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Character algebras of
decorated SL2.C /–local systems

GREG MULLER

PETER SAMUELSON

Let S be a connected and locally 1–connected space, and let M� S . A decorated
SL2.C/–local system is an SL2.C/–local system on S , together with a chosen
element of the stalk at each component of M .

We study the decorated SL2.C/–character algebra of .S;M/: the algebra of poly-
nomial invariants of decorated SL2.C/–local systems on .S;M/ . The character
algebra is presented explicitly. The character algebra is shown to correspond to the
C–algebra spanned by collections of oriented curves in S modulo local topological
rules.

As an intermediate step, we obtain an invariant-theory result of independent interest: a
presentation of the algebra of SL2.C/–invariant functions on End.V /m˚V n , where
V is the tautological representation of SL2.C/ .

13A50, 14D20, 57M27, 57M07

1 Introduction

1.1 Character algebras

If S is a connected and locally 1–connected space and G is a group, then G acts on
the set Hom.�1.S/;G/ by conjugation, and there is a well-known bijection�

G–local systems on S
up to equivalence

�
��!

�
homomorphisms �1.S/!G

up to equivalence

�
This bijection takes a G–local system on S to its monodromy representation (see
Section 2.2). If G is an algebraic group over a field k and �1.S/ is finitely generated,
then the character variety Char.S;G/ is an affine k–variety that parametrizes closed G –
orbits in Hom.�1.S/;G/. The character variety is the spectrum of the character algebra
OChar.S;G/ of G –invariant regular functions on the k–variety Hom.�1.S/;G/.

Character varieties have received significant attention in the literature, and their geome-
try is related to the topology of S and the representation theory of G . One important
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connection between the topology of a 3–manifold S and its character variety was
discovered by Culler and Shalen in [5]. They demonstrate that affine curves in the
character variety of SL2.k/–local systems on a 3–manifold S determine families of
incompressible surfaces in S .

We specialize to G D SL2.C/. In this case, Brumfiel and Hilden used general results
of Procesi [9; 10] to give the following explicit presentation of OChar.S;SL2.C//.

Theorem 1.1.1 [3, Proposition 9.1.i] The character algebra OChar.S;SL2.C// is
the commutative C–algebra generated by f�g j g 2 �1.S/g, with relations

� �e D 2, and

� �g�h D �ghC�g�1h , for all g; h 2 �1.S/.

This algebra also has a purely topological description. The .q D�1/ Kauffman skein
algebra K�1.S/ is the commutative C–algebra generated by homotopy classes of loops
in S (that is, continuous images of S1 ), with the following relations. Any contractible
loop is equal to 2, and any loop with a self-intersection satisfies the following locally
defined relation.1

D� �

A loop l W S1 ! S defines a function �l 2 OChar.S;SL2.C// that is defined by
�l.�/D tr.�.l//. In this notation, Przytycki and Sikora have shown the following [11;
12].

Theorem 1.1.2 The assignment l 7! ��l extends to a C–algebra isomorphism
K�1.S/!OChar.S;SL2.C//.

The purpose of the present paper is to generalize the previous two theorems to decorated
SL2.C/–local systems. In the rest of the introduction, we define decorated SL2.C/–
local systems, state the main theorems, and describe the organization of the paper.

1.2 Decorations

Fix a subset M� S , and let V be the tautological 2–dimensional representation of
SL2.C/. A decorated SL2.C/–local system on .S;M/ is a pair .L; d/, where

� L is a SL2.C/–local system on S , and

1An intersection between distinct loops will satisfy an identical relation; this is implied by the self-
intersection relations.
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� d is an element of the stalk .L�SL2.C/ V /M at M. Equivalently, it is a set
fdmg, where dm is an element in the stalk .L �SL2.C/ V /m at m, for each
connected component m�M.

Like the undecorated case, decorated SL2.C/–local systems can be reduced to some
monodromy data. In this case, this is a pair of maps

�1.S/! SL2.C/; �0. �M/! V

where �M is the preimage of M in the universal cover of S . This data will be
axiomatized as a morphism of group actions (defined in Section 2.4).

Analogous to the undecorated case, a character function is an SL2.C/–invariant regular
function on the variety parametrizing the monodromy data. The character functions
collectively form the character algebra OChar.S;M/, our central object of study.

The main result of the paper is the following presentation.

Theorem 3.5.2 The character algebra OChar.S;M/ is the commutative C–algebra
generated by

f�l j l 2 �1.S/g[ f�.p;q/ j p; q 2 �0. �M/g

with relations:

(1) �e D 2, for e the identity in G .

(2) �.p;q/ D��.q;p/

(3) �.gp;gq/ D �.p;q/

(4) �g�h D �ghC�g�1h

(5) �g�.p;q/ D �.gp;q/C�.g�1p;q/

(6) �.p;q/�.p0;q0/ D �.p;q0/�.p0;q/C�.p;p0/�.q;q0/

The generators correspond to classes of oriented curves in .S;M/ (see Section 4). The
relations in the theorem can be translated into simple manipulations of these curves,
and so computations in the character algebra may be performed graphically.

1.3 The algebra of mixed SL2.C/–invariants

In proving Theorem 3.5.2, an invariant theory result of independent interest will be
proven. For fixed m; n 2 N , the vector space End.V /m ˚ V n is a C–variety with
an action of SL2.C/; denote its coordinate ring by Om;n . The invariant subalgebra
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OSL2
m;n is called the algebra of mixed invariants.2 This algebra appears to have first been

considered by Procesi in [9, Section 12].

Let .A1; : : : ;Am; v1; : : : ; vn/ denote an arbitrary element of End.V /m ˚ V n . For
1� i �m and 1� j ; k � n, define

Xi.A1; : : : ;Am; v1; : : : ; vn/ WD Ai 2 End.V /;

‚j ;k.A1; : : : ;Am; v1; : : : ; vn/ WD vjv
?
k 2 End.V /:

Theorem 6.4.1 The algebra OSL2
m;n of mixed invariants is the commutative C–algebra

generated by
ftr.A/ j 8 words A in fXi ;‚i;j gg

with relations:

� (Procesi’s F–relation) For words A;B;C in fXi ;‚i;j g,

tr.ABC/C tr.CBA/C tr.A/ tr.B/ tr.C/D tr.B/ tr.AC/C tr.AB/ tr.C/C tr.A/ tr.BC/:

� For a word A in the fXi ;‚i;j g, and 1� i; j � n,

tr.A‚i;j /D tr.A‚j ;i/� tr.A/ tr.‚j ;i/:

� For words A;B in fXi ;‚i;j g, and 1� i; j ; i 0; j 0 � n,

tr.A‚i;j B‚i0;j 0/D tr.A‚i;j 0/ tr.B‚i0;j /:

1.4 Structure of paper

The first half of the paper concerns definitions and the presentation of results.

� Section 2 defines local systems, decorated local systems, and their monodromy
data. Group actions that axiomatize the monodromy data are defined.

� Section 3 replaces the monodromy group action .�1.S/; �0. �M// with an ar-
bitrary finitely generated group action .G;M /, and defines the corresponding
character algebra OChar.G;M /. Basic results on elementary character functions
are given, as well as a statement of the main theorem (Theorem 3.5.2).

� Section 4 explores the topological presentation of the character algebra. A
complete list of the rules for manipulating curves is presented, which is the
topological translation of Theorem 3.5.2.

2It interpolates between the algebra of invariant functions on V n (a subject of classical invariant
theory) and the algebra of invariant functions on End.V / (a subject of modern interest).
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The second half of the paper proves Theorem 3.5.2 by proving Theorem 6.4.1. It is
rather technical and has an invariant-theory flavor.

� Section 5 introduces the prerequisites from invariant theory, and defines the
algebras of mixed invariants OSL2

m;n and mixed concomitants ESL2
m;n , which will be

important intermediary objects. Several previously known results are presented
as special cases of Theorem 6.4.1.

� Section 6 produces presentations of the algebras of mixed invariants and mixed
concomitants (Theorems 6.4.1 and 6.4.2).

� Section 7 applies the presentations from the previous section to produce a
presentation of the character algebra OChar.S;M/.

The paper concludes with an appendix on twisted character algebras, a variant useful
for applications.
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2 Decorated SL2.C/–local systems

2.1 Spaces with marked regions

We begin by considering pairs .S;M/, where S is a connected and locally 1–connected
space, and M�S is a subset with finitely many connected components, each of which
is path-connected. The marked subset M may be empty.

Subsequent constructions will only depend on the marked subset M up to homotopy
equivalence in S . In particular, if each component of M is contractible in S , then
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each component of M can be replaced by a point. Regardless, �0.M/ will denote
the set of connected components of M.

Choose a basepoint p 2 S , and let �1.S/ WD �1.S;p/ be the fundamental group at p .
Fix a universal cover zS!S and let �M be the preimage of M in zS .3 The fundamental
group �1.S/ acts on zS , �M and �0. �M/.

2.2 G –local systems

A G –local system L on S is a locally constant sheaf of sets on S with a G –action, so
that L is locally a free and transitive G–set (ie, a G–torsor). Two G–local systems
are equivalent if there is a G –equivariant isomorphism of sheaves between them.

The choice of a basepoint p associates to every G–local system L its monodromy
representation �LW �1.S/! G . Two such representations are equivalent if they are
G –conjugate. Then the following is standard (see, eg Szamuely [15, Theorem 2.5.15]).

Theorem 2.2.1 The assignment L! �L induces a bijection:�
G–local systems on S

up to equivalence

�
��!

�
homomorphisms �1.S/!G

up to equivalence

�
In particular, if S is simply connected, then every G –local system is trivial.

A G –local system L and a G –representation V determines an induced vector bundle
L�G V . This sheaf is L.U/�G V ' V on simply connected sets U � S .

2.3 Decorated SL2.C/–local systems

Let V denote the standard SL2.C/–representation; it is 2–dimensional over C . Fix
an SL2.C/–invariant, skew-symmetric bilinear form ! on V , though this will only be
used later.

Definition 2.3.1 A decorated SL2.C/–local system on .S;M/ is a pair .L; d/, where

� L is a SL2.C/–local system on S , and

� d is an element of the stalk .L�SL2.C/ V /M at M. Equivalently, it is a set
fdmg, where dm is an element in the stalk .L �SL2.C/ V /m at m, for each
connected component m�M.

3With the assumptions on S , a universal cover exists (Szamuely [15, Theorem 2.3.5]).
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Note that (undecorated) SL2.C/–local systems are the special case when MD∅.

Decorated SL2.C/–local systems can be reduced to monodromy data by means of
the universal cover. Given a decorated SL2.C/–local system .L; d/ on .S;M/,
the universal covering map  W zS ! S induces a decorated SL2.C/–local system
. �L;  �d/ on . zS; �M/. Since zS is simply connected,  �L is a trivial SL2.C/–local
system. A global trivialization of  �L is an isomorphism of SL2.C/–sets

�. zS;  �L/' SL2.C/;

which, for any U � zS , defines isomorphisms of SL2.C/–sets

�.U ;  �L/' SL2.C/; �.U ;  �L�SL2.C/ V /' V :

A global trivialization identifies all the stalks in  �L�SL2.C/ V with V , and so the
decorations on �M are equivalent to a map �d W �0. �M/! V .

The action of �1.S/ on zS gives an action on global sections via the monodromy map
�W �1.S/!SL2.C/. If two marked components m;m0 2M are related by the action
of l 2 �1.S/, then their decorations must be related by the corresponding monodromy;
that is, 8m 2M and l 2 �1.S/,

�d .lm/D �.l/�d .m/:

Changing the global trivialization of  �L by g 2 SL2.C/ will send � to g�g�1 , and
�d to g�d .

2.4 Group actions

This monodromy data .�; �d / can be abstracted as follows. A group action is a pair
.G;M /, where G is a group and M is a G–set. A morphism of group actions is a
pair of maps

.fG ; fM /W .G;M /! .G0;M 0/

such that fG W G! G0 is a group homomorphism and fM W M !M 0 is a function
such that, for all g 2G and m 2M ,

fM .gm/D fG.g/fM .m/:

A group action .G;M / is finitely generated if G is finitely generated as a group and
M has finitely many G –orbits.

Any element g2G determines an automorphism of group actions .adg;g�/W .G;M /!

.G;M /. Then G acts on the Hom ! Hom set Hom..G0;M 0/; .G;M // by postcom-
position with the corresponding inner automorphism.
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If .L; d/ is a decorated SL2.C/–local system, choosing a global trivialization of  �L
defines a morphism of group actions

(2-1) .�; �d /W .�1.S/; �0. �M//! .SL2.C/;V /:

Two different global trivializations give morphisms related by the action of SL2.C/.

Proposition 2.4.1 The map sending .L; d/ to its monodromy data .�; �d / is a bijec-
tion:�

decorated SL2.C/–local systems
on .S;M/ up to equivalence

�
��!

8<:
group action maps

.�1.S/; �0. �M//! .SL2.C/;V /
up to the action of SL2.C/

9=;
Proof We construct the inverse to the map .L; d/ 7! .�; �d /. Given a representation

f W .�1.S/; �0. �M//! .SL2.C/;V /;

the map f�1.S/W �1.S/!SL2.C/ determines an SL2.C/–local system L, by Theorem
2.2.1.

The map f
�0. �M/

W �0. �M/!V determines an element of the stalk zd 2 .L�SL2.C/V / �M .
For U � S , sections of L�SL2.C/V over U can be identified with �1.S/–equivariant
sections of �1U � zS . The group action condition implies that zd is �1.S/–equivariant,
so it determines an element d 2 .L�SL2.k/ V /M . This defines a decoration of L.

3 Character algebras

The decorated SL2.C/–local systems on .S;M/ only depend on the finitely generated
group action .�1.S/; �0. �M//. This section will pass to the larger generality of an
arbitrary finitely generated group action .G;M /, with .�1.S/; �0. �M// demoted to
the role of ‘motivating example’.

3.1 The representation algebra

The first step is to endow the set of group action maps .G;M /! .SL2.C/;V / with
the structure of an affine scheme.

Definition 3.1.1 The representation algebra of .G;M / is the C–algebra
ORep.G;M / such that, for any commutative C–algebra A, there is a bijection
(functorial in A):�

group action maps
.G;M /! .SL2.A/;A˝V /

�
��!

�
C–algebra maps

ORep.G;M /!A

�
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The affine scheme Rep.G;M / WD Spec.ORep.G;M // is called the representation
scheme.

In particular, the C–valued points of Rep.G;M / are in bijection with the set of group
action maps .G;M /! .SL2.C/;V /.4 The proof of the existence and uniqueness of
ORep.G;M / will be deferred to Proposition 7.1.3.

3.2 The character algebra

The group SL2.C/ acts naturally on ORep.G;M /, and the set of SL2.C/–equivalence
classes of maps .G;M /! .SL2.C/;V / is the set of SL2.C/–orbits in Rep.G;M /.

Definition 3.2.1 The character algebra of .G;M / is .SL2.C/;V / is the SL2.C/–
invariant subalgebra of ORep.G;M /,

OChar.G;M / WDORep.G;M /SL2.C/ �ORep.G;M /:

The character scheme is the affine scheme Char.G;M / WD Spec.OChar.G;M //.

A character function is an element of OChar.G;M /. A character function � 2

OChar.G;M / is a complex-valued function on SL2.C/–conjugacy classes of maps
.G;M /! .SL2.C/;V /. By Proposition 2.4.1, a character function

� 2 Char.�1.S/; �0. �M//

determines a complex-valued invariant of decorated SL2.C/–local systems on .S;M/.

Remark 3.2.2 The C–valued points of Char.G;M / do not correspond to SL2.C/–
orbits of C–valued points in Rep.G;M /. Orbits in Rep.G;M / may not be closed,
and points in the orbit and its closure must go to the same point in Char.G;M /.

3.3 Elementary character functions

There are two straight-forward constructions of character functions. First, let g 2G .
For a map of group actions

� WD .�G ; �M /W .G;M /! .SL2.C/;V /;

define

(3-1) �g.�/ WD tr.�G.g//:

4If .G;M / is finitely generated, ORep.G;M / is finitely generated over C (Proposition 7.1.3), and
so the C–valued points of Rep.G;M / are exactly the closed points of Rep.G;M / (e.g, [6, Corollary
13.12]).
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For a 2 SL2.C/,

�g.a � �/D tr.a�.g/a�1/D tr.�.g//D �g.�/

and so �g defines a character function for all g 2G .

Next, let p; q 2 M . Recall that ! is a fixed SL2.C/–invariant, skew-symmetric
bilinear form on V . For � an arbitrary representation, define

(3-2) �.p;q/.�/ WD !.�M .p/; �M .q//:

For a 2 SL2.C/,

�.p;q/.a � �/D !.a�M .p/; a�M .q//D !.�M .p/; �M .q//D �.p;q/.�/

and so �.p;q/ defines a character function for all g 2G .

3.4 Relations between elementary character functions

Proposition 3.4.1 The following relations hold between character functions of the
form �g and �.p;q/ :

(1) �e D 2, for e the identity in G .

(2) �.p;q/ D��.q;p/

(3) �.gp;gq/ D �.p;q/

(4) �g�h D �ghC�g�1h

(5) �g�.p;q/ D �.gp;q/C�.g�1p;q/

(6) �.p;q/�.p0;q0/ D �.p;q0/�.p0;q/C�.p;p0/�.q;q0/

Proof Relation .1/ follows from tr.IdV /D dim.V /D 2. Relation .2/ follows from
the anti-symmetry of ! . Relation .3/ follows from the SL2.C/–invariance of ! .
Relations .4/ and .5/ use the following lemma.

Lemma 3.4.2 Let g 2 SL2.C/. Then gCg�1 D tr.g/ � IdV .

Proof of Lemma 3.4.2 The matrix g satisfies its own characteristic polynomial, that
is,

g2
� tr.g/ �gC IdV D 0:

Multiplying by g�1 gives the desired identity.
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Then Relation .4/ is

(3-3) tr.g/ tr.h/D tr.tr.g/h/D tr.ghCg�1h/D tr.gh/C tr.g�1h/

and Relation .5/ is

(3-4) tr.g/!.p; q/D !.tr.g/p; q/D !.gpCg�1p; q/D !.gp; q/C!.g�1p; q/:

Relation (6) is equivalent to the ‘quadratic Plücker relation’. To see this, choose
!–canonical coordinates x;y on V , that is,

!.p; q/D xpyq �xqyp D

ˇ̌̌̌
xp xq

yp yq

ˇ̌̌̌
; 8p; q 2 V :

Then Relation (6) becomesˇ̌̌̌
xp xq

yp yq

ˇ̌̌̌ ˇ̌̌̌
xp0 xq0

yp0 yq0

ˇ̌̌̌
D

ˇ̌̌̌
xp xq0

yp yq0

ˇ̌̌̌ ˇ̌̌̌
xp0 xq

yp0 yq

ˇ̌̌̌
C

ˇ̌̌̌
xp xp0

yp yp0

ˇ̌̌̌ ˇ̌̌̌
xq xq0

yq yq0

ˇ̌̌̌
which can be verified directly.

These relations formally imply several other relations.

Corollary 3.4.3 The following relations also hold between character functions of the
form �g and �.p;q/ :

(7) �p;p D 0

(8) �g�1 D �g

(9) �hgh�1 D �g

(10) �gi D 2Ti.�g=2/, where Ti is the i th Chebyshev polynomial, defined by
T0.x/D 1, T1.x/D x and TiC1.x/D 2xTi.x/�Ti�1.x/.

3.5 A presentation of OChar.G;M /

The main result of this paper will be that the elementary character functions f�gg and
f�.p;q/g generate OChar.G;M /, with all relations generated by those in Proposition
3.4.1. We formalize this as follows.

Definition 3.5.1 Let HC.G;M / denote5 the commutative C–algebra generated by
symbols

� Œg�, for all g 2G , and

5The notation HC.G;M / is chosen to match [3] and [12].
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� Œp; q�, for all p; q 2M ,

with relations generated by:

(1) Œe�� 2

(2) Œp; q�C Œq;p�

(3) Œgp;gq�� Œp; q�

(4) Œg�Œh�� Œgh�� Œgh�1�

(5) Œg�Œp; q�� Œgp; q�� Œp;gq�

(6) Œp; q�Œp0; q0�� Œp; q0�Œp0; q�� Œp;p0�Œq; q0�

By Proposition 3.4.1, there is an algebra map

�W HC.G;M /!OChar.G;M /

such that �.Œg�/D �g and �.Œp; q�/D �.p;q/ .

Theorem 3.5.2 The map �W HC.G;M /!OChar.G;M / is an isomorphism.

Proof Outline The proof will be contained in Sections 5–7, but we outline the idea
here. If G is a free group on m generators and M is a free G –set of n orbits, then

Rep.G;M /D SL2.C/
m
˚V n;

as a subvariety of the affine space End.V /m˚V n . The invariant functions OSL2
m;n on

End.V /m˚V n were studied in [9, Section 12] under the name of mixed invariants.
We provide a presentation for the mixed invariants in Theorem 6.4.1, which can be
used to present OChar.G;M / when G and M are both free (see Remark 7.2.1).

When G and M are not free, a choice of m generators for G and n generators for M

realizes Rep.G;M / as an SL2 –fixed subvariety of End.V /m˚V n , corresponding to
the image of the generators in SL2.C/ and V , respectively. The problem that arises is
that the natural relations defining Rep.G;M / in End.V /m˚V n are not SL2 –invariant,
and so more relations might appear in the invariant subalgebra.

This is solved by considering the algebra ESL2
m;n of SL2 –equivariant maps from

End.V /m˚V n to End.V /, the algebra of mixed concomitants. When extended to this
non-commutative algebra, the defining equations of Rep.G;M / become SL2 –invariant,
and so it is possible to present .End.V /˝ORep.G;M //SL2 ; cf Theorem 7.3.2. Then,
by taking traces of these elements, we present OChar.G;M /.
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Example 3.5.3 When M D ∅, then Relations (2), (3), (5), and (6) are vacuous,
and the resulting presentation coincides with Brumfiel and Hilden’s presentation
(Theorem 1.1.1).

Example 3.5.4 When G D feg and M D f1; : : : ; ng, then Relations (3), (4) and (5)
are redundant, and the character algebra is the homogeneous coordinate ring of the
Grassmannian Gr.2; n/. The Plücker coordinates xij correspond to �.i;j/ .

Remark 3.5.5 These last two examples can be interpreted as saying that general
character algebras OChar.G;M / interpolate between Brumfiel and Hilden’s SL2.C/–
representation algebras HC.G/ and the homogeneous coordinate rings of Grassmanni-
ans.

Example 3.5.6 For G DZ and M D fa; bg (two G –invariant elements), the algebra
OChar.G;M / is generated by �1 and �.a;b/ , with the single relation .�1C2/�.a;b/D

0. The remaining elementary character functions can be expressed in terms of these
two; for example, �i D 2Ti.�1=2/ and �.b;a/ D��.a;b/ .

The corresponding scheme Char.G;M / is two affine lines crossing transversely.
The two irreducible components of this scheme correspond to maps �W .G;M /!

.SL2.C/;V / such that either

� �G.1/D IdV (when �1 D tr.�.1//D 2), or
� �M .a/ and �M .b/ are linearly dependent (when �.a;b/ D !.�.a/; �.b//D 0).

Since �M .a/ and �M .b/ are invariant vectors of �G.1/, it is clear one of these two
conditions must be satisfied.

4 A topological presentation of the character algebra

In this section, we return to the topological setting of .G;M /D .�1.S/; �0. �M//, and
hence to character functions for decorated SL2.C/–local systems. The elementary
character functions naturally correspond to homotopy classes of oriented curves in S ,
and the relations from the previous section can be graphically encoded.

4.1 Character functions of oriented curves

A curve in .S;M/ will be a continuous map cW C!S from a connected, 1–dimensional
manifold with boundary, such that any endpoints of C land in M. An orientation of c

is an orientation of C .

There are two kinds of curves in .S;M/:
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� loops, which are modelled on the circle S1 , and
� arcs, which are modelled on the interval Œ0; 1� with c.0/; c.1/ 2M.

A character function �c 2OChar.S;M/ can be associated to any oriented curve c .
� An oriented loop l determines a conjugacy class of elements in �1.S/. Since
�l D �glg�1 , �l is a well-defined character function. If .L; d/ is a decorated
SL2.C/–local system, �l.L; d/ is the trace of the monodromy of L around l .

� An oriented arc a can be lifted to an oriented arc za in the universal cover zS .
The endpoints p; q 2 �M determine a character function �a WD �p;q ; this is
a well-defined function of a. If .L; d/ is a decorated SL2.C/–local system,
�a.L; d/ uses parallel transport along a to evaluate the skew-symmetric form
! at the decorations.

In both cases, the character function �c only depends on c up to homotopy keeping
the endpoints in M.

For a finite collection of oriented curves cD fc1; c2; : : : ; cig, the associated character
function is the product of the corresponding elementary character functions:

�c D �c1
�c2
� � ��ci

4.2 Diagrammatic relations

Let Curve.S;M/ denote the C–algebra spanned by the set of finite collections of
oriented curves in .S;M/ (up to homotopy). Then

�W Curve.S;M/!OChar.S;M/

defines a map of algebras. Since the character algebra is generated by functions of
the form �c , Theorem 3.5.2 shows that OChar.S;M/ is a quotient of Curve.S;M/

with kernel determined by the relations in OChar.S;M/. The generators of this
kernel can be interpreted as local manipulations. Figure 1 gives a complete set of rules
for manipulating collections of curves without changing the corresponding character
function.
Remark 4.2.1 (1) The relation �gp;gq D �p;q may appear to be missing; however,

it is implicit in the definition of the character function of a curve.
(2) The second and third rule are formal consequences of the other rules.
(3) While the last three rules appear to be virtually identical, there is an important

distinction. The orientation of arcs in the last rule is arbitrary-seeming but
necessary, whereas the orientation of loops in the fifth rule is truly arbitrary.

(4) Despite how the last three rules have been drawn, it is possible that the curves
on the left hand side intersect along the chosen segments.
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(1) A contractible loop is equal to 2 (Proposition 3.4.1, .1/):

D 2

(2) A contractible arc is equal to 0 (Corollary 3.4.3, .7/):

ı D 0

(3) An oriented loop is equal to its orientation-reversal (Corollary 3.4.3, .8/):

D

(4) An oriented arc is negative its orientation-reversal (Proposition 3.4.1, .2/):

ı

ı
D �

ı

ı

(5) There are relations for pairs of curves, made by choosing nearby segments on
each curve and summing over the two other ways to connect them.
Two loops (Proposition 3.4.1, .4/):

D C

(6) An arc and a loop (Proposition 3.4.1, .5/):

ı

ı
D

ı

ı
C

ı

ı

(7) Two arcs (Proposition 3.4.1, .6/):

ı

ı

ı

ı
D

ı

ı

ı

ı
C

ı

ı

ı

ı

Figure 1: Diagrammatic rules for character functions of oriented curves

4.3 Weaknesses of this approach

While it might be tempting to regard this as the ‘correct’ way to topologically visualize
the character algebra, there are two shortcomings of this approach.
� Orientation-dependence The function �c depends on the orientation of a

curve c , but only up to a sign.
� Non-local relations The relations are not local in S . For each crossing in a

collection of curves, there is a relation, but the signs in that relation depend on
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whether the crossing is between two distinct curves or the same curve, which is
not local information.

In the undecorated case, the relations can be made local by sending a curve c to ��c .
This turns the last three rules into the Kauffman skein relation at q D�1 (Bullock [4]
and Przytycki [12]). Such a fix will not be available in the decorated generality because
of the orientation-dependence of the arcs.

A subsequent paper by the authors [8] will explore two methods for fixing these
short-comings:

� Cleverly choosing a sign-correction w.c/ for each curve c , so that the map
c! .�1/w.c/�c has the desired properties.

� Twisting the definition of decorated SL2.C/–local systems so that the corre-
sponding character algebra BOChar.S;M/ can be canonically identified with a
graphical algebra with the desired properties.

In both cases, the resulting graphical algebra will be the Kauffman skein algebra
at q D 1, where curves are allowed to have endpoints in M. This algebra and its
connections to Teichmüller theory have also been explored by Roger and Yang [13].

In this perspective, the first approach listed above is the decorated analog of Barrett’s
use of spin structures to flip signs in Kauffman skein algebras [2], while the second
corresponds to his observation that the q D 1 skein algebra corresponded to certain flat
SL2.C/–connections on the frame bundle.

5 Invariants and concomitants on End.V /m ˚ V n

The rest of the paper is devoted to the proofs of Theorem 3.5.2. The main ingredient
for the proof of Theorem 3.5.2 will be presentations for the algebras of invariants and
matrix concomitants on the space End.V /m˚V n (Theorems 6.4.1 and 6.4.2).

5.1 Preliminaries from invariant theory

This section collects the necessary results from invariant theory; a more substantial
reference is [14].

Let G be a semisimple algebraic group over C , and let A be a C–algebra with an
action of G . The subspace AG �A of G –invariant elements is a subalgebra, called the
invariant subalgebra. Taking invariants is functorial; an SL2.C/–equivariant morphism
of algebras f W A! B restricts to a morphism f W AG! BG .

A basic tool for studying invariants of semisimple groups is the Reynolds operator.
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Lemma 5.1.1 Let G be a semisimple algebraic group over C , and let A be a C–
algebra with an action of G . There is a C–linear surjection  W A Ü AG , called the
Reynolds operator, such that:

�  .a/D a if a 2AG �A.
�  .ab/D a .b/ and  .ba/D  .b/a if a 2AG �A.
�  commutes with G –equivariant maps.

The main goal of invariant theory is usually to find a presentation of AG . A typical
approach is to write A D B=I , where B is an algebra with a G–action and I is a
G –stable two-sided ideal. Then the following is standard.

Proposition 5.1.2 If AD B=I , where A;B are C–algebras with a G action and I

is a G –stable two-sided ideal, then AG D BG=IG .

Proof The short exact sequence

I
�
�! B

�
�!A

of G–representations and their respective Reynolds operators fit into the following
commutative diagram of C–vector spaces:

I
� � � //


����

B


����

� // // A


����

IG
�G // BG

�G
// AG

For any a 2 AG � A, choose a preimage b 2 B . Then  .�.b// D �G. .b//, and
 .b/ 2 BG is a preimage of a, so � W BG!AG is surjective.

Let b 2 BG be in the kernel of �G . As an element of B , b is in the kernel of � , and
so b 2 I . Since b 2 BG , it is G –invariant, and so b 2 IG .

Finding generators for IG can be difficult without the help of the following lemma.

Lemma 5.1.3 If I is generated as an ideal of B by G –invariant elements fbig, then
IG is the ideal in BG generated by fbig.

Proof Let a 2 IG . Write aD
P

i cibi for some ci 2 B . Then

aD  .a/D 

�X
i

cibi

�
D

X
i

 .cibi/D
X

i

 .ci/bi :

Since  .ci/ 2 BG , the claim is proven.
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5.2 Three isomorphisms

The following three linear maps define isomorphisms of SL2.C/–representations that
will be used repeatedly.

5.2.1 Transpose First, let V_ denote the dual vector space to V . The invariant form
! defines the transpose map ?W V ��! V_ by

v? WD !.v;�/:

5.2.2 Outer product Next, define the outer product map ‚W V ˝V ��! End.V / by

‚.v;w/ WD vw?

(note that endomorphisms of the form vw? span End.V /). It follows that

(5-1) tr.‚.v;w//D w?.v/D !.w; v/D�!.v;w/:

5.2.3 Adjoint Finally, define the adjoint map �W End.V /! End.V / by

.vw?/� WD �wv?:

Since endomorphisms of the form vw? span End.V /, this completely determines �.

Proposition 5.2.1 The map � has the following properties.

(1) � is an SL2.C/–equivariant anti-involution of the algebra End.V /.

(2) � is the adjunction for the bilinear form ! , ie, !.Av; v0/D !.v;A�v0/.

(3) ACA� D tr.A/ � IdV . Therefore, A is scalar iff A is �–fixed.

(4) AA� D A�AD det.A/ � IdV . Therefore, A 2 SL2.C/ iff AA� D IdV .

(5) For e1; e2 an !–canonical basis for V (ie, !.e1; e2/D 1), the action of � on the
corresponding matrices is:

(5-2)
�
a b

c d

��
D

�
d �b

�c a

�
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5.3 Mixed invariants and matrix concomitants

Let

(5-3) Om;n WDOŒEnd.V /m˚V n�D SymC.End.V /m˚V n/_

denote the algebra of regular functions on the variety End.V /m ˚ V n . The group
SL2.C/ acts on End.V /m˚V n by conjugation on the first m factors and left action
on the last n factors. This SL2.C/–action extends to an action on Om;n .

Definition 5.3.1 The SL2.C/–invariant subalgebra OSL2
m;n �Om;n will be called the

algebra of mixed invariants.

The theory of mixed invariants and its presentations simultaneously generalizes the
theory of invariant functions on V n and the theory of invariant functions on End.V /m

(hence, ‘mixed’). As such, there are many partial results; some of the history of this
problem will be reviewed in Section 5.6.

Now, denote:

(5-4) Em;n WD End.V /˝Om;n

The multiplication in End.V / makes this into a non-commutative algebra over Om;n ,
where Om;n ,! Em;n as scalar matrices. The group SL2.C/ acts on Em;n by

g � .M˝f /D gMg�1
˝ .g �f /; for g 2 SL2.C/;M 2 End.V /; f 2Om;n:

The algebra Em;n is equivalent to the algebra of regular functions from End.V /m˚V n

to End.V /; from this perspective, the SL2.C/–action is by conjugation of the function.

Definition 5.3.2 The SL2.C/–invariant subalgebra ESL2
m;n � Em;n will be called the

algebra of mixed matrix concomitants.

While an interesting object in its own right, the mixed matrix concomitants are most
useful as an intermediary in computing the mixed invariants and related algebras.
Specifically, some relations will not be SL2.C/–invariant in Om;n , but will become
invariant when extended to Em;n ,6 allowing Lemma 5.1.3 to be used.

Remark 5.3.3 (Notation for Em;n ) Plain math font fA;B; : : : g will be used to denote
generic elements in Em;n , sans serif font fA;B; : : : g will be used to denote the elements
of End.V / � Em;n (constant elements), and bold fA;B; : : : g will be used to denote
SL2 –invariant elements of Em;n . This can be very useful for visually distinguishing
between otherwise identical-looking results like Lemma 6.2.1, Corollary 6.2.2 and
Lemma 6.3.1.

6Or rather, the even part of Em;n ; see Section 7.2.
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5.4 Maps between OSL2
m;n and ESL2

m;n

Results about algebras of mixed invariants and mixed matrix concomitants will be
related by two maps, scalar inclusion and trace.

The scalar inclusion Om;n ,! Em;n is SL2.C/–equivariant, and so it induces a scalar
inclusion of invariants:

� � IdV W OSL2
m;n ,! ESL2

m;n

In this way, ESL2
m;n is an algebra over OSL2

m;n .

The anti-involution � on End.V / extends to an anti-involution of Em;n , and all the
analogous properties in Proposition 5.2.1 remain true. In particular, for A 2 Em;n ,
A 2Om;n � IdV iff A� DA, and so:

Proposition 5.4.1 Under the scalar inclusion Om;n ,! Em;n , the algebra of mixed
invariants OSL2

m;n is the subalgebra of ESL2
m;n fixed by �.

The trace gives a linear map7 End.V /Ü C , which induces an SL2.C/–equivariant,
Om;n –module map trW Em;n Ü Om;n . This then restricts to a OSL2

m;n –module map:

trW ESL2
m;n Ü OSL2

m;n

Since tr.f � IdV /D 2f , the map 2�1 tr is a right inverse to scalar inclusion. It follows
that tr surjects onto OSL2

m;n .

5.5 Elementary concomitants and invariants

For 1� i �m, let Xi 2 Em;n denote the i th coordinate function,

(5-5) Xi.A1;A2; : : : ;Am; v1; v2; : : : ; vm/ WD Ai :

Since the action of SL2.C/ is by conjugation, Xi 2 ESL2
m;n .

For 1� i; j � n, let ‚i;j 2 Em;n denote .i; j /th outer product function,

(5-6) ‚i;j .A1;A2; : : : ;Am; v1; v2; : : : ; vm/ WD‚.vi ; vj /D viv
?
j :

Since ‚ is SL2.C/–equivariant, ‚i;j 2 ESL2
m;n .

Because � is SL2.C/–equivariant, if A 2 ESL2
m;n , then A� 2 ESL2

m;n . In particular, X�i and
‚�

i;j are also matrix concomitants, although ‚�
i;j D �‚j ;i , so only X�i provides a

new example of a matrix concomitant.

7Dashed arrows will be used to denote morphisms in a weaker category than their source and target;
typically, linear maps between algebras which are not algebra maps.
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Any of these concomitants, or more generally any word in these concomitants, can be
made into an invariant by taking the trace.

5.6 Known results on OSL2
m;n and ESL2

m;n

As a generalization of two well-known problems, there are many partial results on the
structure of the algebras of mixed invariants and matrix concomitants.

The case mD 0 is classical; see Weyl [16] or Howe [7].

Theorem 5.6.1 (Invariants on V n ) The algebra OSL2

0;n
is generated by ftr.‚i;j /g,

for 1� i; j � n, with relations generated by tr.‚i;j /D� tr.‚j ;i/ and

tr.‚i;j / tr.‚i0;j 0/D tr.‚i;j 0/ tr.‚i0;j /C tr.‚i;i0/ tr.‚j ;j 0/:

For arbitrary-dimensional V , the problem of finding invariants on End.V /m was first
proposed by Artin in [1]. A complete presentation of invariants and matrix concomitants
on End.V /m was found by Procesi in [9].

We review the 2–dimensional case. The invariants are generated by traces of strings of
coordinate functions, and the relations are generated by a single class of relation.

Theorem 5.6.2 [9, Theorems 1.3 and 4.5.a] The algebra OSL2

m;0
is generated as a

commutative algebra by tr.A/, as A runs over all words in the coordinate functions
fXig. The relations are generated by Procesi’s F–relation:

(5-7) tr.ABC/C tr.CBA/C tr.A/ tr.B/ tr.C/
D tr.B/ tr.AC/C tr.AB/ tr.C/C tr.A/ tr.BC/

as A, B and C run over all words in fXig.

The algebra of matrix concomitants ESL2

m;0
can then be generated, over OSL2

m;0
, by the

coordinate functions, and the relations are again generated by a single class of relation.

Theorem 5.6.3 [9, Theorems 2.1 and 4.5.b] The algebra ESL2

m;0
is generated, as an

algebra over OSL2

m;0
, by the coordinate functions fXig. The relations are generated by

Procesi’s G-relation:

(5-8) ABCBA� tr.A/B� tr.B/A� tr.AB/C tr.A/ tr.B/D 0

as A and B run over all words in fXig.
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Inspired by later results of Procesi, Brumfiel and Hilden produced a different presenta-
tion of ESL2

m;n (as a C–algebra), which is specific to SL2.C/.

Theorem 5.6.4 [3, Proposition 9.1.i] The algebra ESL2

m;0
is generated by Xi and X�i ,

with the relations generated by

.ACA�/BD B.ACA�/

as A and B run over all words in fXi ;X�ig.

As one would expect, � denotes the anti-involution in the algebra generated by fXi ;X�ig
that interchanges Xi and X�i . Since ACA� D tr.A/ � IdV , the theorem says that the
defining relation amongst the matrix concomitants is that the trace is central.

An interesting aspect of this presentation is that the algebra of matrix concomitants is
produced directly, and then the algebra of invariants is found as the �–fixed subalgebra.

6 Presentations of OSL2
m;n and ESL2

m;n

This section provides presentations of the algebras of mixed invariants and mixed
matrix concomitants that will be instrumental in proving Theorem 3.5.2. The problem
of presenting these algebras in the mixed generality was first studied by Procesi [9,
Section 12] (for more general groups than SL2.C/), who found a generating set and
outlined a brute force method for computing the relations.8 Our approach incorporates
the SL2.C/–specific approach of Brumfiel and Hilden, and this specialization makes
the problem tractable.

6.1 The map �

Consider the quadratic map of SL2 –varieties:

V n
! End.V /n

2

.v1; v2; : : : ; vn/ 7! .v1v
?
1 ; v1v

?
2 ; v1v

?
3 ; : : : ; vnv

?
n�2; vnv

?
n�1; vnv

?
n /

This induces a SL2.C/–equivariant map on coordinate rings:

(6-1) �W On2;0!O0;n

Tensoring this map with the identity map on Om;0 or Em;0 gives

�W OmCn2;0!Om;n; �W EmCn2;0! Em;n:

8However, as Procesi himself notes, producing a nice generating set for the relations via this method
would likely be difficult or impossible.
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Proposition 6.1.1 The invariant maps

�W OSL2

mCn2;0
!OSL2

m;n and �W ESL2

mCn2;0
! ESL2

m;n

are surjective.

Proof In [9, Theorem 12.1], Procesi produces sets of generators for the algebra of
mixed invariants, showing that they correspond to traces of products of matrices and
values of ! on pairs of vectors. Since these are in the image of � , surjectivity follows.
The analogous statement for mixed concomitants follows from the set of generators in
[9, Theorem 12.2.d].

Remark 6.1.2 Since the previous section provides a presentation of OSL2

mCn2;0
and

of ESL2

mCn2;0
, this proposition reduces the problem of presenting the mixed invariants

and matrix concomitants to the problem of understanding the kernel of � .

6.2 The kernel of �

Under � , the first m coordinate functions in EmCn2;0 go to the coordinate functions in
Em;n . The last n2 coordinate functions in EmCn2;0 go to the outer product functions
in Em;n , so by abuse of notation, the last n2 coordinate functions in EmCn2;0 will be
denoted by ‚i;j , for 1� i; j � n.

Lemma 6.2.1 The kernel of the map �W On2;0!O0;n is generated by

� tr.A‚i;j /C tr.A‚�
j ;i/, for A 2 End.V / and 1� i; j � n,

� tr.A‚i;jB‚i0;j 0/� tr.A‚i;j 0/ tr.B‚i0;j /, for A;B 2 End.V / and 1� i; j � n.

Proof We use the isomorphism �W V n˝V n ' .End.V /n
2

/_ , given by

�.vi ˝wj / WD v
?‚i;jw D !.v;‚i;jw/D tr.wv?‚i;j /:

This induces an isomorphism of algebras:

�W Sym�.V n
˝V n/!On2;0

The induced map

�0W Sym�.V n
˝V n/'On2;0

�
�!O0;n ' Sym�.V n/
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is the natural symmetrization map. These maps fit together into a commutative diagram:

T .V n˝V n/ //

��

Sym�.V n˝V n/
� //

�0

��

On2;0

�

��
T .V n/ // Sym�.V n/

� // O0;n

Here, T denotes the tensor algebra, T .V n˝V n/! T .V n/ is the natural degree 2
embedding, and the maps from T to Sym� are the symmetrization maps.

By definition, the kernel of

T .V n/! Sym�.V n/

is spanned, as j runs over all natural numbers, by elements of the form

(6-2) .v1/p1
˝ .v2/p2

˝ � � �˝ .vj /pj
� .v1/�.p1/˝ .v2/�.p2/˝ � � �˝ .vj /�.pj /

for vi 2 V , 1 � pi � j and � 2 †j , the symmetric group on j letters. Since
T .V n˝V n/! T .V n/ is an inclusion, it follows that the kernel of

T .V n
˝V n/! Sym�.V n/

is spanned by elements of the form (6-2). Since T .V n˝V n/! Sym�.V n˝V n/ is
surjective, the kernel of

�0W Sym�.V n
˝V n/! Sym�.V n/

is spanned by the image of elements of the form (6-2).

The symmetric group †j is generated by simple transpositions, and so the kernel of
the map �0 is generated by two kinds of elements:

� vi ˝wj �wj ˝ vi , for v;w 2 V and 1� i; j � n,

� .vi ˝ wj /.v
0
i0 ˝ w

0
j 0/ � .vi ˝ w

0
j 0/.v

0
i0 ˝ wj /, for v;w; v0; w0 2 V and 1 �

i; j ; i 0; j 0 � n.

We then compute the image of these generators under � :

�.vi ˝wj �wj ˝ vi/D tr.wv?‚i;j /� tr.vw?‚j ;i/

D tr.wv?‚i;j /C tr.wv?‚�
j ;i/

D tr.wv?.‚i;j C‚
�
j ;i//
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Since products of the form wv? span End.V /, this gives the first kind of generator:

�.vi ˝wj /.v
0
i0 ˝w

0
j 0/D tr.wv?‚i;j /t r.w

0v0?‚i0;j 0/

D tr.w.v0?‚i0;j 0w
0/v?‚i;j /

D tr.w0v?‚i;jwv
0?‚i0;j 0/

�.vi ˝w
0
j 0/.v

0
i0 ˝wj /D tr.w0v?‚i;j 0/ tr.wv0?‚i0;j /

Combining these gives the second class of relation.

Corollary 6.2.2 The kernel K of the map �W OmCn2;0!Om;n is spanned over C by:

� tr.A‚i;j /C tr.A‚�
j ;i/, for A 2 EmCn2;0 and 1� i; j � n,

� tr.A‚i;j B‚i0;j 0/� t r.A‚i;j 0/ tr.B‚i0;j /, for A;B 2 EmCn2;0 and 1 � i; j ;

i 0; j 0 � n.

Proof The preceding lemma provides a generating set for this kernel. The kernel is
then spanned by OmCn2;0 –multiples of these generators. In all cases, this coefficient
may be pulled through the trace, and absorbed into the definition of A or B .

6.3 The invariant kernel of �

The next step is to find the kernel of the map � when restricted to the invariants.

Lemma 6.3.1 The kernel of the map �W OSL2

mCn2;0
!OSL2

m;n is spanned by:

� tr.A‚i;j /C tr.A‚�
j ;i/, for A 2 ESL2

mCn2;0
and 1� i; j � n,

� tr.A‚i;j B‚i0;j 0/�tr.A‚i;j 0/ tr.B‚i0;j /, for A;B2 ESL2

mCn2;0
and 1� i; j � n.

Proof Let Ri;j denote the SL2 –subrepresentation of OSL2

mCn2;0
spanned by

(6-3) tr.A‚i;j /C tr.A‚�
j ;i/;

for A 2 EmCn2;0 . There is a SL2 –equivariant surjection EmCn2;0!Ri;j that sends
A to (6-3). The induced map on invariants is a surjection, and so R

SL2

i;j is spanned by

(6-4) tr.A‚i;j /C tr.A‚�
j ;i/;

for A 2 ESL2

mCn2;0
.

Let Ri;j ;i0;j 0 denote the SL2 –subrepresentation OSL2

mCn2;0
spanned by

(6-5) tr.A‚i;j B‚i0;j 0/� tr.A‚i;j 0/ tr.B‚i0;j /;
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for A;B 2 EmCn2;0 . There is a SL2 –equivariant surjection

(6-6) EmCn2;0˝O
mCn2;0

EmCn2;0!Ri;j ;i0;j 0

that sends A˝B to (6-5). The induced map on invariants is a surjection.

Choose a basis v1; v2 for V , and let eij denote the .i; j / elementary matrix in this
basis.

Lemma 6.3.2 The invariants .EmCn2;0˝O
mCn2;0

EmCn2;0/
SL2 are spanned by A˝B

and
P

i;j2f1;2g eij A˝ ejiB.

Proof Consider OmCn2C2;0 , where the two final coordinate functions are denoted
Y1 and Y2 . Then there is an SL2 –equivariant inclusion

(6-7) EmCn2;0˝O
mCn2;0

EmCn2;0 ,!OmCn2C2;0

that sends A˝B to tr.AY1BY2/. The image of this map consists of the elements of
OmCn2C2;0 , which are linear in Y1 and in Y2 .

By Theorem 5.6.2, the subspace of OSL2

mCn2C2;0
that is linear in Y1 and in Y2 is

spanned by tr.AY1BY2/ and tr.AY1/ tr.BY2/, for A;B 2 ESL2

mCn2C2;0
. Note that:X

i;j2f1;2g

tr.eij AY1ejiBY2/D
X

i;j2f1;2g

.AY1/jj .BY2/ii D tr.AY1/ tr.BY2/

It follows that the image of the span of

fA˝Bg
S� X

i;j2f1;2g

eij A˝ ejiB
�
; for A;B 2 ESL2

mCn2C2;0

under the map (6-7) spans OSL2

mCn2C2;0
.

The map (6-6) sends A˝B to

(6-8) tr.A‚i;j B‚i0;j 0/� tr.A‚i;j 0/ tr.B‚i0;j /;

and
P

i;j2f1;2g eij A˝ ejiB toX
i;j2f1;2g

tr.eij A‚i;j ejiB‚i0;j 0/� tr.eij A‚i;j / tr.ejiB‚i0;j 0/

D

X
i;j2f1;2g

.A‚i;j /jj .B‚i0;j 0/ii � .A‚i;j /ji.B‚i0;j 0/ij

D tr.A‚i;j / tr.B‚i0;j 0/� tr.A‚i;j B‚i0;j 0/:
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Notice that this is of the same form as (6-8), except with a minus sign and i 0 and j

exchanged. It follows that R
SL2

i;j ;i0;j 0 is spanned by elements of these two forms.

Corollary 6.2.2 states that the kernel K of � is:X
1�i;j�n

Ri;j C

X
1�i;j ;i0;j 0�n

Ri;j ;i0;j 0

The Reynolds operator (Lemma 5.1.1) is a linear projection  W OmCn2;0 ÜOSL2

mCn2;0
,

which sends subrepresentations to their invariant subspaces. Applying this to K gives:



� X
1�i;j�n

Ri;j C

X
1�i;j ;i0;j 0�n

Ri;j ;i0;j 0

�
D

X
1�i;j�n

R
SL2

i;j C

X
1�i;j ;i0;j 0�n

R
SL2

i;j ;i0;j 0

Therefore, KSL2 is spanned by elements of the form (6-4) and (6-8), as the A and B
run over EmCn2;0 and i; j ; i 0; j 0 run over 1; : : : ; n.

Lemma 6.3.3 The kernel of the map �W ESL2

mCn2;0
! ESL2

m;n is generated by:

� ‚i;j C‚
�
j ;i , for 1� i; j � n

� ‚i;j B‚i0;j 0 � tr.B‚i0;j /‚i;j 0 or, equivalently,

‚i;j B‚i0;j 0 �B‚i0;j‚i;j 0 �‚
�
i0;j B�‚i;j 0

for B 2 ESL2

mCn2;0
and 1� i; j ; i 0; j 0 � n.

Proof We consider OmC1;n with final coordinate function denoted Y. There is an
inclusion Em;n ! OmC1;n that sends A to tr.AY/. The image is the subspace of
OmC1;n is linear in Y. We have a commutative diagram:

ESL2

mCn2;0

�

��

� � // OSL2

mCn2C1;0

�

��

ESL2
m;n
� � // OSL2

mC1;n

Hence, the kernel of � in ESL2

mCn2;0
is the preimage of the kernel of � in OSL2

mCn2C1;0
.

If tr.A‚i;j / C tr.A‚�
j ;i/ 2 EmCn2C1;0 is linear in Y, then A D BYC, for some

B;C 2 EmCn2;0 . Then:

C.‚i;j C‚
�
j ;i/B

tr.�Y/
����! tr.C.‚i;j C‚

�
j ;i/BY/D tr.A‚i;j /C tr.A‚�

j ;i/

Thus, the preimage of tr.A‚i;j /C tr.A‚�
j ;i/ is in the ideal generated by ‚i;jC‚

�
j ;i .

A similar argument works for the other class of relations.
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6.4 Presentations of mixed invariants and mixed concomitants

By Proposition 6.1.1, a presentation of OSL2
m;n (resp. ESL2

m;n ) can be produced by choosing
a presentation of

OSL2

mCn2;0
(resp. ESL2

mCn2;0
)

and adding a relation coming from the generators for the kernel of � .

Combining Procesi’s presentation of OSL2

mCn2;0
with the previous presentation of the

kernel of � gives the following.

Theorem 6.4.1 The algebra OSL2
m;n is generated as a commutative algebra by tr.A/,

as A runs over all words in the coordinate functions fXi ;‚i;j g. The relations are
generated by:

� Procesi’s F–relation (5-7),

� tr.A‚i;j / D tr.A‚j ;i/� tr.A/ tr.‚j ;i/, for A a word in the fXi ;‚i;j g and
1� i; j � n,

� tr.A‚i;j B‚i0;j 0/ D tr.A‚i;j 0/ tr.B‚i0;j /, for A;B words in fXi ;‚i;j g and
1� i; j ; i 0; j 0 � n.

Proof The generators and the first relation come from Theorem 5.6.2. The second
two relations come from Lemma 6.3.1. Note that any occurrence of X�i or ‚�

i;j may
be replaced by tr.Xi/�Xi or tr.‚i;j /�‚i;j , so as to avoid using �. In this way, the
second relation is a reformulation of tr.A‚i;j /D� tr.A‚�

j ;i/.

Combining Brumfiel and Hilden’s presentation of ESL2

mCn2;0
with the previous presenta-

tion of the kernel of � gives the following.

Theorem 6.4.2 The algebra ESL2
m;n is generated by

� coordinate functions Xi , for 1� i �m,

� adjoint coordinate functions X�i , for 1� i �m,

� outer product functions ‚i;j , for 1� i; j � n.

The relations may be written two ways. Let � be the anti-involution with .Xi/
� WD X�i ,

and .‚i;j /
� WD �‚j ;i . Then the relations are generated by:

(1) .ACA�/BD B.ACA�/, for all A;B words in fXi ;X�i ;‚i;j g,

(2) ‚i;j A‚i0;j 0 D A‚i0;j‚i;j 0 �‚j ;i0A�‚i;j 0 , for all 1� i; j ; i 0; j 0 � n and all
words A in fXi ;X�i ;‚i;j g.
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Let tr.A/ WD ACA� . Then the relations are generated by:

(1) tr.A/BD B tr.A/, for all A;B words in fXi ;X�i ;‚i;j g,

(2) ‚i;j A‚i0;j 0 D tr.A‚i0;j /‚i;j 0 for all 1 � i; j ; i 0; j 0 � n and A a word in
fXi ;X�i ;‚i;j g.

Proof Theorem 5.6.4 implies that ESL2
m;n is generated by fXi ;X�i ;‚i;j ;‚

�
i;j g, and that

the trace of any element is central. Lemma 6.3.3 shows the rest of the relations are given
by ‚i;j D�‚

�
j ;i and ‚i;j A‚i0;j 0 D tr.A‚i0;j /‚i;j 0 . The relation ‚i;j D�‚

�
j ;i

may be used to eliminate the variables ‚�
i;j , which in turn eliminates the need for that

relation. The remaining generators and relations give the theorem as stated.

7 Presenting the character algebra

In this section we apply the results of the previous section to the decorated character
algebra.

7.1 A presentation of the representation algebra

First, we will need a presentation of the representation algebra ORep.G;M /, which
is the coordinate ring of the representation scheme Hom..G;M /; .SL2.C/;V //.

The definition of the representation algebra will require an explicit presentation of
.G;M /. Choose a finite generating set fgig1�i�n � G for G , and a finite set of
G –orbit representatives fpj g1�j�n �M .9

Definition 7.1.1 The representation algebra ORep.G;M / is the quotient of Om;n

by the ideal generated by:

(1) det.Xi/� 1 for all 1� i � n,

(2) '.Xi1
Xi2
� � �Xij � IdV / for each relation gi1

gi2
� � �gij D e between the genera-

tors in G , and each ' 2 End.V /_ ,

(3) '..Xj1
Xj2
� � �Xjk

� IdV /vj / for each 1 � j �m, each element gj1
gj2
� � �gjk

of the stabilizer of pj in G , and each ' 2 V_ .

Remark 7.1.2 If M is a free G –set, then the third class of relations is redundant. If
G is a free group and M is a free G –set, then the second and third classes of relations
are empty.

9For simplicity, we will assume the generating set fgig is closed under inverses. That way, every
element of g can be written as a inversion-free word in fgig .
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Proposition 7.1.3 Let A be a commutative C–algebra. Then there is a natural, SL2 –
equivariant bijection (functorial in A):�

group action maps
.G;M /! .SL2.A/;A˝V /

�
��!

�
C–algebra maps

ORep.G;M /!A

�

Proof Given a map of group actions

f D .fG ; fM /W .G;M /! .SL2.A/;A˝V /;

define a map f̨ W Om;n!A by:

f̨ .'.Xi//D '.fG.gi//; for each 1� i �m; and each ' 2 End.V /_;

f̨ .'.vi//D '.fM .vj //; for each 1� j � n; and each ' 2 V_:

Since det.fG.gi//D 1, the map f̨ kills the elements det.Xi/� 1 in Om;n . Since f
is a map of group actions, f̨ kills the remaining relations for ORep.G;M /, and so
f̨ descends to a well-defined map ORep.G;M /!A.

Given a map ˛W ORep.G;M /!A, define a map of group actions f˛ D .fG ; fM / as
follows. Let fG.gi/ be the unique element in End.V / such that:

'.fG.gi//D ˛.'.Xi//; for each ' 2 End.V /_:

Let fM .vj / be the unique element in V such that:

'.fM .vj //D ˛.'.vj //; for each ' 2 V_:

Since ˛ kills det.Xi/�1, fG.gi/2 SL2.C/. The remaining relations in ORep.G;M /

imply that f˛W .G;M /! .SL2.C/;V / is a map of group actions.

These two constructions are directly seen to be mutual inverses that are SL2 –equivariant.
Functoriality is straight-forward.

As a consequence of the above universal property, the algebra ORep.G;M / is inde-
pendent of the choice of presentation for .G;M /.

Corollary 7.1.4 The C–valued points of the scheme

Rep.G;M / WD Spec.ORep.G;M //

are in bijection with Hom..G;M /; .SL2.C/;V //.
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7.2 Getting invariant relations

The aim is to present the SL2 –invariants in ORep.G;M /. The previous section gives
a presentation of OSL2

m;n . However, the relations of the second and third type given in
Definition 7.1.1 are not SL2 –equivariant, and so Lemma 5.1.3 cannot be used. This is
fixed by tensoring with End.V /, and passing to the even subalgebra.

The defining surjection
� W Om;n!ORep.G;M /

gives a surjection
�E W Em;n! End.V /˝ORep.G;M /:

Using �I 2 SL2.C/, any SL2.C/–representation V splits into even and odd sum-
mands:

V e
WD fv 2 V j .�I/ � v D vg

V o
WD fv 2 V j .�I/ � v D�vg

The even part contains the SL2.C/–invariants; V SL2 � V e .

One checks that End.V / is even and V is odd. It then follows that Oe
m;n �Om;n is

the subalgebra of functions which have even degree in V n ,

Oe
m;n D ff 2Om;n j f .A1; : : : ;An; v1; : : : ; vm/D f .A1; : : : ;An;�v1; ; : : : ;�vm/g:

The even parts of Em;n and ORep.G;M / are similarly equal to the subalgebras of
functions even in the V n part.

Let �e
E denote the restricted surjection:

�e
E W E

e
m;n! End.V /˝ORep.G;M /e

Remark 7.2.1 (Technical necessities) Tensoring with End.V / and restricting to
the even part are necessary so that the kernel of �e

E is generated by SL2 –invariants.
However, in simple cases this is unnecessary. If M is a free G –set, �E already has an
invariantly generated kernel. If G is a free group and M is a free G–set, � already
has an invariantly generated kernel.

Lemma 7.2.2 The kernel of �e
E is generated by:

(1) XiX�i � I for all 1� i � n,

(2) Xi1
Xi2
� � �Xij � I for each relation gi1

gi2
� � �gij D e between the generators

in G ,
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(3) .Xj1
Xj2
� � �Xjk

� I/‚j ;j 0 for each 1 � j ; j 0 � m, and each element
gj1

gj2
� � �gjk

of the stabilizer of pj .

Proof Let I denote the two-sided ideal in Ee
m;n generated by the elements in the

statement of the lemma, so that we wish to prove I D ker.�e
E /.

The kernel of �E is spanned by elements of the form Ar , where A 2 Em;n and r runs
over all the relations in Definition 7.1.1. Such an element is in Ee

m;n if both A and r

are in Ee
m;n , or if they are both in Eo

m;n . The first two relations in Definition 7.1.1 are
even, the third is odd. In the third case, we can find f'ig 2 V_ and Ai 2 Ee

m;n such
that:

A'..Xj1
Xj2
� � �Xjk

� I/vj /D

� X
1�i�m

Ai'i.vi/

�
'..Xj1

Xj2
� � �Xjk

� I/vj /

For any '; '0 2 V_ , there is a '00 2 End.V /_ such that

'0.vi/'..Xj1
Xj2
� � �Xjk

� I/vj /D '
00..Xj1

Xj2
� � �Xjk

� I/‚j ;i/

The kernel of �e
E is then spanned by elements of the form (as A runs over eEm;n ):

(1) A.det.Xi/� 1/,

(2) A'
�
Xi1

Xi2
� � �Xij � I

�
for each relation in G , and each ' 2 End.V /_ ,

(3) A'
�
.Xj1

Xj2
� � �Xjk

� I/‚j ;i

�
for each 1 � i; j � m, each element

gj1
gj2
� � �gjk

of the stabilizer of pj , and each ' 2 End.V /_ .

By Proposition 5.2.1, XiX�i � I D .det.Xi/� 1/I . Then I � ker.�e
E /, since

I 2 End.V /˝End.V /_:

Now, let A 2 Ee
m;n and ' 2 End.V /_ . Assume first that A D f vw? and ' D

tr.v0w0?�/, for f 2Oe
m;n and v;w; v0; w0 2 V . Then, for B 2 I ,

A'.B/D f vw? tr.v0w0?B/D f .vw0?/B.v0w?/ 2 I:

By linearity, A'.B/2 I for general A and ' . Then the above spanning set for ker.�e
E /

is contained in I . Therefore, I D ker.�e
E /.

The map �e
E then has a kernel which is generated by SL2 –invariants. By Lemma 5.1.3,

the kernel of this map when restricted to invariants is generated by the same set.

Corollary 7.2.3 The kernel of �SL2

E W E
SL2
m;n! .End.V /˝ORep.G;M //SL2 is gener-

ated by:
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(1) XiX�i � I for all 1� i � n,

(2) Xi1
Xi2
� � �Xij � I for each relation gi1

gi2
� � �gij D e between the generators in

G ,

(3) .Xj1
Xj2
� � �Xjk

� I/‚j ;j 0 for each 1 � j ; j 0 � m, and each element
gj1

gj2
� � �gjk

of the stabilizer of pj .

This corollary can be combined with the presentation of ESL2
m;n (Theorem 6.4.2) to yield

a presentation of .End.V /˝ORep.G;M //SL2 .

Corollary 7.2.4 The algebra

.End.V /˝ORep.G;M //SL2

is generated by fXi ;X�i ;‚j ;kg for 1 � i � m and 1 � j ; k � m, with relations
generated by

(1) XiX�i � I for all 1� i � n,

(2) Xi1
Xi2
� � �Xij � I for each relation gi1

gi2
� � �gij D e between the generators

in G ,

(3) .Xj1
Xj2
� � �Xjk

� I/‚j ;j 0 for each 1 � j ; j 0 � m, and each element
gj1

gj2
� � �gjk

of the stabilizer of pj ,

(4) .ACA�/BD B.ACA�/, for all A;B words in fXi ;X�i ;‚i;j g,

(5) ‚i;j A‚i0;j 0 D A‚i0;j‚i;j 0 �‚j ;i0A�‚i;j 0 , for all 1 � i; j ; i 0; j 0 � n and A
a word in fXi ;X�i ;‚i;j g.

7.3 A presentation of the matrix character algebra

There is a more natural presentation of the algebra .End.V /˝ORep.G;M //SL2 that
is independent of the choice of presentation of .G;M /. Let CG be the group ring of
G , and let

TGM 2
WD TCG.CM ˝C CM /

be the tensor algebra of CM ˝CM over CG . For g 2G , the corresponding element
in CG will be denoted Xg ; for p; q 2M , the corresponding element in CM ˝CM

will be denoted ‚p;q .

Lemma 7.3.1 The tensor algebra TGM 2 is naturally isomorphic to the abstract al-
gebra generated by fXi ;X�i ;‚j ;kg for 1 � i � m and 1 � j ; k � m, with relations
generated by:

(1) XiX�i � I for all 1� i � n,
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(2) Xi1
Xi2
� � �Xij � I for each relation gi1

gi2
� � �gij D e between the generators in

G ,

(3) .Xj1
Xj2
� � �Xjk

� I/‚j ;j 0 for each 1 � j ; j 0 � m, and each element
gj1

gj2
� � �gjk

of the stabilizer of pj .

Proof First, note that Relation (1) in Corollary 7.2.3 means that X�i D X�1
i . For

g 2G , let gk1
gk2
� � �gkl

D g be a word for g in the generating set fgi ;g
�1
i g. Then:

Xg D Xk1
Xk2
� � �Xkl

Relation (2) in Corollary 7.2.3 guarantees this element is independent of the choice of
word for g . Similarly, for p; q 2M , let gi1

gi2
� � �gik

pi Dp and gj1
gj2
� � �gjl

pj D q

be words for p and q . Then:

‚p;q D Xi1
Xi2
� � �Xik

‚i;j X�jl
� � �X�j2

X�jl

Relation (3) in Corollary 7.2.3 guarantees this element is independent of the choice of
words for p and q .

There is then a surjection

(7-1) TGM 2
! .End.V /˝ORep.G;M //SL2

whose kernel is generated by relations of type (4) and (5) in Corollary 7.2.3. The
elements Xg and ‚p;q are identified with their image. As elements of End.V /˝
ORep.G;M /, they can be evaluated on a group action map �W .G;M /! .SL2.C/;V /
to give elements of End.V /. Specifically,

Xg.�/D �.g/; ‚p;q.�/D‚.�.p/; �.q//D �.p/�.q/
?:

The anti-involution �W TGM 2! TGM 2 can be formally defined by

.Xg/
�
WD Xg�1 ; .‚p;q/

�
D�‚q;p:

Similarly, the linear map trW TGM 2 Ü TGM 2 can be formally defined, by

tr.A/ WD ACA�:

Then, the following theorem is the fruit of all of the labor so far, and the source of all
of the results to follow.

Theorem 7.3.2 By the surjection (7-1), the algebra .End.V /˝ORep.G;M //SL2 is
isomorphic to the quotient of TGM 2 by the two-sided ideal generated by

(1) tr.A/B�B tr.A/, for all A;B 2 TGM 2 ,
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(2) ‚p;q‚p0;q0 � tr.‚p0;q/‚p;q0 , for all p; q;p0; q0 2M .

Proof Quotienting by just first three relations in Corollary 7.2.3 gives TGM 2 , by the
lemma. The remaining two relations are almost copied directly from Corollary 7.2.3;
the only difference is that the Relation (2) no longer contains a generic word A.

Note that it suffices to assume that such an A is a word in f‚p;qg, since any Xg may
be absorbed into an outer product ‚p;q . For AD‚p0;q0 , using Relation (5):

‚p;q.‚p0;q0/‚p00;q00 D tr.‚p0;q/‚p;q0‚p00;q00

D tr.‚p0;q/ tr.‚p00;q0/‚p;q00

D tr..‚p0;q0/‚p00;q/‚p;q00

The same argument works for longer A, and so every relation of type (5) in Corollary
7.2.3 can be deduced from Relation (2) in the statement of the theorem.

7.4 A presentation of the character algebra

Recall the map
�W HC.G;M /!ORep.G;M /SL2 ;

which we wish to show is an isomorphism. Composing with the inclusion

ORep.G;M / ,! End.V /˝ORep.G;M /

gives
�W HC.G;M /! .End.V /˝ORep.G;M //SL2 :

In this larger context, � may be expressed in terms of the trace:

�.Œg�/D tr.Xg/; �.Œp; q�/D tr.‚q;p/:

The scalars C � End.V / are characterized as the elements which are �–invariant. By
extension, the representation algebra

ORep.G;M /� End.V /˝ORep.G;M /

is the �–invariant subalgebra, and so

ORep.G;M /SL2 � .End.V /˝ORep.G;M //SL2

is the �–invariant subalgebra. Since the trace map projects onto the �–invariants,
ORep.G;M /SL2 is the subalgebra of .End.V /˝ORep.G;M //SL2 that is the image
of the trace.
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Define a linear map � W TGM 2 Ü HC.G;M / by �.Xg/ WD Œg� and

�.‚p1;q1
‚p2;q2

� � �‚pn;qn
/ WD Œq1;p2�Œq2;p3� � � � Œqn;p1�:

The following proposition collects the important properties of � .

Proposition 7.4.1 Let A;B 2 TGM 2 .

(1) �.A�/D �.A/

(2) �.AB/D �.BA/

(3) �.tr.A/B/D �.A/�.B/

(4) The map � descends to a map � W .End.V /˝ORep.G;M //SL2 Ü HC.G;M /.

Proof (1) One has Œg�C Œg�1�D Œe�Œg�D 2Œg� and so Œg�1�D Œg�:

�.Xg/D Œg�D Œg
�1�D �.Xg�1/

Next, by definition, Œp; q�D�Œq;p�, and so:

�..‚p1;q1
‚p2;q2

� � �‚pn;qn
/�/D �.‚�

pn;qn
‚�

pn�1;qn�1
� � �‚�

p1;q1
/

D .�1/n�.‚qn;pn
‚qn�1;pn�1

� � �‚q1;p1
/

D .�1/nŒpn; qn�1�Œpn�1; qn�2� � � � Œp1; qn�

D Œq1;p2�Œq2;p3� � � � Œqn;p1�

D �.‚p1;q1
‚p2;q2

� � �‚pn;qn
/

(2) One has
Œgh�D Œg�Œh�� Œh�1g�D Œh�Œg�� Œg�1h�D Œhg�

and so �.XgXh/D Œgh�D Œhg�D �.XhXg/.

�.Xg‚p1;q1
‚p2;q2

� � �‚pn;qn
/D Œq1;p2�Œq2;p3� � � � Œqn;gp1�

D Œq1;p2�Œq2;p3� � � � Œg
�1qn;p1�

D �.‚p1;q1
‚p2;q2

� � �‚pn;qn
Xg/

�.‚p1;q1
� � �‚pi ;qi

‚piC1;qiC1
� � �‚pn;qn

/

D Œq1;p2� � � � Œqi ;piC1�ŒqiC1;piC2� � � � Œqn;p1�

D ŒqiC1;piC2� � � � Œqn;p1�Œq1;p2� � � � Œqi ;piC1�

D �.‚piC1;qiC1
� � �‚pn;qn

‚p1;q1
� � �‚pi ;qi

/

Thus, �.AB/D �.BA/.
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(3) We check all the cases:

�.tr.Xg/Xh/D �.XghCXg�1h/D Œgh�C Œg�1h�D Œg�Œh�D �.Xg/�.Xh/

�.tr.Xg/‚p1;q1
‚p2;q2

� � �‚pn;qn
/D �..‚gp1;q1

C‚g�1p1;q1
/‚p2;q2

� � �‚pn;qn
/

D Œq1;p2� � � � Œqn�1;pn�.Œqn;gp1�C Œqn;g
�1p1�/

D Œg�Œq1;p2� � � � Œqn�1;pn�Œqn;p1�

D �.Xg/�.‚p1;q1
‚p2;q2

� � �‚pn;qn
/

�.tr.‚p1;q1
� � �‚pj ;qj

/‚pjC1;qjC1
� � �‚pn;qn

/

D �.‚p1;q1
� � �‚pj ;qj

‚pjC1;qjC1
� � �‚pn;qn

C .�1/j‚qj ;pj
� � �‚q1;p1

‚pjC1;qjC1
� � �‚pn;qn

/

D Œq1;p2� � � � Œqj ;pjC1� � � � Œqn;p1�C .�1/j Œpj ; qj�1� � � � Œp1;pjC1� � � � Œqn; qj �

D Œq1;p2� � � � Œqj�1;pj �ŒqjC1;pjC2� � � � Œqn�1;pn�.Œqj ;pjC1�Œqn;p1�

� Œp1;pjC1�Œqn; qj �/

D .Œq1;p2� � � � Œqj�1;pj �Œqj ;p1�/.ŒqjC1;pjC2� � � � Œqn�1;pn�Œqn;pj �/

D �.‚p1;q1
� � �‚pj ;qj

/�.‚pjC1;qjC1
� � �‚pn;qn

/

(4) Let A;B;C;D 2 TGM 2 . Then:

�.C tr.A/BD/D �.tr.A/BDC/

D �.A/�.BDC/

D �.A/�.DCB/

D �.tr.A/DCB/

D �.CB tr.A/D/

Therefore, � kills C.tr.A/B�B tr.A//D. Next, for fpig; fqig 2M ,

�.‚p1;q1
� � �‚pj ;qj

‚pjC1;qjC1
� � �‚pn;qn

/

D Œq1;p2� � � � Œqj�1;pj �Œqj ;pjC1� � � � Œqn;p1�

D �.‚pjC1;qj
/�.‚p1;q1

� � �‚pj ;qjC1
� � �‚pn;qn

/

D �.‚pjC1;qj
/�.‚pj ;qjC1

� � �‚pn;qn
‚p1;q1

� � �‚pj�1;qj
/

D �.tr.‚pjC1;qj
/‚pj ;qjC1

� � �‚pn;qn
‚p1;q1

� � �‚pj�1;qj
/

D �.‚p1;q1
� � �‚pj�1;qj

tr.‚pjC1;qj
/‚pj ;qjC1

� � �‚pn;qn
/
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Therefore, � kills A.‚p;q‚p0;q0 � tr.‚q;p0/‚p;q0/B. By Theorem 7.3.2, the map �
descends to a map .End.V /˝ORep.G;M //SL2 Ü HC.G;M /.

We can now show that �W HC.G;M /!ORep.G;M /SL2 is an isomorphism.

Proof of Theorem 3.5.2 First, we show ��.r/ D 2r for all r by inducting on the
length l of r 2HC.G;M /. First, ��.1/D �.1/D Œe�D 2. Next, let r 2HC.G;M /

be a word of length l � 1. Then:

��.Œg�r/D �.tr.Xg/�.r//D �.Xg/��.r/D Œg���.r/D 2Œg�r

��.Œp; q�r/D �.tr.‚q;p/�.r//D �.‚q;p/��.r/D Œp; q���.r/D 2Œp; q�r

Therefore, � is an inclusion.

Next, we show that ��.A/D tr.A/ for all A 2 End.V /˝ORep.G;M /SL2 :

��.Xg/D �.Œg�/D tr.Xg/

��.‚p1;q1
‚p2;q2

� � �‚pn;qn
/D �.Œq1;p2�Œq2;p3� � � � Œqn;p1�/

D tr.‚p2;q1
/ tr.‚p3;q2

/ � � � tr.‚p1;qn
/

D tr.‚p1;q1
‚p2;q2

� � �‚pn;qn
/

Therefore, the image of � is ORep.G;M /SL2 .

Appendix A Twisted character algebras

The preceding theory concerned group action maps .G;M /! .SL2.C/;V /. A useful
variant is to consider group action maps which are ‘twisted’ by a Z2 –character of
a central extension. This is important for applications to Teichmüller space, skein
algebras and cluster algebras.

A.1 Twisting by a central extension

Let .G;M / be a group action. A central extension of .G;M / will be a group action
.G0;M 0/, together with a map

f D .fG ; fM /W .G0;M 0/! .G;M /

such that

� fG and fM are surjective,

� the kernel K of fG is central in G0 , and
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� for each m 2M , the preimage f �1
M
.m/�M 0 is a (non-empty) free K–orbit.

A central extension of groups G0!G determines a central extension of group actions
up to non-canonical isomorphism.

Let sW K ! f˙1g be a group homomorphism. Then an s–twisted morphism of
.G;M / into .SL2.C/;V / is a map of group actions �W .G0;M 0/ ! .SL2.C/;V /
such that, for all k 2K , �.k/D s.k/. If s.K/D 1, then an s–twisted morphism is
equivalent to a(n untwisted) morphism .G;M /! .SL2.C/;V /. Similarly, a splitting
hW .G;M /! .G0;M 0/ (ie, f ıh is the identity) induces a bijection between s–twisted
morphisms and untwisted morphisms by pulling back along h.

A.2 The twisted character algebra

The set of s–twisted morphisms of .G;M / into .SL2.C/;V / has a natural variety
structure. Define the s–twisted representation algebra as:

OReps.G;M / WDORep.G0;M 0/=hg� s.g/ig2K

This algebra has the following universal property; this follows from Proposition 7.1.3:8<:
group action maps

�W .G0;M 0/! .SL2.A/;A˝V /
such that �.g/D s.g/;8g 2K

9=; ��!

�
C–algebra maps

OReps.G;M /!A

�
This algebra has an SL2.C/–action. Define the twisted character algebra to be the
SL2 –invariant subalgebra,

OChars.G;M / WDOReps.G;M /SL2 :

The definition of Reps.G;M / provides a surjection

ORep.G0;M 0/!OReps.G;M /;

which induces a map

�W OChar.G0;M 0/!OChars.G;M /:

Lemma A.2.1 The map � is surjective, and the kernel of � is generated by elements
of the form:

� �gh� s.g/�h , for g 2K and h 2G0 , and

� �.gp;q/� s.g/�.p;q/ , for g 2K and p; q 2M 0 .
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Proof outline This proof is in the same spirit as the presentation of the character
algebra, so we only outline the details. First, the map on representation algebras induces
a surjection

End.V /˝ORep.G0;M 0/! End.V /˝OReps.G;M /

One observes that the kernel is generated by Xg � s.g/I as g runs over K . These
relations are SL2 –invariant, and so by Lemma 5.1.3, the kernel of

.End.V /˝ORep.G0;M 0//SL2 ! .End.V /˝OReps.G;M //SL2

is also generated by Xg � s.g/ Id as g runs over K .

Since the corresponding character algebras are the �–invariant subalgebras in this map,
the kernel of � is spanned by elements of the form:

tr.A.Xg � s.g/ Id/B/D tr..Xg � s.g//BA/D tr.XgBA/� s.g/ tr.BA/

From this, the theorem may be deduced directly.

Then OChars.G;M / can be presented by using Theorem 3.5.2, with the additional
classes of relations f�gh D s.g/�hg and f�.gp;q/ D s.g/�.p;q/g.

References
[1] M Artin, On Azumaya algebras and finite dimensional representations of rings., J.

Algebra 11 (1969) 532–563 MR0242890

[2] J W Barrett, Skein spaces and spin structures, Math. Proc. Cambridge Philos. Soc. 126
(1999) 267–275 MR1670233

[3] G W Brumfiel, H M Hilden, SL.2/ representations of finitely presented groups, Con-
temporary Mathematics 187, American Mathematical Society (1995) MR1339764

[4] D Bullock, Rings of SL2.C/-characters and the Kauffman bracket skein module, Com-
ment. Math. Helv. 72 (1997) 521–542 MR1600138

[5] M Culler, P B Shalen, Varieties of group representations and splittings of 3-manifolds,
Ann. of Math. 117 (1983) 109–146 MR683804

[6] D Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate
Texts in Mathematics 150, Springer, New York (1995) MR1322960

[7] R Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989)
539–570

[8] G Muller, P Samuelson, Skein algebras and decorated SL2.C/-local systems on
surfaces, in preparation

Algebraic & Geometric Topology, Volume 13 (2013)

http://dx.doi.org/10.1016/0021-8693(69)90091-X
http://www.ams.org/mathscinet-getitem?mr=0242890
http://dx.doi.org/10.1017/S0305004198003168
http://www.ams.org/mathscinet-getitem?mr=1670233
http://dx.doi.org/10.1090/conm/187
http://www.ams.org/mathscinet-getitem?mr=1339764
http://dx.doi.org/10.1007/s000140050032
http://www.ams.org/mathscinet-getitem?mr=1600138
http://dx.doi.org/10.2307/2006973
http://www.ams.org/mathscinet-getitem?mr=683804
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://www.ams.org/mathscinet-getitem?mr=1322960
http://dx.doi.org/10.2307/2001418


Character algebras of decorated SL2.C /–local systems 2469

[9] C Procesi, The invariant theory of n � n matrices, Advances in Math. 19 (1976)
306–381 MR0419491

[10] C Procesi, Computing with 2� 2 matrices, J. Algebra 87 (1984) 342–359 MR739938

[11] J H Przytycki, A S Sikora, Skein algebra of a group, from: “Knot theory”, (V F R
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