proceed by induction on the number of tori in the family T provided by the
JSJ decomposition of Y , as given by Theorem 3.1. First, if T D∅, then Y is Seifert
fibred. Since Y is not S3 or †.2; 3; 5/ by assumption, Theorem 3.6 ensures that
�1.Y / is left-orderable.

The first case of interest is when jT j D 1. In particular, Y is a splicing of Y1 and
Y2 along knots K1 and K2 , as in Lemma 3.2, such that each knot complement
Mi D Yi XKi is a boundary-irreducible Seifert fibred space. We denote the gluing
map by � , so that Y DM1 [� M2 . Observe that Y1 and Y2 must be Seifert fibred
spaces as well by applying Lemma 3.5 to the slope 1=0.

First suppose that one of the Yi has a left-orderable fundamental group. Since Y is
irreducible, by Proposition 2.8, �1.Y / is left-orderable.

Therefore, we can assume �1.Y1/ and �1.Y2/ are both non-left-orderable groups,
so that each Yi is one of S3 or †.2; 3; 5/. By Lemma 3.8, either infinitely many
positive or negative integer slopes on @M1 are left-orderable; by Lemma 3.7 only
finitely many slopes on @M2 of the form 1=n are not left-orderable. Recall that since
the homeomorphism � specifies a splicing of knots, relative to our chosen bases of
the peripheral subgroups � sends the slope p=q on @M1 to the slope q=p on @M2 .
Therefore, we can find a pair of left-orderable slopes of the form n=1 on M1 and 1=n

on M2 that are identified by � . Theorem 2.7 completes the proof in this setting, and
provides a base case for induction.
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We now provide the induction step. Assume that every irreducible integer homology
sphere graph manifold whose JSJ decomposition has fewer than p tori (other than S3 or
†.2; 3; 5/) has left-orderable fundamental group. Suppose that Y has tori T1; : : : ;Tp

in the JSJ decomposition, where p � 2. Since �Y is a tree, Tp is a separating torus
and Y XTp consists of the two manifolds Mi D Yi XKi , each containing p � 1 or
fewer tori in its JSJ decomposition. Without loss of generality, we can choose Tp such
that M2 is Seifert fibred. By Lemma 3.4, the number of tori in the JSJ decomposition
of Y1 DM1.�1/ is less than or equal to p� 1.

There are two cases to consider. First suppose that �1.Y2/ is left-orderable. Proposition
2.8 applies and we conclude that �1.Y / is left-orderable as well. On the other hand if
�1.Y2/ is not left-orderable then Y2 is either S3 or †.2; 3; 5/, hence all but finitely
many slopes of the form n=1 in @M2 are not left-orderable (for an appropriate choice
of the sign of n) by Lemma 3.8. On the other hand, by Lemma 3.9 there are only
finitely many slopes 1=n in @M1 for which M1.1=n/ is reducible or �1.M1.1=n//

is finite. Thus, by the induction hypothesis there are only finitely many slopes 1=n

in @M1 that are not left-orderable. It follows that for n sufficiently large and for an
appropriate choice of sign, there exist left-orderable slopes 1=n and n=1 in @M1 and
@M2 , respectively, and an application of Theorem 2.7 concludes the proof.

4 Relationship with Heegaard Floer homology

We briefly explain some of the motivation for Theorem 1.1. This stems from the
following two conjectures pertaining to L–spaces. Recall that an L–space is a rational
homology sphere with jH1.Y IZ/j equal to the rank of bHF .Y /, the “hat” version
Heegaard Floer homology of Y .

Conjecture 4.1 (Boyer, Gordon and Watson [5]) If Y is a prime rational homology
sphere, then Y is an L–space if and only if �1.Y / is not left-orderable.

Conjecture 4.2 (Ozsváth and Szabó) If Y is a prime L–space integer homology
sphere, then Y D S3 or †.2; 3; 5/.

Note that Conjecture 4.1 holds when Y is a Seifert manifold [5, Theorem 1]. There
also exist a number of independent proofs of Conjecture 4.2 for Seifert fibred rational
homology spheres, providing a Heegaard Floer homology analogue of Theorem 3.6.
In fact, one way to see this is by combining Theorem 3.6 with the affirmation of
Conjecture 4.1 for Seifert manifolds.
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A natural next step is to consider toroidal manifolds, a study first undertaken by
Eftekhary [14]. Boyer and Boileau show in [4] that every integer homology sphere
graph manifold other than S3 or †.2; 3; 5/ admits a smooth, co-orientable taut foliation,
and so is not an L–space (Ozsváth and Szabó [30, Theorem 1.4]). More generally,
Hedden and Levine use bordered Floer homology to prove that if Y is a toroidal
integer homology sphere then Y is not an L–space, under the hypothesis that Y is
obtained by splicing knots in integer homology sphere L–spaces [18, Theorem 1]. The
general question of showing that a toroidal integer homology sphere is an L–space (i.e.,
removing the splicing hypothesis from [18, Theorem 1]) remains an open problem [18,
Conjecture 2].

With these results in mind, it is natural to ask what can be said about the left-orderability
of the fundamental groups of integer homology spheres, which was our motivation
for Theorem 1.1. While the proof presented in the previous section does not rely on
Heegaard Floer homology, in the course of our work we found an alternative Heegaard-
Floer theoretic proof of Theorem 1.1, which was suggestive of a possible approach to
proving [18, Conjecture 2]. Consider the following analogue of Theorem 2.7:

Conjecture 4.3 Let M1 and M2 be 3–manifolds with incompressible torus bound-
aries, and �W @M1 ! @M2 a homeomorphism. If there exists a slope ˛ such that
M1.˛/ and M2.��.˛// are not L–spaces, then Y DM1[� M2 is not an L–space.

Suppose Y is a toroidal integer homology sphere. We again write Y as a splice of
.Y1;K1/ and .Y2;K2/. Analogous to Lemma 3.7, it can be shown that 1=n–surgery
on K1 is not an L–space for all but finitely many n (regardless of geometric structure
on Y1 or K1 ). Similar to Lemma 3.8, either for n� 0 or n� 0, n=1–surgery on K2

cannot be an L–space. We are now able to identify a pair of non-L–space slopes under
the gluing map, and Conjecture 4.3 would show that Y is not an L–space. It is worth
mentioning that the work of Hedden and Levine [18] suggests that bordered Heegaard
Floer homology is an essential object in this setting.

5 Examples, consequences and generalizations

5.1 On a question of Da̧bkowski, Przytycki and Togha

As an immediate consequence of Theorem 1.1, we provide a negative answer to [10,
Problem 1(iii)].

Proposition 5.1 There exists a hyperbolic knot K in S3 with n–fold cyclic-branched
cover †n.K/ that has left-orderable fundamental group and finite H1.†n.K/IZ/ (for
infinitely many positive integers n).
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Proof Let K be the Conway knot (the knot 11n34 in the standard knot tables; its
mutant, the Kinoshita–Terasaka knot, is the knot 11n42). As det.K/D 1, the two-fold
cyclic branched cover of K has trivial first-homology. Montesinos shows that †2.K/

can be obtained by surgery on a connect-sum of two trefoil knots [27]. This surgery
results in an irreducible toroidal integer homology sphere Y ŠM1[M2 ; each Mi is
homeomorphic to a trefoil exterior. Since the trefoil is a torus knot, its complement
is Seifert fibred. Therefore, †2.K/ is an irreducible toroidal graph manifold and
�1.†2.K// is left-orderable by Theorem 1.1. We remark that the JSJ decomposition
of †2.K/ may be deduced by inspection of the branch set (see [27], for example).

Now we can easily extend this example to obtain infinitely many n such that †n.K/ is
left-orderable and H1.†n.K/IZ/ finite. A theorem of Fox states that H1.†n.K/IZ/
will be infinite if and only if the Alexander polynomial for K has zeros at nth

roots of unity (Weber [36]). Since the Conway knot has Alexander polynomial 1,
H1.†n.K/IZ/ is always finite.

If 2 j n then †n.K/ is an m–fold cover of †2.K/ where mD n=2. To see this, recall
that �1.†n.K// may be viewed as the group KnDker.�1.K/!Z=nZ/=hh�nii where
� is the meridian of K . There is an obvious inclusion of ker.�1.K/! Z=nZ/ �
ker.�1.K/!Z=2Z/ when 2 j n, and this descends to give a homomorphism Kn!K2 .
In particular, there is a non-trivial homomorphism �1.†n.K//! �1.†2.K// when n

is even.

Finally, since the Conway knot is prime, †n.K/ is irreducible (Plotnick [31]). The
observation that �1.†2.K// is left-orderable, together with the homomorphism

�1.†n.K//! �1.†2.K//;

implies that �1.†n.K// is left-orderable (applying Theorem 2.5) whenever n is even.

We remark that, since the Conway knot is hyperbolic, the manifold †n.K/ is hyperbolic
for all sufficiently large n by work of Thurston [33].

Remark One can also find infinitely many examples as in Proposition 5.1 in another
way. Let Km be the .�2m � 1; 4mC 1; 4mC 3/–pretzel knot for m � 1. Note
that �Km

D 1. The branched double-cover of Km will be the Brieskorn sphere
†.2mC1; 4mC1; 4mC3/. Since m� 1, this manifold will not be S3 or †.2; 3; 5/,
and therefore has left-orderable fundamental group. That these knots are hyperbolic
follows from Kim and Lee [23, Theorem 2.2 and Theorem 2.4]. Again, using †2n.Km/

as in the proof of Proposition 5.1 provides examples where the manifolds are hyperbolic
rational homology spheres as well.
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5.2 Hyperbolic pieces

It is natural to ask how Theorem 1.1 might generalize to toroidal 3–manifolds with
hyperbolic pieces.

Theorem 5.2 Let Y be a toroidal integer homology sphere graph manifold with non-
trivial JSJ decomposition, and fix a knot K in some Seifert piece of Y . Consider
M 0 D Y 0 XK0 , the exterior of some knot K0 in an integer homology sphere Y 0 for
which the longitudinal filling M 0.�0/ is prime. Then the fundamental group of the
manifold resulting from the splicing of K and K0 is left-orderable.

Proof Let � denote the meridian of K , and note that � is a left-orderable slope by
Theorem 1.1. Now the manifold resulting from splicing K and K0 has left-orderable
fundamental group by Proposition 2.8.

Notice that M 0 in Theorem 5.2 may be hyperbolic, and that it is straightforward to
iterate this construction with any number of hyperbolic pieces. This yields a large class
of toroidal integer homology spheres with left-orderable fundamental groups, in the
spirit of Theorem 1.1, containing hyperbolic pieces.

We remark that in general there seems to be a strong interaction with co-orientable
taut foliations when considering the question of left-orderable fundamental groups
among integer homology spheres. For example, Li and Roberts show that for every
knot in S3 there is a neighbourhood of 0 such that every slope in this neighbourhood
yields a manifold admitting a co-orientable taut foliation [24]. Calegari and Dunfield
have proved that an atoroidal integer homology sphere admitting a co-orientable taut
foliation has left-orderable fundamental group [8, Corollary 7.6]. Combining these
results yields a large class of hyperbolic integer homology spheres with left-orderable
fundamental groups by considering 1=n–surgery on a hyperbolic knot in S3 for all
but finitely many n. This provides a potentially useful tool for constructing further
infinite families along the lines of Theorem 5.2.

5.3 Toroidal graph manifolds in general

While Theorem 2.7 is sufficient to deal with integer homology sphere graph manifolds,
it is not sufficient to deal with all rational homology sphere graph manifolds. However,
in this setting it is sometimes possible to apply Theorem 2.3 directly in order to left-
order the fundamental group of a given graph manifold. The example that follows
illustrates this fact.
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Recall that the braid group Bn is the group generated by �1; : : : ; �n�1 , subject to the
relations �i�j�i D �j�i�j if ji � j j D 1, and �i�j D �j�i if ji � j j > 1. The braid
group B3 is isomorphic to the fundamental group of the complement of the trefoil;
viewed as such the meridian is �D �2 and the longitude is �D�2��6

2
, where

�D �1�2�1:

Relative to this basis of the peripheral subgroup, the fibre slope of the Seifert structure
is 6�C�D�2 .

Next, we consider the twisted I –bundle over the Klein bottle, which has fundamental
group

hx;y j xyx�1
D y�1

i;

with peripheral subgroup hy;x2i. There are two possible Seifert structures on this
manifold. The first Seifert structure has a Möbius band as base orbifold, with no
cone points, and the regular fibre in this case is represented by y . The second Seifert
structure has a disk as base orbifold, with two cone points of multiplicity 2. In this
case the regular fibre is given by x2 .

We now define our graph manifold of interest. Let M1 denote the complement of the
trefoil, and M2 the twisted I –bundle over the Klein bottle, with fundamental groups
as described above. Define

M WDM1[� M2

where � is the gluing map of their boundaries defined on the peripheral subgroups by
the formula

�.�2/D y�1; �.�2/D y�1x2:

By applying the Seifert–Van Kampen theorem, we see that

�1.M /D h�1; �2;x;y j �1�2�1 D �2�1�2;xyx�1
D y�1; �2 D y�1; �2

D y�1x2
i:

It is not hard to check that �1.M / abelianizes to give Z=4Z, so M is not an integer
homology sphere (In fact, M arises from C4–surgery on the figure eight knot and
came to the attention of the authors as a result of left-ordering manifolds arising from
Dehn surgery on the figure eight knot; see [5]). Moreover, since the map � does not
send the unique Seifert fibre slope on @M1 to either of the Seifert fibre slopes on @M2 ,
the manifold M is not Seifert fibred, so is a toroidal graph manifold.

Proposition 5.3 The fundamental group of M cannot be left-ordered by applying
Theorem 2.7.
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Proof In order to apply Theorem 2.7, we must find a left-orderable slope s that is
mapped to a left-orderable slope �.s/ by � . The twisted I –bundle over the Klein
bottle has only one left-orderable slope, corresponding to the group element y in the
presentation above. In particular, filling along any other slope gives a manifold with
elliptic geometry and finite fundamental group, or a fundamental group that is a free
product of finite groups in the case of filling along the slope x2 . Therefore, if we are
to apply Theorem 2.7 to the graph manifold M , we must take �.s/ D y to be our
left-orderable slope on @M2 . Correspondingly, we must have s D ��1.y/D �2 D �.
However, �D �2 is not a left-orderable slope since B3=hh�2ii is trivial. We conclude
that Theorem 2.7 cannot be applied in this case.

With a little work, we can show that �1.M / is left-orderable by applying Theorem 2.3.
The success of this approach relies heavily on the fact that the left-orderings of B3 are
very well studied. First we need some definitions and lemmas.

Recall that a word w in the generators �1; �2 is 1–positive if �1 occurs with only
positive exponents and 1–negative if �1 has only negative exponents. We define a left-
ordering of B3 , called the Dubrovina–Dubrovin ordering, according to the following
rule: ˇ 2 B3 is positive if ˇ admits a 1–positive representative word in the generators
�1; �2 , or if ˇ D �k

2
for some k < 0. Denote this left-ordering of B3 by <DD .

For background on this left-ordering of B3 and the related Dehornoy ordering, see
Dehornoy [11], Dehornoy, Dynnikov, Rolfsen and Wiest [12], and Dubrovina and
Dubrovin [13]. An important property for our purposes is:

Lemma 5.4 (Special case of Property S [12]) Let ˇ be any braid; suppose that k > 0

and ˇ�1�k
2
ˇ is not a power of �2 . The braid ˇ�1�k

2
ˇ is 1–positive if and only if

k > 0.

Lemma 5.5 (Malyutin [25]; see [12, Lemma 3.4]) Given ˛; ˇ 2 B3 , the following
hold for every left-ordering < of B3 and every pair of integers k; l :

(1) ˛ < �2k and ˇ <�2l implies ˛ˇ < �2.kCl/ ,

(2) ˛ > �2k and ˇ >�2l implies ˛ˇ > �2.kCl/ ,

(3) ˛ < �2k implies ��2k < ˛�1 .

We use these facts without explicit reference in the proofs that follow.

Lemma 5.6 Let ˇ 2 B3 be any braid, and k any integer. Then

��2 <DD ˇ
�1�k

2 ˇ <DD �
2:
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Proof For contradiction, suppose that �2 <DD ˇ�1�k
2
ˇ . Since � is cofinal in every

left-ordering of B3 [12], we may choose m so that �2m <DD ˇ <DD �2mC2 , hence
��2m�2 <DD ˇ�1 <DD ��2m .

By squaring elements in the first inequality, we get �4 <DD ˇ�1�2k
2
ˇ , since �2 is

central. Combining this with the lower bounds for ˇ and ˇ�1 , we get:

�2
D�2m

��4
���2m�2 <DD ˇ �ˇ�1�2k

2 ˇ �ˇ�1
D �2k

2 :

We conclude �2<DD �
2k
2

, or ��2k
2

�2<DD 1, which is not possible since ��2k
2

�2 is
1–positive. This contradiction completes the proof. The inequality ��2 <DD ˇ�1�k

2
ˇ

is proved in a similar fashion.

Lemma 5.7 Every conjugate of the Dubrovina–Dubrovin ordering of B3 restricts to
one of the following two orderings on the subgroup h�2; �

2i:

(1) �k
2
�2l is positive if l > 0, or l D 0 and k > 0, or

(2) �k
2
�2l is positive if l > 0, or l D 0 and k < 0.

Proof Let ˇ 2B3 be any braid. If �k
2
�2l is positive in the conjugate ordering <ˇ

DD
,

then by definition we have
ˇ <DD �k

2�
2lˇ;

which we can rearrange to give ˇ�1��k
2
ˇ <DD �2l . By Lemma 5.6, either l > 0, or

l D 0 and we have ˇ�1��k
2
ˇ <DD 1.

We now consider two cases. First, if ˇ commutes with �2 (and hence all its powers
by Fenn, Rolfsen and Zhu [16]), then ˇ�1��k

2
ˇ <DD 1 becomes ��k

2
<DD 1, which

happens if and only if k < 0.

Second, if ˇ does not commute with �2 , then ˇ�1��k
2
ˇ is not a power of �2 . By

definition of the DD–ordering, ˇ�1��k
2
ˇ <DD 1 implies that ˇ�1��k

2
ˇ is 1–negative.

By Property S, this happens if and only if k > 0.

Proposition 5.8 The fundamental group

�1.M /D h�1; �2;x;y j �1�2�1 D �2�1�2;xyx�1
D y�1; �2 D y�1; �2

D y�1x2
i

is left-orderable.

Proof Recall that M is the union of two Seifert fibred pieces M1 and M2 with
�1.M1/D B3 and �1.M2/D hx;y j xyx�1 D y�1i, with the gluing map

�W h�2; �
2
i ! hy;x2

i
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given by the formula
�.�2/D y�1; �.�2/D y�1x2:

In order to use Theorem 2.7 and show that �1.M / is left-orderable, we must define
normal families L1 � LO.�1.M1// and L2 � LO.�1.M2// that are compatible with
the map � .

The first normal family, L1 , will be all conjugates of the Dubrovina–Dubrovin ordering
of B3 , as defined above. For the normal family L2 , consider the short exact sequence

1! hhyii ! �1.M2/
q
�! hxi ! 1:

We can use this short exact sequence to define two left-orderings <1 and <2 of �1.M2/

that are conjugate to each other by the action of x . Given g 2 �1.M2/, declare 1<1 g

if q.g/D xl , l > 0, or if q.g/D 1 and g D yk with k > 0. Similarly, define 1<2 g

if q.g/ D xl , l > 0, or if q.g/ D 1 and g D yk with k < 0, so that the sign of y

is opposite in <2 . It is not hard to check that L2 D f<1; <2g is a normal family of
LO.�1.M2//.

Now we check that the normal families L1 and L2 are compatible with the map � . To
this end, choose a left-ordering < from the family L1 . There are two cases to consider.

Case 1 The ordering < is conjugate to <DD by a braid ˇ that does not commute
with �2 . In this case, we use the ordering <2 in L2 to demonstrate compatibility.
Choose h D �k

2
�2l 2 h�1�

2i satisfying 1 < h, then by Lemma 5.7 either l > 0 or
l D 0 and k > 0. Then

�.h/D y�k.y�1x2/l ;

and we wish to check that 1<2 y�k.y�1x2/l . Observe that q.y�k.y�1x2/l/D x2l ,
so 1 <2 y�k.y�1x2/l if l > 0. If l D 0, then y�k.y�1x2/l D y�k , and 1 <2 y�k

because k > 0.

Case 2 The ordering < is conjugate to <DD by a braid ˇ that commutes with �2 .
In this case we use <1 in L1 to demonstrate compatibility with � . The calculation is
nearly identical to Case 1 (with the signs of k reversed), and is left to the reader.
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